
Distributed Data Management

Data Models and Query Languages

Thorsten Papenbrock

Felix Naumann

F-2.03/F-2.04, Campus II

Hasso Plattner Institut

Introduction

Layering Data Models

Slide 2

Data Models and
Query Languages

Distributed Data
Management

Thorsten Papenbrock

1. Conceptual layer

 Data structures, objects, modules, …

 Application code

2. Logical layer

 Relational tables, JSON, XML, graphs, …

 Database management system (DBMS) or storage engine

3. Representation layer

 Bytes in memory, on disk, on network, …

 Database management system (DBMS) or storage engine

4. Physical layer

 Electrical currents, pulses of light, magnetic fields, …

 Operating system and hardware drivers

our focus now

Overview

Relational and Non-Relational Data Models

Relational

Non-Relational

Row-Based

Column-Based

Key-Value

Column-Family

Document

Graph

1 1 1

1

1

1

1 1 1

1

1

Overview

Relational and Non-Relational DBMSs

A class of relational
DBMSs that seek to
provide the same

scalable performance
of NoSQL systems for
OLTP workloads while
still maintaining all
ACID guarantees.

“No SQL” or rather
“not only SQL” systems
because most support

some SQL dialect.

Overview

Data Models

Slide 5

Data Models and
Query Languages

Distributed Data
Management

Thorsten Papenbrock

A data model consists of three parts:

1. Structure

 physical and conceptual data layout

2. Constraints

 inherent limitations and rules

3. Operations

 possible query and modification methods

[Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. Database Systems: The Complete Book.

Prentice Hall Press, Upper Saddle River, NJ, USA, 2 edition, 2008. ISBN 9780131873254]

Overview

Relational and Non-Relational Data Models

Relational

Non-Relational

Row-Based

Column-Based

Key-Value

Column-Family

Document

Graph

1 1 1

1

1

1

1 1 1

1

1

The Relational Data Model

Natural Relational Data

Transactional Data

Master Data

Statistical Data

Business Data

The Relational Data Model

Popular relational DBMS

Slide 8

Data Models and
Query Languages

Distributed Data
Management

Thorsten Papenbrock

https://db-engines.com/en/ranking

The Relational Data Model

Definition

Slide 9

Data Models and
Query Languages

Distributed Data
Management

Thorsten Papenbrock

1. Structure

 Schemata: named, non-empty, typed, and unordered sets of attributes

 Example: Person(ID,Surname,Name,Gender,Address)

 Instances: sets of records, i.e., functions that assign values to attributes

 Example: (275437,`Miller´,`Frank´,`male´,`Millstr. 5´)

2. Constraints

 Integrity constraints: data types, keys, foreign-keys, …

3. Operations

 Relational algebra (and relational calculus)

 Usually implemented as Structured Query Language (SQL)

[E. F. Codd. A Relational Model of Data for Large Shared Data Banks. Communications of the ACM,

13(6):377–387, 1970]

The Relational Data Model

Querying: SQL

Slide 10

Data Models and
Query Languages

Distributed Data
Management

Thorsten Papenbrock

SELECT <attribute list>

FROM <relation list>

WHERE <conditions>

GROUP BY <grouping attributes>

HAVING <grouping conditions>

ORDER BY <attribute list>;

Further keywords: DDL\DML:

 DISTINCT, AS, JOIN CREATE TABLE

 AND, OR DROP TABLE

 MIN, MAX, AVG, SUM, COUNT ALTER TABLE

 NOT, IN, LIKE, ANY, ALL, EXISTS INSERT INTO … VALUES

 UNION, EXCEPT, INTERSECT DELETE FROM … WHERE

 UPDATE … SET … WHERE

Declarative query languages specify
the result of a query and not how it

should be obtained:

 Easier to understand

 Transparently optimizable

 Implementation independent

The Relational Data Model

Querying: SQL

The Relational Data Model

Querying: SQL – Examples

Slide 12

Data Models and
Query Languages

Distributed Data
Management

Thorsten Papenbrock

Schemata:

 Product(maker, model, type)

 PC(model, speed, ram, hd, rd)

 Laptop(model, speed, ram, hd, screen)

SELECT COUNT(hd)
FROM PC
GROUP BY hd
HAVING COUNT(model) > 2;

“How many hard disk sizes are
 built into more than two PCs?”

SELECT *
FROM PC PC1, PC PC2
WHERE PC1.speed = PC2.speed
AND PC1.ram = PC2.ram
AND PC1.model < PC2.model;

“Find all pairs of PCs with same
speed and ram sizes.”

 (SELECT DISTINCT maker
 FROM Product, Laptop
 WHERE Product.model = Laptop.model)
EXCEPT
 (SELECT DISTINCT maker
 FROM Product, PC
 WHERE Product.model = PC.model);

“Find all makers that produce
Laptops but no PCs.”

The Relational Data Model

Strengths and Weaknesses

Slide 13

Data Models and
Query Languages

Distributed Data
Management

Thorsten Papenbrock

Strengths

 Strict schemata good for point queries, error prevention, compression, …

 Universal data model serving linked and unconnected data, all data types, …

 Consistency checking (ACID) with support for different consistency levels

Weaknesses

 Schemata need to be altered globally if certain records require additional

attributes

 Impedance Mismatch:

 Objects, structs, pointers vs. relations, records, attributes

 Object-relational mapping (ORM) frameworks like ActiveRecord or

Hibernate to the rescue

 Complicates and slows data access; source for errors

The Relational Data Model

Storage Variations

Slide 14

Data Models and
Query Languages

Distributed Data
Management

Thorsten Papenbrock

Row-Based

 Store rows continuously

 See “Database Systems II”

course

Column-Based

 Store columns continuously

 See “Trends and Concepts in

Software Industry” course

© http://www.timestored.com/time-series-data/what-is-a-column-oriented-database

The Relational Data Model

Storage Variations

Slide 15

Data Models and
Query Languages

Distributed Data
Management

Thorsten Papenbrock

Row-Based

 Store rows continuously

Column-Based

 Store columns continuously

Operation Row-Based Column-Based

Single column aggregation Slow (full table scan) Fast (single column scan)

Compression Only NULL compression Run length encoding

Column scans Slow (skip irrelevant data) Fast (one continuous read)

Insert/update of records Fast (simply append) Slow (many inserts; move data)

Single record point queries Fast (one continuous read) Slow (many seeks and reads)

Better OLTP performance

Better OLAP performance

The Relational Data Model

Storage Variations

Slide 16

Data Models and
Query Languages

Distributed Data
Management

Thorsten Papenbrock

Row-Based

 Store rows continuously

 Examples by popularity:

 Oracle

 MySQL (open source)

 Microsoft SQL Server

 PostgreSQL (open source)

 DB2

 Microsoft Access

 …

Column-Based

 Store columns continuously

 Examples by popularity:

 Teradata

 SAP HANA

 SAP Sybase IQ

 Vertica

 MonetDB (open source)

 C-Store (open source)

 …

Many of these (e.g. Oracle

and DB2) also support
columnar data layouts.

The Relational Data Model

CSV Files

Slide 17

Data Models and
Query Languages

Distributed Data
Management

Thorsten Papenbrock

Definition

 Relational structure but no constraints

(no key-enforcement, data types, consistency checking, …)

 Operations: linear read and appending insert

Properties

 Encoding (ASCII, UTF-8, UTF-16, …)

 Value separator (usually semicolon ‘;’, comma ‘,’, or tab ‘ ’)

 Quote character (usually double-quotes ‘”’)

 Escape character (usually slash ‘\’)

Uses

 Data archiving and data exchange between heterogeneous systems

 File system storage engines (HDFS, NTFS, Ext3, …)

 Data dumping: sensor data, measurement data, scientific data, …

The Relational Data Model

CSV Files

Slide 18

Data Models and
Query Languages

Distributed Data
Analytics

Thorsten Papenbrock

Format Example

 Name Type
Equatorial
diameter

Mass
Orbital
radius

Orbital
period

Rotation
period

Confirmed
moons

Rings Atmosphere

Mercury Terrestrial 0.382 0.06 0.47 0.24 58.64 0 no minimal

Venus Terrestrial 0.949 0.82 0.72 0.62 −243.02 0 no CO2, N2

Earth Terrestrial 1.000 1.00 1.00 1.00 1.00 1 no N2, O2, Ar

Mars Terrestrial 0.532 0.11 1.52 1.88 1.03 2 no CO2, N2, Ar

Jupiter Giant 11.209 317.8 5.20 11.86 0.41 67 yes H2, He

Saturn Giant 9.449 95.2 9.54 29.46 0.43 62 yes H2, He

Uranus Giant 4.007 14.6 19.22 84.01 −0.72 27 yes H2, He

Neptune Giant 3.883 17.2 30.06 164.8 0.67 14 yes H2, He

represented
as CSV File

The Relational Data Model

CSV Files

Slide 19

Data Models and
Query Languages

Distributed Data
Management

Thorsten Papenbrock

Access Example

try (CSVReader reader = new CSVReader(

 new InputStreamReader(new FileInputStream(dataFile), StandardCharsets.UTF_8), ',', '\"')) {

 reader.forEach(record -> this.process(record));

}

CSVReader reader = null;

try {

 reader = new CSVReader(

 new InputStreamReader(new FileInputStream(dataFile), StandardCharsets.UTF_8), ',', '\"');

 String[] record = null;

 while ((record = reader.readNext()) != null) {

 this.process(record);

 }

 reader.close();

}

CSVWriter writer = null;

try {

 writer = new CSVWriter(

 new OutputStreamWriter(new FileOutputStream(dataFile, true), StandardCharsets.UTF_8), ',', '\"', '\\');

 for (String[] record : records) {

 writer.writeNext(record);

 }

 writer.close();

}

Java 1.7 using au.com.bytecode.opencsv

read

write

The Relational Data Model

CSV Files

Slide 20

Data Models and
Query Languages

Distributed Data
Management

Thorsten Papenbrock

Access Example

try (CSVReader reader = new CSVReader(

 new InputStreamReader(new FileInputStream(dataFile), StandardCharsets.UTF_8), ',', '\"')) {

 reader.forEach(record -> this.process(record));

}

try (CSVWriter writer = new CSVWriter(

 new OutputStreamWriter(new FileOutputStream(dataFile, true), StandardCharsets.UTF_8), ',', '\"', '\\')) {

 Arrays.stream(records).forEach(record -> writer.writeNext(record));

}

read

write

Java 1.8 using au.com.bytecode.opencsv

Overview

Relational and Non-Relational Data Models

Relational

Non-Relational

Row-Based

Column-Based

Key-Value

Column-Family

Document

Graph

1 1 1

1

1

1

1 1 1

1

1

The Key-Value Data Model

Popular Key-Value Stores

Slide 22

Data Models and
Query Languages

Distributed Data
Management

Thorsten Papenbrock

https://db-engines.com/en/ranking

In Akka!

In Kafka!

The Key-Value Data Model

Definition

Slide 23

Data Models and
Query Languages

Distributed Data
Management

Thorsten Papenbrock

1. Structure

 Index (e.g. hash map): (large, distributed) key-value data structure

2. Constraints

 Each value is associated with a unique key.

3. Operations

 Store a key-value pair.

 Retrieve a value by key.

 Remove a key-value mapping.

Some implementations do
support this and some don’t.

The Key-Value Data Model

Example

Slide 24

Data Models and
Query Languages

Distributed Data
Management

Thorsten Papenbrock

©Jorge Stolfi (https://commons.wikimedia.org/wiki/File:Hash_table_3_1_1_0_1_0_0_SP.svg)

The Key-Value Data Model

Querying: Redis API

Slide 25

Data Models and
Query Languages

Distributed Data
Management

Thorsten Papenbrock

Redis

 In-memory key-value store with file persistence on disk

 Supports five data structures for values:

 Strings: byte arrays that may represent actual strings or integers,

binary serialized objects, …

 Hashes: dictionaries that map secondary keys to strings

 Lists: sequences of strings that support insert, append, pop, push,

trim, and many further operations

 Sets: duplicate free collections of strings that support set operations

such as diff, union, intersect, …

 Ordered sets: duplicate free, sorted collections of strings that use

explicitly defined scores for sorting and support range operations

The Key-Value Data Model

Querying: Redis API – Examples

Slide 26

Data Models and
Query Languages

Thorsten Papenbrock

Redis API

 Strings:

SET hello “hello world”

GET hello

 “hello world”

SET users:goku {race: 'sayan', power: 9001}

GET users:goku

 {race: 'sayan', power: 9001}

 Hashes:

HSET users:goku race 'sayan'

HSET users:goku power 9001

HGET users:goku power

 9001

 Lists:

LPUSH mylist a // [a]

LPUSH mylist b // [b,a]

RPUSH mylist c // [b,a,c]

LRANGE mylist 0 1

 b, a

RPOP mylist

 c

 Sets:

SADD friends:lisa paul

SADD friends:lisa duncan

SADD friends:paul duncan

SADD friends:paul gurney

SINTER friends:lisa friends:paul

 duncan

 Ordered sets:

ZADD lisa 8 paul

ZADD lisa 7 duncan

ZADD lisa 2 faradin

ZRANGEBYSCORE lisa 5 8

 duncan

 paul

“<group>:<entity>”
is a naming convention.

Distributed Data
Management

The Key-Value Data Model

Strengths and Weaknesses

Slide 27

Data Models and
Query Languages

Distributed Data
Management

Thorsten Papenbrock

Strengths

 Efficient storage: fast inserts of key-value pairs

 Efficient retrieval: fast point queries, i.e., value look-ups

 Key-value pairs are easy to distribute across multiple machines

 Key-value pairs can be replicated for fault-tolerance and load balancing

Weaknesses

 No filtering, aggregation, or joining of values/entries

 Must be done by the application (or cluster computing framework!)

 (Usually) no parsing of complex values; must be done by the application

 Must be done by the application (or cluster computing framework!)

Overview

Relational and Non-Relational Data Models

Relational

Non-Relational

Row-Based

Column-Based

Key-Value

Column-Family

Document

Graph

1 1 1

1

1

1

1 1 1

1

1

The Column-Family Data Model

Popular Column-Family Stores

Slide 29

Data Models and
Query Languages

Distributed Data
Management

Thorsten Papenbrock https://db-engines.com/en/ranking

The Column-Family Data Model

Definition

Slide 30

Data Models and
Query Languages

Distributed Data
Management

Thorsten Papenbrock

1. Structure

 Multi-dimensional index (e.g. multi-dimensional hash map)

 (large, distributed) key-value data structure that uses a hierarchy of

up to three keys for one typed value

 Conceptually equivalent to sparse relational tables, i.e., each row supports

arbitrary subsets of attributes.

2. Constraints

 Each value is associated with a unique key.

 Hierarchy of keys is a tree.

 Integrity constraints: keys, foreign-keys, cluster-keys (for distribution), …

3. Operations

 At least: store key-value pair; retrieve value by key; remove key-value pair

 Usually: relational algebra support without joins (with own SQL dialect)

For this reason, they are also
called “Wide Column Stores”.

The Column-Family Data Model

Example

Data Models and
Query Languages

Distributed Data
Management

= key-value pair

= key-hashmap pair

= Map<RowKey, SortedMap<ColumnKey, ColumnValue>>
≈ relational table

= Map<RowKey,
 SortedMap<SuperColumnKey,
 SortedMap<ColumnKey, ColumnValue>>>

©https://neo4j.com/blog/aggregate-stores-tour/

…

…

…

The Column-Family Data Model

Example 1

Slide 32

Data Models and
Query Languages

Distributed Data
Management

Thorsten Papenbrock

Hierarchy of keys enables:

 Flexible schemata (column names model attributes and row keys records)

 Value groupings (by super column names and row keys)

©https://neo4j.com/blog/aggregate-stores-tour/

The Column-Family Data Model

Example 2

Slide 33

Data Models and
Query Languages

Distributed Data
Management

Thorsten Papenbrock

Hierarchy of keys enables:

 Flexible schemata (column names model attributes and row keys records)

 Value groupings (by super column names and row keys)

Analogy:

The Column-Family Data Model

Querying: CQL

Slide 34

Data Models and
Query Languages

Distributed Data
Management

Thorsten Papenbrock

Cassandra Query Language CQL …

 is an SQL dialect (same syntax).

 supports all DML and DDL functionalities.

 does not support:

 joins, group by, triggers, cursors, transactions, or (stored) procedures

 OR and NOT logical operators (only AND)

 subqueries

 makes, inter alia, the following restrictions:

 WHERE conditions should be applied only on columns with an index

 timestamps are comparable only with the equal operator (not <,>,<>)

 UPDATE statements only work with a primary key

(they do not work based on other columns or as mass update)

 INSERT overrides existing records, UPDATE creates non-existing ones

The Column-Family Data Model

Querying: CQL – Examples

Slide 35

Data Models and
Query Languages

Distributed Data
Management

Thorsten Papenbrock

Schema:

 Playlists(id, song_order, album, artist, song_id, title)

Query:

Result:

SELECT *
FROM Playlists
WHERE id = 62c36092-82a1-3a00-93d1-46196ee77204
ORDER BY song_order DESC
LIMIT 4;

= key attribute

= key attribute

first key attribute(s) = partition key (determines which node stores the data)

further key attribute(s) = cluster key (keys within a partition/node)

The Column-Family Data Model

Querying: CQL – Examples

Slide 36

Data Models and
Query Languages

Distributed Data
Management

Thorsten Papenbrock

SQL: CQL:

CREATE KEYSPACE myDatabase
WITH replication = {
 'class': 'SimpleStrategy',
 'replication_factor': 1};

CREATE DATABASE myDatabase;

SELECT *
FROM myTable
WHERE myField > 5000
AND myField < 100000;

SELECT *
FROM myTable
WHERE myField > 5000
AND myField < 100000
ALLOW FILTERING;

Otherwise:
Bad Request: Cannot execute this query as
it might involve data filtering and thus may
have unpredictable performance. If you
want to execute it despite the performance
unpredictability, use ALLOW FILTERING.

The Column-Family Data Model

Strengths and Weaknesses

Slide 37

Data Models and
Query Languages

Distributed Data
Management

Thorsten Papenbrock

Strengths

 Efficient storage: fast inserts of data items

 Efficient retrieval: fast point queries, i.e., value look-ups

 Data structure is easy to distribute across multiple machines

 Data structure can be replicated for fault-tolerance and load balancing

 Flexible schemata

Weaknesses

 No join and limited filtering support (filtering might also be super slow)

 Must be done by the application (or cluster computing framework!)

 Multi-key structure groups values to entities but general groupings and

aggregations are not supported

 Non-point queries, i.e., those that read more than one mapping, are costly

The Column-Family Data Model

Strengths and Weaknesses

Slide 38

Data Models and
Query Languages

Distributed Data
Management

Thorsten Papenbrock

Strengths

 efficient storage: fast inserts of data items

 efficient retrieval: fast point queries, i.e., value look-ups

 data structure is easy to distribute across multiple machines

 data structure can be replicated for fault-tolerance and load balancing

 flexible schemata

Weaknesses

 No join and limited filtering support (filtering might also be super slow)

 Must be done by the application (or cluster computing framework!)

 Multi-key structure groups values to entities but general groupings and

aggregations are not supported

 Non-point queries, i.e., those that read more than one mapping, are costly

“Writes are cheap. Write everything the way you want to read it.”
If you have people and addresses and you need to read people and their addresses,

then store people and addresses additionally(!) in one column family.
“Not just de-normalize, forget about normalization all together.”

Alex Meng
https://medium.com/@alexbmeng/cassandra-query-language-cql-vs-sql-7f6ed7706b4c

Overview

Relational and Non-Relational Data Models

Relational

Non-Relational

Row-Based

Column-Based

Key-Value

Column-Family

Document

Graph

1 1 1

1

1

1

1 1 1

1

1

The Document Data Model

Natural Document Data

Digital Documents Web Pages

Scientific Data Formats Log Data

Slide 40

Data Models and
Query Languages

Distributed Data
Management

Thorsten Papenbrock

Structured Data

The Document Data Model

Popular Document Stores

Slide 41

Data Models and
Query Languages

Distributed Data
Management

Thorsten Papenbrock

https://db-engines.com/en/ranking

The Document Data Model

Definition

Slide 42

Data Models and
Query Languages

Distributed Data
Management

Thorsten Papenbrock

1. Structure

 Index: (large, distributed) key-value data structure

 Documents: values are documents or collections of documents that

 (usually) contain hierarchical data.

 XML, JSON, RDF, HTML, …

2. Constraints

 Each value/document is associated with a unique key.

3. Operations

 Store a key-value pair.

 Retrieve a value by key.

 Remove a key-value mapping.

 Update a value of a key.

Document stores are often considered to
be schemaless, but since the applications
usually assume some kind of structure

they are rather schema-on-read in
contrast to schema-on-write.

The Document Data Model

Definition

Slide 43

Data Models and
Query Languages

Distributed Data
Management

Thorsten Papenbrock

The Document Data Model

Example 1

Slide 44

Data Models and
Query Languages

Distributed Data
Management

Thorsten Papenbrock

Benno87

{
 “username”: “ben”,
 “password”: “ughiwuv”
}

{
 “username”: “Benno”,
 “password”: “myPW”
}

{
 “username”: “Benno87”,
 “password”: “test1234”
}

{
 “username”: “user283”,
 “password”: “pw283”
}

document

JSON Format

document

document

document

key

document collection

The Document Data Model

Example 2

Slide 45

Data Models and
Query Languages

Distributed Data
Management

Thorsten Papenbrock

Benno87

AnnaMT

{
 “_id”: 1,
 “username”: “ben”,
 “password”: “ughiwuv”,
 “contact”: {
 “phone”: 0331-1781471,
 “email”: “ben87@gmx.de”,
 “skype”: “benno.miller”
 },
 “access”: {
 “level”: 3,
 “group”: “user”
 },
 “supervisor”: {
 “$ref”: “AnnaMT”,
 “$id”: 2,
 “$db”: “users”
 }
}

document ID

embedded
subdocument

embedded
subdocument

document
reference

JSON Format

The Document Data Model

Example 3

Slide 46

Data Models and
Query Languages

Distributed Data
Management

Thorsten Papenbrock

Benno87

AnnaMT

<_id>1</_id>

<username>ben</username>

<password>ughiwuv</password>

<contact>

 <phone>0331-1781254</phone>

 <email>ben87@gmx.de</email>

 <skype>benno.miller</skype>

</contact>

<access>

 <level>3</level>

 <group>user</group>

</access>

<supervisor>

 <ref>AnnaMT</ref>

 <id>2</id>

 <db>users</db>

</supervisor>

Note that relational databases also
support hierarchical data types
(e.g. XML and JSON) in their

attributes.

XML Format

The Document Data Model

Strengths and Weaknesses

Slide 47

Data Models and
Query Languages

Distributed Data
Management

Thorsten Papenbrock

Strengths

 Efficient storage: fast inserts of key-value pairs

 Efficient retrieval: fast point queries, i.e., document (collection) look-ups

 Document (collections) are easy to distribute across multiple machines

 Document (collections) can be replicated for fault-tolerance and load balancing

 Flexible document formats: self-describing documents that may use different formats

Weaknesses

 (Usually) developers need to explicitly/manually plan for distribution

of data across instances (key-value and column-family stores do this

automatically)

 Updates to documents are expensive if they alter encoding or size

The Document Data Model

Querying: MongoDB API

Slide 48

Data Models and
Query Languages

Distributed Data
Management

Thorsten Papenbrock

MongoDB …

 is a free and open-source document-oriented DBMS.

 uses JSON-like documents with schemata and integrity constraints (keys).

SQL Terms/Concepts MongoDB Terms/Concepts

database database

table collection

row/record document

column/attribute field

index index

table join $lookup, embedded document

primary key (any column) primary key (always the _id filed)

aggregation (group by) aggregation pipeline

Create/Drop

Document:

The Document Data Model

Querying: MongoDB API – Examples

Slide 49

Data Models and
Query Languages

Distributed Data
Management

Thorsten Papenbrock

{

 _id: 1,

 user_id: “abc123”,

 age: 55,

 status: 'A'

}

https://docs.mongodb.com/manual/

First insert automatically creates
the document collection “people” but no schema!

SQL MongoDB

Alter

Document:

The Document Data Model

Querying: MongoDB API – Examples

Slide 50

Thorsten Papenbrock

https://docs.mongodb.com/manual/

SQL MongoDB

Collections do not describe or enforce the structure of their
documents, i.e., no structural alteration at collection level.

But: $set and $unset can be used for bulk updates.

{

 _id: 1,

 user_id: “abc123”,

 age: 55,

 status: 'A'

}

“$” introduce
operators

(= functions)

Insert, Update

 and Delete

Document:

The Document Data Model

Querying: MongoDB API – Examples

https://docs.mongodb.com/manual/

SQL MongoDB

{

 _id: 1,

 user_id: “abc123”,

 age: 55,

 status: 'A'

}

Select

Document:

The Document Data Model

Querying: MongoDB API – Examples

Slide 52

https://docs.mongodb.com/manual/

SQL MongoDB

{

 _id: 1,

 user_id: “abc123”,

 age: 55,

 status: 'A'

}

Always selected if
not deselected.

Aggregate

Document:

The Document Data Model

Querying: MongoDB API – Examples

Slide 53

Thorsten Papenbrock

https://docs.mongodb.com/manual/

SQL MongoDB

Group the documents by month and year and
calculate the total price, the average quantity,

and the count of documents per group.

{

 _id: 1,

 user_id: “abc123”,

 age: 55,

 status: 'A'

}

db.sales.aggregate(
 [{ $group : {
 _id : { month: { $month: "$date" },
 year: { $year: "$date" } },
 totalPrice: { $sum: { $multiply: ["$price", "$quantity"] } },
 averageQuantity: { $avg: "$quantity" },
 count: { $sum: 1 } } }])

MongoDB’s aggregation pipeline:
We can add additional operators like $match
after the $group to further refine the result.

Join

The Document Data Model

Querying: MongoDB API – Examples

Slide 54

Thorsten Papenbrock

https://docs.mongodb.com/manual/

db.orders.aggregate(
 [{ $lookup: {
 from: "inventory",
 localField: "item",
 foreignField: "sku",
 as: "inventory_docs" } }])

orders

inventory

inventory_docs

Index

Document:

The Document Data Model

Querying: MongoDB API – Examples

Slide 55

Thorsten Papenbrock

https://docs.mongodb.com/manual/

SQL MongoDB

For Indexes, the DBMS maintains the document offsets in
collections so that indexes work similar to indexes in

relational databases.

{

 _id: 1,

 user_id: “abc123”,

 age: 55,

 status: 'A'

}

Very rich API

Document:

The Document Data Model

Querying: MongoDB API – Examples

https://docs.mongodb.com/manual/

{

 _id: 1,

 user_id: “abc123”,

 age: 55,

 status: 'A'

}

Visit the
manual!

Overview

Relational and Non-Relational Data Models

Relational

Non-Relational

Row-Based

Column-Based

Key-Value

Column-Family

Document

Graph

1 1 1

1

1

1

1 1 1

1

1

The Graph Data Model

Natural Graph Data

Social Graphs Linked Open Data

Road and Rail Maps Network Topologies Circuit Diagrams

The Graph Data Model

Popular Graph DBMS

Slide 59

Data Models and
Query Languages

Distributed Data
Management

Thorsten Papenbrock

https://db-engines.com/en/ranking

The Graph Data Model

Definition

Slide 60

Data Models and
Query Languages

Distributed Data
Management

Thorsten Papenbrock

1. Structure

 Nodes: entities equivalent to records in the relational model

 Edges: (un)directed connections between nodes; represent relationships

 Properties: information relating to nodes (and edges); equivalent to attribute-

value or key-value pairs

2. Constraints

 Nodes consist of a unique identifier, a set of outgoing edges, a set of incoming

edges, and a collection of properties.

 Edges consist of a unique identifier, the end- and start-nodes, a label, and a

collection of properties.

3. Operations

 Insert/query/update/delete notes, edges, and properties (CRUD)

 Traverse edges; aggregate queries (avg, min, max, count, sum, …)

 Most popular query language: Cypher (declarative; uses pattern matching)

Also called property graph model.

The Graph Data Model

Definition

Slide 61

Data Models and
Query Languages

Distributed Data
Management

Thorsten Papenbrock

Example (Neo4j)

Nodes Edges

Properties
= Label: dedicated

property (label:“Person”)
to describe categories in

Neo4j; allows special
syntax in queries; still

optional like any property

The Graph Data Model

Graph vs. Relations

Model that Products can

have multiple Categories!

Nothing to be done here!

Key ProductID

Key CategoryID

ProductCategories

We could (for semantic reasons)
also add this inverse relation.

The Graph Data Model

Storage Variations

Slide 63

Data Models and
Query Languages

Distributed Data
Management

Thorsten Papenbrock

Native Graph Storage (e.g. Neo4j)

 Stores graph in a specialized

graph format that points nodes

directly to their adjacent nodes.

 Graph processing engines can

traverse the graph by simply

following links between nodes.

Non-Native Graph Storage (e.g. Titan)

 Stores graph in relational or object-

oriented format and uses indexes or

join-tables to find adjacent nodes.

 Graph processing engine needs to

look-up links in a global index or

join records/entities.

The Graph Data Model

Storage Variations

Native Graph Storage (e.g. Neo4j)

 Stores graph in a specialized

graph format that points nodes

directly to their adjacent nodes.

 Graph processing engines can

traverse the graph by simply

following links between nodes.

Non-Native Graph Storage (e.g. Titan)

 Example for relational model:

CREATE TABLE vertices (

 id integer PRIMARY KEY,

 properties json

);

CREATE TABLE edges (

 id integer PRIMARY KEY,

 tail_vertex integer REFERENCES vertices(id),

 head_vertex integer REFERENCES vertices(id),

 label text,

 properties json

);

CREATE INDEX edges_tails ON edges (tail_vertex);

CREATE INDEX edges_heads ON edges (head_vertex);

The Graph Data Model

Querying: Cypher

Slide 65

Data Models and
Query Languages

Distributed Data
Management

Thorsten Papenbrock

Cypher …

 is a declarative query language for graphs.

 formulates queries as patterns to match them against the graph.

 uses an ascii-art syntax:

 Nodes: statements in parentheses, e.g. (node)

 Relationships: statements in arrows, e.g. -[connects]->

 Properties: statements in curly brackets, e.g. {name:“Peter”}

 is designed for Neo4j but intended as a standard (like SQL).

 is shortened CQL (Cypher Query Language), which is not to be confused

with CQL (Cassandra Query Language)!

The Graph Data Model

Querying: Cypher

Slide 66

Data Models and
Query Languages

Distributed Data
Management

Thorsten Papenbrock

General structure for patterns

MATCH (node1:Label1)-[:Relationlabel]->(node2:Label2)

WHERE node1.propA = {value}

RETURN node2.propA, node2.propB

MATCH (node1:Label1 {node1.propA = {value}})-->(node2:Label2)

RETURN node2.propA, node2.propB

Named variable
to be referenced

“:” is the short notation to
filter by label, i.e., category

Same as where clause above but as
property pattern inside the node

Relation without label
matches any edge

We do not need to specify a
variable for nodes/edges

It’s declarative!
 The query planner can decide, for instance,
to first find all node1s and then work the way

to node2s or to do this vice versa.

The Graph Data Model

Querying: Cypher

Example: Basic graph queries

SQL Cypher

Nodes and edges
listed with labels

The Graph Data Model

Querying: Cypher

Example: Edge traversal queries

SQL

Cypher

Nodes and edges
listed with labels

SELECT DISTINCT c.Name
FROM customers c, orders o, order_details od, products p
WHERE c.CustomerID = o.CustomerID
AND o.OrderID = od.OrderID
AND od.ProductID = p.ProductID
AND p.ProductName = 'Chocolade';

MATCH (c:Customer)-[:PURCHASED]->(:Order)-[:PRODUCT]->(p:Product)
WHERE p.productName = "Chocolade"
RETURN distinct c.name;

Slide 68 Note that indexing is also possible on graphs:
CREATE INDEX ON :Product(productName);

The Graph Data Model

Querying: Cypher

Example: Aggregation queries

SQL

Cypher

Nodes and edges
listed with labels

SELECT e.name, count(o.OrderID) AS Count
FROM Employee e JOIN Order o ON (o.EmployeeID = e.EmployeeID)
GROUP BY e.EmployeeID, e.name
ORDER BY Count DESC LIMIT 10;

MATCH (:Order)<-[:SOLD]-(e:Employee)
RETURN e.name, count(o.id) AS Count
ORDER BY Count DESC LIMIT 10;

Grouping for aggregation is implicit:
The first aggregation function causes all

non-aggregated columns to
automatically become grouping keys.

 group by employee ID

The Graph Data Model

Querying: Cypher

Slide 70

Example: Creating a graph

https://neo4j.com/developer/cypher-query-language/ Two labels!

The Graph Data Model

Querying: Cypher

Example: Where it gets interesting

MATCH (me:Person {name:"T. Papenbrock"})-[:FRIEND*1..3]->(friend:Person)
RETURN me, friend

My node

“*” signals multiple levels; at least 1 and
at most 3 “FRIEND” relations away
(a clumsy SQL:1999 equivalent is

WITH RECURSION)

Direct, indirect, and in-indirect friends

MATCH (me {name:"T. Papenbrock "})
MATCH (expert)-[:WORKED_WITH]->(db:Database {name:"Neo4j"})
MATCH path = shortestPath((me)-[:FRIEND*..5]-(expert))
RETURN db, expert, path

The shortest path of maximum length 5 from me to a person in my
friends-network that can teach me Neo4j.

Multiple MATCH-statements in one query pattern if pattern
cannot be expressed with one linear path expression.

 in this way we can build star- or multidirectional-patterns

MATCH (me:Person {name:"T. Papenbrock"})-->()-->(someone:Person)
RETURN someone.name

Any relationship Any node Any relationship

The Graph Data Model

Ways to Model Properties/Relationships

Slide 72

Data Models and
Query Languages

Distributed Data
Management

Thorsten Papenbrock

Model “Nodes that have an address”, which should be used for filtering.

a) Using a property and then filtering by property

(node {address: “address”})

b) Using a specific relationship type and then filtering by relationship type

(node)-[:HAS_ADDRESS]->(address)

c) Using a generic relationship type and then filtering by end node label

(node)-[:HAS]->(address:Address)

d) Using a generic relationship type and then filtering by relationship property

(node)-[:HAS {type: “address”}]->(address)

e) Using a generic relationship type and then filtering by end node property

(node)-[:HAS]->(address {type: “address”})

 Best way depends on query performance (for filtering probably b)),

semantic fit (maybe c)), and extensibility (maybe a) or d))

https://neo4j.com/developer/cypher-query-language/ For further reading on Cypher

The Graph Data Model

Triple-Stores

Slide 73

Data Models and
Query Languages

Distributed Data
Management

Thorsten Papenbrock

Definition

 Same graph definition as property graphs, but graph is stored in simple

three-part, sentence-like statements of the form

 (subject, predicate, object)

instead of nodes with collections of direct links.

 Subject: start node label

 Predicate: edge/property label

 Object: end node label or static value with primitive data type

Examples

 (Jim, likes, Bananas)

 (Jim, age, 28)

 (Leon, is_a, Lion)

 (Leon, lives_in, Africa)

 (Africa, is_a, Continent)

then: triple = edge

then: triple = property

The Graph Data Model

Triple-Stores

Slide 74

Data Models and
Query Languages

Distributed Data
Management

Thorsten Papenbrock

Triple-Stores

 Examples:

 Datomic

 AllegroGraph

 Virtuoso

 Query languages:

 SPARQL

 Datalog

Property Graph DBMSs

 Examples:

 Neo4j

 Titan

 InfiniteGraph

 Query languages:

 Cypher

 Gremlin

The Graph Data Model

Triple-Stores

Slide 75

Data Models and
Query Languages

Distributed Data
Management

Thorsten Papenbrock

Semantic Web

 Initiative of the World Wide Web Consortium (W3C) to extend the Web

through standards for data formats and exchange protocols

 Most popular use case for triple stores

 Idea: Store entities/relations AND their semantic meaning in machine

readable format!

 Approach: “Resource Description Framework” (RDF)

 Subject, predicate and object in triples are represented as URIs

 Example:

<http://www.hpi.de/#TPapenbrock>

 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

 <http://www.w3.org/2000/10/swap/pim/contact#Person> .

 Ensures that datasets can be combined without semantic conflicts:

<http://www.hpi.de/#HS1> ≠ <http://www.uni-potsdam.de/#HS1>

Which tie their
meaning to an ID

URIs don’t need to
resolve to web pages

The Graph Data Model

Triple-Stores

Slide 76

Data Models and
Query Languages

Distributed Data
Analytics

Thorsten Papenbrock

Semantic Web

 Store semantic meaning with RDF:

 “Resource Description Framework Schema” (RDFS)

 A set of well defined RDF classes and properties to describe ontologies

(=formal description of “real” entities in some domain)

 Example for RDFS classes:

rdfs:Class (declares a node as a class for other nodes)

foaf:Person rdf:type rdfs:Class .

 ex:Lisa rdf:type foaf:Person .

 Example for RDFS properties:

rdfs:domain (declares the subject type for a predicate)

rdfs:range (declares the object type for a predicate)

ex:student rdfs:domain foaf:Person .

ex:student rdfs:range foaf:University .

 ex:Lisa ex:student ex:UniversityPotsdam .

If RDFS is insufficient to build
your ontology, use its

extension OWL
(“Web Ontology Language”)

The Graph Data Model

Triple-Stores

Slide 77

Data Models and
Query Languages

Distributed Data
Management

Thorsten Papenbrock

Semantic Web

 Store semantic meaning with RDF:

 “Resource Description Framework Schema” (RDFS)

 A set of well defined RDF classes and properties to describe ontologies

(=formal description of “real” entities in some domain)

 Example for RDFS classes:

rdfs:Class (declares a node as a class for other nodes)

foaf:Person rdf:type rdfs:Class .

 ex:Lisa rdf:type foaf:Person .

 Example for RDFS properties:

rdfs:domain (declares the subject type for a predicate)

rdfs:range (declares the object type for a predicate)

ex:student rdfs:domain foaf:Person .

ex:student rdfs:range foaf:University .

 ex:Lisa ex:student ex:UniversityPotsdam .

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

For more details:

a)Web page:
https://www.w3.or
g/TR/2014/REC-
rdf11-concepts-

20140225/

b)Lecture
“Semantic Web”

(Dr. Sack)

Turtle notation: a textual syntax for RDF that allows a graph to be written in
compact and natural form (https://www.w3.org/TR/turtle/)

General syntax: <url>:subject <url>:predicate <url>:object .

https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/

The Graph Data Model

Querying: SPARQL

Slide 78

Data Models and
Query Languages

Distributed Data
Management

Thorsten Papenbrock

SPARQL …

 is a declarative query language for triple-store graphs in RDF format.

 formulates queries in RDF syntax.

 is an acronym for “SPARQL Protocol and RDF Query Language”.

 Example:

SELECT ?locationName

WHERE {

 ?hpi :name “HPI gGmbH” .

 ?hpi :location ?locationName .

}

MATCH (hpi {name: “HPI gGmbH”})-[:location]->(loc)

RETURN loc.name

SPARQL

Cypher

The Graph Data Model

Querying: SPARQL

Slide 79

Data Models and
Query Languages

Distributed Data
Management

SPARQL …

 is a declarative query language for triple-store graphs in RDF format

 formulates queries in RDF syntax

 is an acronym for “SPARQL Protocol and RDF Query Language”

 Example:

SELECT ?personName

WHERE {

 ?person :name ?personName .

 ?person :bornIn / :within* / :name “Europe” .

}

MATCH (person)-[:bornIn]->()-[:within*0..]->(location {name: “Europe”}})

RETURN person.name

SPARQL

Cypher

SPARQL and Cipher
are quite similar.

<url>:label <variable>:label

The Graph Data Model

Strengths and Weaknesses

Slide 80

Data Models and
Query Languages

Distributed Data
Management

Thorsten Papenbrock

Strengths

 Many-to-many relationships (other data models heavily prefer one-to-many)

 Efficient traversal of relationships between entities (relationship queries)

 Traversal costs proportional to the average out-degree of nodes

(and not proportional to the overall number of relationships)

 Join performance scales naturally with the size of the data

 Natural support for graph queries: shortest path, community detection, …

 Flexible schemata due to flexible edge and property definitions

 Direct mapping of nodes/edges to data structures of object-oriented applications

Weaknesses

 OLTP and CRUD operations on many nodes are comparatively slow

 Data Distribution is hard, because workload is based on data locality

 Querying difficult due to unknown schema (flexibility leads to misuse)

The Graph Data Model

Graph DBMSs and Distribution

Slide 81

Data Models and
Query Languages

Distributed Data
Management

Thorsten Papenbrock

Replication/Clustering

 Supported by most graph DBMSs

 Same techniques for consistency management as other DBMSs

 Queries can be routed to any replica and then be served from it

Partitioning/Sharding

 Performance-wise problematic, because graph queries have join character rather

than point query character and often cross partition boundaries.

 Most systems offer rudimentary partitioning support,

but try to avoid it and go for replication (e.g. Neo4j).

 Challenge: Find a graph partitioning with …

a) possibly few inter-partition links;

b) possibly balanced partition sizes;

c) a certain number of partitions that matches physical nodes.

Subject to
research!

The Graph Data Model

Further Reading on Graph Databases

Slide 82

Data Models and
Query Languages

Distributed Data
Management

Thorsten Papenbrock

Graph Databases

 Free to download as pdf at:

 http://graphdatabases.com/

http://graphdatabases.com/
http://graphdatabases.com/

Overview

Relational and Non-Relational Data Models

Relational

Non-Relational

Row-Based

Column-Based

Key-Value

Column-Family

Document

Graph

1 1 1

1

1

1

1 1 1

1

1

Slide 84

Data Models and
Query Languages

Distributed Data
Management

Thorsten Papenbrock

Data Models and Query Languages

Summary

Slide 85

Data Models and
Query Languages

Distributed Data
Management

Thorsten Papenbrock

Image: © https://neo4j.com/blog/aggregate-stores-tour/

■ highly linked data

■ frequent schema changes

■ moderate growth

■ specialized on relationships

■ usually comply with ACID

■ usually vertical scaling

■ data optimization

■ relationship traversal

■ OLAP focus

■ inhomogeneous data

■ frequent schema changes

■ fast growth

■ little/no relationship support

■ usually sacrifice ACID

■ usually horizontal scaling

■ data distribution

■ throughput

■ OLTP focus

■ homogeneous data

■ relatively reliable schemata

■ moderate growth

■ full relationship support

■ usually comply with ACID

■ usually vertical scaling

■ data compression

■ transactions and security

■ OLTP and OLAP

■ Train your query skills with the following exercises:

□ MongoDB

– https://www.w3resource.com/mongodb-exercises/

– (includes solutions)

□ Neo4j / Cypher

– https://www.uio.no/studier/emner/matnat/ifi/INF3100/v17/undervisni

ngsmateriale/graph-dbs---neo4j.pdf

■ It helps if you really set up a database and try the queries yourself. If you

face any problems in doing so, please do not hesitate to ask us or the

mailing list for help.

Data Models and Query Languages

Check yourself

Slide 86

Data Models and
Query Languages

Distributed Data
Management

Thorsten Papenbrock

https://www.w3resource.com/mongodb-exercises/
https://www.w3resource.com/mongodb-exercises/
https://www.w3resource.com/mongodb-exercises/
https://www.uio.no/studier/emner/matnat/ifi/INF3100/v17/undervisningsmateriale/graph-dbs---neo4j.pdf
https://www.uio.no/studier/emner/matnat/ifi/INF3100/v17/undervisningsmateriale/graph-dbs---neo4j.pdf
https://www.uio.no/studier/emner/matnat/ifi/INF3100/v17/undervisningsmateriale/graph-dbs---neo4j.pdf
https://www.uio.no/studier/emner/matnat/ifi/INF3100/v17/undervisningsmateriale/graph-dbs---neo4j.pdf
https://www.uio.no/studier/emner/matnat/ifi/INF3100/v17/undervisningsmateriale/graph-dbs---neo4j.pdf
https://www.uio.no/studier/emner/matnat/ifi/INF3100/v17/undervisningsmateriale/graph-dbs---neo4j.pdf

