
Distributed Data Management

Akka Actor Programming
Thorsten Papenbrock

F-2.04, Campus II

Hasso Plattner Institut

Slide 2

Thorsten Papenbrock

Akka Actor Programming

Hands-on

 Actor Model (Recap)

 Basic Concepts

 Runtime Architecture

 Demo

 Messaging

 Parallelization

 Remoting

 Clustering

 Patterns

 Homework

Dataflow through Databases

 information storage and

retrieval

Dataflow through Services

 service calls with responses

Message-Passing Dataflow

 asynchronous messages

Actor Model (Recap)

Models of Dataflow

Slide 3

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

Process 1 Process 2

Process 1 Process 2

Process 1 Process 2

Actor Model (Recap)

Models of Dataflow

Slide 4

Encoding and
Communication

Distributed Data
Management

Thorsten Papenbrock

Actor Model (Recap)

Actor Programming

Slide 5

Akka Actor
Programming

Distributed Data
Management

Thorsten Papenbrock

Object-oriented

programming

 Objects encapsulate

state and behavior.

 Objects communicate

with each other.

 Separation of concerns

makes applications

easier to build and

maintain.

Actor

programming

 Actors encapsulate

state and behavior.

 Actors communicate

with each other.

 Actor activities are

scheduled and

executed transparently.

 Combines the

advantages of object-

and task-oriented

programming.

Task-oriented

programming

 Application split down

into task graph.

 Tasks are scheduled

and executed

transparently.

 Decoupling of tasks

and resources allows

for asynchronous and

parallel programming.

Actor Model (Recap)

Actor Model

Slide 6

Encoding and
Evolution

Distributed Data
Analytics

Thorsten Papenbrock

Actor Model

 A stricter message-passing model that treats actors as the universal

primitives of concurrent computation.

 Actor:

 Computational entity (private state/behavior)

 Owns exactly one mailbox (cannot subscribe to more or less queues)

 Reacts on messages it receives (one message at a time)

 Actor reactions:

 Send a finite number of messages to other actors

 Create a finite number of new actors

 Change own state, i.e., behavior for next message

 Actor model prevents many parallel programming issues

(race conditions, locking, deadlocks, …)

“The actor model retained more of
what I thought were good features

of the object idea”
Alan Kay, pioneer of object orientation

Actor 1 Actor 2

Message Broker

Actor Model (Recap)

Actor Model

Slide 7

Akka Actor
Programming

Distributed Data
Management

Thorsten Papenbrock

Advantages over pure RPC

 Fault-tolerance:

 “Let it crash!” philosophy to heal from unexpected errors

 Automatic restart of failed actors; resend/re-route of failed messages

 Errors are expected to happen and implemented into the model:

 Deadlock/starvation prevention:

 Asynchronous messaging and private state actors prevent many

parallelization issues

 Parallelization:

 Actors process one message at a time but different actors operate

independently (parallelization between actors not within an actor)

 Actors may spawn new actors if needed (dynamic parallelization)

Actor 1 Actor 2

Actor Model (Recap)

Actor Model

Slide 8

Akka Actor
Programming

Distributed Data
Management

Thorsten Papenbrock

Popular Actor Frameworks

 Erlang:

 Actor framework already included in the language

 First popular actor implementation

 Special: Native language support and strong actor isolation

 Akka:

 Actor framework for the JVM (Java and Scala)

 Most popular actor implementation (at the moment)

 Special: Actor Hierarchies

 Orleans:

 Actor framework for Microsoft .NET

 Special: Virtual Actors (persisted state and transparent location)

Actor 1 Actor 2

Slide 9

Thorsten Papenbrock

Akka Actor Programming

Hands-on

 Actor Model (Recap)

 Basic Concepts

 Runtime Architecture

 Demo

 Messaging

 Parallelization

 Remoting

 Clustering

 Patterns

 Homework

Basic Concepts

Akka Toolkit and Runtime

Slide 10

Akka Actor
Programming

Distributed Data
Management

Thorsten Papenbrock

 A free and open-source toolkit and runtime for building concurrent and

distributed applications on the JVM (https://akka.io/)

 Supports multiple programming models for concurrency, but emphasizes

actor-based concurrency

 Inspired by Erlang (https://erlang.org/)

 Written in Scala (https://scala-lang.org/)

 included in the Scala standard library

 Invented by Jonas Bonér; maintained by Lightbend (https://lightbend.com/)

 Offers interfaces for Java and Scala

https://akka.io/
https://akka.io/
https://www.erlang.org/
https://www.erlang.org/
https://www.scala-lang.org/
https://www.scala-lang.org/
https://www.scala-lang.org/
https://www.scala-lang.org/
https://www.lightbend.com/
https://www.lightbend.com/

Basic Concepts

Akka Modules

Slide 11

Akka Actor
Programming

Distributed Data
Management

Thorsten Papenbrock

Akka Actors

Core actor
model classes

for concurrency
and distribution

Akka Streams

Asynchronous,
non-blocking,

backpressured,
reactive stream

classes

Akka Http

Asynchronous,
streaming-first

HTTP server and
client classes

Akka Cluster

Classes for the
resilient and

elastic
distribution over
multiple nodes

Cluster Sharding

Classes to
decouple actors

from their
locations

referencing
them by identity

Distributed Data

Classes for an
eventually
consistent,
distributed,

replicated key-
value store

Akka Persistence

Classes to
persist actor
state for fault
tolerance and
state restore
after restarts

Alpakka

Stream
connector

classes to other
technologies

Basic Concepts

Small Setup

Slide 12

Akka Actor
Programming

Distributed Data
Management

Thorsten Papenbrock

<dependencies>

 <dependency>

 <groupId>com.typesafe.akka</groupId>

 <artifactId>akka-actor_${scala.version}</artifactId>

 <version>2.5.3</version>

 </dependency>

 <dependency>

 <groupId>com.typesafe.akka</groupId>

 <artifactId>akka-remote_${scala.version}</artifactId>

 <version>2.5.3</version>

 </dependency>

 <dependency>

 <groupId>com.typesafe.akka</groupId>

 <artifactId>akka-slf4j_${scala.version}</artifactId>

 <version>2.5.3</version>

 </dependency>

 <dependency>

 <groupId>com.typesafe.akka</groupId>

 <artifactId>akka-testkit_${scala.version}</artifactId>

 <version>2.5.3</version>

 </dependency>

 <dependency>

 <groupId>com.twitter</groupId>

 <artifactId>chill-akka_${scala.version}</artifactId>

 <version>0.9.2</version>

 </dependency>

</dependencies>

Base actor library
actors, supervision, scheduling, …

Remoting library
remote actors, heartbeats …

Logger library
logging event bus for akka actors

Testing library
TestKit class, expecting messages, …

Kryo library
Custom serialization with Kryo

Maven – pom.xml

Basic Concepts

Akka Actors

Slide 13

Akka Actor
Programming

Distributed Data
Management

Thorsten Papenbrock

 Actor = State + Behavior + Mailbox

 Communication:

 Sending messages to mailboxes

 Unblocking, fire-and-forget

 Messages:

 Immutable, serializable objects

 Object classes are known to both sender and receiver

 Receiver interprets a message via pattern matching

Actor 1 Actor 2

State

Behavior

Mailbox

Mutable messages are possible,
but don’t use them!

Basic Concepts

Akka Actors

Slide 14

Akka Actor
Programming

Distributed Data
Management

Thorsten Papenbrock

Actor 1 Actor 2

State

Behavior

Mailbox

public class Worker extends AbstractActor {

 @Override

 public Receive createReceive() {

 return receiveBuilder()

 .match(String.class, this::respondTo)

 .matchAny(object -> System.out.println("Could not understand received message"))

 .build();

 }

 private void respondTo(String message) {

 System.out.println(message);

 this.sender().tell("Received your message, thank you!", this.self());

 }

}

Inherit default actor behavior,
state and mailbox implementation

The Receive class performs
pattern matching and de-serialization

Send a response to the sender of the last message
(asynchronously, non-blocking)

A builder pattern for constructing
a Receive object with otherwise

many constructor arguments

Called in default
actor constructor
and set as the

actor‘s behavior

Basic Concepts

Akka Actors

Slide 15

Akka Actor
Programming

Distributed Data
Management

Thorsten Papenbrock

Actor 1 Actor 2

State

Behavior

Mailbox

public class Worker extends AbstractActor {

 @Override

 public Receive createReceive() {

 return receiveBuilder()

 .match(String.class, s -> this.sender().tell("Hello!", this.self()))

 .match(Integer.class, i -> this.sender().tell(i * i, this.self()))

 .match(Doube.class, d -> this.sender().tell(d > 0 ? d : 0, this.self()))

 .match(MyMessage.class, s -> this.sender().tell(new YourMessage(), this.self()))

 .matchAny(object -> System.out.println("Could not understand received message"))

 .build();

 }

}

The message types (= classes)
define how the actor reacts

Basic Concepts

Akka Actors

Slide 16

Akka Actor
Programming

Distributed Data
Management

Thorsten Papenbrock

Actor 1 Actor 2

State

Behavior

Mailbox

public class Worker extends AbstractLoggingActor {

 @Override

 public Receive createReceive() {

 return receiveBuilder()

 .match(String.class, s -> this.sender().tell("Hello!", this.self()))

 .match(Integer.class, i -> this.sender().tell(i * i, this.self()))

 .match(Doube.class, d -> this.sender().tell(d > 0 ? d : 0, this.self()))

 .match(MyMessage.class, s -> this.sender().tell(new YourMessage(), this.self()))

 .matchAny(object -> this.log().error("Could not understand received message"))

 .build();

 }

}

AbstractLoggingActor
provides propper logging

Basic Concepts

Akka Actors

Slide 17

Akka Actor
Programming

Distributed Data
Management

Thorsten Papenbrock

Actor 1 Actor 2

State

Behavior

Mailbox

public class Worker extends AbstractLoggingActor {

 public static class MyMessage implements Serializable {}

 @Override

 public Receive createReceive() {

 return receiveBuilder()

 .match(MyMessage.class, s -> this.sender().tell(new OtherActor.YourMessage(), this.self()))

 .matchAny(object -> this.log().error("Could not understand received message"))

 .build();

 }

}

Good practice:
Actors define their messages

(provides kind of an interface description)

Basic Con.

Testing

Slide 18

Thorsten Papenbrock

Akka Actor
Programming

Distributed Data
Management

public class WorkerTest {

 private ActorSystem actorSystem;

 @Before

 public void setUp() {

 this.actorSystem = ActorSystem.create();

 }

 @Test

 public void shouldWorkAsExpected() {

 new TestKit(this.actorSystem) {{

 ActorRef worker = this.actorSystem.actorOf(Worker.props());

 worker.tell(new Worker.WorkMessage(73), this.getRef());

 Master.ResultMessage expectedMsg = new Master.ResultMessage(42);

 this.expectMsg(Duration.create(3, "secs"), expectedMsg);

 }};

 }

 @After

 public void tearDown() {

 TestKit.shutdownActorSystem(this.actorSystem);

 }

}

TestKit offers a ActorRef over
which it can expect responses

Basic Concepts

Some Further Nodes

Slide 19

Thorsten Papenbrock

Redundant API calls

 Due to Java-Scala interface mix

 this.getContext() = this.context()

 this.getSender() = this.sender()

 …

Non-blocking, asynchronous

 Tell messaging

 Java: someActor.tell(message)

 Scala: someActor ! message

Akka Actor
Programming

Distributed Data
Management

Blocking, synchronous

 Ask pattern

 Java: someActor.ask(message)

 Scala: someActor ? message

More on this pattern later!

Message-Passing Dataflow

Actor Model: Akka

Slide 20

Thorsten Papenbrock

Akka Actor
Programming

Distributed Data
Analytics

case class Calculate(items: List[String])

case class Work(data: String)

case class Result(value: Int)

class Worker extends Actor {

 val log = Logging(context.system, this)

 def receive = {

 case Work(data) => sender ! Result(handle(data))

 case _ => log.info("received unknown message")

 }

 def handle(data: String): Int = {

 data.hashCode

 }

}

class Master(numWorkers: Int) extends Actor {

 val worker = context.actorOf(Props[Worker], name = "worker")

 def receive = {

 case "Hello master" => sender ! "Hello sender"

 case Calculate(items) => for (i <- 0 until items.size) worker ! Work(item.get(i))

 case Result(value) => log.info(value)

 case _ => log.info("received unknown message")

 }

}

Akka Scala Interface
A Master-Worker Example

Slide 21

Thorsten Papenbrock

Akka Actor Programming

Hands-on

 Actor Model (Recap)

 Basic Concepts

 Runtime Architecture

 Demo

 Messaging

 Parallelization

 Remoting

 Clustering

 Patterns

 Homework

Runtime Architecture

Actor Hierarchies

Slide 22

Akka Actor
Programming

Distributed Data
Management

Thorsten Papenbrock

Task- and data-parallelism

 Actors can dynamically create new actors.

Supervision hierarchy

 Creating actor (parent) supervises

created actor (child).

Fault-tolerance

 If child fails, parent can choose:

 restart, resume,

stop, or escalate

Parent

Child
1

Child
2

Grandchild
1

Grandchild
2

Grandchild
3

Delegate work!

Runtime Architecture

Actor Lifecycles

Slide 23

Thorsten Papenbrock

Akka Actor
Programming

Distributed Data
Management

actorOf()

stop()

restart() resume()

ActorRef DeadLetterBox

escalate()

Runtime Architecture

Actor Lifecycles

Slide 24

Thorsten Papenbrock

Actor Lifecycle

 PreStart()

 Called before actor is started

 Initialization

 PreRestart()

 Called before actor is restarted

 Free resources (keeping resources that can be re-used)

 PostRestart()

 Called after actor is restarted

 Re-initialization (re-using resources if possible)

 PostStop()

 Called after actor was stopped

 Free resources

Akka Actor
Programming

Distributed Data
Management

public class MyActor extends AbstractLoggingActor {

 @Override

 public void preStart() throws Exception {

 super.preStart();

 this.context().system().eventStream()

 .subscribe(this.self(), DisassociatedEvent.class);

 }

 @Override

 public void postStop() throws Exception {

 super.postStop();

 this.log().info("Stopped {}.", this.self());

 }

}

Listen to
DisassociatedEvents

Log that MyActor
was stopped

Runtime Architecture

Let It Crash

Slide 25

Thorsten Papenbrock

“Let it crash” philosophy

 Distributed systems are inherently prone to errors

(because there is simply more to go wrong/break).

 Message loss, unreachable mailboxes, crashing actors …

 Make sure that critical code is supervised by some entity that knows how

errors can be handled.

 Then, if an error occurs, do not (desperately) try to fix it: let it crash!

 Errors are propagated to supervisors that can deal better with them

 Example: Actor looses a database connection due to a DB restart.

 It decides to crash.

 Its supervisor restarts the actor, which re-creates the DB connection.

Actor

Actor

Actor

Runtime Architecture

Actor Hierarchies

Slide 26

Akka Actor
Programming

Distributed Data
Management

Thorsten Papenbrock

Master

Worker

public class Master extends AbstractLoggingActor {

 public Master() {

 ActorRef worker = this.context().actorOf(Worker.props());

 this.context().watch(worker);

 }

 @Override

 public SupervisorStrategy supervisorStrategy() {

 return new OneForOneStrategy(3,

 Duration.create(10, TimeUnit.SECONDS),

 DeciderBuilder.match(IOException.class, e -> restart())

 .matchAny(e -> escalate())

 .build());

 }

}

public class Worker extends AbstractLoggingActor {

 public static Props props() {

 return Props.create(Worker.class);

 }

}

Receive Terminated-
messages for watched actors

Try 3 restarts in 10 seconds for
IOExceptions; otherwise

escalate

Create the Props telling the
context how to instantiate you

A
factory pattern

Runtime Architecture

Actor Systems

Slide 27

Akka Actor
Programming

Distributed Data
Management

Thorsten Papenbrock

ActorSystem

 A named hierarchy of actors

 Runs within one JVM process

 Configures:

 Actor dispatchers

(that schedule actors on threads)

 Global actor settings

(e.g. mailbox types)

 Remote actor access

(e.g. addresses)

 …

/
(root guardian)

user
(guardian)

system
(guardian)

controller broker
remote-
System

bookkeeper merchant worker

User actors
reside here

System and remote
actors reside here

Each actor has a
path/URL

Runtime Architecture

Actor Systems

Slide 28

Akka Actor
Programming

Distributed Data
Management

Thorsten Papenbrock

Event stream

 Reacts on errors, new nodes, message

sends, message loss, …

Dispatcher

 Assigns threads dynamically to actors.

 Transparent multi-threading

 # Threads ≈ # CPU cores

 # Actors > # CPU cores

(usually many hundreds)

 Over-provisioning!

Remoting

 Resolves remote actor adresses.

 Sends messages over network.

 serialization + de-serialization

ActorSystem

Event
stream

Events

Dispatcher

Threads

Remoting

Serializers

Idle actors don‘t
bind resources

Slide 29

Thorsten Papenbrock

Akka Actor Programming

Hands-on

 Actor Model (Recap)

 Basic Concepts

 Runtime Architecture

 Demo

 Messaging

 Parallelization

 Remoting

 Clustering

 Patterns

 Homework

Slide 30

Thorsten Papenbrock

Akka Actor
Programming

Distributed Data
Management

MasterActorSystem

SlaveActorSystem

Demo

akka-tutorial

Slide 31

Thorsten Papenbrock

Akka Actor
Programming

Distributed Data
Management

Master Listener

Shepherd Reaper Slave

Worker

Reaper

Range LogPrimes

Primes

Primes

RemoteSystem

Validation

Subscription

Acknowledge

Address

create

MasterActorSystem

SlaveActorSystem

Demo

octopus

Slide 32

Thorsten Papenbrock

Akka Actor
Programming

Distributed Data
Management

Profiler Cluster Events Worker

Depth

Completion

MemberUp

Work

Cluster
Listener

Metrics
Listener

Registration

Cluster Events

MemberEvent

Cluster Metrics

MetricsChanged

MasterActorSystem

SlaveActorSystem

Demo

ddm

Slide 33

Thorsten Papenbrock

Akka Actor
Programming

Distributed Data
Management

Master Worker

Cluster
Listener

Metrics
Listener

Reaper

Collector

Reader

Cluster
Listener

Metrics
Listener

Reaper

Worker
Worker

Worker

File Start

Slide 34

Thorsten Papenbrock

Akka Actor Programming

Hands-on

 Actor Model (Recap)

 Basic Concepts

 Runtime Architecture

 Demo

 Messaging

 Parallelization

 Remoting

 Clustering

 Patterns

 Homework

Messaging

Message Delivery Guarantees

Slide 35

Akka Actor
Programming

Distributed Data
Management

Thorsten Papenbrock

Message delivery

 at-most-once: each message is delivered zero or one times.

 no guaranteed delivery; no message duplication

 highest performance; no implementation overhead

 fire-and-forget

 at-least-once: each message is delivered one or more times.

 guaranteed delivery; possibly message duplication

 ok-isch performance; state in sender

 send-and-acknowledge

 exactly-once: each message is delivered once.

 guaranteed delivery; no message duplication

 bad performance; state in sender and receiver

 send-and-acknowledge-and-deduplicate

You can implement
at-least-once and exactly-once,

with at-most-once!

https://doc.akka.io/docs/akka/2.5/general/message-delivery-reliability.html

With TCP Akka basically
guarantees exactly-once,
but note failures can still

cause message loss!

Messaging

Message Delivery Guarantees

Slide 36

Akka Actor
Programming

Distributed Data
Management

Thorsten Papenbrock

Message ordering

 no ordering: all messages can be arbitrarily out of order

 no guaranteed ordering

 highest performance; no implementation overhead

 sender-receiver ordering: all messages between specific sender-receiver pairs are ordered

(by send order)

 ordered individual communications

 good performance; message broker simply sustains received order

 total ordering: all messages are ordered

(by send timestamps)

 serialized communication (see total-order-broadcast later in lecture)

 bad performance; global ordering

https://doc.akka.io/docs/akka/2.5/general/message-delivery-reliability.html

Only with TCP!

Messaging

Message Delivery Guarantees

Slide 37

Akka Actor
Programming

Distributed Data
Management

Thorsten Papenbrock

Message ordering

 sender-receiver ordering: all messages between specific sender-receiver pairs are ordered

(by send order)

 Example:

 Actor A1 sends messages M1, M2, M3 to A2

 Actor A3 sends messages M4, M5, M6 to A2

 If M1 is delivered it must be delivered before M2 and M3

 If M2 is delivered it must be delivered before M3

 If M4 is delivered it must be delivered before M5 and M6

 If M5 is delivered it must be delivered before M6

 A2 can see messages from A1 interleaved with messages from A3

“If X is delivered…”
 No guaranteed delivery, i.e.,

messages may get lost
and not arrive at A2!

A1

A2

A3

https://doc.akka.io/docs/akka/2.5/general/message-delivery-reliability.html

Messaging

Message Delivery Guarantees

Slide 38

Akka Actor
Programming

Distributed Data
Management

Thorsten Papenbrock

Message ordering

 sender-receiver ordering: all messages between specific sender-receiver pairs are ordered

(by send order)

 Send order is not transitive:

A1 sends M1 to A2

A1 sends M2 to A3

A2 forwards M1 to A3

 A3 may receive M1 and M2 in any order!

 Failure communication uses different channel:

A1 has child A2

A2 sends M1 to A1

A2 fails causing failure message M2 being send to A1

 A1 may receive M1 and M2 in any order!

Framework does not know
that M1 was forwarded, i.e.,
that M1 is “younger” than M2

A1

A2

A3

Although A2 causes M2,
it is technically not the

sender of M2

https://doc.akka.io/docs/akka/2.5/general/message-delivery-reliability.html

Messaging

Message Delivery Guarantees

Slide 39

Akka Actor
Programming

Distributed Data
Management

Thorsten Papenbrock

Message ordering

 sender-receiver ordering: all messages between specific sender-receiver pairs are ordered

(by send order)

 General notes:

 Ordering guarantee holds only for TCP-based messaging.

 The ordering guarantee can be violated by various factors, such as node failures.

 If ordering is important, add and check custom sequence numbers!

A1

A2

A3

https://doc.akka.io/docs/akka/2.5/general/message-delivery-reliability.html#how-does-local-ordering-relate-to-network-ordering

Messaging

Pull vs. Push

Slide 40

Thorsten Papenbrock

Work Propagation

 Producer actors

generate work for other

consumer actors

 Push propagation:

 Producers send work packages to their consumers immediately

(in particular, data is copied over the network proactively)

 Work is queued in the inboxes of the consumers

 Fast work propagation; risk for message congestion/drops

Akka Actor
Programming

Distributed Data
Management

Producer Consumer

You can have back-pressured mail boxes,
but that kind of kills the non-blocking,

fire-and-forget messaging

Messaging

Pull vs. Push

Slide 41

Thorsten Papenbrock

Work Propagation

 Producer actors

generate work for other

consumer actors

 Push propagation:

 Producers send work packages to their consumers immediately

(in particular, data is copied over the network proactively)

 Work is queued in the inboxes of the consumers

 Fast work propagation; risk for message congestion/drops

 Pull propagation:

 Consumers ask producers for more work if they are ready

 Work is queued in the producers’ states

 Slower work propagation; no risk for message congestion

Akka Actor
Programming

Distributed Data
Management

public class PullProducer extends AbstractLoggingActor {

 @Override

 public Receive createReceive() {

 return receiveBuilder()

 .match(NextMessage.class, this.sender().tell(this.workPackages.remove()))

 .matchAny(object -> this.log().info("Unknown message"))

 .build();

 }

}

Messaging

Akka’s Messaging System

Slide 42

Thorsten Papenbrock

Artery

 High-performance, streaming-based messaging system

 Part of the Akka toolkit

 Compression of actor paths to reduce general message overhead

 Based on Aeron for UDP channels and Akka Streams for TCP/TLS channels

Akka Actor
Programming

Distributed Data
Management Artery

Aeron

UDP

Akka Streams

TCP/TLS

Akka

Artery

 Focused on high-throughput, low-latency communication

 Mostly allocation-free operation

 Support for faster serialization/deserialization using ByteBuffers directly

Object

Messaging

Akka’s Messaging System

Slide 43

Thorsten Papenbrock

Akka Actor
Programming

Distributed Data
Management Serializer

Sender ByteBuffer

Artery

Object

Receiver ByteBuffer

Deserializer

Streaming!

Artery

 Focused on high-throughput, low-latency communication

 Mostly allocation-free operation

 Support for faster serialization/deserialization using ByteBuffers directly

Messaging

Akka’s Messaging System

Slide 44

Thorsten Papenbrock

Akka Actor
Programming

Distributed Data
Management

 But: What if we need to send large amounts of data over the network?

 But: What if we need to send large amounts of data over the network?

https://petabridge.com/blog/large-messages-and-sockets-in-akkadotnet/

 But: What if we need to send large amounts of data over the network?

https://petabridge.com/blog/large-messages-and-sockets-in-akkadotnet/

Serializer

Sender ByteBuffer

Artery

Receiver ByteBuffer

Deserializer

Object
Object

Object
Object

Object
Object

Object
Object

Large
Object

Large
Object

Large messages are broken down
into frames that need to be re-

assembled on the receiving side.

This blocks the TCP socket for
other messages:

 Regular messages:

risk of message congestion
(sender) and idle times
(receiver)

 Heartbeat messages:
risk of cluster partitions and
split-brain scenarios

Messaging

Large Messages

Slide 47

Thorsten Papenbrock

 Use side channels for large data transfer

 Different channel that does not block main channel messages

 Transfer protocol that is optimized for large files (WebSockets, UDP, FTP, …)

 Side channel examples:

 Artery’s Large Message Channel

 Akka’s http client-server module

 Netty, FTP or other file transfer protocols

 Database or shared file system

1. Send data via side channel to

memory/disk of remote host.

2. Send data references in an Akka

message when data is transferred.

Messaging

Artery’s Large Message Channel

Slide 48

Thorsten Papenbrock

Akka Actor
Programming

Distributed Data
Management

application.conf

akka {

 actor {

 provider = remote

 }

 remote {

 artery {

 enabled = on

 transport = tcp

 canonical.hostname = "192.168.0.5"

 canonical.port = 7787

 large-message-destinations = [

 "/user/*/largeMessageProxy",

 "/user/**/largeMessageProxy"

]

 }

 }

}

or udp

remote.conf, akka.conf, … however you call it

Use side channel for all messages
from and to actors named

„largeMessageProxy“

hostname or IP

… of this actor system

Slide 49

Thorsten Papenbrock

Akka Actor Programming

Hands-on

 Actor Model (Recap)

 Basic Concepts

 Runtime Architecture

 Demo

 Messaging

 Parallelization

 Remoting

 Clustering

 Patterns

 Homework

Parallelization

Task- and Data-Parallelism

Task-parallelism

 Distribute sub-tasks

to different actors

Data-parallelism

 Distribute chunks of data

to different actors

Booking
Actor

Payment
Actor

Billing
Actor

Reservation
Actor

Promotion
Actor

book

reserve
bill

promote
pay

Booking
Scheduler

Actor

Booking
Actor

Booking
Actor

Booking
Actor

Booking
Actor

book
book

book
book

book

Parallelization

Scheduler

Slide 51

Thorsten Papenbrock

Dynamic Parallelism

 Actors often delegate work if they are responsible for …

 many tasks.

 compute-intensive tasks (with many subtasks).

 data-intensive tasks (with independent partitions).

 Work can be delegated to a dynamically managed pool of worker actors.

Task Scheduling

 Strategies (see package akka.routing):

 RoundRobinRoutingLogic

 BroadcastRoutingLogic

 RandomRoutingLogic

 …

Akka Actor
Programming

Distributed Data
Management

Data-parallelism

Task-parallalism Task-parallelism

 SmallestMailboxRoutingLogic

 ConsistentHashingRoutingLogic

 BalancingRoutingLogic

Push Propagation!

Parallelization

Scheduler

Slide 52

Thorsten Papenbrock

Task Scheduling

 Strategies (see package akka.routing):

 RoundRobinRoutingLogic

 BroadcastRoutingLogic

 RandomRoutingLogic

 …

Akka Actor
Programming

Distributed Data
Management

 SmallestMailboxRoutingLogic

 ConsistentHashingRoutingLogic

 BalancingRoutingLogic

Router workerRouter = new Router(new SmallestMailboxRoutingLogic());

for (int i = 0; i < this.numberOfWorkers; i++) {

 workerRouter = workerRouter.addRoutee(this.context().actorOf(Worker.props()));

}

for (WorkPackage workMessage : this.workPackages) {

 workerRouter.route(workMessage, this.self());

}

Scala world: All objects are immutable!

Logic defines the worker to be chosen.

Slide 53

Thorsten Papenbrock

Akka Actor Programming

Hands-on

 Actor Model (Recap)

 Basic Concepts

 Runtime Architecture

 Demo

 Messaging

 Parallelization

 Remoting

 Clustering

 Patterns

 Homework

Remoting

Serialization

Slide 54

Thorsten Papenbrock

Serialization

 Only messages to remote actors are serialized

 Communication within one system: language-specific data types

 Pointers and primitive values

 Communication via process boundaries: transparent serialization

 Serializable, Kryo, Protocol Buffers, … (configurable)

Akka Actor
Programming

Distributed Data
Management

/
(root guardian)

user
(guardian)

controller broker

bookkeeper merchant

/
(root guardian)

user
(guardian)

worker

subworker
1

subworker
2

System1 System2

object
reference

byte
sequence

Remoting

Serialization

Slide 55

Thorsten Papenbrock

application.conf

Akka Actor
Programming

Distributed Data
Management

akka {

 actor {

 provider = remote

 serializers {

 java = "akka.serialization.JavaSerializer"

 kryo = "com.twitter.chill.akka.ConfiguredAkkaSerializer"

 proto = "akka.remote.serialization.ProtobufSerializer"

 my = "de.hpi.myalgo.serialization.MyMessageSerializer"

 }

 serialization-bindings {

 "java.io.Serializable" = kryo

 "de.hpi.myalgo.serialization.MyMessage" = my

 }

 }

 remote {

 artery {

 […]

 }

 }

}

kryo for all serializable messages

remote.conf, akka.conf, … however you call it

Known object serializers

my for MyMessage messages

Remoting

Serialization

Slide 56

Akka Actor
Programming

Distributed Data
Management

Thorsten Papenbrock

https://github.com/EsotericSoftware/kryo/blob/master/README.md

A Java Serializable class must do the following:

1. Implement the java.io.Serializable interface.

2. Identify the fields that should be serializable.

 Means: Declare non-seriablizable fields as “transient”.

3. Have access to the no-arg constructor of its first non-serializable superclass.

 Means: Define no-arg constructors only if non-serializable superclasses exists.

A Java Kryo class must do the following:

By default, if a class has a zero argument constructor then it is invoked via ReflectASM or
reflection, otherwise an exception is thrown.

https://docs.oracle.com/javase/8/docs/platform/serialization/spec/serial-arch.html#a4539

Usually no no-arg constructor needed.

No-arg constructor needed!

1. By construction:

 Create a child actor.

2. By application:

 Ask for a reference in your constructor or provide a setter.

3. By message:

 Ask a known actor to send you a reference to another actor.

Remoting

Actor Lookup

Slide 57

Akka Actor
Programming

Distributed Data
Management

Thorsten Papenbrock

Actor 1 Actor 2

?

public class Master extends AbstractLoggingActor {

 private ActorRef worker;

 public Master() {

 this.worker = this.context().actorOf(Worker.props());

 }

 @Override

 public Receive createReceive() {

 return receiveBuilder()

 .match(ActorRef.class, worker -> this.worker = worker)

 .matchAny(object -> this.log().error("Invalid message"))

 .build();

 }

}

1.

3.

ActorRefs serve as pointers
to local/remote actors.

A factory pattern

1. By construction:

 Create a child actor.

2. By application:

 Ask for a reference in your constructor or provide a setter.

3. By message:

 Ask a known actor to send you a reference to another actor.

4. By name (path/URL):

 Ask the context to create a reference to an actor with a certain URL.

Remoting

Actor Lookup

Slide 58

Akka Actor
Programming

Distributed Data
Management

Thorsten Papenbrock

Actor 1 Actor 2

?

public class Master extends AbstractLoggingActor {

 private ActorRef worker;

 public Master() {

 Address address = new Address("akka.tcp",

 “MyActorSystem", "localhost", 7877);

 ActorSelection selection = this.context().system()

 .actorSelection(String.format(

 "%s/user/%s", address, "worker"));

 selection.tell(new HelloMessage(), this.self())

 }

}

ActorSelection is a logical view
to a subtree of an ActorSystems;
tell() broadcasts to that subtree

4.

URL:
"akka.tcp://MyActorSystem@localhost:7877/user/worker"

Slide 59

Thorsten Papenbrock

Akka Actor Programming

Hands-on

 Actor Model (Recap)

 Basic Concepts

 Runtime Architecture

 Demo

 Messaging

 Parallelization

 Remoting

 Clustering

 Patterns

 Homework

Clustering

Cluster-Awareness

Slide 60

Thorsten Papenbrock

Akka Actor
Programming

Distributed Data
Management

System1 System2

?

How does System1 know …

 which other ActorSystems are available?

(the number might even change at runtime!)

 what failures occurred in other ActorSystems?

(single actors but also entire nodes might become unavailable!)

 what roles other ActorSystems take?

(e.g. a master or worker or metrics collector or entirely different application!)

Clustering

Cluster-Awareness

Slide 61

Akka Actor
Programming

Distributed Data
Management

Thorsten Papenbrock

Akka Actors

Core Actor
model classes

for concurrency
and distribution

Akka Streams

Asynchronous,
non-blocking,

backpressured,
reactive stream

classes

Akka Http

Asynchronous,
streaming-first

HTTP server and
client classes

Akka Cluster

Classes for the
resilient and

elastic
distribution over
multiple nodes

Cluster Sharding

Classes to
decouple actors

from their
locations

referencing
them by identity

Distributed Data

Classes for an
eventually
consistent,
distributed,

replicated key-
value store

Akka Persistence

Classes to
persist actor
state for fault
tolerance and
state restore
after restarts

Alpakka

Stream
connector

classes to other
technologies

Clustering capabilities
cluster membership, singletons,

publish/subscribe, cluster client, …

Clustering

Dependency

Slide 62

<dependencies>

 <dependency>

 <groupId>com.typesafe.akka</groupId>

 <artifactId>akka-actor_${scala.version}</artifactId>

 <version>2.5.3</version>

 </dependency>

 <dependency>

 <groupId>com.typesafe.akka</groupId>

 <artifactId>akka-remote_${scala.version}</artifactId>

 <version>2.5.3</version>

 </dependency>

 <dependency>

 <groupId>com.typesafe.akka</groupId>

 <artifactId>akka-cluster-tools_${scala.version}</artifactId>

 <version>2.5.3</version>

 </dependency>

 <dependency>

 <groupId>com.typesafe.akka</groupId>

 <artifactId>akka-cluster-metrics_${scala.version}</artifactId>

 <version>2.5.3</version>

 </dependency>

 <dependency>

 <groupId>com.typesafe.akka</groupId>

 <artifactId>akka-cluster-sharding_${scala.version}</artifactId>

 <version>2.5.3</version>

 </dependency>

 …

Maven – pom.xml

Metrics collection
CPU load, memory consumption, …

Transparent actors
logical references,

distributed/persisted state, …

Clustering

Cluster

Slide 63

Akka Actor
Programming

Distributed Data
Management

Thorsten Papenbrock

System2 System4

System1 System3 Leader
Cluster

Clustering

Cluster

Slide 64

Akka Actor
Programming

Distributed Data
Management

Thorsten Papenbrock

 A distributed membership service.

 Runs in all Akka cluster-managed ActorSystems.

 Stores all membership information in a distributed,

fully replicated key-value store (= Riak).

 Uses gossipping1 to propagate cluster changes.

 Elects the eldest node in a cluster as "leader" of the cluster.

 Leader decisions2:

 state changes to "up", "exiting", and "removed" for members of the cluster

 Member decisions2:

 state changes to "joining", "leaving", and (via local failure detector) "unreachable"

[1] https://doc.akka.io/docs/akka/2.5/common/cluster.html#gossip

[2] https://doc.akka.io/docs/akka/2.5/common/cluster.html#membership-lifecycle

fd* = failure detector
(see φ accrual failure detector later)

https://doc.akka.io/docs/akka/2.5/common/cluster.html
https://doc.akka.io/docs/akka/2.5/common/cluster.html
https://doc.akka.io/docs/akka/2.5/common/cluster.html
https://doc.akka.io/docs/akka/2.5/common/cluster.html
https://doc.akka.io/docs/akka/2.5/common/cluster.html
https://doc.akka.io/docs/akka/2.5/common/cluster.html

Clustering

Configuration

Slide 65

Thorsten Papenbrock

Akka Actor
Programming

Distributed Data
Management

application.conf

akka {

 actor {

 provider = cluster

 […]

 }

 remote {

 artery {

 […]

 }

 }

 cluster {

 min-nr-of-members = 3

 role {

 master.min-nr-of-members = 1

 slave.min-nr-of-members = 2

 }

 }

}

instead of local or remote

the cluster membership waits for
these numbers of member before

it sets their status to up

Clustering

Startup

Slide 66

Thorsten Papenbrock

Akka Actor
Programming

Distributed Data
Management

public static void start(String appName, String host, int port, String seedhost, int seedport) {

 final Config config = ConfigFactory.parseString(

 "akka.remote.artery.canonical.hostname = \"" + host + "\"\n" +

 "akka.remote.artery.canonical.port = " + port + "\n" +

 "akka.cluster.roles = [slave]\n" +

 "akka.cluster.seed-nodes = [\"akka://" + appName + "@" + seedhost + ":" + seedport + "\"]")

 .withFallback(ConfigFactory.load("application"));

 final ActorSystem system = ActorSystem.create(appName, config);

 system.registerOnTermination(…);

 Cluster.get(system).registerOnMemberUp(…);

 Cluster.get(system).registerOnMemberRemoved(…);

 […]

}

Sets ActorSystem-specific
configuration parameters dynamically.

Sets the seed node(s) for initial connect;
any connected node can be a seed node;

first node connects to itself,
which creates the cluster.

Setting-up callbacks allows the
application’s main thread to end before
the ActorSystem is actually up or ends.

Clustering

Startup

Slide 67

Thorsten Papenbrock

Akka Actor
Programming

Distributed Data
Management

public static void start(String appName, String host, int port, String seedhost, int seedport) {

 […]

 Cluster.get(system).registerOnMemberUp(new Runnable() {

 @Override

 public void run() {

 for (int i = 0; i < 10; i++)

 system.actorOf(WorkerActor.props(), "worker" + i);

 }

 });

}

Run when this node has been set to status “up”.

Create local actors (and send initial messages) when “up”.

Cluster cluster = Cluster.get(this.context().system());

Retrieve the cluster object when needed
(to access cluster events, failure detector, node status, …).

Clustering

Startup

Slide 68

Thorsten Papenbrock

Akka Actor
Programming

Distributed Data
Management

public static void start(String appName, String host, int port, String seedhost, int seedport) {

 […]

 Cluster.get(system).registerOnMemberRemoved(new Runnable() {

 @Override

 public void run() {

 system.terminate();

 new Thread() {

 @Override

 public void run() {

 try {

 Await.ready(system.whenTerminated(), Duration.create(10, TimeUnit.SECONDS));

 } catch (Exception e) {

 System.exit(-1);

 }

 }

 }.start();

 }

 });

}

Run when this node has been “removed”.

Terminate the ActorSystem.

Let a dedicated thread
wait for the ActorSystem to terminate;

it kills the application
if the ActorSystem does not terminate in time.

Clustering

Cluster Partitioning

Slide 69

Akka Actor
Programming

Distributed Data
Management

Thorsten Papenbrock

System2 System4

System1 System3 Leader

Failure detector triggered!
(e.g. cable broken, network

exhausted, connection lost, …)

Cluster

Clustering

Cluster Partitioning

Slide 70

Akka Actor
Programming

Distributed Data
Management

Thorsten Papenbrock

System2 System4

System1 System3
Cluster

Now oldest
node becomes
new leader.

Cluster
Cluster split:

Both sides see the
other nodes go.

Clusters do not
break, because
cluster state is
fully replicated.

Clustering

Cluster Partitioning

Slide 71

Akka Actor
Programming

Distributed Data
Management

Thorsten Papenbrock

System2 System4

System1 System3

Cluster

Cluster

Even one system
can form a

cluster.

Clustering

Cluster Partitioning

Slide 72

Akka Actor
Programming

Distributed Data
Management

Thorsten Papenbrock

If the cluster partitions, …

 each partition will form its own cluster.

 no onMemberRemoved() callback is triggered, because every node stays in some cluster.

 each cluster keeps track of all removed ActorSystems so that "[...] the same actor system

can never join a cluster again once it’s been removed from that cluster"1.

(Otherwise, the cluster could run into split-brain situations (= two leaders))

To re-unite the nodes, …

1. identify the "main" cluster

2. terminate all "non-main" clusters

3. and restart ActorSystems on all affected nodes.

[1] https://doc.akka.io/docs/akka/2.5/common/cluster.html#cluster-specification

https://doc.akka.io/docs/akka/2.5/common/cluster.html
https://doc.akka.io/docs/akka/2.5/common/cluster.html
https://doc.akka.io/docs/akka/2.5/common/cluster.html
https://doc.akka.io/docs/akka/2.5/common/cluster.html
https://doc.akka.io/docs/akka/2.5/common/cluster.html

Slide 73

Thorsten Papenbrock

Akka Actor
Programming

Distributed Data
Management

public class WorkerActor extends AbstractActor {

 @Override

 public void preStart() {

 Cluster.get(this.context().system()).subscribe(this.self(), MemberUp.class);

 }

 @Override

 public Receive createReceive() {

 return receiveBuilder()

 .match(CurrentClusterState.class, this::registerAll)

 .match(MemberUp.class, message -> this.register(message.member()))

 .match(WorkMessage.class, this::handle)

 .build();

 }

 private void registerAll(CurrentClusterState message) {

 message.getMembers().forEach(member -> {

 if (member.status().equals(MemberStatus.up()))

 this.register(member);

 });

 }

 private void register(Member member) {

 if (member.hasRole("master"))

 this.getContext().actorSelection(member.address() + "/user/masteractor")

 .tell(new RegistrationMessage(), this.self());

 }

}

Subscribe to cluster events

Register at all masters after creation

Register at any new master

Slide 74

Thorsten Papenbrock

Akka Actor
Programming

Distributed Data
Management

public class MasterActor extends AbstractActor {

 @Override

 public Receive createReceive() {

 return receiveBuilder()

 .match(RegistrationMessage.class, this::handle)

 .match(Terminated.class, this::handle) .build();

 }

 private void handle(RegistrationMessage message) {

 this.context().watch(this.sender());

 this.workers.add(this.sender());

 this.sender().tell(new WorkMessage());

 }

 private void handle(Terminated message) {

 this.context().unwatch(message.getActor());

 this.workers.remove(this.sender());

 }

}

Clustering

Member Events

Simply watch the remote workers

Clustering

Cluster-Aware Scheduler

Slide 75

Thorsten Papenbrock

Akka Actor
Programming

Distributed Data
Management

int maxWorkersPerNode = 10;

int maxWorkersPerCluster = 1000000;

boolean allowLocalWorkers = true;

Set<String> roles = new HashSet<>(Arrays.asList("slave"));

ActorRef router = system.actorOf(

 new ClusterRouterPool(

 new AdaptiveLoadBalancingPool(SystemLoadAverageMetricsSelector.getInstance(), 0),

 new ClusterRouterPoolSettings(maxWorkersPerCluster, maxWorkersPerNode,

 allowLocalWorkers, roles))))

 .props(Props.create(WorkerActor.class)), "router");

application.conf

akka {

 extensions = ["akka.cluster.metrics.ClusterMetricsExtension"]

 cluster.metrics.native-library-extract-folder=${user.dir}/target/native

}

Scheduling strategy: average load

Automatically spawns 10 workers per node
and not more than 1,000,000 per cluster

Slide 76

Thorsten Papenbrock

Akka Actor Programming

Hands-on

 Actor Model (Recap)

 Basic Concepts

 Runtime Architecture

 Demo

 Messaging

 Parallelization

 Remoting

 Clustering

 Patterns

 Homework

Patterns

Actor Programming Patterns

Slide 77

Thorsten Papenbrock

Akka Actor
Programming

Distributed Data
Management

Actor programming is a
mathematical model that defines

basic rules for communication
(not a style guide for architecture)

Writing actor-based systems is

based on patterns

Patterns

Master/Worker

Slide 78

Thorsten Papenbrock

Akka Actor
Programming

Distributed Data
Management

Patterns

Master/Worker

Task-parallelism

 Distribute sub-tasks

to different actors

Data-parallelism

 Distribute chunks of data

to different actors

Booking
Actor

Payment
Actor

Billing
Actor

Reservation
Actor

Promotion
Actor

book

reserve
bill

promote
pay

Booking
Scheduler

Actor

Booking
Actor

Booking
Actor

Booking
Actor

Booking
Actor

book
book

book
book

book

Patterns

Master/Worker

Slide 80

Thorsten Papenbrock

Work Propagation

 Producer actors

generate work for other

consumer actors

 Push propagation:

 Producers send work immediately

 Work queued in inboxes

 Fast propagation; risk for congestion

 Pull propagation:

 Consumers ask for more work

 Work queued in producer

 Slower propagation; no congestion

Akka Actor
Programming

Distributed Data
Management

Producer Consumer

Master/Worker
Pattern

Scheduler

Patterns

Master/Worker

Slide 81

Thorsten Papenbrock

Master

 Splits the task into work packages.

 Schedules the work packages to known workers.

 Watches available workers (register new workers; detect and unregister failed workers).

 Monitors task completion (assign pending work packages; re-assign failed work packages).

 Assemble final result (from partial work package results).

 Does not know how to solve the individual tasks!

Worker

 Register at master.

 Accept and process work packages.

 Does not know the overall task!

Akka Actor
Programming

Distributed Data
Management

A concept for …
1. Parallelization
2. Fault-Tolerance

Patterns

Master/Worker

Slide 82

Thorsten Papenbrock

Master

Akka Actor
Programming

Distributed Data
Management

public class OneTaskMasterActor extends AbstractActor {

 private final Queue<WorkMessage> unassignedWork = new LinkedList<>();

 private final Queue<ActorRef> idleWorkers = new LinkedList<>();

 private final Map<ActorRef, WorkMessage> busyWorkers = new HashMap<>();

 private TaskMessage task;

 private Result result;

 @Override

 public Receive createReceive() {

 return receiveBuilder()

 .match(RegistrationMessage.class, this::handle)

 .match(Terminated.class, this::handle)

 .match(TaskMessage.class, this::handle)

 .match(CompletionMessage.class, this::handle)

 .build();

 }

 […]

}

work packages

work packages + worker

worker

Watch and try to assign work

Split and assign to workers

Un-watch and re-assign work

Collect and send new work

Patterns

Master/
Worker

Slide 83

Thorsten Papenbrock

Example

Akka Actor
Programming

Distributed Data
Management

http://www.akkaessentials.in/2012/03/implementing-master-slave-grid.html

http://www.akkaessentials.in/2012/03/implementing-master-slave-grid.html
http://www.akkaessentials.in/2012/03/implementing-master-slave-grid.html
http://www.akkaessentials.in/2012/03/implementing-master-slave-grid.html
http://www.akkaessentials.in/2012/03/implementing-master-slave-grid.html
http://www.akkaessentials.in/2012/03/implementing-master-slave-grid.html
http://www.akkaessentials.in/2012/03/implementing-master-slave-grid.html
http://www.akkaessentials.in/2012/03/implementing-master-slave-grid.html
http://www.akkaessentials.in/2012/03/implementing-master-slave-grid.html

Patterns

Master/Worker

Slide 84

Thorsten Papenbrock

“The eager producers”

 Task:

1. Read a file.

2. Tokenize the sentences.

3. Calculate token embeddings.

 Push-Propagation:

 Each input file is

read and tokenized

by one master.

 Each token range is

processed

by one worker.

 Works great for one input file!

Akka Actor
Programming

Distributed Data
Management

/
(root guardian)

user
(guardian)

master

worker

tokens

“The eager producers”

 Task:

1. Read a file.

2. Tokenize the sentences.

3. Calculate token embeddings.

 Push-Propagation:

 Each input file is

read and tokenized

by one master.

 Each token range is

processed

by one worker.

 What happens if the number of files increases

and we scale the number of masters & workers?

Patterns

Master/Worker

Slide 85

Thorsten Papenbrock

Akka Actor
Programming

Distributed Data
Management

/
(root guardian)

user
(guardian)

master

worker

tokens

master
master
master
master

worker

Patterns

Master/Worker

Slide 86

Thorsten Papenbrock

“The eager producers”

 What happens if the number of files increases

and we scale the number of masters & workers?

 The masters will take and

block more threads.

(file reading takes long!)

 The workers will get less

CPU time.

 The work will pile up

in the in-boxes of the

workers.

 The system will get slow

and OOM at some point.

Akka Actor
Programming

Distributed Data
Management

/
(root guardian)

user
(guardian)

master

worker

tokens

master
master
master
master

worker

Patterns

Master/Worker

Slide 87

Thorsten Papenbrock

“The eager producers”

 What happens if the number of files increases

and we scale the number of masters & workers?

Solutions:

 Pull-Propagation:

Pause long running tasks

and free threads.

 File limit:

Control the number of

actors with long running

tasks

(in particular fewer than

number of cores).

Akka Actor
Programming

Distributed Data
Management

/
(root guardian)

user
(guardian)

master

worker

tokens

master
master
master
master

worker

Patterns

Master/Worker

Slide 88

Thorsten Papenbrock

“The non-reactive workers”

 Task:

 Search for expert-users

in social networks.

 Approach:

 Each worker starts a random search.

 For search pruning:

 If a worker finds an expert,

it sends it to the other worker.

 If a worker finishes a cluster,

it sends a notification

to the other worker.

 What could be a problem here?

Akka Actor
Programming

Distributed Data
Management

/
(root guardian)

user
(guardian)

worker

master

worker

start! start!

experts/clusters

Patterns

Master/Worker

Slide 89

Thorsten Papenbrock

“The non-reactive workers”

 What could be a problem here?

 Search is a long running job

and actors are not interrupted

when messages arrive.

 If the workers do not check their

inboxes frequently, the inboxes

might overflow.

 Due to the unpredictability and

burstiness of expert/cluster

messages, the inboxes may

overflow even if checked frequently.

Akka Actor
Programming

Distributed Data
Management

/
(root guardian)

user
(guardian)

worker

master

worker

start! start!

experts/clusters

Patterns

Master/Worker

Slide 90

Thorsten Papenbrock

“The non-reactive workers”

 What could be a problem here?

 Solution:

Proxy actors that aggregate incoming

messages and deliver them on request.

Akka Actor
Programming

Distributed Data
Management

/
(root guardian)

user
(guardian)

worker

master

worker

start! start!

experts/clusters

Patterns

Proxy

Slide 91

Akka Actor
Programming

Distributed Data
Management

Thorsten Papenbrock

Patterns

Proxy

Proxy Actor

 Acts as an agent or surrogate for some other actor.

 Handles a certain (standard) task.

 Serves to …

 externalize behavior/state.

(e.g., prevent cluttering code in real actor)

 hide the real actor.

(e.g., protect against DOS attacks)

 handle short-lived concepts.

(e.g., communications)

 handle resource/time intensive actions.

(e.g., data transfer)

 Other actors “think” they where talking to the real actor!

Patterns

Proxy

public class MyRealActor extends AbstractActor {

 @Override

 public Receive createReceive() {

 return receiveBuilder()

 .match(HelloMessage.class, message -> {

 ActorRef proxy = this.context().actorOf(Proxy.props());

 this.sender().tell(new HelloBackMessage(), proxy);

 })

 .match(ProxyResultMessage.class, this::handle)

 .build();

 }

}
Slide 93

Akka Actor
Programming

Distributed Data
Management

Thorsten Papenbrock

Example: Simple Proxy

 Delegate a new communication to a proxy.

 If the communication returns a result, the proxy reports it to the real actor.

Example: Reliable Communication Proxy

 Provides exactly-once messaging on top of at-most-once messaging

 Implements an ACK–RETRY protocol

System2 System1

Patterns

Proxy

Slide 94

Akka Actor
Programming

Distributed Data
Management

Thorsten Papenbrock

https://doc.akka.io/docs/akka/2.2.4/contrib/reliable-proxy.html#reliable-proxy

Sender Receiver

Sender
Proxy

Receiver
Proxy

Reliable intra
ActorSystem

send

Reliable intra
ActorSystem

send

Supervision ensures reliable
communication

All the magic!

https://doc.akka.io/docs/akka/2.2.4/contrib/reliable-proxy.html
https://doc.akka.io/docs/akka/2.2.4/contrib/reliable-proxy.html
https://doc.akka.io/docs/akka/2.2.4/contrib/reliable-proxy.html
https://doc.akka.io/docs/akka/2.2.4/contrib/reliable-proxy.html
https://doc.akka.io/docs/akka/2.2.4/contrib/reliable-proxy.html

Example: Reliable Communication Proxy

Sender Proxy

 Adds sequence numbers to messages

 Forwards messages to Receiver Proxy

 Stores messages until successfully

acknowledged by Receiver Proxy

 Adds a timeout to each message;

retries send if acknowledgment

does not arrive within timeout

Patterns

Proxy

Slide 95

Akka Actor
Programming

Distributed Data
Management

Thorsten Papenbrock

https://doc.akka.io/docs/akka/2.2.4/contrib/reliable-proxy.html#reliable-proxy

Sender
Proxy

Receiver
Proxy

Receiver Proxy

 Acknowledges received messages to Sender Proxy

 Forwards acknowledged messages to Receiver

 Detects missing/duplicate messages by checking

sequence number of last forwarded message

message timeout

msgA 10:32:15

msgB 10:32:18

msgC 10:32:24 message seq. NR

msgA 1

message seq. NR

msgC 3

s
e
n

d
 m

e
s
s
a
g

e
s

(a
w

a
it
in

g
 a

c
k
n
o
w

.)

w
a
itin

g
 m

e
s
s
a
g

e
s

(a
w

a
itin

g
 p

rio
r)

L
a
s
t m

s
g

.

msgB

https://doc.akka.io/docs/akka/2.2.4/contrib/reliable-proxy.html
https://doc.akka.io/docs/akka/2.2.4/contrib/reliable-proxy.html
https://doc.akka.io/docs/akka/2.2.4/contrib/reliable-proxy.html
https://doc.akka.io/docs/akka/2.2.4/contrib/reliable-proxy.html
https://doc.akka.io/docs/akka/2.2.4/contrib/reliable-proxy.html

Example: Reliable Communication Proxy

Sender Proxy

 Adds sequence numbers to messages

 Forwards messages to Receiver Proxy

 Stores messages until successfully

acknowledged by Receiver Proxy

 Adds a timeout to each message;

retries send if acknowledgment

does not arrive within timeout

Patterns

Proxy

Slide 96

Akka Actor
Programming

Distributed Data
Management

Thorsten Papenbrock

https://doc.akka.io/docs/akka/2.2.4/contrib/reliable-proxy.html#reliable-proxy

Sender
Proxy

Receiver
Proxy

Receiver Proxy

 Acknowledges received messages to Sender Proxy

 Forwards acknowledged messages to Receiver

 Detects missing/duplicate messages by checking

sequence number of last forwarded message

message timeout

msgA 10:32:15

msgB 10:32:18

msgC 10:32:24 message seq. NR

msgA 1

message seq. NR

msgC 3

s
e
n

d
 m

e
s
s
a
g

e
s

(a
w

a
it
in

g
 a

c
k
n
o
w

.)

w
a
itin

g
 m

e
s
s
a
g

e
s

(a
w

a
itin

g
 p

rio
r)

L
a
s
t m

s
g

.

msgB

How does that work
in actor programming?

https://doc.akka.io/docs/akka/2.2.4/contrib/reliable-proxy.html
https://doc.akka.io/docs/akka/2.2.4/contrib/reliable-proxy.html
https://doc.akka.io/docs/akka/2.2.4/contrib/reliable-proxy.html
https://doc.akka.io/docs/akka/2.2.4/contrib/reliable-proxy.html
https://doc.akka.io/docs/akka/2.2.4/contrib/reliable-proxy.html

Patterns

Proxy

public class ReceiverProxy extends AbstractActor {

 […]

 // On messageA receive

 Cancellable sendMessageA = this.getContext().system().scheduler().schedule(

 Duration.create(0, TimeUnit.SECONDS),

 Duration.create(3, TimeUnit.SECONDS),

 receiverProxy, messageA, this.getContext().dispatcher(), null);

 […]

 // On messageA acknowledge

 sendMessageA.cancle();

 […]

} Slide 97

Akka Actor
Programming

Distributed Data
Management

Thorsten Papenbrock

Example: Reliable Communication Proxy

 Quick digression: akka.actor.Scheduler and akka.actor.Cancellable

 Useful to schedule future and periodic events (e.g. message sends)

(Re-)send messageA
to receiverProxy
every 3 seconds

Stop resending
messageA

Example: Reliable Communication Proxy

 Provides exactly-once messaging on top of at-most-once messaging

 Implements an ACK–RETRY protocol

System2 System1

Patterns

Proxy

Slide 98

Akka Actor
Programming

Distributed Data
Management

Thorsten Papenbrock

https://doc.akka.io/docs/akka/2.2.4/contrib/reliable-proxy.html#reliable-proxy

Sender Receiver

Sender
Proxy

Receiver
Proxy

Still fire-and-forget
messaging for Sender

Proxies add some overhead
to ensure exactly-once

https://doc.akka.io/docs/akka/2.2.4/contrib/reliable-proxy.html
https://doc.akka.io/docs/akka/2.2.4/contrib/reliable-proxy.html
https://doc.akka.io/docs/akka/2.2.4/contrib/reliable-proxy.html
https://doc.akka.io/docs/akka/2.2.4/contrib/reliable-proxy.html
https://doc.akka.io/docs/akka/2.2.4/contrib/reliable-proxy.html

Patterns

Ask

Patterns

Ask

Slide 100

Thorsten Papenbrock

Tell messaging

 non-blocking, asynchronous, fire-and-forget

 Java: someActor.tell(message)

 Scala: someActor ! Message

Ask pattern

 blocking, synchronous

 Java: someActor.ask(message)

 Scala: someActor ? message

 Returns a Future that the calling entity can wait for

 Implemented in akka.pattern.PatternsCS.ask

and not a default message send option

Akka Actor
Programming

Distributed Data
Management

Patterns

Ask

Slide 101

Thorsten Papenbrock

Ask pattern

 Via ask, the Sender creates a Future that wraps a Proxy actor that tells

the message to a Receiver with a timeout for that message

 The Proxy completes the Future either when it receives a response or the

timeout elapses

Akka Actor
Programming

Distributed Data
Management

Sender Receiver

Sender
Proxy

Future

timeout

ask tell

tell complete

Patterns

Ask

Slide 102

Thorsten Papenbrock

Ask pattern

 Useful if …

 the outside, non-actor world needs to communicate with an actor.

 an actor must not continue working until a response is received

(very rare case).

 Not a good solution to …

 make the communication reliable, i.e., enable exactly-once messaging

(use reliable proxy pattern).

 implement timeouts for message sends

(use scheduled tasks). Akka Actor
Programming

Distributed Data
Management

Patterns

Ask

Slide 103

Thorsten Papenbrock

Why to avoid ask:

 Paradigm violation

 Synchronous calls break the strict decoupling of actors.

 Resource blocking

 Actively waiting for other actors locks resources (in particular threads).

 Inefficient messaging

 Asking requires more effort than telling messages (e.g. timeouts).

Akka Actor
Programming

Distributed Data
Management

Avoid “ask” if possible!

(the need to ask is usually the result of a bad architecture)

Patterns

Ask

Slide 104

Thorsten Papenbrock

Wait!
We can use Futures

with the Pipe-Pattern

in a non-blocking way!

 Example from the

official Akka Docu:

https://doc.akka.io/docs/

akka/2.5/actors.html

Akka Actor
Programming

Distributed Data
Management

https://doc.akka.io/docs/akka/2.5/actors.html
https://doc.akka.io/docs/akka/2.5/actors.html
https://doc.akka.io/docs/akka/2.5/actors.html
https://doc.akka.io/docs/akka/2.5/actors.html
https://doc.akka.io/docs/akka/2.5/actors.html

Patterns

Ask

Slide 105

Thorsten Papenbrock

Actors vs. Futures (+ Pipes)

 Futures are an alternative model for parallelization.

 There are many discussions on “Actors vs. Futures” as means for parallelization control.

 The question here is more which pattern for parallelization you prefer!

 Actors + Futures is a bad decision, because …

 the mix both models makes your code harder to understand and maintain.

 callbacks are needed to avoid blocking.

 Why are callbacks bad in actor programming?

 Callbacks are executed by non-actor threads on the side

(i.e., the callback thread might be completing a Future while the actor that created the

Future might process a different message at the same time).

 Bad for debugging, parallelization control, resource management, failure handling, …

 Prone to introduce shared mutable state and, hence, to destroy encapsulation.

 Failure handling gets messed up, because the asked actor needs to reply with certain

ask-specific error messages to influence its completion.

Akka Actor
Programming

Distributed Data
Management

For instance, Chris Stuccio’s blog:

https://www.chrisstucchio.com/
blog/2013/actors_vs_futures.html

https://www.chrisstucchio.com/blog/2013/actors_vs_futures.html
https://www.chrisstucchio.com/blog/2013/actors_vs_futures.html
https://www.chrisstucchio.com/blog/2013/actors_vs_futures.html
https://www.chrisstucchio.com/blog/2013/actors_vs_futures.html
https://www.chrisstucchio.com/blog/2013/actors_vs_futures.html

Patterns

Singleton

Slide 106

Akka Actor
Programming

Distributed Data
Management

Thorsten Papenbrock

Patterns

Singleton

Slide 107

Akka Actor
Programming

Distributed Data
Management

Thorsten Papenbrock

Booking
Actor

Payment
Actor

Billing
Actor

Reservation
Actor

Promotion
Actor

book

reserve
bill

promote
pay

Register new worker, watch on
failed worker, read cluster
metrics, balance load, …

Persist or distribute state to
restore after failure

(see docu on “sharding”)

Exist exactly once
in the cluster!

Patterns

Singleton

Slide 108

Thorsten Papenbrock

Motivation

 Sometimes, there needs to be exactly one actor of some type, e.g.,

 one Endpoint actor for external communication.

 one Leader actor for consensus enforcement.

 one Resource actor of some type.

First idea:

 Simply create that actor once in the cluster.

 Problems:

1. Requires a dedicated ActorSystem that is responsible for creating the singleton.

2. If that ActorSystem dies, the singleton is unavailable until the ActorSystem is back.

3. Starting the same dedicated ActorSystem twice might cause split brain.

4. Every ActorSystem needs to know the address of the singleton.

Cluster Singleton

System1

Patterns

Singleton

Slide 109

Thorsten Papenbrock

Akka Actor
Programming

Distributed Data
Management

Cluster-
Singleton-
Manager

System2 System3

Singleton

Cluster-
Singleton-
Manager

Cluster-
Singleton-
Manager

Cluster-
Singleton-

Proxy

ActorXY

 akka.cluster.singleton.ClusterSingletonManager

 Runs in every ActorSystem (start early!)

 Creates exactly one Singleton actor in the cluster

(on the oldest node; singleton moves if node goes down)

 akka.cluster.singleton.ClusterSingletonProxy

 Create one to communicate with the singleton

 Redirects messages to the current Singleton actor

(buffering messages if singleton is temporarily unavailable)

Cluster-
Singleton-

Proxy

ActorYZ

Cluster Singleton

System1

Patterns

Singleton

Slide 110

Thorsten Papenbrock

Akka Actor
Programming

Distributed Data
Management

Cluster-
Singleton-
Manager

System2 System3

Singleton

Cluster-
Singleton-
Manager

Cluster-
Singleton-
Manager

Cluster-
Singleton-

Proxy

ActorXY

 akka.cluster.singleton.ClusterSingletonManager

 If an ActorSystem hosting the singleton dies,

the singleton is re-created on the then oldest node.

 akka.cluster.singleton.ClusterSingletonProxy

 Knows where the current singleton lives

and tracks singleton movements.
Note:

This is no “reliable proxy”
so messages can get lost!

Singleton

Cluster-
Singleton-

Proxy

ActorYZ

Patterns

Singleton

Slide 111

Thorsten Papenbrock

Akka Actor
Programming

Distributed Data
Management

Cluster Singleton

// On ActorSystem startup

ActorRef manager = system.actorOf(

 ClusterSingletonManager.props(

 LeaderActor.props(),

 PoisonPill.class,

 ClusterSingletonManagerSettings.create(system).withRole("master")),

 "leaderManager");

// If an actor needs to talk to the singleton

ActorRef proxy = system.actorOf(

 ClusterSingletonProxy.props(

 "/user/leaderManager",

 ClusterSingletonProxySettings.create(system).withRole("master")),

 "leaderProxy");

proxy.tell(new HelloLeaderMessage(), this.self());

Patterns

Reaper

Slide 112

Thorsten Papenbrock

Akka Actor
Programming

Distributed Data
Management

Patterns

Reaper

Slide 113

Thorsten Papenbrock

Task vs. Actor shutdown

 Tasks finish and vanish.

 Actors finish and wait for more work.

 Actors need to be notified to stop working.

How to detect that an application has finished?

 All mailboxes empty?

 No: Actors might still be working on messages (and produce new ones).

 All mailboxes empty and all actors idle?

 No: Messages can still being transferred, i.e., on the network.

 All mailboxes empty and all actors idle for “a longer time”?

 No: Actors might be idle for “longer times” if they wait for resources.

 Only the application knows when it is done (e.g. a final result was produced).

Akka Actor
Programming

Distributed Data
Management

Application Shutdown?

Patterns

Reaper

Slide 114

Thorsten Papenbrock

Problem

 ActorSystems stay alive when the main application thread ends.

Forced Shutdown

 Kill the JVM process.

 Problems:

 Risk of resource corruption (e.g. corrupted file if actor was writing to it)

 Many, distributed JVM processes that need to be killed individually

Actor System terminate()

 Calling terminate() on an ActorSystem will stop() all its actors.

 Problem:

 ActorSystems on remote nodes are still alive!

Akka Actor
Programming

Distributed Data
Management

Application Shutdown?

Patterns

Reaper

Slide 115

Thorsten Papenbrock

PoisonPill Shutdown

 If an application is done, send a PoisonPill message to all actors.

 Actors automatically forward the PoisonPill to all children.

 The PoisonPill finally stops an actor.

 Advantages:

 Pending messages prior to the PoisenPill are properly processed.

 PoisonPill propagates into all remote Actor Systems.

Akka Actor
Programming

Distributed Data
Management

actor
1

actor
3

actor
4

actor
5

actor
2

actor
6 application

Use postStop() to also forward
a PoisonPill to other actors

Patterns

Reaper

Slide 116

Thorsten Papenbrock

PoisonPill Shutdown

 If an application is done, send a PoisonPill message to all actors.

 Actors automatically forward the PoisonPill to all children.

 The PoisonPill finally stops an actor.

 Advantages:

 Pending messages prior to the PoisenPill are properly processed.

 PoisonPill propagates into all remote Actor Systems.

Akka Actor
Programming

Distributed Data
Management

import akka.actor.PoisonPill;

[…]

this.otherActor.tell(PoisonPill.getInstance(), ActorRef.noSender());

PoisonPill is an Akka message
that is handled by all actors

Use postStop() to also forward
a PoisonPill to other actors

Patterns

Reaper

Slide 117

Thorsten Papenbrock

PoisonPill Shutdown

 Problem:

 If all actors are stopped,

the Actor System is still running!

 Solution:

 Reaper Pattern

Reaper

 A dedicated actor that “knows” all actors

 “Reaps actor souls and ends the world!”

 Listens to death-events (Termination events)

 Call the terminate() function on the Actor System

if all actors have stopped (e.g. due to PoisonPills)

Akka Actor
Programming

Distributed Data
Management

See: http://letitcrash.com/post/30165507578/shutdown-patterns-in-akka-2

Akka

Application Shutdown

Slide 118

Thorsten Papenbrock

Akka Actor
Programming

Distributed Data
Management

public class Reaper extends AbstractLoggingActor {

 public static class WatchMeMessage implements Serializable { }

 public static void watchWithDefaultReaper(AbstractActor actor) {

 ActorSelection reaper = actor.context().system().actorSelection("/user/reaper");

 reaper.tell(new WatchMeMessage(), actor.self());

 }

 private final Set<ActorRef> watchees = new HashSet<>();

 @Override

 public Receive createReceive() {

 return receiveBuilder()

 .match(WatchMeMessage.class, message -> {

 if (this.watchees.add(this.sender()))

 this.context().watch(this.sender());

 })

 .match(Terminated.class, message -> {

 this.watchees.remove(this.sender());

 if (this.watchees.isEmpty())

 this.context().system().terminate();

 })

 .matchAny(object -> this.log().error("Unknown message"))

 .build();

 }

}

After creation, every actor needs
to register at its local reaper

Watch a new actor

Witness actor dying

End the world

Patterns

Reaper

Slide 119

Thorsten Papenbrock

Reasons to die without a PoisonPill

 If an actor’s parent dies, the orphaned actor dies too.

 If a client loses its master Actor System, it might decide to die.

 If an error occurs, the supervisor might choose to let the failing actor die.

Akka Actor
Programming

Distributed Data
Management

Patterns

Reaper

Slide 120

Thorsten Papenbrock

Stop a running system

 What if the system operates an endless stream of jobs and should be stopped?

 Send a custom termination message.

 Upon receiving this termination message, an actor should …

1. refuse all incoming new jobs.

2. finish all current jobs (i.e., wait for other actors that work on it).

3. let child actors finish their jobs.

4. stop child actors.

5. stop itself.

Akka Actor
Programming

Distributed Data
Management

Patterns

Further Reading

Slide 121

Thorsten Papenbrock

Akka documentation

 http://doc.akka.io/docs/akka/current/java/index.html

 http://doc.akka.io/docs/akka/current/scala/index.html

Experiences, best practices, and patterns

 http://letitcrash.com

 http://akka.io/blog

 https://github.com/sksamuel/akka-patterns

 Akka actor programming

literature:
Akka Actor
Programming

Distributed Data
Management

Example code @ GitHub:
https://github.com/akka/akka-samples

http://doc.akka.io/docs/akka/current/java/index.html
http://doc.akka.io/docs/akka/current/java/index.html
http://doc.akka.io/docs/akka/current/java/index.html
http://doc.akka.io/docs/akka/current/scala/index.html
http://doc.akka.io/docs/akka/current/scala/index.html
http://doc.akka.io/docs/akka/current/scala/index.html
http://letitcrash.com/
http://letitcrash.com/
http://akka.io/blog
http://akka.io/blog
http://akka.io/blog
https://github.com/sksamuel/akka-patterns
https://github.com/sksamuel/akka-patterns
https://github.com/sksamuel/akka-patterns
https://github.com/sksamuel/akka-patterns
https://github.com/akka/akka-samples
https://github.com/akka/akka-samples
https://github.com/akka/akka-samples
https://github.com/akka/akka-samples

Patterns

Further Reading

Slide 122

Thorsten Papenbrock

Akka Actor
Programming

Distributed Data
Management

Example code @ GitHub:
https://github.com/akka/akka-samples

https://github.com/akka/akka-samples
https://github.com/akka/akka-samples
https://github.com/akka/akka-samples
https://github.com/akka/akka-samples

Slide 123

Thorsten Papenbrock

Akka Actor Programming

Hands-on

 Actor Model (Recap)

 Basic Concepts

 Runtime Architecture

 Demo

 Messaging

 Parallelization

 Remoting

 Clustering

 Patterns

 Homework

Slide 124

Thorsten Papenbrock

Akka Actor
Programming

Distributed Data
Management

MasterActorSystem

SlaveActorSystem

Homework

ddm-pc

Slide 125

Thorsten Papenbrock

Akka Actor
Programming

Distributed Data
Management

Master Worker

Cluster
Listener

Metrics
Listener

Reaper

Collector

Reader

Cluster
Listener

Metrics
Listener

Reaper

Worker
Worker

Worker

File Start

Task 1: Akka Setup

Task 3: Password Cracking

Task 2: LargeMessageProxy

MasterActorSystem

SlaveActorSystem

Homework

ddm-pc

Slide 126

Thorsten Papenbrock

Akka Actor
Programming

Distributed Data
Management

Master Worker

Cluster
Listener

Metrics
Listener

Reaper

Collector

Reader

Cluster
Listener

Metrics
Listener

Reaper

Worker
Worker

Worker

File Start

Task 3: Password Cracking

Task 2: LargeMessageProxy

Task 1: Akka Setup

Homework

Task 1 – Akka Setup

Slide 127

Thorsten Papenbrock

1. Form teams of two students.

2. Create a public GitHub repository.

3. Copy the ddm-lmp and ddm-pc projects from the exercise repository

https://github.com/HPI-Information-Systems/akka-tutorial

into your repository.

4. Build, understand and test the two ddm projects.

5. Optional: Check out and play with the akka-tutorial and octopus projects.

6. Send your first and last names, a group name and the link of your repository

via email to: thorsten.papenbrock@hpi.de

Akka Actor
Programming

Distributed Data
Management

https://github.com/HPI-Information-Systems/akka-tutorial
https://github.com/HPI-Information-Systems/akka-tutorial
https://github.com/HPI-Information-Systems/akka-tutorial
https://github.com/HPI-Information-Systems/akka-tutorial
https://github.com/HPI-Information-Systems/akka-tutorial
https://github.com/HPI-Information-Systems/akka-tutorial
https://github.com/HPI-Information-Systems/akka-tutorial
https://github.com/HPI-Information-Systems/akka-tutorial
mailto:thorsten.papenbrock@hpi.de

Homework

Task 1 – Akka Setup

Slide 128

Thorsten Papenbrock

Akka Actor
Programming

Distributed Data
Management

Submission

 Deadline

 08.11.2019 09:00:00 (next Friday!)

 Artifacts

1. Email with content:

<firstname1> <lastname1>

<firstname2> <lastname2>

<groupname>

<GitHub-URL>

MasterActorSystem

SlaveActorSystem

Homework

ddm-lmp

Slide 129

Thorsten Papenbrock

Akka Actor
Programming

Distributed Data
Management

Master Worker

Cluster
Listener

Metrics
Listener

Reaper

Collector

Reader

Cluster
Listener

Metrics
Listener

Reaper

Worker
Worker

Worker

File Start

Task 1: Akka Setup

Task 3: Password Cracking

Task 2: LargeMessageProxy

Homework

Task 2 – LargeMessageProxy

Slide 130

Thorsten Papenbrock

Task

 Implement the LargeMessageProxy actor!

Akka Actor
Programming

Distributed Data
Management

System2 System1

Master Worker

Large
Message

Proxy

Large
Message

Proxy

LargeMessage<T> {
 T message;
 ActorRef receiver;
}
with sender = Master

T message
with sender = Master ??????

Homework

Assignment 2 – LargeMessageProxy

Slide 131

Thorsten Papenbrock

 Implement the LargeMessageProxy actor!

Akka Actor
Programming

Distributed Data
Management

Homework

Task 2 – LargeMessageProxy

Slide 132

Thorsten Papenbrock

Rules

 Do not mess with the time measurement:

It should start with the registration time and

it should end when receiving the data.

 Do not change the command line interface

or app name; otherwise, the automatic test

scripts will fail.

 Do not change the LargeMessage class;

the LargeMessageProxy should be able to send messages of any type T.

 Use maven to import additional libraries if you need some.

 Do not use the disk.

 Feel free to change everything inside the LargeMessageProxy!

Akka Actor
Programming

Distributed Data
Management

Homework

Task 2 – LargeMessageProxy

Slide 133

Thorsten Papenbrock

Akka Actor
Programming

Distributed Data
Management

Submission

 Deadline

 15.11.2019 09:00:00

 Artifacts (in GitHub repository)

1. Source code

2. “assignment2” folder with …

1. a jar file of your algorithm;

2. a pdf or ppt slide describing your solution.

MasterActorSystem

SlaveActorSystem

Homework

ddm-pc

Slide 134

Thorsten Papenbrock

Akka Actor
Programming

Distributed Data
Management

Master Worker

Cluster
Listener

Metrics
Listener

Reaper

Collector

Reader

Cluster
Listener

Metrics
Listener

Reaper

Worker
Worker

Worker

File Start

Task 1: Akka Setup

Task 2: LargeMessageProxy

Task 3: Password Cracking

Homework

Task 3 – Password Cracking

Slide 135

Thorsten Papenbrock

Akka Actor
Programming

Distributed Data
Management

Passwords to be cracked

All characters that may
appear in the password

Number of characters
in the password

These two fields have
always the same value

for all records.

Hints:
 Every hint contains all PasswordChars besides

one char, i.e., |Hint|=|PasswordChars|-1
 The missing char is the hint, because it does

not appear in the password.
 The number of hints can change!
 The more hints we have, the easier it is to find

the password.

Homework

Task 3 – Password Cracking

Slide 136

Thorsten Papenbrock

Akka Actor
Programming

Distributed Data
Management

Both password and hints are SHA-256 encrypted.

Encryption cracking via brute force approach:
1. Generate sequence.
2. Encrypt sequence with SHA-256.
3. Compare current SHA-256 with existing one:

if equal, encryption is broken.

Hint cracking is much easier than password cracking.

Homework

Task 3 – Password Cracking

Slide 137

Thorsten Papenbrock

Akka Actor
Programming

Distributed Data
Management

Hints

 The passwords and hints are encrypted with the following function:

 Useful code snippets for combination generation:

 https://www.geeksforgeeks.org/print-all-combinations-of-given-length/

 https://www.geeksforgeeks.org/heaps-algorithm-for-generating-permutations/

private String hash(String password) {

 MessageDigest digest = MessageDigest.getInstance("SHA-256");

 byte[] hashedBytes = digest.digest(line.getBytes("UTF-8"));

 StringBuffer stringBuffer = new StringBuffer();

 for (int i = 0; i < hashedBytes.length; i++)

 stringBuffer.append(Integer.toString((hashedBytes[i] & 0xff) + 0x100, 16).substring(1));

 return stringBuffer.toString();

}

https://www.geeksforgeeks.org/print-all-combinations-of-given-length/
https://www.geeksforgeeks.org/print-all-combinations-of-given-length/
https://www.geeksforgeeks.org/print-all-combinations-of-given-length/
https://www.geeksforgeeks.org/print-all-combinations-of-given-length/
https://www.geeksforgeeks.org/print-all-combinations-of-given-length/
https://www.geeksforgeeks.org/print-all-combinations-of-given-length/
https://www.geeksforgeeks.org/print-all-combinations-of-given-length/
https://www.geeksforgeeks.org/print-all-combinations-of-given-length/
https://www.geeksforgeeks.org/print-all-combinations-of-given-length/
https://www.geeksforgeeks.org/print-all-combinations-of-given-length/
https://www.geeksforgeeks.org/print-all-combinations-of-given-length/
https://www.geeksforgeeks.org/print-all-combinations-of-given-length/
https://www.geeksforgeeks.org/heaps-algorithm-for-generating-permutations/
https://www.geeksforgeeks.org/heaps-algorithm-for-generating-permutations/
https://www.geeksforgeeks.org/heaps-algorithm-for-generating-permutations/
https://www.geeksforgeeks.org/heaps-algorithm-for-generating-permutations/
https://www.geeksforgeeks.org/heaps-algorithm-for-generating-permutations/
https://www.geeksforgeeks.org/heaps-algorithm-for-generating-permutations/
https://www.geeksforgeeks.org/heaps-algorithm-for-generating-permutations/
https://www.geeksforgeeks.org/heaps-algorithm-for-generating-permutations/
https://www.geeksforgeeks.org/heaps-algorithm-for-generating-permutations/
https://www.geeksforgeeks.org/heaps-algorithm-for-generating-permutations/

Homework

Task 3 – Password Cracking

Slide 138

Thorsten Papenbrock

Akka Actor
Programming

Distributed Data
Management

Hints

 Think agile:

 How can I maximize the parallelization?

(e.g. the number parallel tasks should in the best case not depend on the input data)

 How can I propagate intermediate results to other actors whenever needed?

(e.g. proxies, schedulers, master-worker, …)

 How can I re-use intermediate results to dynamically prune tasks?

(e.g. if I know that X is a solution, then I might be able to infer

without testing that Y is also a solution)

 How can I implement task parallelism?

(e.g. parts of subtask 2 might already be able to start with partial

results of subtask 1)

 How can I achieve elasticity in the number of cluster nodes?

(nodes may join or leave the cluster at runtime)

Homework

Task 3 – Password Cracking

Slide 139

Thorsten Papenbrock

Akka Actor
Programming

Distributed Data
Management

Notes

 Parameters that may change:

 password length

 password chars

 number of hints (= width of file)

 number of passwords (= length of file)

 number of cluster nodes

(do not wait for x nodes to join the cluster; you do not know their

number; implement elasticity, i.e., allow joining nodes at runtime)

 Parameters that may not change:

 encryption function SHA-256

 all passwords are of same length and have same character universe

Homework

Task 3 – Password Cracking

Slide 140

Thorsten Papenbrock

Akka Actor
Programming

Distributed Data
Management

Rules

 Do not mess with the time measurement:

It should start with the StartMessage and it should end when the PoisonPills are sent.

 Do not change the command line interface or app name;

otherwise, the automatic test scripts will fail.

 Use maven to import additional libraries if you need some.

 Do not use the disk.

 Feel free to change everything (besides interface and time measurement);

you probably need a new shutdown protocol, you need a proper

communication protocol for your Master/Worker actors and you

probably need additional actors.

 Write the cracked passwords with the Collector to the console;

the current printouts from the master should be deleted.

Homework

Task 3 – Password Cracking

Slide 141

Thorsten Papenbrock

Akka Actor
Programming

Distributed Data
Management

Submission

 Deadline

 22.11.2019 09:00:00

 Artifacts (in GitHub repository)

1. Source code

2. “assignment3” folder with …

1. a jar file of your algorithm;

2. a pdf or ppt slide describing your solution.

Homework

Evaluation – Pi Cluster

Slide 143

Thorsten Papenbrock

Akka Actor
Programming

Distributed Data
Management

4 Cores, 4 GB

4 Cores, 4 GB

4 Cores, 4 GB

4 Cores, 4 GB

4 Cores, 4 GB

4 Cores, 4 GB

4 Cores, 4 GB

4 Cores, 4 GB

4 Cores, 4 GB

4 Cores, 4 GB

4 Cores, 4 GB

4 Cores, 4 GB

Homework

Evaluation – Odin/Thor Cluster

Slide 144

Thorsten Papenbrock

Akka Actor
Programming

Distributed Data
Management

20 Cores, 30 GB

20 Cores, 30 GB

20 Cores, 30 GB

20 Cores, 30 GB

20 Cores, 30 GB

20 Cores, 30 GB

20 Cores, 30 GB

20 Cores, 30 GB

20 Cores, 30 GB

20 Cores, 30 GB

20 Cores, 30 GB

20 Cores, 30 GB

Homework

Evaluation – Odin/Thor Cluster

Slide 145

Thorsten Papenbrock

Akka Actor
Programming

Distributed Data
Management

Best Team wins a price!

Distributed Data Analytics

Introduction
Thorsten Papenbrock

G-3.1.09, Campus III

Hasso Plattner Institut

“I wait for green”

“Attention, I break!”

“You are not in my path!”

“Road ahead is free!”

“I wait for crossing traffic”

“I accelerate!”

