» » v g .(;,/;- v < S\ \ /
Qe W V 4 y oo \\ \, :\.% > /
) V4 \J o = SRR o 4
iy m/\r A b @ 2 A e —— - o

Distributed Data Management SN Ap O -
. orsten Fapenbroc
Akka Actor Programming :

F-2.04, Campus II
Hasso Plattner Institut

A R S S G e W \ PP

Akka Actor Programming
Hands-on

Actor Model (Recap)
Basic Concepts

Runtime Architecture
Demo
Messaging

Parallelization
Remoting
Clustering
Patterns

Homework

Actor Model (Recap)

Hasso
Models of Dataflow ﬂ e

Dataflow through Databases

= information storage and

retrieval -

Dataflow through Services

= service calls with responses Process 1 ’O
Distributed Data
Management
. Encoding and
Message-Passing Dataflow 34 Communication
= asynchronous messages Process 1 o Process 2 o o erbrock
orsten apenproc

Slide 3

Actor Model (Recap)
Models of Dataflow

Databases Message-Passing Services
= Data = Messages * Function calls
= No response = Maybe response = Response
= Non-blocking = Usually non-blocking = Blocking
= Asynchronous = Asynchronous = Synchronous
= No addressing = Addressing recipient = Addressing recipient

Hasso
Plattner
Institut

Distributed Data
Management

Encoding and
Communication

ThorstenPapenbrock
Slide 4

Actor Model (Recap)
Actor Programming

-~

Object-oriented
programming

Objects encapsulate
state and behavior.

Objects communicate
with each other.

Separation of concerns
makes applications
easier to build and
maintain.

Actor
programming

Actors encapsulate
state and behavior.

Actors communicate
with each other.

Actor activities are
scheduled and

executed transparently.

Combines the
advantages of object-
and task-oriented
programming.

Task-oriented
programming

Application split down
into task graph.

Tasks are scheduled
and executed
transparently.

Decoupling of tasks
and resources allows
for asynchronous and

parallel programming.

Hasso
Plattner
Institut

Distributed Data
Management

Akka Actor
Programming

ThorstenPapenbrock
Slide 5

Actor Model (Recap)
Actor Model <

Message Broker

Actor 1

o — Hasso
Plattner
Actor 2 Institut
>

Actor Model

= A stricter message-passing model that treats actors as the universal

primitives of concurrent computation.
= Actor:

= Computational entity (private state/behavior)

= Owns exactly one mailbox (cannot subscribe to more or less queues)
= Reacts on messages it receives (one message at a time)

= Actor reactions:
= Send a finite number of messages to other actors
= Create a finite number of new actors

= Change own state, i.e., behavior for next message

= Actor model prevents many parallel programming issues

(race conditions, locking, deadlocks, ...)

“"The actor model retained more of
what I thought were good features
of the object idea”

Alan Kay, pioneer of object orientation

_—

ThorstenPapenbrock
Slide 6

Actor Model (Recap)
Actor Model <

Actor 1 Actor 2

Hasso
Plattner
Institut

Advantages over pure RPC
= Fault-tolerance:
= “Let it crash!” philosophy to heal from unexpected errors
= Automatic restart of failed actors; resend/re-route of failed messages
» Errors are expected to happen and implemented into the model:
= Deadlock/starvation prevention:

= Asynchronous messaging and private state actors prevent many

parallelization issues
Distributed Data

= Parallelization: Management
: : Akka Actor
= Actors process one message at a time but different actors operate Programming

independently (parallelization between actors not within an actor)
ThorstenPapenbrock

= Actors may spawn new actors if needed (dynamic parallelization) Slide 7
ade

Actor Model (Recap)
Actor Model <

Actor 1 Actor 2

Hasso
Plattner
Institut

Popular Actor Frameworks
= Erlang:

= Actor framework already included in the language

= First popular actor implementation

= Special: Native language support and strong actor isolation
= Akka:

= Actor framework for the JVM (Java and Scala)

= Most popular actor implementation (at the moment) Distributed Data
= Special: Actor Hierarchies Management
Akka Actor
= Orleans: Programming
= Actor framework for Microsoft .NET Fhorstenpapenbrock

= Special: Virtual Actors (persisted state and transparent location) Slide 8

Akka Actor Programming
Hands-on

Actor Model (Recap)
Basic Concepts

Runtime Architecture
Demo
Messaging

Parallelization
Remoting
Clustering
Patterns

Homework

Basic Concepts

Hasso
Akka Toolkit and Runtime ﬂ e

A& akka

= A free and open-source toolkit and runtime for building concurrent and
distributed applications on the JVM (https://akka.io/)

= Supports multiple programming models for concurrency, but emphasizes
actor-based concurrency

= Inspired by Erlang (https://erlang.org/) a:t‘:;:;?:nl:ata
= Written in Scala (https://scala-lang.org/) Akka Actor

= included in the Scala standard library Programming

= Invented by Jonas Bonér; maintained by Lightbend (https://lightbend.com/) ThorstenPapenbrock
Slide 10

= Offers interfaces for Java and Scala

https://akka.io/
https://akka.io/
https://www.erlang.org/
https://www.erlang.org/
https://www.scala-lang.org/
https://www.scala-lang.org/
https://www.scala-lang.org/
https://www.scala-lang.org/
https://www.lightbend.com/
https://www.lightbend.com/

Akka Modules

Basic Concepts

Akka Actors

Core actor
model classes
for concurrency
and distribution

Cluster Sharding

Classes to
decouple actors
from their
locations
referencing
them by identity

Akka Cluster

Classes for the
resilient and
elastic
distribution over
multiple nodes

Akka Persistence

Classes to
persist actor
state for fault
tolerance and
state restore
after restarts

Akka Streams

Asynchronous,
non-blocking,
backpressured,
reactive stream
classes

Distributed Data

Classes for an
eventually
consistent,
distributed,

replicated key-
value store

Akka Http

Asynchronous,

streaming-first

HTTP server and
client classes

Alpakka

Stream
connector
classes to other
technologies

Hasso
Plattner
Institut

Distributed Data
Management

Akka Actor
Programming

ThorstenPapenbrock
Slide 11

<dependencies> Maven - pom.xml

Basic Concepts <dependency> EPS&O
<groupld>com.typesafe.akka</groupld> altner
S ma I I S etu p <artifactld>akka-actor_${scala.version}</artifactld> Institut
<version>2.5.3</version>
4/ </dependency>
Base actor library <dependency>
actors, supervision, scheduling, ... <groupld>com.typesafe.akka</groupld>
_ <artifactld>akka-remote_${scala.version}</artifactld>
Remoting library I7<version>2.5.3</version>
remote actors, heartbeats ... </dependency>
. <dependency>
Logger library <groupld>com.typesafe.akka</groupld>

___logging event bus for akka actors === _ iactid>akka-sIf4]_${scala.version}</artifactld>
<version>2.5.3</version>

</dependency>

<dependency>
<groupld>com.typesafe.akka</groupld>

s <artifactld>akka-testkit_${scala.version}</artifactild> Distributed Data

TestKit | Testing Itl_brary <version>2.5.3</version> Management
estKit class, expecting messages, ... </dependency> Akka Actor
Kryo library <dependency> Programming

<groupld>com.twitter</groupld>

Custom serialization with Kryo
Y — <artifactld>chill-akka_${scala.version}</artifactld> ThorstenPapenbrock

<version>0.9.2</version> Slide 12
</dependency>
</dependencies>

Basic Concepts

Akka Actors

State

Actor 1

>Behavior®

N\

Mailbox |« e
Actor 2

= Actor = State + Behavior + Mailbox

= Communication:
= Sending messages to mailboxes

= Unblocking, fire-and-forget Mutable messages are possible,
but don’t use them!

= Messages: %

= Immutable, serializable objects
= Object classes are known to both sender and receiver

= Receiver interprets a message via pattern matching

Hasso
Plattner
Institut

Distributed Data
Management

Akka Actor
Programming

ThorstenPapenbrock
Slide 13

Basic Concepts

Akka Actors

Called in default Slaie

actor constructor
and set as the
actor's behavior

>Behavior!

public class Wo
@Override
public Receive createReceive() {
return receiveBuilder()

.match(String.class, this::respondTo)

Actor 1

W

extends AbstractActor { ————

b

Mailbox |«

Actor 2

Inherit default actor behavior,
state and mailbox implementation

—

The Receive class performs

pattern matching and de-serialization

.matchAny(object -> System.out.printin("Could not understand received message"))

build();

}
private void respondTo(String message) {

System.out.printin(message);

A builder pattern for constructing
a Receive object with otherwise
many constructor arguments

this.sender().tell("Received your message, thank you!", this.self());

)’ h

Send a response to the sender of the last message
(asynchronously, non-blocking)

Hasso
Plattner
Institut

Distributed Data
Management

Akka Actor
Programming

ThorstenPapenbrock
Slide 14

Basic Concepts

Akka Actors

State

b

‘ Mailbox |«
Actor 1 Actor 2
. y > \ 4
|enavio S,
public class Worker extends AbstractActor { The message types (= classes)
@Override define how the actor reacts

public Receive createReceive() {
return receiveBuilder()
.match(String.class, s -> this.sender().tell("Hello!", this.self()))
.match(Integer.class, i -> this.sender().tell(i * i, this.self()))
.match(Doube.class, d -> this.sender().tell(d >0 ? d : 0, this.self()))
.match(MyMessage.class, s -> this.sender().tell(new YourMessage(), this.self()))
.matchAny(object -> System.out.printin("Could not understand received message"))

build():

Hasso
Plattner
Institut

Distributed Data
Management

Akka Actor
Programming

ThorstenPapenbrock
Slide 15

Basic Concepts

Akka Actors

State

Actor 1

>Behavior!

W

__/’
Actor 2

Mailbox |«

\

N\~

public class Worker extends AbstractLoggingActor {
@Override
public Receive createReceive() {
return receiveBuilder()
.match(String.class, s -> this.sender().tell("Hello!", this.self()))
.match(Integer.class, i -> this.sender().tell(i * i, this.self()))
.match(Doube.class, d -> this.sender().tell(d >0 ? d : 0, this.self()))
.match(MyMessage.class, s -> this.sender().tell(new YourMessage(), this.self()))
.matchAny(object -> this.log().error("Could not understand received message"))
build();
} AbstractLoggingActor
} provides propper logging

Hasso
Plattner
Institut

Distributed Data
Management

Akka Actor
Programming

ThorstenPapenbrock
Slide 16

Basic Concepts ﬂ Hasso
Akka Actors Inetitut

State

Mailbox |« e

Actor 1 Actor 2
. y >) /
-_w -_\———-./-_-

public class Worker extends AbstractLoggingActor {
Good practice:

public static class MyMessage implements Serializable {} Actors define their messages
(provides kind of an interface description)

@Override
public Receive createReceive() { Distributed Data
return receiveBuilder() Management
.match(MyMessage.class, s -> this.sender().tell(new OtherActor.YourMessage(), this.self())) Akka Actor
.matchAny(object -> this.log().error("Could not understand received message")) Programming
build();
} ThorstenPapenbrock

} Slide 17

Basic Con.

Testing

public class WorkerTest {

}

Hasso
Plattner
private ActorSystem actorSystem; Institut

@Before
public void setUp() {
this.actorSystem = ActorSystem.create();

}
@Test
public void shouldWorkAsExpected() {
new TestKit(this.actorSystem) {{ TestKit offers a ActorRef over
ActorRef worker = this.actorSystem.actorOf(Worker.props()); which it can expect responses
worker.tell(new Worker.WorkMessage(73), this.getRef());
Master.ResultMessage expectedMsg = new Master.ResultMessage(42);
this.expectMsg(Duration.create(3, "secs"), expectedMsg);
h Distributed Data
} Management
Akka Actor
@After Programming
public void tearDown() {
\ TestKit.shutdownActorSystem(this.actorSystem); ThorstenPapenbrock
Slide 18

I —————
Basic Concepts

Hasso
Some Further Nodes ﬂmii‘i?ﬁ{

Redundant API calls

= Due to Java-Scala interface mix
» this.getContext() = this.context()
» this.getSender() = this.sender()
>

More on this pattern later!

Non-blocking, asynchronous Blocking, synchronous 7
= Tell messaging = Ask pattern ai;":':'g’::f:n't)ata

» Java: someActor.tell(message) = Java: someActor.ask(message) Akka Actor
Programming

= Scala: someActor ! message = Scala: someActor ? message

ThorstenPapenbrock
Slide 19

case class Calculate(items: List[String])
case class Work(data: String)
case class Result(value: Int)

class Worker extends Actor {
val log = Logging(context.system, this)

def receive = {
case Work(data) => sender ! Result(handle(data))
case _ => log.info("received unknown message")

}

def handle(data: String): Int = {
data.hashCode

}
}

class Master(numWorkers: Int) extends Actor {

val worker = context.actorOf(Props[Worker], name = "worker")

def receive = {
case "Hello master" => sender ! "Hello sender"

Akka Scala Interface
A Master-Worker Example

case Calculate(items) => for (i <- 0 until items.size) worker ! Work(item.get(i))

case Result(value) => log.info(value)
case _ => log.info("received unknown message")

}
}

Akka Actor Programming
Hands-on

Actor Model (Recap)
Basic Concepts

Runtime Architecture
Demo
Messaging

Parallelization
Remoting
Clustering
Patterns

Homework

Runtime Architecture

: . ﬂ Hasso
Actor Hierarchies atiter

Task- and data-parallelism 2 Delegate work!
= Actors can dynamically create new actors.

Supervision hierarchy

= Creating actor (parent) supervises
created actor (child).

Fault-tolerance
Distributed Data

Management

Akka Actor
Programming

= If child fails, parent can choose:

= restart, resume,

stop, or escalate
ThorstenPapenbrock
Slide 22

Runtime Architecture
Actor Lifecycles

escalate()

actorOf()

resume() restart()

ActorRef DeadLetterBox

Hasso
Plattner
Institut

Distributed Data
Management

Akka Actor
Programming

ThorstenPapenbrock
Slide 23

Runtime Architecture public class MyActor extends AbstractLoggingActor {

ACtOI‘ L|feCYC|eS @Override

Actor Lifecycle

- public void preStart() throws Exception {
_ L|s_ten to super.preStart();
DisassociatedEvents this.context().system().eventStream()

.subscribe(this.self(), DisassociatedEvent.class);

= PreStart() }
i @Override
= Called before actor is started public void postStop() throws Exception {

super.postStop();

= Initialization : : :
this.log().info("Stopped {}.", this.self());

PreRestart() }
} Log that MyActor

= Called before actor is restarted was stopped

= Free resources (keeping resources that can be re-used)

- POStReStart() Distributed Data
= Called after actor is restarted Management
o .)]] Akka Actor
= Re-initialization (re-using resources if possible) Programming
= PostSto
p() ThorstenPapenbrock
= (Called after actor was stopped Slide 24

= Free resources

Runtime Architecture

Let It Crash

“Let it crash” philosophy

Distributed systems are inherently prone to errors
(because there is simply more to go wrong/break).

» Message loss, unreachable mailboxes, crashing actors ...

Make sure that critical code is supervised by some entity that knows how
errors can be handled.

Then, if an error occurs, do not (desperately) try to fix it: let it crash!
» Errors are propagated to supervisors that can deal better with them

Example: Actor looses a database connection due to a DB restart.
» It decides to crash.

» Its supervisor restarts the actor, which re-creates the DB connection.

Hasso
Plattner
Institut

ThorstenPapenbrock
Slide 25

Runtime Architecture Hlasso
; : Plattner
Actor Hierarchies Institut
public class Master extends AbstractLoggingActor {
public Master() { Master
ActorRef worker = this.context().actorOf(Worker.props());
} th|s.context().watch(worker);ﬁ B e e e
@Override messages for watched actors
public SupervisorStrategy supervisorStrategy() {
return new OneForOneStrategy(3,
Duration.create(10, TimeUnit. SECONDS),
DeciderBuilder.match(IOException.class, e -> restart())
.matchAny(e -> escalate())
build()); :
} Try 3 restarts in 10 seconds for Distributed Data
} IOExcep;Lz:;;t:therwise Manag:ment
Akka Actor
public class Worker extends AbstractLoggingActor { Programming
public static Props props() {
return Props.create(Worker.class); ThorstenPapenbrock
J Create the Props telling the | — A Slide 26

J context how to instantiate you factory pattern

Runtime Architecture

Each actor has a ﬂ IF-)IFSSO
attner
Actor Systems path/URL Institut

ActorSystem User actors / System and remote
= A named hierarchy of actors reside here (root guardian) actors reside here

= Runs within one JVM process
= Configures:

user system

Actor dispatchers (guardian) (guardian)
(that schedule actors on threads)

Global actor settings
(e.g. mailbox types)
remote- | .. iributed Data
Remote actor access System Management
(e.g. addresses) Akka Actor
Programming
ThorstenPapenbrock
bookkeeper @ @ Slide 27

Runtime Architecture

Actor Systems

Hasso
Plattner
Institut

4 2\

ActorSystem
(guardian) (guardian)

Event stream

= Reacts on errors, new nodes, message
sends, message loss, ...

Dispatcher

= Assigns threads dynamically to actors.
= Transparent multi-threading
= # Threads = # CPU cores

= # Actors > # CPU cores
(usually many hundreds)

~— b
e Distributed Data
- I 2
» Over-provisioning! Idle actors don't Management
Remoting bind resources Akka Actor
= Resolves remote actor adresses. Programming
= Sends messages over network. ThorstenPapenbrock
= serialization + de-serialization TR L L) Slide 28
\\

Akka Actor Programming
Hands-on

Actor Model (Recap)
Basic Concepts

Runtime Architecture
Demo
Messaging

Parallelization
Remoting
Clustering
Patterns

Homework

GitHub - HPI-Information-Systems/akka-tutorial: Code for the Akka tutorial - Chromium

() GitHub- HPLInformation-Syste X

&« C 8 GitHub, Inc. [US] | https://github.com/HPI-Information-Systems/a aQ % 6
O Why GitHub? Enterprise Explore Marketplace Pricing Sign in
HPI-Information-Systems / akka-tutorial ©Watch 7 %Star 5 YFork 7

<> Code Issues 0 Pull requests 0 Projects 0 Security Insights

Code for the Akka tutorial

D 53 commits ¥ 1 branch © 0 releases 2% 5 contributors &z Apache-2.0

Branch: master = Find file Clone or download ~
a thorsten-papenbrock Split the ddm project into ddm-Imp and ddm-pc. Latest commit bfe21b6 5 minutes ago
8 akka-tutorial 1is not a prime 11 months ago
B8 ddm-Imp Split the ddm project into ddm-Imp and ddm-pc. 5 minutes ago
8 ddm-pc Split the ddm project into ddm-Imp and ddm-pc. 5 minutes ago
m octopus 1is not a prime 11 months ago
[£) .gitignore Split the ddm project into ddm-lmp and ddm-pc. 5 minutes ago
[E) LICENSE Added the octopus project to the repository. last year

[©) README.md Added the ddm project. 21 days ago

Demo Hasso

. Plattner
akka-tutorial Institut
‘LogPrimesg | Rangeg | Address L
Ve)
Primes
Listener
Distributed Data
Management
Akka Actor
Programming
ThorstenPapenbrock
Slide 31
N /AN —

Demo
octopus

Cluster Events

MemberEvent g

Cluster
Listener

15

~

L

Profiler ‘m’

Woker

Cluster Events

MemberUp g

Registration

Cluster Metrics
MetricsChangedg

Metrics
Listener

5

Hasso
Plattner
Institut

Distributed Data
Management

Akka Actor
Programming

ThorstenPapenbrock
Slide 32

Demo ﬂ IF;IIaSSO
attner
ddl N Institut

File Start

Distributed Data
Management

Akka Actor
Programming

Metrics
Listener

¥

Cluster
Listener

5

Metrics
Listener

5

Listener

5

ThorstenPapenbrock
Slide 33

Akka Actor Programming
Hands-on

Actor Model (Recap)
Basic Concepts

Runtime Architecture
Demo
Messaging

Parallelization
Remoting
Clustering
Patterns

Homework

Messaging ﬂ Hasso
Message Delivery Guarantees Inetitut

Message delivery
= at-most-once: each message is delivered zero or one times.

» no guaranteed delivery; no message duplication :
You can implement

» highest performance; no implementation overhead at-least-once and exactly-once,
with at-most-oncel!

» fire-and-forget
= at-least-once: each message is delivered one or more times.
» guaranteed delivery; possibly message duplication

» ok-isch performance; state in sender Distributed Data
With TCP Akka basically Management
» send-and-acknowledge guarantees exactly-once, | .. A or

but note failures can still Programming

= exactly-once: each message is delivered once.
cause message loss!

N _ _ -
guaranteed delivery; no message duplication ThorstenPapenbrock

» bad performance; state in sender and receiver Slide 35

> Send -a nd -aCkn OW|eC|g e-a nd —ded up | icate https://doc.akka.io/docs/akka/2.5/general/message-delivery-reliability.html

Messaging ﬂ Hasso
Message Delivery Guarantees Inetitut

Message ordering
= no ordering: all messages can be arbitrarily out of order

» no guaranteed ordering
i |
> highest performance; no implementation overhead 2 CobauithiChl

= sender-receiver ordering: all messages between specific sender-receiver pairs are ordered

(by send order)
» ordered individual communications
» good performance; message broker simply sustains received order

Distributed Data
= total ordering: all messages are ordered Management

(by send timestamps) ,Fb;kka Actor
rogramming

» serialized communication (see total-order-broadcast later in lecture)
ThorstenPapenbrock

» bad performance; global ordering Slide 36

https://doc.akka.io/docs/akka/2.5/general/message-delivery-reliability.html

Messaging G ﬂ Hasso
Message Delivery Guarantees Inatitut

Message ordering

= sender-receiver ordering: all messages between specific sender-receiver pairs are ordered
(by send order)

“If X is delivered...”
= Example: > No guaranteed delivery, i.e.,
messages may get lost
= Actor A; sends messages M, M,, M to A, and not arrive at A,!
= Actor A; sends messages M,, Mg, M, to A, T
» If M, is delivered it must be delivered before M, and M5 Distributed Data
> If M, is delivered it must be delivered before M, Management
))) Akka Actor
» If M, is delivered it must be delivered before M- and M, Programming
» If M: is delivered it must be delivered before M, ThorstenPapenbrock
» A, can see messages from A, interleaved with messages from A, Slide 37

https://doc.akka.io/docs/akka/2.5/general/message-delivery-reliability.html

Messaging G ﬂ Hasso
Message Delivery Guarantees ° Inetitut

Message ordering

= sender-receiver ordering: all messages between specific sender-receiver pairs are ordered
(by send order)

= Send order is not transitive: Framework does not know
A, sends M, to A, that M, was forwarded, i.e.,

that M, is “younger” than M
A, sends M, to A, :)

A, forwards M, to A,

» A5 may receive M, and M, in any order!

Distributed Data
= Failure communication uses different channel: Atlt'hotugll:]] A; flausef tl\l/wlZI Management
. IT IS tecnnically no e Akka Actor
A, has child A, sender of M, brocramming
A, sends M, to A,

A, fails causing failure message M, being send to A, ThorstenPapenbrock

» A, may receive M, and M, in any order! Slide 38

https://doc.akka.io/docs/akka/2.5/general/message-delivery-reliability.html

Messaging ﬂ Hasso
Message Delivery Guarantees Inatitut

Message ordering
= sender-receiver ordering: all messages between specific sender-receiver pairs are ordered
(by send order)

= General notes:
= Ordering guarantee holds only for TCP-based messaging.
= The ordering guarantee can be violated by various factors, such as node failures.

» If ordering is important, add and check custom sequence numbers!

Distributed Data
Management

Akka Actor
Programming

ThorstenPapenbrock
Slide 39

https://doc.akka.io/docs/akka/2.5/general/message-delivery-reliability.html#how-does-local-ordering-relate-to-network-ordering

Messaging

Pull vs. Push

Work Propagation

Producer actors Producer | [% Consumer

generate work for other @
consumer actors
Push propagation:
= Producers send work packages to their consumers immediately
(in particular, data is copied over the network proactively)
= Work is queued in the inboxes of the consumers

» Fast work propagation; risk for message congestion/drops

M

You can have back-pressured mail boxes,
but that kind of kills the non-blocking,
fire-and-forget messaging

Hasso
Plattner
Institut

Distributed Data
Management

Akka Actor
Programming

ThorstenPapenbrock
Slide 40

Messaging

public class PullProducer extends AbstractLoggingActor {

Pull vs. Push @Override

public Receive createReceive() {

Work Propagation

return receiveBuilder()
.match(NextMessage.class, this.sender().tell(this.workPackages.remove()))
.matchAny(object -> this.log().info("Unknown message"))

Producer actors build();
generate work for other) }
consumer actors

Push propagation:

= Producers send work packages to their consumers immediately
(in particular, data is copied over the network proactively)

= Work is queued in the inboxes of the consumers

Distributed Data
Management

Pull propagation: Akka Actor
Programming

» Fast work propagation; risk for message congestion/drops

= Consumers ask producers for more work if they are ready

= Work is queued in the producers’ states ThorstenPapenbrock
. : . Slide 41
» Slower work propagation; no risk for message congestion

Messaging

Hasso
Akka’s Messaging System ﬂ Inetitut

Artery

High-performance, streaming-based messaging system

Part of the Akka toolkit

Compression of actor paths to reduce general message overhead

Based on Aeron for UDP channels and Akka Streams for TCP/TLS channels

Distributed Data
Management

Akka Actor
Akka Streams Programming

ThorstenPapenbrock
Slide 42

Messaging

Akka’s Messaging System

Artery

= Focused on high-throughput, low-latency communication
.) Streaming!
= Mostly allocation-free operation

= Support for faster serialization/deserialization using ByteBuffers directly

Object

Serializer] Deserializer]

Artery

Sender ByteBuffe?\ / Receiver ByteBuffer

Hasso
Plattner
Institut

Distributed Data
Management

Akka Actor
Programming

ThorstenPapenbrock
Slide 43

Messaging

Akka’s Messaging System

Artery
= Focused on high-throughput, low-latency communication

= Mostly allocation-free operation
= Support for faster serialization/deserialization using ByteBuffers directly

» But: What if we need to send large amounts of data over the network?

Hasso
Plattner
Institut

Distributed Data
Management

Akka Actor
Programming

ThorstenPapenbrock
Slide 44

- . 3 = e e
‘ P T
» But: What if we need to send large amounts of data over the network? ':—’
= e S
= PV A -

. = g ‘ 3 https:/,[p?fabridge.com/blog/large-messages—and—sockets-il’f—akEadotnet/

Large messages are broken down
into frames that need to be re-
assembled on the receiving side.

This blocks the TCP socket for
Object other messages:

» Regular messages:
Large Large risk of message congestion

Object Object (sender) and idle times
(receiver)

» Heartbeat messages:

[Serializer] Deserial risk of cluster partitions and
- split-brain scenarios

[Artery r 7
Sender ByteBu}hr__/' Receiver ByteBuffer

» But: What if we need to send large amounts of data over the network?

Messaging

Large Messages

Hasso
Plattner
Institut

Use side channels for large data transfer

» Different channel that does not block main channel messages
» Transfer protocol that is optimized for large files (WebSockets, UDP, FTP, ...)
Side channel examples:

Artery’s Large Message Channel

Akka’s http client-server module

Netty, FTP or other file transfer protocols
Database or shared file system

Send data via side channel to
memory/disk of remote host.

Send data references in an Akka
message when data is transferred.

ThorstenPapenbrock
Slide 47

Messaging
Artery’s Large Message Channel

application.conf ;J remote.conf, akka.conf, ... however you call it

akka {
actor {
provider = remote
}
remote {
artery ({
SHiledCl = ek J or udp hostname or IP
transport = tcp —
canonical .hostname = "192.168.0. 5"} of this actor system
canonical.port = 7787 .
large-message-destinations = |
"/user/*/largeMessageProxy",
"/user/**/largeMessageProxy" Use side channel for all messages
1 from and to actors named
} ~largeMessageProxy"

Hasso
Plattner
Institut

Distributed Data
Management

Akka Actor
Programming

ThorstenPapenbrock
Slide 48

Akka Actor Programming
Hands-on

Actor Model (Recap)
Basic Concepts

Runtime Architecture
Demo
Messaging

Parallelization
Remoting
Clustering
Patterns

Homework

Parallelization

Task- and Data-Parallelism

Hasso
Plattner
Institut

Booking

Task-parallelism

= Distribute sub-tasks
to different actors

Data-parallelism

= Distribute chunks of data
to different actors

reserve promote

Promotion
Actor

Reservation
Actor

Payment Billing

Scheduler

Booking
Actor

Booking
Actor

Booking
Actor

Booking
Actor

Parallelization

ﬂ Hlasso
Scheduler Inatitet

Dynamic Parallelism
= Actors often delegate work if they are responsible for ...
" many tasks. j Task-parallelism
= compute-intensive tasks (with many subtasks).
= data-intensive tasks (with independent partitions).% Data-parallelism
= Work can be delegated to a dynamically managed pool of worker actors.

Task Scheduling _
Push Propagation! Distributed Data
= Strategies (see package akka.routing): e — Management
= RoundRobinRoutingLogic = SmallestMailboxRoutinglLogic Akka Actor
Programming

* BroadcastRoutinglogic = ConsistentHashingRoutingLogic
* RandomRoutinglogic = BalancingRoutingLogic ;ng;s;efpape”bmk

Parallelization ﬂ Hasso
Platt
Scheduler Institut

Router workerRouter = new Router(new SmallestMailboxRoutingLogic());

for (inti = 0; i < this.numberOfWorkers; i++) {
workerRouter = workerRouter.addRoutee(this.context().actorOf(Worker.props()));

} w Scala world: All objects are immutable!

for (WorkPackage workMessage : this.workPackages) {
workerRouter.route(workMessage, this.self());

}

Logic defines the worker to be chosen.

Task Scheduling
Distributed Data

= Strategies (see package akka.routing): Management
= RoundRobinRoutingLogic = SmallestMailboxRoutinglLogic Akka Actor
Programming

= BroadcastRoutinglLogic = ConsistentHashingRoutinglLogic
ThorstenPapenbrock

= RandomRoutinglLogic = BalancingRoutinglLogic Siide 52

Akka Actor Programming
Hands-on

Actor Model (Recap)
Basic Concepts

Runtime Architecture
Demo
Messaging

Parallelization
Remoting
Clustering
Patterns

Homework

Remoting

Serialization

Serialization
= Only messages to remote actors are serialized
= Communication within one system: language-specific data types
= Pointers and primitive values
= Communication via process boundaries: transparent serialization
= Serializable, Kryo, Protocol Buffers, ... (configurable)

object
reference ‘ ‘
user user
(guardian) (guardian)

byte
sequence

S§\{!§t(3l11:1 f;\{Sit(EI11:Z

-
bookkeep

Hasso
Plattner
Institut

Distributed Data
Management

Akka Actor
Programming

ThorstenPapenbrock
Slide 54

Remoting
Serialization

application.conf ;J remote.conf, akka.conf, ... however you call it

akka {
actor {
provider = remote Known object serializers
serializers {
java = "akka.serialization.JavaSerializer"
kryo = "com.twitter.chill.akka.ConfiguredAkkaSerializer"
proto = "akka.remote.serialization.ProtobufSerializer"
my = "de.hpi.myalgo.serialization.MyMessageSerializer"
}
serialization-bindings { 2 kryo for all serializable messages
"java.io.Serializable" = kryo \
"de.hpi.myalgo.serialization.MyMessage" = ?X:ES:‘*-~\‘
} } my for MyMessage messages
remote {
artery {

[..]
}

Hasso
Plattner
Institut

Distributed Data
Management

Akka Actor
Programming

ThorstenPapenbrock
Slide 55

Remoting
Serialization

Hasso
Plattner
Institut

Usually no no-arg constructor needed.

A Java Serializable class must do the following: —
1. Implement the java.io.Serializable interface.
2. Identify the fields that should be serializable.
» Means: Declare non-seriablizable fields as “transient”.
3. Have access to the no-arg constructor of its first non-serializable superclass.
» Means: Define no-arg constructors only if non-serializable superclasses exists.

https://docs.oracle.com/javase/8/docs/platform/serialization/spec/serial-arch.html#a4539

No-arg constructor needed!
A Java Kryo class must do the following: s

By default, if a class has a zero argument constructor then it is invoked via ReflectASM or
reflection, otherwise an exception is thrown.

https://github.com/EsotericSoftware/kryo/blob/master/README.md

Distributed Data
Management

Akka Actor
Programming

ThorstenPapenbrock
Slide 56

Remoting public class Master extends AbstractLoggingActor {

Actor Lookup | PreeAcmeeRe 2] [A foctory e

£) | public Master() {
ActorRefs serve as pointers this.worker = this.context().actorOf(Worker.props());
to local/remote actors. }
@Override
public Receive createReceive() { ! 3.
return receiveBuilder()
) S g .match(ActorRef.class, worker -> this.worker = worker)
’ .matchAny(object -> this.log().error("Invalid message"))
build();
1. By construction: }
: }
= Create a child actor.
2. By application:
y app _ _ Distributed Data
= Ask for a reference in your constructor or provide a setter. Management
. Akka Actor
3. By message: Programming

= Ask a known actor to send you a reference to another actor.
ThorstenPapenbrock

Slide 57

Remoting public class Master extends AbstractLoggingActor {

Actor Looku P private ActorRef worker;

ActorSelection is a logical view

public Master() {

Address address = new Address("akka.tcp”,

to a subtree of an ActorSystems;
“‘MyActorSystem”, "localhost", 7877);

tell() broadcasts to that subtree

ActorSelection selection = this.context().system()

.actorSelection(String.format(
"%s/user/%s", address, "worker")); 4.
""" 7 e € selection.tell(new HelloMessage(), this.self())
}
} N
1. By construction:
. URL:
* Create a child actor. "akka.tcp://MyActorSystem@localhost:7877/user/worker"
2. By application:
y app Distributed Data
= Ask for a reference in your constructor or provide a setter. Management
. Akka Actor
3. By message: Programming
= Ask a known actor to send you a reference to another actor.
ThorstenPapenbrock
4. By name (path/URL): Slide 58

= Ask the context to create a reference to an actor with a certain URL.

Akka Actor Programming
Hands-on

Actor Model (Recap)
Basic Concepts

Runtime Architecture
Demo
Messaging

Parallelization
Remoting
Clustering
Patterns

Homework

Clustering

ﬂsrﬁf’
Cluster-Awareness Institut

System2
?
How does System1 know ...
: : Distributed Dat
= which other ActorSystems are available? Mlasnggle‘nsenta ?
(the number might even change at runtime!) Akka Actor

.) Programming
= what failures occurred in other ActorSystems?

(single actors but also entire nodes might become unavailable!) ThorstenPapenbrock

= what roles other ActorSystems take? Slide 60

(e.g. a master or worker or metrics collector or entirely different application!)

Clustering

Cluster-Awareness

Akka Actors

Core Actor
model classes
for concurrency
and distribution

Cluster Sharding

Classes to
decouple actors
from their
locations
referencing
them by identity

4)

Akka Cluster

Classes for the
resilient and
elastic
distribution over
multiple nodes

Akka Persistence

Classes to
persist actor
state for fault
tolerance and
state restore
after restarts

Akka Streams

Asynchronous,
non-blocking,
backpressured,
reactive stream
classes

Distributed Data

Classes for an
eventually
consistent,
distributed,

replicated key-
value store

Akka Http

Asynchronous,

streaming-first

HTTP server and
client classes

Alpakka

Stream
connector
classes to other
technologies

Hasso
Plattner
Institut

Distributed Data
Management

Akka Actor
Programming

ThorstenPapenbrock
Slide 61

- <dependencies> Maven - pom.xml
Clustering <dependency= P
<groupld>com.typesafe.akka</groupld>
D € p en d en Cy <artifactld>akka-actor_${scala.version}</artifactld>
<version>2.5.3</version>
</dependency>
<dependency>

Clustering capabilities
cluster membership, singletons,
publish/subscribe, cluster client, ...

<groupld>com.typesafe.akka</groupld>
<artifactld>akka-remote_${scala.version}</artifactld>
<version>2.5.3</version>

</dependency>
<dependency>
<groupld>com.typesafe.akka</groupld>

<artifactld>akka-cluster-tools_${scala.version}</artifactld>
Metrics collection <version>2.5.3</version>
CPU load, memory consumption, ... </dependency>
<dependency>

& <groupld>com.typesafe.akka</groupld>

<artifactld>akka-cluster-metrics_${scala.version}</artifactld>

<version>2.5.3</version>
</dependency>
<dependency>
<groupld>com.typesafe.akka</groupld>

Transparent actors
logical references,
distributed/persisted state, ...

<artifactld>akka-cluster-sharding_${scala.version}</artifactld>
<version>2.5.3</version> Slide 62
</dependency>

Hasso
Plattner
Institut

Clustering
Cluster
(- Cluster

Leader

Hasso
Plattner
Institut

Distributed Data
Management

Akka Actor
Programming

ThorstenPapenbrock
Slide 63

Clustering join

CI uster {Ieadew/' up w‘
EJ
fd* = failure detector

(see ¢ accrual failure detector later) joining | v teming
R\ (fd*) (fed*)
= A distributed membership service. £ JRESRN Y
: hable* Y& (leader action)
= Runs in all Akka cluster-managed ActorSystems. AN o
= Stores all membership information in a distributed,
fully replicated key-value store (= Riak). down A exiting

= Uses gossipping! to propagate cluster changes. \
= Elects the eldest node in a cluster as "leader" of the cluster. (leader action)
= Leader decisions?:
= state changes to "up", "exiting", and "removed" for members of the cluster
Distributed Data
= Member decisions?: Management

= state changes to "joining", "leaving", and (via local failure detector) "unreachable" Akka Actor
Programming

[1] https://doc.akka.io/docs/akka/2.5/common/cluster.html#gossip ThorstenPapenbrock

[2] https://doc.akka.io/docs/akka/2.5/common/cluster.html#membership-lifecycle Slide 64

https://doc.akka.io/docs/akka/2.5/common/cluster.html
https://doc.akka.io/docs/akka/2.5/common/cluster.html
https://doc.akka.io/docs/akka/2.5/common/cluster.html
https://doc.akka.io/docs/akka/2.5/common/cluster.html
https://doc.akka.io/docs/akka/2.5/common/cluster.html
https://doc.akka.io/docs/akka/2.5/common/cluster.html

Clustering
Configuration

application.conf

akka {

actor ({ J‘ instead of local or remote
provider = cluster

[..]

}

remote {
artery {
[...]
} b the cluster membership waits for
cluster { these numbers of member before
u it sets their status to up

min-nr-of-members = 3

role {

master.min—-nr-of-members = 1
slave.min-nr-of-members = 2

Hasso
Plattner
Institut

Distributed Data
Management

Akka Actor
Programming

ThorstenPapenbrock
Slide 65

Clustering ﬂ IF-,IIasso
attner
Startup Institut

public static void start(String appName, String host, int port, String seedhost, int seedport) {

final Config config = ConfigFactory.parseString(

"akka.remote.artery.canonical.hosthname =\"" + host + "\"\n" + Sets ActorSystem-specific
"akka.remote.artery.canonical.port = " + port + "\n" + configuration parameters dynamically.

"akka.cluster.roles = [slave]\n" +
"akka.cluster.seed-nodes = [\"akka://" + appName + "@" + seedhost + ":" + seedport + "\"]")

.withFallback(ConfigFactory.load("application")); T

any connected node can be a seed node;
first node connects to itself,
which creates the cluster.

final ActorSystem system = ActorSystem.create(appName, config);

system.registerOnTermination(...);

Cluster.get(system).registerOnMemberUp(...); Distributed Data
Cluster.get(system).registerOnMemberRemoved(...); Management
] Akka Actor
[...] Setting-up callbacks allows the Programming
} application’s main thread to end before
the ActorSystem is actually up or ends. ThorstenPapenbrock

Slide 66

Clustering ﬂ Hasso
Plattner
Sta rtup Institut
public static void start(String appName, String host, int port, String seedhost, int seedport) {
[...]
Cluster.get(system).registerOnMemberUp(new Runnable() {
@Override —
public void run() { Run when this node has been set to status “up”.
for (inti=0;1<10;i++)
system.actorOf(WorkerActor.props(), "worker" + i);
} . ——
; Create local actors (and send initial messages) when “up”.

}

Retrieve the cluster object when needed Distributed Data
Management

(to access cluster events, failure detector, node status, ...).
Akka Actor

A’/— Programming

Cluster cluster = Cluster.get(this.context().system());

ThorstenPapenbrock
Slide 67

Clustering ﬂ Hasso
Plattner
Startup Institut

public static void start(String appName, String host, int port, String seedhost, int seedport) {
[...]

Cluster.get(system).registerOnMemberRemoved(new Runnable() {

@Override .
el veel iy, Run when this node has been “removed”.
system.terminate();

new Thread() {
@Override Terminate the ActorSystem.

public void run() {

try {
Await.ready(system.whenTerminated(), Duration.create(10, TimeUnit. SECONDS));

} catch (Exception e) {

System.exit(-1); N T— Distributed Data

} Let a dedicated thread Management
} _ wait for the ActorSystem to terminate; Akka Actor
}-start(); it kills the application Programming
}_ if the ActorSystem does not terminate in time.
b; ThorstenPapenbrock

) Slide 68

Clustering
Cluster Partitioning

e

System1

Leader

7

Failure detector triggered!
(e.g. cable broken, network
exhausted, connection lost, ...)

Cluster

Hasso
Plattner
Institut

Distributed Data
Management

Akka Actor
Programming

ThorstenPapenbrock
Slide 69

Clustering ﬂ Hasso
e - Plattner
Cluster Partitioning Inefitut
Cluster Cluster split: Cluster Now oldest
Both sides see the node becomes
other nodes go. new leader.

=

Distributed Data
Management

Akka Actor
Programming

Clusters do not
break, because
cluster state is
fully replicated.

ThorstenPapenbrock
Slide 70

Clustering

Cluster Partitioning

Cluster

Cluster

Even one system
can form a
cluster.

Hasso
Plattner
Institut

Distributed Data
Management

Akka Actor
Programming

ThorstenPapenbrock
Slide 71

Clustering
Cluster Partitioning

Hasso
Plattner
Institut

If the cluster partitions, ...
= each partition will form its own cluster.
* no onMemberRemoved() callback is triggered, because every node stays in some cluster.

» each cluster keeps track of all removed ActorSystems so that "[...] the same actor system
can never join a cluster again once it's been removed from that cluster"?!.
(Otherwise, the cluster could run into split-brain situations (= two leaders))

To re-unite the nodes, ...

1. identify the "main" cluster

Distributed Data
Management

3. and restart ActorSystems on all affected nodes. Akka Actor
Programming

2. terminate all "non-main" clusters

ThorstenPapenbrock
[1] https://doc.akka.io/docs/akka/2.5/common/cluster.html#cluster-specification Slide 72

https://doc.akka.io/docs/akka/2.5/common/cluster.html
https://doc.akka.io/docs/akka/2.5/common/cluster.html
https://doc.akka.io/docs/akka/2.5/common/cluster.html
https://doc.akka.io/docs/akka/2.5/common/cluster.html
https://doc.akka.io/docs/akka/2.5/common/cluster.html

Plattner

public class WorkerActor extends AbstractActor {
ﬂ Hasso
Institut

public void preStart() {
Cluster.get(this.context().system()).subscribe(this.self(), MemberUp.class);

— !

Subscribe to cluster events

public Receive createReceive() {
return receiveBuilder()
.match(CurrentClusterState.class, this::registerAll)
.match(MemberUp.class, message -> this.register(message.member()))
.match(WorkMessage.class, this::handle)

\ build(); % Register at all masters after creation

private void registerAll(CurrentClusterState message) {
message.getMembers().forEach(member -> {
if (member.status().equals(MemberStatus.up()))
this.register(member);

Distributed Data

} D Management
: . . . Akka Acto
private void register(Member member) { 2 Register at any new master Programmring

if (member.hasRole("master"))
this.getContext().actorSelection(member.address() + "/user/masteractor"”)

tell(new RegistrationMessage(), this.self()); ThorstenPapenbrock

Slide 73

Clustering
Member Events

Hasso
Plattner
Institut

public class MasterActor extends AbstractActor {

@Override
public Receive createReceive() {
return receiveBuilder()
.match(RegistrationMessage.class, this::handle)
.match(Terminated.class, this::handle) .build();

}

private void handle(RegistrationMessage me%
this.context().watch(this.sender());]

Simply watch the remote workers

this.workers.add(this.sender());
this.sender().tell(new WorkMessage());

}

private void handle(Terminated message) {
this.context().unwatch(message.getActor());
this.workers.remove(this.sender());

}
}

Distributed Data
Management

Akka Actor
Programming

ThorstenPapenbrock
Slide 74

Clustering Hasso
Plattner
Cluster-Aware Scheduler Institut
int maxWorkersPerNode = 10; BE—— Automatically spawns 10 workers per node
int maxWorkersPerCluster = 1000000; and not more than 1,000,000 per cluster

boolean allowLocalWorkers = true;
Set<String> roles = new HashSet<>(Arrays.asList("slave"));

new ClusterRouterPool(
new AdaptiveLoadBalancingPool(SystemLoadAverageMetricsSelector.getinstance(), 0),

new ClusterRouterPoolSettings(maxWorkersPerCluster, maxWorkersPerNode,
allowLocalWorkers, roles))))

.props(Props.create(WorkerActor.class)), "router");

Distributed Data

application.conf Management
o et
extensions = ["akka.cluster.metrics.ClusterMetricsExtension"] 9 9

cluster.metrics.native-library-extract-folder=${user.dir}/target/native
ThorstenPapenbrock

}
Slide 75

Akka Actor Programming
Hands-on

Actor Model (Recap)
Basic Concepts

Runtime Architecture
Demo
Messaging

Parallelization
Remoting
Clustering
Patterns

Homework

Patterns

Actor Programming Patterns

REACTIVE
MESSAGING

PATTERNS

with the
ACTOR MODEL

YV AUGMHN VERNUON
Jonas Benér / 1

Actor programming is a
mathematical model that defines
basic rules for communication
(not a style guide for architecture)

Writing actor-based systems is
based on patterns

Hasso
Plattner
Institut

Distributed Data
Management

Akka Actor
Programming

ThorstenPapenbrock
Slide 77

Patterns

Master/Worker

Hasso
Plattner
Institut

Distributed Data
Management

Akka Actor
Programming

ThorstenPapenbrock
Slide 78

Patterns

Master/Worker

Hasso
Plattner
Institut

Booking

reserve promote

Task-parallelism
= Distribute sub-task (@

to different actors \m

Promotion
Actor

Reservation Billing

Actor

Payment

Booking

Data-parallelism Scheduler

= Distribute chunks of data

(

to different actors Q7

Booking
Actor

Booking
Actor

Booking
Actor

Booking
Actor

Patterns

Master/Worker

Work Propagation

Producer actors Producer
generate work for other >
consumer actors

Push propagation:
= Producers send work immediately

Scheduler
= Work queued in inboxes
» Fast propagation; risk for congestion
Pull propagation:
= Consumers ask for more work
= Work queued in producer Masfgt/tg_ﬁrker

= Slower propagation; no congestion

Hasso
Plattner
Institut

Distributed Data
Management

Akka Actor
Programming

ThorstenPapenbrock
Slide 80

Patterns

Hasso
Master/Worker A concept for .. ﬂ e

1. Parallelization

2. Fault-Tolerance

Master

= Splits the task into work packages.
= Schedules the work packages to known workers.
= Watches available workers (register new workers; detect and unregister failed workers).
= Monitors task completion (assign pending work packages; re-assign failed work packages).
= Assemble final result (from partial work package results).
» Does not know how to solve the individual tasks!

Worker Distributed Data
= Register at master. Management
Akka Actor
= Accept and process work packages. Programming
= Does not know the overall task! ThorstenPapenbrock

Slide 81

Patterns

ﬂ Hasso
Master/Worker Inatitut

Master

public class OneTaskMasterActor extends AbstractActor { work packages

\

private final Queue<WorkMessage> unassignedWork = new LinkedList<>();
private final Queue<ActorRef> idleWorkers = new LinkedList<>();
private final Map<ActorRef, WorkMessage> busyWorkers = new HashMap<>();
private TaskMessage task;

private Result result;

worker

work packages + worker

L

@Override
public Receive createReceive() { / Watch and try to assign work
return receiveBuilder()
.match(RegistrationMessage.class, this::handy Un-watch and re-assign work Distributed Data
.match(Terminated.class, this::handle) 1 Management

.match(TaskMessage.class, this::handle) ————

.match(CompletionMessage.class, this::handle) g T R MR e Akka Actor
build(); Programming
} Collect and send new work
ThorstenPapenbrock
Lol Slide 82

Patterns

Master/
Worker

Example

Actor System —WorkerSys1

WorkerActor

on startup, " ._J‘l ___________
register with server \ Vi /="
</

(akka://WorkerSys1@127.0.0.1:2553)

Actor System — WorkerSys2

WorkerActor

on startup, ' .“-

T
register with server ~
S
(akka://WorkerSys2@127.0.0.1:7554) _

Actor System — WorkerSys3

WorkerActor

on startup,
register with server

(akka://WorkerSys3@127.0.0.1:2555)

.....

Job Packets
dispatched i

Actor System — WorkServerSys

uses RoundRobinRouter for registered workers

Work Scheduler Actor
promptsthe JobController
Actor to sendwork to \
registered workers

WorkSchedulerActor

RegisterRemoteWorker
Actor

Listens forthe Remote Worker
registration requests and sends

\/ themto JobController

(akka://WorkServerSys@127.0.0.1:2552)

http://www.akkaessentials.in/2012/03/implementing-master-slave-grid.html

http://www.akkaessentials.in/2012/03/implementing-master-slave-grid.html
http://www.akkaessentials.in/2012/03/implementing-master-slave-grid.html
http://www.akkaessentials.in/2012/03/implementing-master-slave-grid.html
http://www.akkaessentials.in/2012/03/implementing-master-slave-grid.html
http://www.akkaessentials.in/2012/03/implementing-master-slave-grid.html
http://www.akkaessentials.in/2012/03/implementing-master-slave-grid.html
http://www.akkaessentials.in/2012/03/implementing-master-slave-grid.html
http://www.akkaessentials.in/2012/03/implementing-master-slave-grid.html

Patterns

Master/Worker

Hasso
Plattner
Institut

/

(root guardian)

“"The eager producers”
= Task:
1. Read afile.
2. Tokenize the sentences.

user
(guardian)

3. Calculate token embeddings.

= Push-Propagation:

= Each input file is

read and tokenized (7

by one master.

Distributed Data
Management

Akka Actor

= Each token range is A _
rogramming

processed

by one worker. ThorstenPapenbrock

= Works great for one input file! Slide 84

Hasso
Plattner
Institut

Patterns

Master/Worker

/

(root guardian)

“"The eager producers”
= Task:
1. Read afile.
2. Tokenize the sentences.

user
(guardian)

3. Calculate token embeddings.

= Push-Propagation:

= Each input file is
read and tokenized
by one master.

Distributed Data
Management

Akka Actor
Programming

= Each token range is

processed P

by one worker.

= What happens if the number of files increases
and we scale the number of masters & workers?

ThorstenPapenbrock
Slide 85

Patterns Hasso
Master/Worker , Instinat

(root guardian)

“"The eager producers”

= What happens if the number of files increases

and we scale the number of masters & workers?
user
(guardian)

= The masters will take and
block more threads.
(file reading takes long!)

= The workers will get less
CPU time.

= The work will pile up
in the in-boxes of the
workers. J
» The system will get slow
and OOM at some point.

Distributed Data
Management

Akka Actor
Programming

ThorstenPapenbrock
Slide 86

Patterns Hasso
Master/Worker E Instinat

(root guardian)

“"The eager producers”

= What happens if the number of files increases
and we scale the number of masters & workers?

user
(guardian)

Solutions:

> Pull-Propagation:
Pause long running tasks
and free threads.

> File limit:
Control the number of

actors with long running
tasks J

(in particular fewer than
number of cores).

Distributed Data
Management

Akka Actor
Programming

ThorstenPapenbrock
Slide 87

Patterns

Master/Worker

Hasso
Plattner
Institut

/

(root guardian)

“The non-reactive workers”
= Task:

= Search for expert-users
in social networks.

user
(guardian)

= Approach:
= Each worker starts a random search.
= For search pruning:

= If a worker finds an expert,

' ' Distrib D
it sends it to the other worker. istributed Data

Management

Akka Actor

= If a worker finishes a cluster, A _
rogramming

it sends a notification
to the other worker.

ThorstenPapenbrock
Slide 88

= What could be a problem here?

Patterns

Master/Worker

Hasso
Plattner
Institut

/

(root guardian)

“The non-reactive workers”

What could be a problem here?

user

Search is a long running job (guardian)
and actors are not interrupted

when messages arrive.

If the workers do not check their
inboxes frequently, the inboxes

might overflow. Distributed Data

Management

Akka Actor
Programming

Due to the unpredictability and
burstiness of expert/cluster
messages, the inboxes may
overflow even if checked frequently.

ThorstenPapenbrock
Slide 89

Patterns

Master/Worker

Hasso
Plattner
Institut

/

(root guardian)

“The non-reactive workers”
= What could be a problem here?

user

> Solution: (guardian)
Proxy actors that aggregate incoming

messages and deliver them on request.

Distributed Data
Management

Akka Actor
Programming

ThorstenPapenbrock
Slide 90

Patterns Hasso
Plattner
Proxy Institut

Distributed Data
Management

Akka Actor
Programming

ThorstenPapenbrock
Slide 91

Patterns ﬂ Hasso
Plattner
PI‘OXY Institut

Proxy Actor

= Acts as an agent or surrogate for some other actor.
= Handles a certain (standard) task.

= Serves to ...

= externalize behavior/state.
(e.g., prevent cluttering code in real actor)

= hide the real actor.
(e.g., protect against DOS attacks)

= handle short-lived concepts.
(e.g., communications)

= handle resource/time intensive actions.
(e.g., data transfer)

» Other actors “think” they where talking to the real actor!

Patterns ﬂ Hasso
Plattner
PI‘OXY Institut

Example: Simple Proxy
= Delegate a new communication to a proxy.
= If the communication returns a result, the proxy reports it to the real actor.

public class MyRealActor extends AbstractActor {

@Override
public Receive createReceive() {
return receiveBuilder()
.match(HelloMessage.class, message -> {

ActorRef proxy = this.context().actorOf(Proxy.props()); Distributed Data
this.sender().tell(new HelloBackMessage(), proxy); Management
)
.match(ProxyResultMessage.class, this::handle) ﬁr;(;raArfwtr?wring
build();
J ThorstenPapenbrock

}
Slide 93

Patterns

Proxy

Example: Reliable Communication Proxy
= Provides exactly-once messaging on top of at-most-once messaging
= Implements an ACK-RETRY protocol

System1 System2

Supervision ensures reliable
communication

& o

All the magic!

Receiver

& Receiver

Proxy

Reliable intra
ActorSystem
send

Reliable intra
ActorSystem
send

https://doc.akka.io/docs/akka/2.2.4/contrib/reliable-proxy.html#reliable-proxy

Hasso
Plattner
Institut

Distributed Data
Management

Akka Actor
Programming

ThorstenPapenbrock
Slide 94

https://doc.akka.io/docs/akka/2.2.4/contrib/reliable-proxy.html
https://doc.akka.io/docs/akka/2.2.4/contrib/reliable-proxy.html
https://doc.akka.io/docs/akka/2.2.4/contrib/reliable-proxy.html
https://doc.akka.io/docs/akka/2.2.4/contrib/reliable-proxy.html
https://doc.akka.io/docs/akka/2.2.4/contrib/reliable-proxy.html

Patterns Hasso
Plattner
Proxy Institut

Example: Reliable Communication Proxy
Sender Proxy Receiver Proxy
= Adds sequence numbers to messages = Acknowledges received messages to Sender Proxy

= Forwards messages to Receiver Proxy = Forwards acknowledged messages to Receiver

= Stores messages until successfully = Detects missing/duplicate messages by checking
acknowledged by Receiver Proxy sequence number of last forwarded message
= Adds a timeout to each message;
3
retries send if acknowledgment m > g
does not arrive within timeout msgC 3 5 H
. > 3 Distributed Data
Ay message | timeout S} Management
T < msgA 10:32:15 msgB) S 2 Akka Actor
" Sender Receiver ~® Programming
o MsgB 10:32:18
€c Proxy Proxy / "
g'§ msgC 10:32:24 m @ ThorstenPapenbrock
0 o msgA 1 3 Slide 95
Q

https://doc.akka.io/docs/akka/2.2.4/contrib/reliable-proxy.html#reliable-proxy

https://doc.akka.io/docs/akka/2.2.4/contrib/reliable-proxy.html
https://doc.akka.io/docs/akka/2.2.4/contrib/reliable-proxy.html
https://doc.akka.io/docs/akka/2.2.4/contrib/reliable-proxy.html
https://doc.akka.io/docs/akka/2.2.4/contrib/reliable-proxy.html
https://doc.akka.io/docs/akka/2.2.4/contrib/reliable-proxy.html

Patterns Hasso
Plattner
Proxy Institut

= Adds a timeout to each message;
tri d if ack led " How does that work
retries send if acknowledgmen in actor programming?

does not arrive within timeout

Distributed Data
Management

Akka Actor
Programming

ThorstenPapenbrock
Slide 96

https://doc.akka.io/docs/akka/2.2.4/contrib/reliable-proxy.html
https://doc.akka.io/docs/akka/2.2.4/contrib/reliable-proxy.html
https://doc.akka.io/docs/akka/2.2.4/contrib/reliable-proxy.html
https://doc.akka.io/docs/akka/2.2.4/contrib/reliable-proxy.html
https://doc.akka.io/docs/akka/2.2.4/contrib/reliable-proxy.html

Patterns
Proxy

Example: Reliable Communication Proxy

Quick digression: akka.actor.Scheduler and akka.actor.Cancellable
= Useful to schedule future and periodic events (e.g. message sends)

public class ReceiverProxy extends AbstractActor {

}

[.]

// On messageA receive

Cancellable sendMessageA = this.getContext().system().scheduler().schedule(

Duration.create(0, TimeUnit.SECONDS),

Duration.create(3, TimeUnit.SECONDS),

receiverProxy, messageA, this.getContext().dispatcher(), null);
[...]
// On messageA acknowledge %

Stop resending

sendMessageA.cancle(); messageA

[.]

(Re-)send messageA

to receiverProxy
every 3 seconds

Hasso
Plattner
Institut

Distributed Data
Management

Akka Actor
Programming

ThorstenPapenbrock
Slide 97

Patterns

Proxy

Example: Reliable Communication Proxy
= Provides exactly-once messaging on top of at-most-once messaging

= Implements an ACK-RETRY protocol

System1 System2

Still fire-and-forget
messaging for Sender

Receiver

—

Proxies add some overhead
to ensure exactly-once

~Z— |

Receiver
Proxy

https://doc.akka.io/docs/akka/2.2.4/contrib/reliable-proxy.html#reliable-proxy

Hasso
Plattner
Institut

Distributed Data
Management

Akka Actor
Programming

ThorstenPapenbrock
Slide 98

https://doc.akka.io/docs/akka/2.2.4/contrib/reliable-proxy.html
https://doc.akka.io/docs/akka/2.2.4/contrib/reliable-proxy.html
https://doc.akka.io/docs/akka/2.2.4/contrib/reliable-proxy.html
https://doc.akka.io/docs/akka/2.2.4/contrib/reliable-proxy.html
https://doc.akka.io/docs/akka/2.2.4/contrib/reliable-proxy.html

Patterns

Ask

Patterns Hasso
Plattner

Ask Institut
Tell messaging
= non-blocking, asynchronous, fire-and-forget

= Java: someActor.tell(message)

= Scala: someActor ! Message
Ask pattern
= blocking, synchronous

= Java: someActor.ask(message) Distributed Data

= Scala: someActor ? message Management

_ _) Akka Actor

= Returns a Future that the calling entity can wait for Programming
= |mplemented in akka.pattern.PatternsCS.ask ThorstenPapenbrock

and not a default message send option Slide 100

Patterns ﬂ Hasso
Plattner
Ask Institut

Ask pattern
= Via ask, the Sender creates a Future that wraps a Proxy actor that tells
the message to a Receiver with a timeout for that message

= The Proxy completes the Future either when it receives a response or the
timeout elapses

complete Receiver
Distributed Data
Management
ask Akka Actor_
— Sender Programming

Prox
oxy ThorstenPapenbrock
timeout Slide 101

Patterns Hasso
Plattner
Ask Institut
Ask pattern
= Useful if ...
= the outside, non-actor world needs to communicate with an actor.
= an actor must not continue working until a response is received
(very rare case).
= Not a good solution to ...
= make the communication reliable, i.e., enable exactly-once messaging
(use reliable proxy pattern).
. . Distributed Data
= implement timeouts for message sends Management

(use scheduled tasks). Akka Actor
Programming

ThorstenPapenbrock
Slide 102

Patterns ﬂ Hasso
Plattner
Ask Institut

Why to avoid ask:
= Paradigm violation
= Synchronous calls break the strict decoupling of actors.

= Resource blocking
= Actively waiting for other actors locks resources (in particular threads).

= Inefficient messaging
= Asking requires more effort than telling messages (e.g. timeouts).

Distributed Data

Management
W e . Akka Actor
Avoid “ask” if possible! Programming
(the need to ask is usually the result of a bad architecture)
ThorstenPapenbrock
Slide 103

Patterns

Ask

Wait!

We can use Futures
with the Pipe-Pattern
in a non-blocking way!

= Example from the
official Akka Docu:

https://doc.akka.io/docs/
akka/2.5/actors.html

import static akka.pattern.PatternsCS.ask;
import static akka.pattern.PatternsCS.pipe;

import java.util.concurrent.CompletableFuture;

Timeout t = Timeout.create(Duration.ofSeconds(5));

// using 1000ms timeout
CompletableFuture<Object> futurel =
ask(actorA, "request", 1000).toCompletableFuture();

// using timeout from above
CompletableFuture<Object> future2 =
ask(actorB, "another request'", t).toCompletableFuture();
CompletableFuture<Result> transformed =
CompletableFuture.allOf(futurel, future2)
.thenApply(v > {
String x = (String) futurel.join();
String s = (String) future2.join();
return new Result(x, s);

1)

pipe(transformed, system.dispatcher()).to(actorC);

Hasso
Plattner
Institut

Distributed Data
Management

Akka Actor
Programming

ThorstenPapenbrock
Slide 104

https://doc.akka.io/docs/akka/2.5/actors.html
https://doc.akka.io/docs/akka/2.5/actors.html
https://doc.akka.io/docs/akka/2.5/actors.html
https://doc.akka.io/docs/akka/2.5/actors.html
https://doc.akka.io/docs/akka/2.5/actors.html

Patterns Hasso

Ask Plattner
Institut

Actors vs. Futures (+ Pipes)

= Futures are an alternative model for parallelization.

= There are many discussions on “Actors vs. Futures” as means for parallelization control.

» The question here is more which pattern for parallelization you prefer! k
= Actors + Futures is a bad decision, because ... For instance, Chris Stuccio’s blog:

= the mix both models makes your code harder to understand and maintain.| https: //www.chrisstucchio.com/
blog/2013/actors vs futures.html

= callbacks are needed to avoid blocking.

= Why are callbacks bad in actor programming?
= Callbacks are executed by non-actor threads on the side

(i.e., the callback thread might be completing a Future while the actor that created the Distributed Data
Future might process a different message at the same time). Management
Akka Actor

> Bad for debugging, parallelization control, resource management, failure handling, ...
Programming

» Prone to introduce shared mutable state and, hence, to destroy encapsulation.

= Failure handling gets messed up, because the asked actor needs to reply with certain ThorstenPapenbrock
ask-specific error messages to influence its completion. Slide 105

https://www.chrisstucchio.com/blog/2013/actors_vs_futures.html
https://www.chrisstucchio.com/blog/2013/actors_vs_futures.html
https://www.chrisstucchio.com/blog/2013/actors_vs_futures.html
https://www.chrisstucchio.com/blog/2013/actors_vs_futures.html
https://www.chrisstucchio.com/blog/2013/actors_vs_futures.html

Hasso
Plattner
Institut

Patterns
Singleton

Distributed Data
Management

Akka Actor
Programming

ThorstenPapenbrock
Slide 106

Patterns Ii‘il Hasso
. Plattner
Sl ng Ieton Register new worker, watch on

failed worker, read cluster

metrics, balance load, ...

Persist or distribute state to
restore after failure
(see docu on “sharding”)

Exist exactly once
in the cluster!

Booking
Actor

reserve promote

Distributed Data
Management

Akka Actor
Programming

Promotion
Actor

Billing
Actor

Payment
Actor

Reservation
Actor

ThorstenPapenbrock
Slide 107

Patterns ﬂ Hasso
. Plattner
Singleton Institut

Motivation
= Sometimes, there needs to be exactly one actor of some type, e.qg.,

= one Endpoint actor for external communication.

= one Leader actor for consensus enforcement.

= one Resource actor of some type.
First idea:
= Simply create that actor once in the cluster.
= Problems:

Requires a dedicated ActorSystem that is responsible for creating the singleton.

2. If that ActorSystem dies, the singleton is unavailable until the ActorSystem is back.
3. Starting the same dedicated ActorSystem twice might cause split braln.ThorstenP‘_jpenbroCk
4. Every ActorSystem needs to know the address of the singleton. Slide 108

Patterns

Singleton

Cluster Singleton

Cluster-
Singleton-
Manager

System1

akka.cluster.singleton.ClusterSingletonManager
Runs in every ActorSystem (start early!)

= Creates exactly one Singleton actor in the cluster
(on the oldest node; singleton moves if hode goes down)

akka.cluster.singleton.ClusterSingletonProxy
= Create one to communicate with the singleton

= Redirects messages to the current Singleton actor
(buffering messages if singleton is temporarily unavailable)

Cluster-
Singleton-
Proxy

Cluster-
Singleton-
Manager

Cluster- Cluster-
Singleton-/| Singleton-
Manager Proxy

Distributed Data
Management

Akka Actor
Programming

ThorstenPapenbrock
Slide 109

System2 System3

= akka.cluster.singleton.ClusterSingletonManager

Patterns

Singleton

Cluster Singleton

2
System1

Cluster-
Singleton-
Manager

If an ActorSystem hosting the singleton dies,
the singleton is re-created on the then oldest node.

Knows where the current singleton lives
and tracks singleton movements.

Cluster- Cluster-
Singleton-| | Singleton-
Proxy Manager

System3

System2

= akka.cluster.singleton.ClusterSingletonProxy

Cluster-
Singleton-
Proxy

Note:
This is no “reliable proxy’
SO messages can get lost

4

Distributed Data
Management

Akka Actor
Programming

ThorstenPapenbrock
Slide 110

I —————
Patterns
Singleton

Cluster Singleton

/I On ActorSystem startup
ActorRef manager = system.actorOf(
ClusterSingletonManager.props(
LeaderActor.props(),
PoisonPill.class,
ClusterSingletonManagerSettings.create(system).withRole("master")),
"leaderManager");

/I If an actor needs to talk to the singleton
ActorRef proxy = system.actorOf(
ClusterSingletonProxy.props(
"luser/leaderManager”,
ClusterSingletonProxySettings.create(system).withRole("master")),
"leaderProxy");

proxy.tell(new HelloLeaderMessage(), this.self());

Hasso
Plattner
Institut

Distributed Data
Management

Akka Actor
Programming

ThorstenPapenbrock
Slide 111

Patterns

Reaper

Hasso
Plattner
Institut

Distributed Data
Management

Akka Actor
Programming

ThorstenPapenbrock
Slide 112

Patterns Hlasso
Plattner
Reaper (Institut

L Application Shutdown?

Task vs. Actor shutdown

= Tasks finish and vanish.
= Actors finish and wait for more work.
» Actors need to be notified to stop working.

How to detect that an application has finished?

= All mailboxes empty?

» No: Actors might still be working on messages (and produce new ones).
Distributed Data

= All mailboxes empty and all actors idle? Management

Akka Actor

» No: Messages can still being transferred, i.e., on the network. _
Programming

= All mailboxes empty and all actors idle for “a longer time”?

> No: Actors might be idle for “longer times” if they wait for resources. | orstenPapenbrock

Slide 113
» Only the application knows when it is done (e.g. a final result was produced).

|
Patterns
]

Reaper (

L Application Shutdown? J

Problem

= ActorSystems stay alive when the main application thread ends.

Forced Shutdown
= Kill the JVM process.
= Problems:

= Risk of resource corruption (e.g. corrupted file if actor was writing to it)

= Many, distributed JVM processes that need to be killed individually

Actor System terminate()
= (Calling terminate() on an ActorSystem will stop() all its actors.
= Problem:

= ActorSystems on remote nodes are still alive!

Hasso
Plattner
Institut

Distributed Data
Management

Akka Actor
Programming

ThorstenPapenbrock
Slide 114

.|
Patterns

Reaper

Hasso
Plattner
Institut

PoisonPill Shutdown
If an application is done, send a PoisonPill message to all actors.

Actors automatically forward the PoisonPill to all children.k

The PoisonPill finally stops an actor.
Advantages:

Use postStop() to also forward
a PoisonPill to other actors

= Pending messages prior to the PoisenPill are properly processed.

= PoisonPill propagates into all remote Actor Systems.

application

Distributed Data
Management

Akka Actor
Programming

@ ThorstenPapenbrock

Slide 115

Patterns

Reaper

Hasso
Plattner
Institut

PoisonPill Shutdown
If an application is done, send a PoisonPill message to all actors.

Actors automatically forward the PoisonPill to all children.k

The PoisonPill finally stops an actor.
Advantages:

Use postStop() to also forward
a PoisonPill to other actors

= Pending messages prior to the PoisenPill are properly processed.

= PoisonPill propagates into all remote Actor Systems.

Distributed Data

- . _ Management
import akka.actor.PoisonPill; — PoisonPill is an Akka message

_ Akka Actor
. that is handled by all actors Programming
this.otherActor.tell(PoisonPill.getInstance(), ActorRef.noSender()); ThorstenPapenbrock

Slide 116

Parent / Child

Patterns Hasso
__ DeathWatch k== Plattner

Reaper Institut

PoisonPill Shutdown

= Problem:

= If all actors are stopped, A N 7
the Actor System is still running! T T
= Solution:

= Reaper Pattern

Reaper
- w 74 Distributed Data
= A dedicated actor that “knows” all actors Management
> "“Reaps actor souls and ends the world!” Akka Actor

. . . Programming
= Listens to death-events (Termination events)
ThorstenPapenbrock

= Call the terminate() function on the Actor System
Slide 117

if all actors have stopped (e.g. due to PoisonPills)
See: http://letitcrash.com/post/30165507578/shutdown-patterns-in-akka-2

public class Reaper extends AbstractLoggingActor {

Hasso
public static class WatchMeMessage implements Serializable {} ﬂ Plattner
Institut

public static void watchWithDefaultReaper(AbstractActor actor) {
ActorSelection reaper = actor.context().system().actorSelection("/user/reaper");

reaper.tell(new WatchMeMessage(), actor.self()); ! After creation, every actor needs
} to register at its local reaper

private final Set<ActorRef> watchees = new HashSet<>();

@Override
public Receive createReceive() {
return receiveBuilder()
.match(WatchMeMessage.class, message -> {
if (this.watchees.add(this.sender()))

this.context().Watch(this.sender());ﬁ Watch a new actor

)
.match(Terminated.class, message -> { : : Distributed Data
this.watchees.remove(this.sender());% Witness actor dying Management
if (this.watchees.isEmpty()) Akka Actor

Programming

this.context().system().terminate();ﬁ B

)
.matchAny(object -> this.log().error("Unknown message")) ThorstenPapenbrock
Apuifte(d) Slide 118

Patterns

Reaper

Reasons to die without a PoisonPill

If an actor’s parent dies, the orphaned actor dies too.
If a client loses its master Actor System, it might decide to die.
If an error occurs, the supervisor might choose to let the failing actor die.

Hasso
Plattner
Institut

Distributed Data
Management

Akka Actor
Programming

ThorstenPapenbrock
Slide 119

Patterns

attner
Reaper Institut

Stop a running system
= What if the system operates an endless stream of jobs and should be stopped?

= Send a custom termination message.
= Upon receiving this termination message, an actor should ...

1. refuse all incoming new jobs.

2. finish all current jobs (i.e., wait for other actors that work on it).

3. let child actors finish their jobs.

4. stop child actors. Distributed Data

5. stop itself. Management
Akka Actor

Programming

ThorstenPapenbrock
Slide 120

Patterns

- &
Further Reading Institut

Akka documentation Example code @ GitHub:
https://github.com/akka/akka-samples

» http://doc.akka.io/docs/akka/current/java/index.html

———

» http://doc.akka.io/docs/akka/current/scala/index.html

Experiences, best practices, and patterns

= http://letitcrash.com

= http://akka.io/blog

» https://github.com/sksamuel/akka-patterns

= Akka actor programming
literature:

Distributed Data
Management

Akka Actor
Programming

Applied Akka
Patterns

REACTIVE
MESSAGING

PAT NS
s . Reactive Programming
with Scala and Akka ThorstenPapenbrock

Slide 121

Michael Nash & Wade Waldron

http://doc.akka.io/docs/akka/current/java/index.html
http://doc.akka.io/docs/akka/current/java/index.html
http://doc.akka.io/docs/akka/current/java/index.html
http://doc.akka.io/docs/akka/current/scala/index.html
http://doc.akka.io/docs/akka/current/scala/index.html
http://doc.akka.io/docs/akka/current/scala/index.html
http://letitcrash.com/
http://letitcrash.com/
http://akka.io/blog
http://akka.io/blog
http://akka.io/blog
https://github.com/sksamuel/akka-patterns
https://github.com/sksamuel/akka-patterns
https://github.com/sksamuel/akka-patterns
https://github.com/sksamuel/akka-patterns
https://github.com/akka/akka-samples
https://github.com/akka/akka-samples
https://github.com/akka/akka-samples
https://github.com/akka/akka-samples

W johanandren Merge pull request #80 from ygree/fsm-typed-java

B akka-sample-camel-java

B akka-sample-camel-scala

m akka-sample-cluster-java

im akka-sample-cluster-scala

B akka-sample-distributed-data-java
B akka-sample-distributed-data-scala
m akka-sample-fsm-java

B akka-sample-fsm-scala

B akka-sample-main-java

B akka-sample-main-scala

m akka-sample-multi-node-scala

B akka-sample-osgi-dining-hakkers
B akka-sample-persistence-dec-java
B akka-sample-persistence-dc-scala
B akka-sample-persistence-java

B akka-sample-persistence-scala
B akka-sample-sharding-java

s akka-sample-sharding-scala

m akka-sample-supervision-java

B akka-sample-vavr

Upgrade to 2.5.17 (#75)
Upgrade to 2.5.17 (#75)
Upgrade to 2.5.17 (#75)
Upgrade to 2.5.17 (#75)
Upgrade to 2.5.17 (#75)

Upgrade to 2.5.17 (#75)

DinningHakkersTyped - dinning hakkers implementation with Akka Typed ...

Upgrade to 2.5.17 (#75)
Upgrade to 2.5.17 (#75)
Upgrade to 2.5.17 (#75)
Upgrade to 2.5.17 (#75)
Akka 2.5.18 (#73)

Upgrade to 2.5.17 (#75)
Upgrade to 2.5.17 (#75)
Upgrade to 2.5.17 (#75)
Upgrade to 2.5.17 (#75)
Upgrade to 2.5.17 (#75)
Upgrade to 2.5.17 (#75)
Upgrade to 2.5.17 (#75)

Akka 2.5.16 (#73)

Latest commit ccd4323 8 hours ago

14 days ago
14 days ago

14 days ago

Hasso
Plattner
Institut

Example code @ GitHub:
https://github.com/akka/akka-samples

3 days ago
14 days ago
14 days ago
14 days ago
14 days ago
a month ago
14 days ago
14 days ago
14 days ago
14 days ago
14 days ago
14 days ago
14 days ago

a month ago

Distributed Data
Management

Akka Actor
Programming

ThorstenPapenbrock
Slide 122

https://github.com/akka/akka-samples
https://github.com/akka/akka-samples
https://github.com/akka/akka-samples
https://github.com/akka/akka-samples

Akka Actor Programming
Hands-on

Actor Model (Recap)
Basic Concepts

Runtime Architecture
Demo
Messaging

Parallelization
Remoting
Clustering
Patterns

Homework

GitHub - HPI-Information-Systems/akka-tutorial: Code for the Akka tutorial - Chromium

() GitHub- HPLInformation-Syste X

&« C 8 GitHub, Inc. [US] | https://github.com/HPI-Information-Systems/a aQ % 6
O Why GitHub? Enterprise Explore Marketplace Pricing Sign in
HPI-Information-Systems / akka-tutorial ©Watch 7 %Star 5 YFork 7

<> Code Issues 0 Pull requests 0 Projects 0 Security Insights

Code for the Akka tutorial

D 53 commits ¥ 1 branch © 0 releases 2% 5 contributors &z Apache-2.0

Branch: master = Find file Clone or download ~
a thorsten-papenbrock Split the ddm project into ddm-Imp and ddm-pc. Latest commit bfe21b6 5 minutes ago
8 akka-tutorial 1is not a prime 11 months ago
B8 ddm-Imp Split the ddm project into ddm-Imp and ddm-pc. 5 minutes ago
8 ddm-pc Split the ddm project into ddm-Imp and ddm-pc. 5 minutes ago
m octopus 1is not a prime 11 months ago
[£) .gitignore Split the ddm project into ddm-lmp and ddm-pc. 5 minutes ago
[E) LICENSE Added the octopus project to the repository. last year

[©) README.md Added the ddm project. 21 days ago

Homework ﬂ Hasso
Platt
ddm-pc Institut
[Task 1: Akka Setup]
[Task 2: LargeMessageProxy J
Distributed Data
Management
Akka Actor
] Programming
{ Task 3: Password Cracking }
ThorstenPapenbrock

Slide 125

|
Homework

ddm-pc

Hasso
Plattner
Institut

{ Task 1: Akka Setup }

Distributed Data
Management

Akka Actor
Programming

ThorstenPapenbrock
Slide 126

Homework

Hasso
Task 1 - Akka Setup ﬂ natiter

1. Form teams of two students.
Create a public GitHub repository.

Copy the ddm-Imp and ddm-pc projects from the exercise repository
https://github.com/HPI-Information-Systems/akka-tutorial
into your repository.

Build, understand and test the two ddm projects.
5. Optional: Check out and play with the akka-tutorial and octopus projects.

Send your first and last names, a group name and the link of your repository

via email to: thorsten.papenbrock@hpi.de Distributed Data

Management

Akka Actor
Programming

ThorstenPapenbrock
Slide 127

https://github.com/HPI-Information-Systems/akka-tutorial
https://github.com/HPI-Information-Systems/akka-tutorial
https://github.com/HPI-Information-Systems/akka-tutorial
https://github.com/HPI-Information-Systems/akka-tutorial
https://github.com/HPI-Information-Systems/akka-tutorial
https://github.com/HPI-Information-Systems/akka-tutorial
https://github.com/HPI-Information-Systems/akka-tutorial
https://github.com/HPI-Information-Systems/akka-tutorial
mailto:thorsten.papenbrock@hpi.de

|
Homework

Task 1 - Akka Setup

Submission
= Deadline

= (08.11.2019 09:00:00 (next Friday!)
= Artifacts

1. Email with content:
<firstnamel> <lasthamel>
<firstname2> <lastname2>
<groupname>
<GitHub-URL>

Hasso
Plattner
Institut

Distributed Data
Management

Akka Actor
Programming

ThorstenPapenbrock
Slide 128

|
Homework

ddm-Imp

Hasso
Plattner
Institut

[Task 2: LargeMessageProxy J
Distributed Data
Management

Akka Actor
Programming

ThorstenPapenbrock
Slide 129

Homework

Task 2 - LargeMessageProxy

Master

LargeMessage<T> {
T message;
ActorRef receiver;

¥

with sender = Master

\

System1

Message
Proxy

System2

Proxy

Hasso
Plattner
Institut

T message
with sender = Master

Message

Task

= Implement the LargeMessageProxy actor!

Distributed Data
Management

Akka Actor
Programming

ThorstenPapenbrock
Slide 130

@override
public Receive createReceive() {
return receiveBuilder()
.match(LargeMessage.class, this::handle)
.match(BytesMessage.class, this::handle)
.matchAny(object -> this.log().info("Received unknown message: \"{}\"", object.toString()))
.build();

private void handle(LargeMessage<?> message) {
ActorRef receiver = message.getReceiver();

ActorSelection receiverProxy = this.context().actorSelection(receiver.path().child(DEFAULT_NAME));

// This will definitely fail in a distributed setting if the serialized message is large!

// Solution options:

// 1. Serialize the object and send its bytes batch-wise (make sure to use artery's side channel then).
// 2. Serialize the object and send its bytes via Akka streaming.

// 3. Send the object via Akka's http client-server component.

// 4. Other ideas

receiverProxy.tell(new BytesMessage<>(message.getMessage(), this.sender(), message.getReceiver()), this.self());

private void handle(BytesMessage<?> message) {
// Reassemble the message content, deserialize it and/or load the content from some local location before forwarding its content.

message.getReceiver().tell(message.getBytes(), message.getSender());

Homework

Hasso
Task 2 — LargeMessageProxy ﬂﬁ!z&‘i?ﬂ

RU|eS System1 . ' System2
= Do not mess with the time measurement:

It should start with the registration time and
it should end when receiving the data. e~ P targe \ [777 i sencar = Master

ActorRef receiver;

= Do not change the command line interface i sender - Master
or app name; otherwise, the automatic test
scripts will fail.

= Do not change the LargeMessage class;

the LargeMessageProxy should be able to send messages of any type T. Distributed Data
= Use maven to import additional libraries if you need some. Management
) Akka Actor
= Do not use the disk. Programming
= Feel free to change everything inside the LargeMessageProxy!
ThorstenPapenbrock

Slide 132

Homework

Hasso
Task 2 — LargeMessageProxy ﬂﬁ!z&‘i?ﬂ

Submission ' System1 | System2
= Deadline
= 15.11.2019 09:00:00 ——1 ‘\O’L\ 4 L
= Artifacts (in GitHub repository) acirt recamer; ol message Jor e

with sender = Master
l

1. Source code

2. “assignment2” folder with ...
1. a jar file of your algorithm;

2. a pdf or ppt slide describing your solution. Distributed Data
Management

Akka Actor
Programming

ThorstenPapenbrock
Slide 133

|
Homework

ddm-pc

Hasso
Plattner
Institut

Distributed Data
Management

Akka Actor
J Programming

{ Task 3: Password Cracking

ThorstenPapenbrock
Slide 134

(DOO‘-JChU'lwal—'E

WWWWwWwWWMRNNMNMNRNNNNNNNPEPEREREREPEREPERERRERE
N WNRPOOD~NOOAEWNROORD~NOOOEWNERO

Homework

Task 3 — Password Cracking

Name
Sophia
Jackson
Olivia
Liam
Emma
Noah
Ava

PasswordChars

ABCDEFGHIJK
ABCDEFGHIK
ABCDEFGHIK
ABCDEFGHIK
ABCDEFGHIJK

ABCDEFGHIJK
ARCDEERHIK

PasswordLength Password

10
10
10
10
10

10
1n

Aiden
Isabellg
Lucas
Mia
Caden
Aria

All characters that may
appear in the passwor

ABC JJK
ABCDEFGHIJK

AD DAL

10
10

an

Grays
Riley
Mason
Zoe
Elijah
Amelia
Logan
Layla
Oliver
Charlotte

Number of characters

in the password

ABCDEFGHIJK
ABCDEFGHIJK
ABCDEFGHIK

BCDEFGHIJK
ABCDEFGHIJK

10
10
10
10

0

Ethan
Aubrey|
Jayden
Lily
Muham

These two fields have
always the same value

for all records.

Chloe
Carter
Harper
Michael
Evelyn
Sebastian
Adalyn
Alexander

ABCDEFGHIJK
ABCDEFGHIK
ABCDEFGHIK
ABCDEFGHIJK
ABCDEFGHIK
ABCDEFGHIJK
ABCDEFGHIK
ABCDEFGHIJK

10
10
10
10
10
10
10
10

Hasso
Plattner
Institut
Hintl Hint2 Hint3 Hint4 Hint5 Hints Hint7
GGGFGFFFFG HJKGDEFBIC FCJADEKGH| FAJBDIEKGH AGCJEHFKIB BHKICGFADJ JIFAGKDBCE GAHDKJBCEF
EFFF AEHJIDGFKC |DAHFGEKBJ EHFIJKBGAC HFJIEDACBK FGKIDJCEAB KDHGCAEJFB
kood Passwords to be cracked |cAKelFHGID JBFEDHIKAG IDAKGHBFIC KGBAEICHD) DKHFBEJIAC EABJGFIKDC
CCCluw seT FAICGJDHEK CHBKIGEJAF AICDKGHJBF EDAGKBJHIC JDKIFACEGB BGKJDAHCFE
BDDBD%—B EGICDFKHBJ HEAJIBDGFK BAHCKDFIJG HBEDKAGCI) IBHCEFJADK FAGDEJICKB GFHEAKCDBJ
GHGGHGGHHH CFKBIGDIEH CAIGHEJFDK GJBEKIADFH AIBCJHGEKF GDIBCKFHA] CGJHDEAIBK DGKFBEACJH
NEEEDFDFDD FHIKEBGDJC KHFICAJGED KIAHDFEJGB CGFAKIBDHJ ACEHFKBIDJ GBADIJEKFC AFCKGHBDJE
HHIHI GCIFEHDKBJ JDHIEGKACF FJHBEGAKD! AIBJEHKGFC (CGJAFBIHDK JECAIDGHBK JBDCKEAFH
£Jciccd EHDCGIKBJF IFJCAEHGKD AFBHEGKIJC KGFBIADJHC JKAGEDHIBC CBKIDEAHFJ CJAFKEIBDG
d Bececcc KGJHIDECFB BHFACKEGI [CJGHFKBAD KEICHGAJDB BCDKEJIFAH IDGEBAJKCF FCBDKGHJAE
TDOBDDIDDI FIB BKIGAEDFCJ
DDDAADDDDD AEN Hints: EKFGAJCBHD
CCCFCCFECC GKH . . . HBJEAFDCGK
nam33IBBIJ cef = Every hint contains all PasswordChars besides |ekceiracol
BGGGBBB GHE : : _ JBCHAGEKDF
A AAIA o) one char, i.e., |Hint|=|PasswordChars|-1 CRERAUID
SAARAN Jig = The missing char is the hint, because it does CBEFIDGKAJ
JEJJEE KDd - JBCGADIEKF
GDDGGGDGDG Gel not appear in the password. HEGDCAKJFB
FFEFEEEFFF KHE = The number of hints can change! JFHDCKEAGB
CCCHCHCCCC GIF) C . JBGAHFDCEK
ABBBAABAAA ark ® The more hints we have, the easier it is to find |rickneapsc
BGBGBGBBBG ECK GJBECKAFHD
HHBBHHH DHJ the password. BCHJEAKFDG
EJJEEJE HDF JCGIFDBEAK
CCCGGGG DJEHCBKF% _=OHAE ECFKBIAHJG GDCIFKBJAH HJBGAIKCED DICKFBGAEJ GFDCKBAHJE
DHHDHDD KCJFIB FIDKCAIEGH DABGJEFKIH DCGIKHFABJ KDGBEHIACJ IBCKDFHJAE EHABDKCFJIG
CBCBBBC EDFGHKIBJC HEICAKBJFG CABIDFGHKJ DHAKICBGJE [HAKJCEBFD CEABFJGKID ABGKFDHCEJ
CEECECCCEC KEGDHFCBI) GCIHAEDKFJ HFGKIBACEJ CJHGKBDAIE FECIBJKADH GAFCIBEKJD CJBAKEGDFH
BBIIBIBIIB CKFGBIHDEJ EJDKIHGABF ECHIJGFBAK AFHIBCKGDJ IHCBKGEJAD AFHIDJKBCE |IBGCJKFAED
EAAAEAEEAE IAFKCHJGDE AKFDJIHGBE BGECFIJKAH BJDAIGKEHC [HEBKACJDF BJDIGAKFCE EFADJKCBGH
DCDDCCDDDD JGFEICBKHD CKJDHGIEAF KIGDHABJCF GDEIHACBJK BICEAFDHKJ JGFCKBDEAI HCBGDKFAJE
lIiciccicce CDBJHIEGKF FIKGEHCAJD BIJAGEKFHC CADBIHFJKG GHJDBKAEIC KJEIDHABCF ACBGKFDIJE
ENEINE EDFKHGJBIC KFHIDJGACE KHAIDGBJFE CIABGJKEHF JKEIDCBAHG KIDFJABHEC FDBGJCAEIK
131JDJDDJJ IKEJFCBHDG AHDCFKEJG| DBIKAHJGEF DKAIHGFIJCB CABKHEDJIG ABJEFCHDKI GJAFEBCDIK
HKHKHKKHKK CEBHKDFIJG FGJADKCIEH AGDIFHKJBE FHCEKABGL] BFJAIDCGHK BCAHEJDGIK JECDIHKAEB

PLDOO‘JG!LHJ’E\-NN}—'E
o

G W WWWMRNNMNMNMNMNNRNNRNNE PR RER R R PP
ONsWNRPOOCO~NOOARWNROOO~NOOAWNE

Homework

Hasso
Task 3 - Password Crackin pattner
Institut

Name PasswordChars PasswordLength Password Hintl Hint2 Hint3 Hint4 Hint5 Hint6 Hint7

Sophia ABCDEFGHIJK |10 c4712866799881ac48ca55bf78a9540p 1582824a01c4tre9lacad67f5a252be0093f91b®B8052d9420a20¢ ca70f765d8c1br570d3adad1derf224061bd035!
Jackson ABCDEFGHIJK 10 c178ef3bd2dbf4e92291a9b563c0ae2c 7624e76e72b52834d255d0276*b2e939a89b78 0f0c2aefcici4b3"d22b58963201¢0066eb98a0f3*21h5a6f0b9c 1
Olivia ABCDEFGHIJK |10 b6d Ddd9e2605994270853fec1c11¥b0Of110e28c9ds
Liam ABCDEFGHIJK |10 109 - D0d6920945a7*b857b99db7al503d34487226
Emma ABCDEFGHIK |10 607 Both password and hints are SHA-256 encrypted. 552ba27c5aedt60064d370b6@b7fdd9r77b932
Noah ABCDEFGHIJK |10 6d4 81601ch73654¢62ecbbd80652alba7bb71ebg
Ava ABCDEFGHIJK 10 412%%%2%%090%24%%6??2c5245?352b>?ﬁ44950404450628ded46cd2f8c901b5592329b8209fa62631[
Aiden ABCDEFGHIJK |10 fbe3613 d7996e9d63601dc7id4»de2617fb757fc#06bb6d175e5cH03ee78244a7287316b71fbic44 9aab84d04556¢87a65ceb83b5589¢3514024 3¢
Isabella ABCDEFGHIJK 10 5a22e3bdef6c85307b361f2e17581461¢23d6de9dad 25t 7ai3c5c070a12824137665M56¢c7 1debOelel82 49535ddba5d7#9271a854a0e® 6b2b2dbf84e0:
Lucas ABCDEFGHIJK |10 49afdd0a20ae497060405ec7b557faad 041734164643 0df7feechbe4bbr046¢1flec90e0ra221a7cdlebfdr dcbe04357¢c159ae51984b3cBce5b090db2396
Mia ABCDEFGHIK |10 77026d73th8c33e0f45c3f6bc3))) 30469e377h*5b451e4478c4
Caden ABCDEFGHIJK 10 484616315092a69ebd7ctacly ENCryption cracklng via brute force approach: 5570b879d4>eb83h37c3¢50
Aria ABCDEFGHIJK |10 31f9b667a867fccaada0d823d bd3bbb3540939b7290d29bd
Grayson ABCDEFGHIJK |10 ac923aa891c087fad57b02ded 1. Generate sequence. bb614d9f1c®485a4dbf7ccot
Riley ABCDEFGHIJK 10 57203d2db503c69464900aed) 2. ENcCrypt sequence with SHA-256. 11595ef921er 63503391168
Mason ABCDEFGHIJK |10 4d873360dd931098ead7d692 . . .- 7433be73e82 7aa536698df5¢
Zoe ABCDEFGHIJK 10 120050314816c036642343686 3. Compare current SHA-256 with existing one: |.3omodazforadic2082c68
Elijah ABCDEFGHIJK |10 25e975a018dd7265dchb44al? i i i 23d813569¢ce 698303662587
Amelia ABCDEFGHIJK |10 61h693ee39e015290f087a0ca if =%l | , encrypti On, is bro ke,n : : _£9182a060c6584a163c9c80
Logan ABCDEFGHIJK |10 1d43da0376f725f667e1096e3635c9a> B AD09451»41c672365d64 dfcd28d 1604102 45759a68fhe9cr 1c8bdedSfccc?b58d913c2aac
Layla ABCDEFGHIJK |10 c3647d6d418e8136c7640d1976d234 5e2494879c46121"70d759130b22¢ 74e53e2720feer 10a55ch79be0e 56459103a261 efaceBc 1201
Oliver ABCDEFGHIJK |10 d2488287e89e2bb00bfi6c4e767fe CAc588e7b7901»911ecald216d 52bB5e1bb8c?3bal7h3532e82 8848a569dcd0? f9b2ecef6af24 »9ab4b25771e3
Charlotte ABCDEFGHIJK 10 0e481c55eeal567bf4a5434cc0d713d? d6426c5a36fadr 7578¢180f1b 1 46588a7ef05e05daadc4464d50 bfl244e8e887M fe47Thd94daler 7aBclb2e2827
Ethan ABCDEFGHIJK |10 d08ce9b35434a29b6d34ae4df99114e»537ceb64562etracAc0b2dh991+b43e80f0be33ecccd5h0386b8r868e118ee7dd>eed78dc7cd3Pe30e4a6278bfl
Aubrey ABCDEFGHIJK |10 a54 Hbef55053480e+39769b867532 ec515c86d99¢
Jayden ABCDEFGHIJK |10 482 . .]] ; Db28c5a0bdaetd43e7731d10e09c6383d8715¢
|_i|€: ABCDEFGHIJK |10 64e Hint CraCkmg is much easier than password CraCk'ng- 71545ceb163c(r0b5a12e03¢6336b071418c49
Muhammad ABCDEFGHIJK 10 b24 £72f7ec4768b1HiBfabe05c576»7317018660b2t
Chloe ABCDEFGHIK |10 314885f3b250cfad9a08ab7c6a0b7125 ba60bc240c618Pb32fc6e 9d2d120af79re2a2h62382d6r 1e52d3a607709e62400987eb
Carter ABCDEFGHIJK |10 507b389927e0aa92bdf50e7ffe0c119ce 222193537063%ec62e5d714fd f4ced eDe6eB5ce 7¢1163a66461¢18e32024bb20>4d35243c99da
Harper ABCDEFGHIJK |10 17649029a718c93179e9da331e7801214aa95f0083c6@b0cl labac12a»9887812bea2d®6110eblbfae6rd694f1668eca®2a2e2681f0d0#5194a8888927
Michael ABCDEFGHIJK 10 a926deae7e334a3992ha30d4d 75822 8b63be6310da®03thdc4i9b69f+d96188307170¢ 6bdch76976d88 e54ch6eabaa2(9c2/8383f1aam 04bd3allb5es
Evelyn ABCDEFGHIJK |10 43079487b664ebatbad6e77698d58a4* 7h43a0546a75Mc6c9a5d45¢ci1967chc51d481erbla79h242950859099a87582efac6479cA4e48 7d490919iceb]
Sebastian ABCDEFGHIJK 10 0306aed6a72de9d32e0b9d9ec430e92 Be5837886ae82 2a9f2h7h2e974 5effda9aeBid9 »037bcfld83a00¢ 3d4b9e8ba7hc#9379b2c12h9 1 f13b79be05dc
Adalyn ABCDEFGHIK |10 beflaOcc6ba9868te2071e80b706924¢622ba2b0c455» 1087ebc6950 c28553d4a058" 74802¢5978ebf* 506770146296 badc14f03ca9%d2bdad956404
Alexander ABCDEFGHIJK 10 f14a798017874d94e78421db5a126e650e4f0b88e214*b5502b12a7d P d897e5993c0dr 11547 ce885e7raa8e5f28e181er cd8b68b0cdbar dag408b0a0nss

Homework

Task 3 — Password Cracking

Cluster / Metrics Reaper
Llstener Llstener

Cluster)/ Metrics Reaper
Llstener Llstener
Hints

= The passwords and hints are encrypted with the following function:

private String hash(String password) {
MessageDigest digest = MessageDigest.getinstance("SHA-256");
byte[] hashedBytes = digest.digest(line.getBytes("UTF-8"));
StringBuffer stringBuffer = new StringBuffer();
for (inti = 0; i < hashedBytes.length; i++)
stringBuffer.append(Integer.toString((hashedBytes[i] & 0xff) + 0x100, 16).substring(1));
return stringBuffer.toString();

}
Distributed Data
= Useful code snippets for combination generation: Management
= https://www.geeksforgeeks.org/print-all-combinations-of-given-length/ ﬁfggrg\ﬁqtﬁfmg
= https://www.geeksforgeeks.org/heaps-algorithm-for-generating-permutations/
ThorstenPapenbrock

Slide 137

https://www.geeksforgeeks.org/print-all-combinations-of-given-length/
https://www.geeksforgeeks.org/print-all-combinations-of-given-length/
https://www.geeksforgeeks.org/print-all-combinations-of-given-length/
https://www.geeksforgeeks.org/print-all-combinations-of-given-length/
https://www.geeksforgeeks.org/print-all-combinations-of-given-length/
https://www.geeksforgeeks.org/print-all-combinations-of-given-length/
https://www.geeksforgeeks.org/print-all-combinations-of-given-length/
https://www.geeksforgeeks.org/print-all-combinations-of-given-length/
https://www.geeksforgeeks.org/print-all-combinations-of-given-length/
https://www.geeksforgeeks.org/print-all-combinations-of-given-length/
https://www.geeksforgeeks.org/print-all-combinations-of-given-length/
https://www.geeksforgeeks.org/print-all-combinations-of-given-length/
https://www.geeksforgeeks.org/heaps-algorithm-for-generating-permutations/
https://www.geeksforgeeks.org/heaps-algorithm-for-generating-permutations/
https://www.geeksforgeeks.org/heaps-algorithm-for-generating-permutations/
https://www.geeksforgeeks.org/heaps-algorithm-for-generating-permutations/
https://www.geeksforgeeks.org/heaps-algorithm-for-generating-permutations/
https://www.geeksforgeeks.org/heaps-algorithm-for-generating-permutations/
https://www.geeksforgeeks.org/heaps-algorithm-for-generating-permutations/
https://www.geeksforgeeks.org/heaps-algorithm-for-generating-permutations/
https://www.geeksforgeeks.org/heaps-algorithm-for-generating-permutations/
https://www.geeksforgeeks.org/heaps-algorithm-for-generating-permutations/

Homework

Task 3 — Password Cracking

Cluster / Metrics Reaper
Llstener Llstener

Cluster)/ Metrics Reaper
Llstener Llstener

Hints
= Think agile:

= How can I maximize the parallelization?
(e.g. the number parallel tasks should in the best case not depend on the input data)

= How can I propagate intermediate results to other actors whenever needed?
(e.g. proxies, schedulers, master-worker, ...)

= How can I re-use intermediate results to dynamically prune tasks?
(e.g. if I know that X is a solution, then I might be able to infer

without testing that Y is also a solution) Distributed Data
H I implement task parallelism? Management
u
ow can I implement task parallelism? Akka Actor

(e.g. parts of subtask 2 might already be able to start with partial Programming

results of subtask 1)
. .. . ThorstenPapenbrock
= How can I achieve elasticity in the number of cluster nodes? Slide 138

(nodes may join or leave the cluster at runtime)

Homework

Task 3 — Password Cracking

Cluster / Metrics Reaper
Llstener Llstener

Cluster)/ Metrics Reaper
Llstener Llstener

Notes
= Parameters that may change:
= password length
= password chars
= number of hints (= width of file)
= number of passwords (= length of file)

= number of cluster nodes
(do not wait for x nodes to join the cluster; you do not know their o
Distributed Data

number; implement elasticity, i.e., allow joining nodes at runtime) Management
= Parameters that may not change: Akka Actor
Programming
= encryption function SHA-256
ThorstenPapenbrock

= all passwords are of same length and have same character universe Slide 136
ade

Homework
Task 3 — Password Cracking

Rules

<
= Do not mess with the time measurement:

It should start with the StartMessage and it should end when the PoisonPills are sent.

= Do not change the command line interface or app name;
otherwise, the automatic test scripts will fail.

= Use maven to import additional libraries if you need some.
= Do not use the disk.
= Feel free to change everything (besides interface and time measurement);

you probably need a new shutdown protocol, you need a proper 3‘:::;::3:;:“3
communication protocol for your Master/Worker actors and you AKkka Actor
probably need additional actors. Programming

= Write the cracked passwords with the Collector to the console;
. ThorstenPapenbrock
the current printouts from the master should be deleted. Slide 140

Homework

Task 3 — Password Cracking

Submission
= Deadline
= 22.11.2019 09:00:00
= Artifacts (in GitHub repository)
1. Source code
2. “assignment3” folder with ...
1. a jar file of your algorithm;

2. a pdf or ppt slide describing your solution.

Distributed Data
Management

Akka Actor
Programming

ThorstenPapenbrock
Slide 141

Homework

Hasso

Evaluation - Pi Cluster e

4 Cores, 4 GB

0.00 6.00
00:11:16

4 Cores, 4 GB

1

00:11:15

4 Cores, 4 GB

1 0.00 0.00
00:11:15

1
1
1
1

4 Cores, 4 GB

- 4 Cores, 4 GB

1
1
1

4 Cores, 4 GB

4 Cores, 4 GB

0.5 0.02
9:11:15

4 Cores, 4 GB

0.00 0.00
0:11:15

4 Cores, 4 GB

00:11:15

4 Cores, 4 GB

00:11:15

4 Cores, 4 GB

1
00:11:15

1
1
1
1

ThorstenPapenbrock

4 Cores, 4 GB
CC‘U::“ oo Sllde 143

1

1
1
1
1

Homework

Hasso
Plattner

-
Q
)
)
=
O
-
O
C
_I
S
=
O
O
|
c
O
=
©
=
©
>
LI

Institut

'
3
=
5
s
9
]
2
&
e
@
g
5
G
£
g
5
£

20 Cores, 30 GB

20 Cores, 30 GB

20 Cores, 30 GB

20 Cores, 30 GB

20 Cores, 30 GB

20 Cores, 30 GB

ThorstenPapenbrock

Slide 144

Best Team wins a price!

“I wait for green”

“Road ahead is free!” &

SEL L) “I wait for crossing traffic”

“I accelerate!”

“You are not in my path!”
. s

B
“Attention,

