H IGHLANDS
= OF; SEARCH

Distributed Data Management
Storage and Retrieval

EAN OF DISTRIBUTEDp Do
Hasso

Plattner
Institut

IT Systems Engineering | Universitat Potsdam

ocC

0 Fayes

b—
ISI.ANDS
-_.sueun&oumy

e BIGTABLE
Cassandr %) . TaBLELANDS

L
OG STRUCTUR\ED\S

2\ Fomssr OFA A
SECONDARY: INDEXES fe
- VALLEY OF
#4577 IN-MEMORY) : s N
\\\\ s\)\\\

ENGINES

BAy oF STORAQE RN £3y
EMBEDDED A [i 7) \\\ MOUNTAINS OF = \
STORAGE . S COLUMN STORAGE ._ Y o ot \

Thorsten Papenbrock
Felix Naumann

F-2.03/F-2.04, Campus II
Hasso Plattner Institut

STORAGE &)

Introduction

Layering Data Models

1. Conceptual layer

Data structures, objects, modules, ...
> Application code

2. Logical layer

Relational tables, JSON, XML, graphs, ...
our focus now

» Database management system (DBMS) or storage engine_
3. Representation layer

Bytes in memory, on disk, on network, ...
» Database management system (DBMS) or storage engine

4. Physical layer

Electrical currents, pulses of light, magnetic fields, ...
» Operating system and hardware drivers

Hasso
Plattner
Institut

Distributed Data
Management

Storage and
Retrieval

ThorstenPapenbrock
Slide 2

Overview

Objective

Design a distributed DBMS
for fast storage and retrieval
of huge and evolving datasets

Distributed Data
Management

Storage and
Retrieval

ThorstenPapenbrock
Slide 3

Overview

Objective

-

=) -,,,%»;&
CouchDB

e cassandra

elasticsearch

Design a distributed DBMS
for fast storage and retrieval
of huge and evolving datasets

With techniques used by ...

RocksDB

Distributed Data
Management

Storage and
Retrieval

ThorstenPapenbrock
Slide 4

Overview

Objective

Most data models resemble key-value data.
> Let’s pretend that everything is key-value data!

T——
Design a distributed DBMS Distributed Data
i Management
for fast storage and retrieval Storage and
etrieva
of huge and evolving datasets
ThorstenPapenbrock

Slide 5

Fast Storage DBMS ﬂ Hasso
A Tiny Database Inetitut

= Basic database tasks: (a) write given data, (b) read specific data

= A tiny key-value store in two Bash functions: Concatenate the first two parameters
_ by %,” and write/append them to the
s file named “database”
db_set () { |
echo "$1,$2" >> database Find all lines starting with first
; parameter, remove fi eter
% from lines, and<select the last lin
db_get () { Why?
grep "~$1," database | sed -e "s/*$1,//" | tail -n 1

Distributed Data
Management

Storage and
= It works: Retrieval

$ db_set 1234 '{"name":"Berlin", "type":"city"}'
$ db get 1234
' {"name" : "Berlin" ’ nw type" : "cityll } v

ThorstenPapenbrock
Slide 6

Fast Storage DBMS

: ﬂ Hasso
A Tiny Database Inetitut

= Assume the following input-sequence:
$ db set 1234 '{"name":"Berlin","type":"city"}'
$ db_set 42 '{"name":"Germany", "type":"country"}'
$ db_set 42 '{"name":"Germany", "type":"country", "capital":"Berlin"}'

= The according “database”-file (= CSV-file):
$ cat database
1234, {"name" :"Berlin", "type":"city"}
42, {"name" : "Germany", "type" : "country"}

42, {"name" : "Germany" , "type" : "country", "capital":"Berlin"}
Distributed Data

“database” is a Log file: Management
- Storage and
Append only, no removal of old values Retricval
> Only the last entry for each key is valid.
= Fast writes (O(1)) but slow reads (O(n) with n records in the log) ;:‘_Z;s;enpape”bmk
|
= To speed-up reads: Indexes!

Overview

Objective

Design a distributed DBMS
for fast storage and retrieval
of huge and evolving datasets

Distributed Data
Management

Storage and
Retrieval

ThorstenPapenbrock
Slide 8

Fast Retrieval DBMS
Index

An additional data structure that helps to locate data by
some search criterion, i.e., the key

= Key = one or more identifying attributes

Basically a key-value store, where values can be actual data
or pointers to relational records, documents, graph
nodes/edges, ...

Improves data retrieval operations
= Usually O(n) to O(log(n)) or O(1)

Costs additional writes to index structure and storage space
» Use indexes carefully (not too many)!

Different index implementations (data structures) have
different strengths

» Choose the right index for your queries (workload)!

Hasso
Plattner
Institut

Distributed Data
Management

Storage and
Retrieval

ThorstenPapenbrock
Slide 9

Fast Retrieval DBMS
Hash Index

Definition

A hash index is a hash map (dictionary) that maps keys to the addresses
(in memory, on disk, on the network, ...) of their values/records.

The hash map uses a hash function to calculate mapping of keys and
positions and is usually kept in memory.

Uses

key-value stores, multilayered indexes, data distribution (load balancing,
sharding, ...)

Strength

Point queries: An index look-up delivers a value’s position in O(1).

Weaknesses

Range queries require to look up each key individually.
Hash map must fit into main memory; hash maps on disk perform poorly.

Hasso
Plattner
Institut

Distributed Data
Management

Storage and
Retrieval

ThorstenPapenbrock
Slide 10

Fast Retrieval DBMS

Hasso
Hash Index - Example ﬂﬁ!?ﬁ?ﬁ{

hash function

=)
key byte offset 2 In-memory hash map
1234 0
2 7>
Log-structured file on disk
/ (each box is one byte)
0 10 20 T
L2034 " |[njarmel [[Ble[r [{in["]| ["[t{YIP[®] " |"] Distributed Data
30 37 40 50 :Ianagem:nt
t
clift]lyl"|>Iy4l2],!{]"|nlalme|l"|:|"[G|le|lr|mlaln|y]|"]|,]|"|t Reﬂ?e%ifn
60 70 80
- - . : ThorstenPapenbrock
vipl|e : clolu|n|t|r]|y I Slide 11

Overview

Objective

Design a distributed DBMS
for fast storage and retrieval
of huge and evolving datasets

Distributed Data
Management

Storage and
Retrieval

ThorstenPapenbrock
Slide 12

Distributed DBMS
Remote Pointers

hash function

E.g., one file per node

gy R
key IP byte offset
1234 172.168.0.1 |0
42 172.168.0.1 |37
534 172.168.0.3 |0
59 172.168.0.6 |0
172.168.0.6

rtn
nnnnn
ww —

Hasso
Plattner
Institut

Distributed Data
Management

Storage and
Retrieval

ThorstenPapenbrock
Slide 13

Distributed DBMS

Remote Pointers

hash function

b) Fixed key ranges

Key-to-node assignment strategies:
a) Random

Great for load balancing and
efficient for point queries

172.168.0.6

Y ol Great for compression and
1234 172.168.0.1 h efficient for range queries
42 172.168.0.1
534 172.168.0.3
59 172.168.0.6

Distributed Data
Management

Storage and
Retrieval

ThorstenPapenbrock
Slide 14

Overview

Objective

Design a distributed DBMS
for fast storage and retrieval
of huge and evolving datasets

Distributed Data
Management

Storage and
Retrieval

ThorstenPapenbrock
Slide 15

Huge and Evolving Datasets
Segmentation

Controlling file growth

Indexed data, i.e., log is insert-only (for good write performance).
» Frequent updates make files unnecessarily large.
» Example: a store that maps products to stock-counts
= Each purchase increments a stock-count 2 new record!
= Each sale decrements a stock-count - new record!
= But: Collection of products is almost constant...

Solution: Consolidate/compact the log regularly freeing up disk space.

» How do we do this on a running system?

» Segmentation!

Hasso
Plattner
Institut

Distributed Data
Management

Storage and
Retrieval

ThorstenPapenbrock
Slide 16

Huge and Evolving Datasets
Segmentation

Hasso
Plattner
Institut

Reads

Writes

Compacted
Segmentation

= Break log into segments of fixed size. Current

= Each segment ...
= stores a range of keys.
= can be subject for distribution!
= has two representations:
= Compacted
= Static (= does not allow writes)

Distributed Data

= Purged (= only most recent value for each key) Management
e t Storage and
urren Retrieval
= Dynamic (= allows appending writes)
ThorstenPapenbrock

= Unchecked (= same key might appear multiple times) Slide 17

Huge and Evolving Datasets
Segmentation

Reads

Writes

Segmentation

= Whenever a segment reaches max size:

Compacted

Current

1.
2.

3.

4.

Close the segment and redirect writes to a fresh current segment file.
Compact the closed segment file:
1. Create a new compacted segment file.
2. Read the closed segment file backwards.
3. If a key is read for the first time:
» Write the entry (key + value) into a compacted segment file.
Merge the old compacted segment file into the new compacted segment file:

1. Read old the old compacted segment file.
2. If a key is not present in the new compacted segment file:
» Write the entry (key + value) into the new compacted segment file.
Delete the old segment file and the old compacted segment file.

Hasso
Plattner
Institut

Distributed Data
Management

Storage and
Retrieval

ThorstenPapenbrock
Slide 18

Huge and Evolving Datasets
Segmentation

Segmentation
= Compact:

= Merge:
(+ Compact)

Data file segment

' mew: 1078 purr: 2103 | purr: 2104 | mew: 1079

mew: 1080

mew: 1081

purr: 2105 ‘purr:210% purr:21077 yawn: 511

Compaction process

Compacted segment

yawn: 511 mew: 1082 purr: 2108

purr: 2108

mew: 1082 I

Data file segment 1

mew: 1078 purr: 2103 purr:2104 | mew: 1079 mew: 1080 mew: 1081
r— purr: 2105 l barr:zlos ‘ purr: 2107 yawn: 511 purr: 2108 mew: 1082
Data file segment 2
purr: 2109 purr: 2110 1 mew: 1083 Iscratch: 252 | mew:1084 mew: 1085
pum2111 mew:1086 | pur2112 purn2113 | mew: 1087

purr: 2114 I

+) Compaction and merging process

Merged segments 1 and 2

yawn: 511 scratch: 252 | mew: 1087 purr: 2114 ’

Hasso
Plattner
Institut

Distributed Data
Management

Storage and
Retrieval

ThorstenPapenbrock
Slide 19

Huge and Evolving Datasets ﬂ Hasso
Segmentation Inetitut

hash function

—a—
N

\—T
key IP byte offset Every log is now split
1234 172.168.0.1 0 into segmentation files
42 172.168.0.1 |37 Y _
534 172.168.0.3 | O
59 172.168.0.6 |0 :
172.168.0.6 Distributed Data

Management

nnnnn
ssssss

uuuuu

......
wwwwwww

= Storage and
k Retrieval

Nice side-effect: multiple
files per node for parallel
writes on each node!

Huge and Evolving Datasets _ _
. If the data is really large, then this dense
Segmentatlon index will also be too large and updating it

too expensive!

hash function 7
(\‘rq'“t\.-

key IP byte_offset
1234 172.168.0.1 | O
42 172.168.0.1 | 37
534 172.168.0.3 |0
59 172.168.0.6 |0
172.168.0.6 | 52 Distributed Data

Management

nnnnn
ssssss

......

&= Storage and
Retrieval

ThorstenPapenbrock
Slide 21

Huge and Evolving Datasets
Segmentation

Index = key-value store
» Segmentation!

byte offset byte offset

172.168.0.1 514 172.168.0.3 34

172.168.0.1

key IP byte offset

172.168.0.6

172.168.0.6

byte offset byte offset

172.168.0.1 534 172.168.0.3

 uE
o=

172.168.0.3 .l

172.168.0.1

byte offset

59 172.168.0.6

7245 172.168.0.6

Distributed Data
Management

Storage and
Retrieval

ThorstenPapenbrock
Slide 22

Wait!
If the index becomes too large and we start partitioning our index,
we are back to our initial problem!
= What is different now with segmented index data?

Advantages:

= Index entries are much smaller than data entries
(faster compact and merge).

= Index entries are of fixed length
(will enable binary search).

= Index could use key range partitioning while
the data still uses random partitioning.

Reality:
» The index is usually merged with the data.

Huge and Evolving Datasets Index = key-value store
Segmentation > Segmentation!

byte offset key IP byte offset

172.168.0.1 514 172.168.0.3 34 172.168.0.6

172.168.0.1 = 172.168.0.6

byte offset byte offset
172.168.0.1 534 172.168.0.3 59 172.168.0.6
172.168.0.1 \ii 7245 172.168.0.6

172.168.0.3

Management
Storage and
Retrieval
We just I(_)st ourdO(l) look-up ThorstenPapenbrock
time and are Slide 24
back to O(n) reads ...

Distributed Data

Overview

Objective

Design a distributed DBMS
for fast storage and retrieval
of huge and evolving datasets

Distributed Data
Management

Storage and
Retrieval

ThorstenPapenbrock
Slide 25

Fast Retrieval DBMS Hasso
. Plattner
Segmentation Institut
key IP byte offset key | IP byte offset key IP byte offset

172.168.0.1 243 514 172.168.0.3 34 172.168.0.6

172.168.0.1 134

172.168.0.6

.38 p
Lo |
172.168.0.1 O 534 172.168.0.3 O 59 172.168.0.6

\ - T b
172.168.0.1
_ !! 3

IP byte offset byte offset byte offset

— 7245 172.168.0.6

172.168.0.3 ' .l

Distributed Data
Management

Storage and
Retrieval

How do we find a ThorstenPapenbrock
certain key efficiently? | Slide 26

Fast Retrieval DBMS ﬂ Hasso
How do we find a certain key efficiently? Inatitut

a) A dense index?
= All key-value pairs in the segment files are indexed.

» Direct look ups but index size equal to segment file size

b) A sparse index?

= First key-value pair in each segment file is indexed.
» Small index but lookup still in O(n/p) with p segment files ll

c) A sparse index + sorting?

= First key-value pair in each segment file is indexed and
segment files are sorted.

= If a query key is not directly indexed: ll l
- find the next smaller key in the index (binary search)
- find the segment file of the next smaller key (look up)

- search for the query key in the block (binary search) ThorstenPapenbrock
Slide 27

» Small index and lookups in O(log(n))

Fast Retrieval DBMS
Architecture

(so far)

Hasso
Plattner
Institut

key | Segment

Distributed Data

Management

Storage and

Retrieval
Hash-index Sorted Segments Data Segments ThorstenPapenbrock
on first key with dense pointers with some partitioning and Slide 28

data of arbitrary length

Fast Retrieval DBMS
Sorted Segments

2045
N

Showing only the keys

= Current approach:
1. All key-value pairs are sorted by their key.

» Only pairs with larger keys can be appended:
If a new key cannot be appended, trigger compact+merge
with compacted segment and start a new current segment!

2. Each key appears only once.

» No pair with an existing key can be appended:
If a key already exists, trigger compact+merge
with compacted segment and start a new current segment!

3. Key-value pairs have same length.

» Find a key via binary search in the sorted segment
(and its compacted sorted segment).

» 0O(2 * log(n)) read performance now (with binary search),
but we lost our O(1) write performance!

Hasso
Plattner
Institut

Distributed Data
Management

Storage and
Retrieval

ThorstenPapenbrock
Slide 29

Fast Retrieval DBMS {_l; @ ﬂ Hasso

Compact + Merge

Sorted Segments Plattner
IIEHIIEIII—

Institut
= Given two (or more) sorted segment files, their merge is calculated in
linear time similarly to the merge-sort algorithm:

Create an empty compacted segment file.
Read all sorted segment files simultaneously.

Until all files are read entirely: Copy the smallest key with its value

into the compacted segment and read the file’s next key-value pair.
Distributed Data

= If keys are equal: Copy only the most recent key-value pair and Management
advance both pointers. Storage and
Retrieval
» More efficient than merging general segment files, ThorstenPapenbrock

but still too slow for random inserts of key-value pairs! Slide 30

I
Fast Retrieval DBMS nnﬁn nn& ﬂ Hasso

Sorted Segments

Compact + Merge

linear time similarly to the merge-sort algorithm:

handbaq 8786 handful: 40308 handicap 65995 handkerchlef 16324 :
f ' handlebars: 3869 | handprlnted 11150 |

. handcUffs: 2729 handful; 42307 | handlcap 67884 handlwork 16912

handkerchief 20952 handprinted: 15725

handful: 44662 handicap: 70836 ~ handiwork: 45521 | handlebars: 3869
' handoff: 5741 | handprinted: 33632 |

+) Compaction and merging process

| handbag: 8786 | handcuffs: 2729 | handful: 44662 If{éndica~p: 70836

handiwork: 45521 handkerchief: 20952 handlebars: 3869 handoff: 5741

' handprinted: 33632

ﬂﬂﬂﬂg---—

= Given two (or more) sorted segment files, their merge is calculated in

Segment2 Segment 1

Segment 3

Merged 1,2,3

Institut

Distributed Data
Management

Storage and
Retrieval

ThorstenPapenbrock
Slide 31

I
Fast Retrieval DBMS ﬂ Hasso
SSTables atiter

Sorted String Tables (SSTables)
SSTables are special segment files with two properties:
= Sorted (by their keys)
= Immutable (hence, no appending writes)
= First introduced by Google (in BigTable and Google File System GFS).

. Block index for
= Divergent interpretations of this concept exist. the SSTable

= Assume variable length data, i.e., no binary search! ~
= Structure: _ _blockl block2 block3 block4 block5 block6 block7 block8 block9 block10

SSTable -

I
Fast Retrieval DBMS ﬂ Hasso
SSTables atiter

Sorted String Tables (SSTables)

= Blocks = Block index
= Typically 64 KB = Stored in the last block of an SSTable
= Are read in one disk seek operation = Indexes the first key of each block
= Store key-value data of any length = Supports binary search

(key look-up = sequential scan in memory)

= Structure: _ blockl block2 block3 block4 block5 block6é block7 block8 block9 block10

SSTable -

.|
Fast Retrieval DBMS

SSTables

Hasso
Plattner
Institut

Sorted String Tables (SSTables) _
Compressible,
= Example: because blocks are

immutable and

Distributed Data
Management

) ; X : read in one I/0!
Sparse index : Sorted segment file (SSTable) on disk ; /
in memory > .
. | hand: 91541 Z/
key byte offset o
|]

handbag: 8786 handcuffs; 2729 handful: 44662 2
hammock 1004911f— e — =JE — ' . kY
handbag 1021344 . handicap: 70836 handiwork: 45521 | handkerchief: 20952) 5

3

S

hangout 1068124

handsome 104-66?:\ handlebars: 3869 - handoff: 5741 = handprinted: 33632

handsome: 86478 handwaving: 44005 | handwriting: 22846

Storage and

......... Retrieval
Keep this index block in ‘ ThorstenPapenbrock
memory or read it on-demand | Slide 34
in one additional 1/0.

key | IP | byte offset

key | IP | byte offset

key | IP | byte offset

SSTables
with dense pointers

Hasso
Plattner
Institut

Wait!
SSTables are immutable.

> Every insert will trigger a
compact + merge!

> We made it worse!

Yes, but since the values can be
arbitrary long now, we can merge
the Data Segments with the SSTables.

We solve the write issue later ;-)

Fast Retrieval DBMS
Architecture

(so far)

key

IP

SSTable

Hash-index
on first key

/AN

SSTables

Hasso
Plattner
Institut

Distributed Data
Management

Storage and
Retrieval

= We solve the write issue later ;-)

Fast Retrieval DBMS
Architecture

(so far)

Hash-indexes are good for point queries,
but can we do better for range queries?

—

key

IP

SSTable

/

Hash-index
on first key

\

Fast Retrieval DBMS ﬂ Hasso
Plattner
B-Tree Institut

R. Bayer and E. McCreight. “Organization and maintenance of large ordered indices”,
Definition In Proceedings of SIGFIDET (now SIGMOD) Workshop, pages 107-141, 1970

= A self-balancing, tree-based data structure, that stores values sorted by key and
allows read/write access in logarithmic time.

= A generalization of a binary search tree as nodes can have more than two

children: oz o o o
Structure /?| 10 9] lz|u o /|v |?\ 2004 935 |8
u BlOCkS: ‘4 6 s|12 1+ 15‘ 18 20”22 24 25H2s 30 32”34 36H3s 0 R»

= Nodes in the tree that contain key-value pairs and pointers to other blocks Distributed Data

= Correspond to physical, fixed sized disk blocks/pages that are addressed Management
and read as single units Storage and
Retrieval
= Pointers:
= Edges in the tree that connect blocks in a tree structure ThorstenPapenbrock
Slide 38

= Correspond to physical block/page addresses

Fast Retrieval DBMS Hasso
Plattner
B-Tree log() to a very large base; Institut

hence, depth usually <= 3

Constraints
= Balanced:
= Same distance from root-node to all leaf<nodes
» Depth of the tree is in O(log(n)) (= key-look-up complexity)
> Insert/delete procedures ensure balance
= Block-Content:
= A block contains n keys and n+1 pointers in alternating order
= Pointers left to a key point to blocks containing smaller keys
= Pointers right to a key point to blocks containing larger/equal keys
> All values in the tree are sorted by their keys!

= Block-Size:

= Typically 4096 Byte per block; 4 Byte per key; 8 Byte per pointer ThorstenPapenbrock
> 4n + 8(n+1) <4096 => n =340 Slide 39

Fast Retrieval DBMS ﬂ Hasso
Plattner
B-Tree Institut

Constraints
= Root Node:

= Points to underlying nodes (and vaIues)i

_ B-Tree vs. B*-Tree
» At least 2 pointers used _ _
B-Trees store keys and values in both internal

" Inner Node: and leaf nodes;
= Points to underlying nodes (and values) B+-Trees store values only in leaf nodes.
= At least [(n + 1)/2] pointers used » The following examples show B*-Trees
= Leaf Node:

= Points to right neighbor leaf and values Distributed Data

Management
= At least 1 neighbor pointer (if present) and [(n + 1)/2] value pointers used Storage and
Retrieval
Uses
= Any data store: most widely used index structure for DBMSs ThorstenPapenbrock
Slide 40

= Sorted, dense, and sparse indexes

Fast Retrieval DBMS
B-Tree

Example Key Block

= Root

free space

—Inners

= |_eafs

Hasso
Plattner
Institut

Distributed Data
Management

Retrieval

/7 —Values storage and

Leafs are linked!

» Range query: find start of the range through the tree, then scan leafs.

ThorstenPapenbrock
Slide 41

Fast Retrieval DBMS
B-Trees

——[0 —S=[CIEl — = [CIEED

d, d, d, d, d, d, d,

Hasso
Neighbor pointer Plattner
Institut
"Look up user_id = 251"
[rel L‘IOOLref [2007 ref [300] o 1400[ref {5007 re J
ycrn 4 . e
,"‘wuskeyaao 200<key €300 S TTeeseeeaaaa. » 300 < hey <400

[refllﬂl ref 1135 Ivref l152] ref]169L"fi ITQﬂ_ref_]

e » »

_Spit, LN Py —Z 2]
IIE=: :;3" IIII IEIBI IIII IBIEII

Grow scenario

=20, I0E]
KRR ElyERE2E

EE —eEm &
o] |n|a| B1 [T |n|a| =]

I __—7

Y by N

[Trer T270] ref [230] rer [250] ref [270] ref [290] ref |
; 7 ; T :

& ¥ » A

250 < key < 270

[250] vat [251] va) 252 [vai [253] va) [254 vat |

Look up scenario

Distributed Data

Management
; Storage and
oize o [0 |0 With d< Retrieval
Qe o [o2 \ [25[8l54 83 o ThorstenPapenbrock
/ k‘ / Mlde 42
+ 6 8“12 14 16‘ 18 20 ‘22 2+ 26 ‘28 30 32”34 36 384042

Fast Retrieval DBMS

B-Tree: Insert & Delete

Split and Merge operations guarantee Hasso
that the B-Tree is always balanced Plattner
and the blocks are filled sufficiently. Institut

Find corresponding leaf node for key
)
Insert key and value-pointer

‘ Find leaf node of the key |

‘ Delete key and value-pointer |

Split Split node N into nodes N, N,
i and distribute keys evenly

Yes No
Copy smallest Move largest
key in N, key in Ny
upwards upwards

, Insert new key-pointer
pair into parent node

- L

No

* Done Underflow? @I

Yes Redistribute No

with neighbors?
Create new ---
root node : Merge
"| (with only one J
Single key) Move split-key
Redistribute into parent node of

left neighbor node

Move all keys of the right neighbor J
— into the left neighbor node and

delete the (empty) right node

Adjust the keys of
all parent nodes

Fast Retrieval DBMS

Architecture

(so far)

key

pointer

key

pointer

pointer

Bt-tree

on first key

key IP SSTable
key IP SSTable
key IP SSTable
key IP SSTable

SSTables
with data

Hasso
Plattner
Institut

Recall:
Each SSTable
comes with its

small one-block
mini-index!

Distributed Data
Management

Storage and
Retrieval

ThorstenPapenbrock
Slide 44

Overview

Objective

Design a distributed DBMS
for fast storage and retrieval
of huge and evolving datasets

Distributed Data
Management

Storage and
Retrieval

ThorstenPapenbrock
Slide 45

Fast Storage and Retrieval ﬂ Hasso
LSM-Trees Institut

Institut

Patrick O'Neil et. al. “The log-structured merge-tree (LSM-tree)”,
Definition Acta Information, volume 33, number 4, pages 351-385, 1996
= |Log-Structured Merge-Trees (LSM Trees) are multilayered search trees for
key-value log-data that use different data structures, each of which
optimized for its underlying storage medium.

memtable
Example Cp Tree

= First layer (C, Tree): index structure that ...

1) efficiently takes new key-value pairs in any order.

2) outputs all contained key-value pairs in sorted order.
> B-trees, skip-lists, red-black trees, AVL trees, ...

= Second layer (C; Tree): index structure that ...

Merge Multi-Page Blocks

| . . In Memory
1) is able to merge with sorted key-value pair lists.

ThorstenPapenbrock

2) effectively compacts/compresses contained key-value pairs. Slide 46

» SSTables (+ some index structure, e.g. B-tree or block index)

Fast Storage and Retrieval ﬂ Hasso
LSM-Trees Institut

Institut

Intuition
= Sorted trees are fast in-memory indexes but they outgrow main memory.
= SSTables are indexable and compact but don’t support random inserts.

> Insert: Add new key-value pairs to C, Tree; frequently merge trees_| Merge is required
down the hierarchy (C, > C, > C, ...) to free memory. if a block is full!

» Read: Search the key chronologically in every layer (C, > C; 2 C, ...)
until the first, i.e., most recent value is found.

Co Tree : (4 Tree C_Tree Cy Tree
E Distributed Data
' Analytics
. Storage and
: Retrieval
) E ThorstenPapenbrock
i Slide 47
In Memory Merge Multi-Page Blocks On Disk

Fast Storage and Retrieval
Architecture

Hasso
Plattner
Institut

compact +
merge

ey pointer

Co Tree: In-memory B*-tree

C; Tree: On-disk SSTables
(and B*-tree)

eeeeeeeeee

ey pointer

eeeeeeeeee

IIIIIIIII

ThorstenPapenbrock

g Slide 48

Fast Storage and Retrieval

== Plattn
: daltner
Architecture Institut
\ o oo] .
Co Tree: In-memory B*-tree T
=Y. COMpact +

C; Tree: On-disk SSTables o e fosee |)
(and B*-tree)

=9 merge

E
IFQ ThorstenPapenbrock
= | Slide 49

Fast Storage and Retrieval ﬂ Hasso
: Plattner
Architecture - Institut
\u,, nnnnnn
mpact +
Co Tree: In-memory B*-tree comp
merge
C, Tree: On-disk SSTables '
(and B*-tree) I
= = compact +
e merge
C, Tree: On-disk SSTables
(and B*-tree) ___ =
S - ThorstenPapenbrock
i Slide 50

Fast Storage and Retrieval
Architecture

Co Tree: In-memory B*-tree

C,; Tree: On-disk SSTables

nnnnnnnn

(and B*-tree)

pointer

C, Tree: On-disk SSTables
(and Bt-tree)

key | pointer

xxxxxxx

pointer

key | pointer

xxxxxxx

Hasso
Plattner
Institut

Local look-up failed!

Local look-up failed!

Found it!

ThorstenPapenbrock
Slide 51

Fast Storage and Retrieval

IF;Ilansso
. attner
Architecture - Institut
N =
Co Tree: In-memory B*-tree ==
C, Tree: On-disk SSTables E
(and B*-tree) I S O e 5
\‘m nnnnn —__—k" e
— a
E
C, Tree: On-tape SSTables B
(and B*-tree) I S O e £
—— 1 S E | ThorstenPapenbrock
Can use trees for distribution and to o Slide 52
move older data to slower storage. 4

Fast Storage and Retrieval Hasso

LSM-Tree Example: B+-Tree & SSTables ﬂf’n'iﬁ't‘.f{

Example m Insert everything into the B*-tree first.

m Depth of the tree is fix.

12124) 26| | [30/48]54 15870/92

12/26) Jl135(39/42[47/57)

ThorstenPapenbrock
Slide 53

Fast Storage and Retrieval

Hasso
. Plattner
LSM-Tree Example: B*t-Tree & SSTables Institut
m Insert everything into the B*-tree first.
Example o
42 !! m Depth of the tree is fix. For this example:
m If leaf is full: Assume all inner nodes are full
1. Re-assign keys? and no redistribution possible.
T A—
2. Split without increasing depth over max?
mmm m . mmm Em 3. Merge leaf into C,’s SSTables.
= Merge:
mmm m Find SSTable that would take the first key of the leaf.

m Start merging that SSTable with the leaf.

v
12/24] 26| | [M30|48[54ll5870]92 = If current leaf key >= start key of next SSTable:

s Continue merge with that SSTable.

12/26) Jl135(39/42[47/57)

ThorstenPapenbrock
Slide 54

Fast Storage and Retrieval

LSM-Tree Example: B*t-Tree & SSTables

Hasso
Plattner
Institut

Insert everything into the B+-tree first.

Example

a2|... ...

Depth of the tree is fix.
If leaf is full:
1. Re-assign keys?

2. Split without increasing depth over max?
mmm m . mmm E 68 3. Merge leaf into C,’s SSTables.
Merge:
m Find SSTable that would take the first key of the leaf.
Start merging that SSTable with the leaf.

Em. Em. m.. Em m If current leaf key >= start key of next SSTable:

mmm s Continue merge with that SSTable.

If some SSTable gets full:

4
m E . m Merge that SSTable down the hierarchy.

s If no further level exists: ThorstenPapenbrock
_ Slide 55
m Split the SSTable.

Fast Storage and Retrieval

LSM-Tree Example: B*t-Tree & SSTables

Hasso
Plattner

Institut
m Insert everything into the B*-tree first.
Example
42 !! m Depth of the tree is fix.
m If leaf is full:
1. Re-assign keys?
2. Split without increasing depth over max?
W . mmm E 68 3. Merge leaf into C,’s SSTables.
= Merge:
Don’t forget to balance your B*-tree! m Find SSTable that would take the first key of the leaf.

Start merging that SSTable with the leaf.

Em. EE. m.. Em m If current leaf key >= start key of next SSTable:

s Continue merge with that SSTable.

m If some SSTable gets full:

mmm EEE mm .. m Merge that SSTable down the hierarchy.

s If no further level exists: ThorstenPapenbrock
_ Slide 56
m Split the SSTable.

Fast Storage and Retrieval

LSM-Tree Example: B*t-Tree & SSTables

Hasso
Plattner
Institut

Insert everything into the B+-tree first.

Example

a2|... ...

Depth of the tree is fix.
If leaf is full:
1. Re-assign keys?

2. Split without increasing depth over max?
mm. m . mmm E 68 3. Merge leaf into C,’s SSTables.
Merge:
m Find SSTable that would take the first key of the leaf.
Start merging that SSTable with the leaf.

Em. Em. m.. Em m If current leaf key >= start key of next SSTable:

s Continue merge with that SSTable.

m If some SSTable gets full:

mmm EEE mm .. m Merge that SSTable down the hierarchy.

s If no further level exists: ThorstenPapenbrock
_ Slide 57
m Split the SSTable.

Fast Storage and Retrieval
Architecture

Co Tree: In-memory B*-tree

C,; Tree: On-disk SSTables

nnnnnnnn

(and B*-tree)

pointer

C, Tree: On-disk SSTables
(and Bt-tree)

key | pointer

xxxxxxx

pointer

ey | pointer

\u
Looking up non existing keys
IS super expensive!

xxxxxxx

Hasso
Plattner
Institut

Local look-up failed!

Local look-up failed!

Local look-up failed!

ThorstenPapenbrock
Slide 58

Not found!

— .
EENENNNNNNENNeeN Bloom filter

key no

)/ = Not found!

Fast Storage and Retrieval
Architecture

nnnnnnnn

C,; Tree: On-disk SSTables

(and B*-tree) ..
e
C, Tree: On-disk SSTables
(and Bt-tree) =
= P Found it!
ThorstenPapenbrock

Slide 59

S —
llllllllllllllll

Fast Storage and Retrieval
maybe

Bloom filter

Hasso
Plattner
Institut

A Bloom filter is a probabilistic data structure that answers set containment
questions in constant time and with constant memory consumption.

“"Does element X appear in the set?”

Answer "no” is guaranteed to be correct.

Answer “yes” has a certain probability to be wrong (hence, "maybe”).
» But then the concrete look-up will just fail.

> Very nice property that allows the use of Bloom filters in exact systems.

Structure

= Bitset of fixed size (typically a long array)

Presentation Title

= One (or more) hash functions gpeak_e? JobD .
escription, bate 1

needed

Burton H. Bloom, "Space/Time Trade-offs in Hash Coding with Allowable Errors", Chart 60

Communications of the ACM, volume 13, number 7, pages 422-426, 1970

Fast Storage and Retrieval ﬂ Hasso
Bloom filter Inatitut

Institut

Insert

Hash functions: h;(), h5(), h5()

= A hash function hashes the key to one bit in the bitset. Presentation Title
, , : : : Speaker, Job
= The Bloom filter implementation can use one or multiple functions. DFe)igriEEior(\), Date if
ded
= Trade-off: More functions reduce the probability of hash collisions but Eﬁirtem

they also exhaust the bitset faster, which produces more collisions later.

Fast Storage and Retrieval ﬂ Hasso
Bloom filter Inatitut

Institut

Insert

Given the number of hash functions, the

number of expected items, and a target

false positives rate, the minimum size of
the bitset can be calculated [1].

i
11010/1/110/100/0/1/1/1.0/10/0

Bitset
= Fixed array of bits. Presentation Title
. . - . . Speaker, Job
= Increasing the array size decreases the probability of hash collisions Description, Date if
especially when multiple hash functions are used. P:ﬁ?:tegz

[1] https://en.wikipedia.org/wiki/Bloom_filter#CITEREFBloom1970

Fast Storage and Retrieval ﬂ Hasso
Bloom filter Inetitut

Query m

h . () h 3 ()
h>()
1.0/0/1/1/0/ (00 | 10100
maybe

Presentation Title

Speaker, Job
Description, Date if
needed

Chart 63

Fast Storage and Retrieval ﬂ Hasso
Bloom filter Inetitut

Query

h;()

h>()

h3()

no

Presentation Title

Speaker, Job
Description, Date if
needed

Chart 64

Fast Storage and Retrieval

Bloom filter

Do you have 'key!1'?

FILTER

No

Do you have 'key2'?

Yes: here is key2

Do you have 'key3'?

No

Filter:
No

Filter:
Yes

False Positive

Filter:
Yes

necessary

disk access

STORAGE

Yes: here is key2

unnecessary
disk access

No

https://en.wikipedia.org/wiki/Bloom_filter#CITEREFBloom1970

No

Yes

No

Storage:

Storage:

Storage:

Hasso
Plattner
Institut

Presentation Title

Speaker, Job
Description, Date if
needed

Chart 65

Fast Storage and Retrieval

LSM-Trees

Optimizations | querying non-existend values is expensive (check all layers)

» Catch most of these queries with a Bloomfilter

—_

lookup Bloom fence g o
key X filters ointers o
T P é o LSM-tree
w
o O 2
buffer ——+— *5'0@,, Q@
\ - false wasted 9‘% ©
\ positive /O) ,25\
- X
bigger filters — fewer false positives more merging — fewer runs

lookup cost vs. update cost

_— \

lookup cost vs. memory

Size-tiered compaction
> Merge newer, smaller SSTables successively into older, larger SSTables

Hasso
Plattner
Institut

Distributed Data
Management

Storage and
Retrieval

ThorstenPapenbrock
Slide 66

Overview

Objective
Design a distributed DBMS Distributed Data
for fast storage and retrieval Storage and

of huge and evolving datasets

ThorstenPapenbrock

ﬁ Some further indexing-techniques ... | Slide 67

Excursus

Hasso
Alternative Index Types ﬂ Inatitut

Clustered Index with Data (see LSM-Trees)

= Stores indexed data or parts of it within the index (plus/instead of pointers to data)

= Example: An index on attribute delivery status allows to o o T @g
count pending deliveries without data access. e EEE £k T
> Improves the performance of certain queries. ;mijfT; N \E Bl o
> Might reduce write performance and require additional storage. HF‘Z e
» Redundant values (in data and index) complicate data consistency. wiw s o Wn
Multi-Column Index
a) Concatenated index: Merge keys into one key.

b) Multi-dimensional index: Split multi-dim. key domain into multi-dim. shapes.

= Example: An index on two-dim. geo locations (1ongitude, latitude)
to answer intersection, containment, and nearest neighbor queries.

Slide 68

= Most common implementation: R-Trees

Excursus

R-Tree

R-Tree

= A variation of a B-Tree that uses a hierarchy of rectangles as keys -
= Also: balanced and block-sized nodes

= Indexed points ...
= are clustered into leaf nodes.

= might occur in multiple clusters.

= Insertion:
= into appropriate clusters
= gplit cluster if too large

= find smallest cluster extension
via heuristic if no cluster fits directly

,,,,,,,,,,,,,,,

e —R12 R [B

I'R2

|

|

R SO B (it

I'R6

I}

:fms

1 A SO | L

i

i —— A
[Rilr2] |

EEE

re | re [Rr10] [R11[R12] | [R13[R14]

R19)

Distributed Data

et e PR T S ‘ Management

Storage and
Retrieval

R6 | R7 ThorstenPapenbrock

\ Slide 69
| [ris[r16] | [R17[R1B[R13

Excursus

Hasso
Alternative Index Types ﬂ Inatitut

Fuzzy Index
= Index on terms/keys that allows for value misspellings, synonyms, variations, ...
= Idea: sparse, sorted index (e.g. SSTable or B-Tree) with similarity look up
= Example: An index on attribute firstname where names might be misspelled.
1. Look up most similar key.
2. Scan the (sorted!) neighborhood of that key’s value for similar values.

John Sno { Distributed Data
Management
John Snow 9
Storage and
Jon Snow Retrieval
john snow
ThorstenPapenbrock

jonny snow Slide 70

Storage and Retrieval

s
Check yourself Inatinat

m Given these two SSTable segments from 16/11/2018 and 17/11/2018,
calculate their compacted merge.

16/11/2018 17/11/2018
ambition 62 accident 63
area 71 ambition 14
argument 59 ambition 27
assumption 87 anxiety 78
atmosphere 40 area 56
attitude 53 argument 85 l?a:t\:;:rt::nlt)ata
argument 79 Storage and
assistance 50 Retrieval
m Specify the order in which the elements are accessed. Tobias Bleifu

Slide 71

! OF DISTRIBUT &
\ oCEAN ED D4 T4 \
\
N
\
\
Chapter 3 Storage ang 1
. etr, - Cion
~ S €8 _ . W b
= S S S R e . — 1S LANDSZO Fam— !
:_~",: -;(, . - i _-'-:;‘:\‘:":::———\\ ,— Star :-.'.. 55_ .-——SUEN”F‘:‘ICE,NQUIRY :
”R_'.‘}k_' "'"’i -‘\-_: -‘ : 5 “,‘—_{'—::":"A—‘— 'E_/ Ii'isocrfllfrrggnt e Ts ,'
C d : Bl(.I"A;BLE (;(: — -‘—E—_{j——: = /
L b assandra®) 10 DS (Il’zag\ﬁcﬁl)
edshi
G- STRUCTURED‘
HIGHLANDS :
OF;SEARCH
.,}\FORLSTOFJ\ A oo
SECONDARY. INDEXES : A
x _. VALLEY OF
: &Z& Eﬁl}—"' IN-MEMORY
BAY OF -_.-.‘./REPUBLIC;O F‘g STOR"QE v e o
Eonaey RANSACTIONTPROCES)y = G
ENGINES X FY g & Y _ 7’ S 3 &\\\\\W
: - to°
- BerkeleyDBm PostgreS QL
= i o H
%8 MongoDB
— i~ = > . 3 i P i . i To.Bulic Storage
5 S = o B = (Chapter 4) \
% _:’. & Distributed Filesystems \
= = » (Chapter 10)
VA 3
e Ay E
el e £A OF sTorRAGE & RETR! B P

