
Distributed Data Management

Replication
Thorsten Papenbrock

F-2.04, Campus II

Hasso Plattner Institut

Distributing Data

Motivation

Slide 2

Replication

Distributed Data
Management

Thorsten Papenbrock

Scalability (Elasticity)

 If data volume, processing, or access exhausts one machine, you might

want to spread the load on more machines.

Availability (Fault Tolerance)

 If data availability must be guaranteed even in the presence of failures and

machine crashes, you might want to keep multiple distributed copies where

one can take over for another failed one.

Latency

 If data is accessed from various locations, you might want to keep the data

local to where it is needed.

 These requirements demand for replication and partitioning

Distributing Data

Replication vs. Partitioning

Slide 3

Replication

Distributed Data
Management

Thorsten Papenbrock

Replication

 Store copies of the same data on several nodes

 Introduces redundancy

 Improves scalability (parallel I/O; no memory scalability!)

 Improves availability (nodes can fully take the load of failed nodes)

 Improves latency (requests can be served by the closest/underutilised node)

Partitioning

 Store the data split in subsets (partitions) on several nodes

 Also known as sharding

 Improves scalability (some parallel I/O; memory consumption)

 Improves availability (node failures take out only parts of the data)

 Improves latency (place partitions close to where they are accessed most)

Different mechanisms but usually used together

our focus now

For reads!

Distributing Data

RAID?

Slide 4

Replication

Distributed Data
Management

Thorsten Papenbrock

Redundant Array of Independent Disks

 Usually make use of special hardware
(RAID controller)

 Run the same, centralized logic on top
(only storage distribution)

Distributing Data

Replication

Slide 5

Replication

Distributed Data
Management

Thorsten Papenbrock

Challenges

1. Each node must be able to store a copy of the entire dataset

 Use partitioning if not possible

2. Change must be propagated to all other nodes

 Single-leader, multi-leader, or leaderless replication algorithms

Replication Algorithm

 An algorithm that propagates changes to all replicas

 Replica:

 A compute node that stores a copy of the data

 Leader-based:

 A replication algorithm where (one or more) dedicated compute nodes

are responsible to propagate change

In next chapter!

Distributing Data

Leader-based Replication

Slide 6

Replication

Distributed Data
Management

Thorsten Papenbrock

Leader

 Dedicated compute node (usually also a replica)

responsible for propagating changes

 Also known as master or primary

 Accepts read and write queries

 Sends changes as replication log or change stream to followers

Follower

 General replica

 Also known as slave, secondary, or hot standby

 Accepts only read queries

 Receives changes from leader(s) and updates local copy accordingly:

 Applies all writes in the same order as applied on the leader(s)

Multi-Leader

Replication

Leaderless

Replication

Overview

Replication

Slide 7

Replication

Distributed Data
Management

Thorsten Papenbrock

Single-Leader

Replication

Multi-Leader

Replication

Leaderless

Replication

Overview

Replication

Slide 8

Replication

Distributed Data
Management

Thorsten Papenbrock

Single-Leader

Replication

 Most relational databases:

 PostgreSQL, MySQL, Oracle, …

 Non-relational databases:

 MongoDB, RethinkDB, Espresso, …

 Message-passing frameworks:

 Kafka, RabbitMQ, …

 Dynamo, Riak, Cassandra,

Voldemort, …

Usually single-leader

Gaining popularity

Multi-Leader

Replication

Leaderless

Replication

Overview

Replication

Slide 9

Replication

Distributed Data
Management

Thorsten Papenbrock

Single-Leader

Replication

Single-Leader Replication

Concept

Slide 10

Replication

Distributed Data
Management

Thorsten Papenbrock

Single-Leader Replication

 One leader, arbitrary many followers

 Write-query processing:

 Send to leader

 Leader updates

local storage

 Leader sends

changes to followers

 Read-query processing:

 Send to any replica

 Replica formulates answer

from local data

User 4 Leader

Follower

Follower

User 8

User 2 User 7

write

read read

read

Single-Leader Replication

Read

Slide 11

Replication

Distributed Data
Management

Thorsten Papenbrock

User

Leader

Follower

Follower

Option a)

Option c)

Option b)

A read can be answered by all
replicas and runtimes might differ

SELECT * FROM users
WHERE user_id=1234

Single-Leader Replication

Write

Slide 12

Replication

Distributed Data
Management

Thorsten Papenbrock

User

Leader

Follower

Follower

A write must be directed to and
forwarded by the leader

UPDATE users SET picture_url=‘me-new.jpg’
WHERE user_id=1234

data change

data change

ok

ok

ok

table: user
key: 1234
column: picture_url
old_value: me-old.jpg
new_value: me-new.jpg
transaction: 328142

Single-Leader Replication

CAP (Repetition)

Slide 13

Replication

Distributed Data
Management

Thorsten Papenbrock

With replication, partitions are a
given and we need to tolerate

faults and outages!

 P is set; drop A or C?

Single-Leader Replication

Write Propagation

Slide 14

Replication

Distributed Data
Management

Thorsten Papenbrock

Synchronous

 Write query returns when all replica updates returned

 Guarantees that write is system-wide applied when query returns

 If leader fails, any follower can replace him

 Slow: unresponsive/crashing followers block all write queries

Semi-Synchronous

 Write query returns when one replica update returned

 Guarantees that the leader and at least one replica processed the write

 If leader fails, at least one follower can restore its state (not trivial)

 Relatively fast: one response is quickly received even if some followers are slow

Asynchronous

 Write query returns immediately

 No guarantees

 If leader fails, writes might get lost; reads to different replicas may be inconsistent

 Fast: no waiting

Drop
both a bit!

Drop
Availability!

Drop
Consistency!

Single-Leader Replication

Write Propagation

Slide 15

Replication

Distributed Data
Management

Thorsten Papenbrock

User

Leader

Follower

Follower

synchronous
semi-synchronous

asynchronous

UPDATE users SET picture_url=‘me-new.jpg’
WHERE user_id=1234

data change

data change

ok

ok

ok ok ok

Single-Leader Replication

Replication Lag

Slide 16

Replication

Distributed Data
Management

Thorsten Papenbrock

User

Leader

Follower

Follower

UPDATE users SET picture_url=‘me-new.jpg’
WHERE user_id=1234

data change

data change

ok

ok

ok

Replication Lag: delay between a write on
the leader and same write on a follower

 Usually < 1sec (higher if faults/overload occur)

Single-Leader Replication

Replication Lag

Slide 17

Replication

Distributed Data
Management

Thorsten Papenbrock

User

Leader

Follower

Follower

UPDATE …
WHERE user_id=1234

data change

data change

ok

ok

ok

SELECT * FROM users
WHERE user_id=1234

Read Inconsistency: reading of outdated data

 Occurs often if writes or reads are frequent

 Application logic must consider this!

Single-Leader Replication

BASE (Repetition)

Slide 18

Replication

Distributed Data
Management

Thorsten Papenbrock

BASE

 The BASE consistency model relaxes CAP dimensions:

 Basic Availability: The database appears to work most of the time.

 Availability might be less than 100%

 “Most of the time” is often quantified as lower bound, e.g., 90%

 Soft-state: Stores don’t have to be write-consistent, nor do different

replicas have to be mutually consistent all the time.

 Stored data might be inconsistent, but the store can derive

consistent states

 Eventual consistency: Stores exhibit consistency at some later point

(e.g., lazily at read time).

 Usually consistent within milliseconds

 Does not mean “no-consistency”, which would be fatal for a store

Drop consistency
by being more
asynchronous

Drop availability
by being more
synchronous

Single-Leader Replication

Achieving some Consistency

Slide 19

Replication

Distributed Data
Management

Thorsten Papenbrock

Read-your-writes Consistency

 Queries should at least reflect all changes made by the same user

 Redirect all reads to user-modified data to the leader

 Implementation examples:

a) Remember what data has changed and redirect related queries

b) Redirect all queries for X seconds after last own update

Monotonic Read Consistency

 A repeating query should always give the same result

 Direct all reads to the same replica

Consistent Prefix Read Consistency

 Queries should see changes with a certain order in exactly that order

 Always apply updates in the same order on all replica

Booking Payment Delivery

Multiple website refreshes

Update profile Read profile

Single-Leader Replication

Handling Node Outages

Slide 20

Replication

Distributed Data
Management

Thorsten Papenbrock

Follower failure: Catch-up recovery

 After failure handling (error handling, reconnect, restart, …):

1. Replay log, if necessary, and look up last update in log

2. Request all updates since last log entry from leader

Leader failure: Failover

1. Determine leader failure

 If leader does not respond for a certain time, assume it to be dead

2. Choose a new leader

 Either start a new leader, let all followers elect one of them as new

leader, or let a controller node decide for a leader

 Usually the follower with the most up-to-data data

3. Reconfigure system

 Redirect write queries, make old leader a follower if it comes back, …

This procedure is also used for
other distributed systems, such

as Actor Systems

Replication

Distributed Data
Management

Single-Leader Replication

Handling Node Outages

Slide 21

Thorsten Papenbrock

Follower failure: Catch-up recovery

 After failure handling (error handling, reconnect, restart, …):

1. Replay log, if necessary, and look up last update in log

2. Request all updates since last log entry from leader

Leader failure: Failover

1. Determine leader failure

 If leader does not respond for a certain time, assume it to be dead

2. Choose a new leader

 Either start a new leader, let all followers elect one of them as new

leader, or let a controller node decide for a leader

 Usually the follower with the most up-to-data data

3. Reconfigure system

 Redirect write queries, make old leader a follower if it comes back, …

Split Brain: If two replica think
they are leaders in single-leader

setups, they can corrupt the data!

Timeout dilemma: If the timeout
occurred because of load spikes,

failover handling can make it worse!

Because of these and further
problems, many operations teams

do failovers only manually

Single-Leader Replication

Implementation of Replication Logs

Slide 22

Replication

Distributed Data
Management

Thorsten Papenbrock

a) Statement-based replication

 The leader logs the INSERT/UPDATE/DELETE statements that it gets and

sends these also as data changes to the followers

 Problem: non-deterministic functions (e.g., NOW() or RAND()), auto-

increment columns, and side effects (e.g., trigger or stored procedures)

might evaluate differently on each replica

b) Write-ahead log (WAL) shipping

 The leader logs all physical data changes (re-writes of disk blocks,

appends to segment files, etc.) to a WAL, writes them to disk and sends

them to the followers

 Problem: data changes specify which bytes were changed in which block

and are therefore specific to a certain technology and version (must be

the same for the entire distributed system!)

Single-Leader Replication

Implementation of Replication Logs

Slide 23

Encoding and
Evolution

Distributed Data
Management

Thorsten Papenbrock

c) Logical (row-based) log replication

 The leader logs all logical changes

and sends these to the followers

 INSERT: new values

 DELETE: row, old values

 UPDATE: row, field, old values,

new values

 For transactions: id, start, end

 Problem: takes additional memory

when used together with (physical)

WAL

Single-Leader Replication

Implementation of Replication Logs

Slide 24

Encoding and
Evolution

Distributed Data
Management

Thorsten Papenbrock

c) Logical (row-based) log replication

 UNDO logging

 Log entry: old value

 Write order: (1) Log (2) Data (3) Commit

 Restore: Read log backwards and restore any uncommitted/aborted value.

 REDO logging

 Log entry: new value

 Write order: (1) Log (2) Commit (3) Data

 Restore: Read log forwards and re-write any committed value.

 UNDO/REDO logging

 Log entry: old & new value

 Write order: (1) Log (2) Data & Commit

 Restore: Redo all committed changes in chronological order and

undo all uncommitted changes in inverse chronological order.

See lecture “Database systems II”
by Prof. Naumann

Checkpointing
Allows to ignore successfully
committed/aborted changes

before that entry.

Leaderless

Replication

Single-Leader

Replication

Overview

Replication

Slide 25

Replication

Distributed Data
Management

Thorsten Papenbrock

Multi-Leader

Replication

Multi-Leader Replication

Concept

Slide 26

Replication

Distributed Data
Management

Thorsten Papenbrock

Multi-Leader Replication

 Multiple leaders, arbitrary many followers

 Query processing like in

single-leader setups

 Difference:

 Write conflicts

are possible

 Advantages:

 Parallel writes

 Leaders might die

 Multiple datacenters

User 4

Leader

Follower

Follower

User 8

User 2 User 7

update

update

read read

read

Leader
update

Multi-Leader Replication

Conflict Resolution

Slide 27

Replication

Distributed Data
Management

Thorsten Papenbrock

Conflict

 Different leaders change the same item in different ways

Conflict Detection

 A change carries both new and old value

 A conflict occurred if the old value differs

Conflict Resolution

 Inherently asynchronous, because both

writes already succeeded

 No chance to reject a conflicting write

a) Last write wins: always accept the write with the highest ID/timestamp/…

b) Merge: order the values (e.g. alphabetically) and store both concatenated

c) Application managed: write a conflict data structure and report it

table: user
key: 1234
column: picture_url
old_value: me-old.jpg
new_value: me-new.jpg
transaction: 328142

See SVN, GIT, …

Multi-Leader

Replication

Single-Leader

Replication

Leaderless

Replication

Overview

Replication

Slide 28

Replication

Distributed Data
Management

Thorsten Papenbrock

Leaderless Replication

 No leader-follower distinction

 All replica take writes

 Read and write queries

are send to all replica:

 If a certain number

of queries succeeded,

then the overall query succeeded

 Tolerates some failing or slow replicas

 No blocking change propagation by replica

 Advantages:

 Parallel writes

 No special roles for replica

Leaderless Replication

Concept

Slide 29

Replication

Distributed Data
Management

Thorsten Papenbrock

User 4

Replica Replica

User 8

Replica Replica

Leaderless Replication

Write

Slide 30

Replication

Distributed Data
Management

Thorsten Papenbrock

User

Replica

Replica

Replica

SET key = users.1234.picture_url
value = ‘me-new.jpg’

ok

ok

ok

Only very simple writes:
no non-deterministic functions,
auto-increments, site effects, …

ok

Succeeded, because a certain
number of queries succeeded

Leaderless Replication

Write

Slide 31

Replication

Distributed Data
Management

Thorsten Papenbrock

User

Replica

Replica

Replica

SET key = users.1234.picture_url
value = ‘me-new.jpg’

ok

ok

Only very simple writes:
no non-deterministic functions,
auto-increments, site effects, …

ok

Succeeded, because a certain
number of queries succeeded

Queries can succeed, even if
some sub-queries fail

Leaderless Replication

Read

Slide 32

Replication

Distributed Data
Management

Thorsten Papenbrock

User

Replica

Replica

Replica

Get key = users.1234.picture_url

‘me-new.jpg’
(version 7)

Choose value with newest version

‘me-new.jpg’
(version 7)

‘me-old.jpg’
(version 6)

Leaderless Replication

Quorum Consistency

Slide 33

Replication

Distributed Data
Management

Thorsten Papenbrock

Quorum

 Given n nodes, the quorum (w,r) specifies …

 the number of nodes w that must acknowledge a write and

 the number of nodes r that must answer a query.

Quorum Consistency

 If w + r > n, then each query will contain the newest version of a value.

 Identify the newest value by its version (not by majority!).

 The quorum variables are usually configurable:

 Smaller r (faster reads) causes larger w (slower writes) and vise versa.

 The quorum tolerates …

 n – w unavailable nodes for writes.

 n – r unavailable nodes for reads.

Leaderless Replication

Quorum Consistency

Slide 34

Replication

Distributed Data
Management

Thorsten Papenbrock

Quorum Changes

 Given a quorum (w,r), can we change it at runtime?

 Increase w:

 Yes, new values are written in a more reliable way.

 Increase r:

 Yes, existing values are read in a more reliable way.

 Decrease w:

 Yes, if w + r > n still holds so that new values are read reliably.

 Decrease r:

 Yes, if w + r > n still holds with the smallest w used to write any

value in the database.

Leaderless Replication

Quorum Consistency

Slide 35

Replication

Distributed Data
Management

Thorsten Papenbrock

Quorum Changes

 Given a quorum (w,r) and n-1 nodes (one has left the cluster),

can we change the quorum?

 Increase w:

 Yes, new values are written in a more reliable way.

 Increase r:

 Yes, existing values are read in a more reliable way.

 Decrease w:

 Yes, if w + r > n still holds with n being the current number of nodes.

 Decrease r:

 Yes, if w + r > n still holds with n being all the nodes including

the left node and the smallest w used to write any value in the

database.

Concurrent writes

 If write conflicts are resolved using timestamps, clock skew can cause older values to

overwrite newer values (user clocks usually not in sync!)

Concurrent write and read

 If a read process interferes with a write process, the new values might be underrepresented

Apparently failed write

 If a write fails, it might still have silently succeeded on some nodes (only responses lost)

Failing node

 If a node with a new value recovers an old value after a crash, the quorum might be violated

Leaderless Replication

Pitfalls

Slide 36

Thorsten Papenbrock

Don’t rely on time! (see later lecture)

Overall problem:
Loss of quorums and, hence, violation of consistency

Don’t expect strict consistency!

Change Propagation Protocols

a) Read-Repair:

 Upon reading outdated values, users initiate value updates

 Passive change propagation

b) Gossip:

 All replicas run local agents that periodically match their states

 Active change propagation

Leaderless Replication

What about BASE?

Slide 37

Replication

Distributed Data
Management

Thorsten Papenbrock

Eventual Consistency

Leaderless Replication

Read-Repair

Slide 38

Replication

Distributed Data
Management

Thorsten Papenbrock

User

Replica

Replica

Replica

SET key = users.1234.picture_url
value = ‘me-new.jpg’

‘me-new.jpg’
(version 7)

‘me-new.jpg’
(version 7)

‘me-old.jpg’
(version 6)

Automatically correct invalid replica
(read-repair change propagation)

Gossip Protocol

 All replicas run local agents that periodically match their states

 Agent algorithm:

 With a given (typically low) frequency:

 Select a remote agent at random

 Share any new changes since last contact

 Properties:

 Robust spread of information tolerating node- and network-faults

 Information converges with probability of 1

 Information converges in logarithmic time in the number of agents

 In each “round”, the number of agents with a particular change

approximately doubles (ignoring redundant matches)

Leaderless Replication

Gossip

Slide 39

Replication

Distributed Data
Management

Thorsten Papenbrock

Exponentially rapid
convergence!

Also known as
epidemic propagation

Gossip Protocol

 Example:

 100,000 replicas (= agents)

 3 sec gossip frequency

 What is the expected time for one change being known to all replicas?

Leaderless Replication

Gossip

Slide 40

Thorsten Papenbrock

0

1

round:

replicas:

Gossip Protocol

 Example:

 100,000 replicas (= agents)

 3 sec gossip frequency

 What is the expected time for one change being known to all replicas?

Leaderless Replication

Gossip

Slide 41

Thorsten Papenbrock

0 1

1 2

round:

replicas:

0 1 2

1 2 4

Gossip Protocol

 Example:

 100,000 replicas (= agents)

 3 sec gossip frequency

 What is the expected time for one change being known to all replicas?

Rounds of gossip:

2𝑟𝑜𝑢𝑛𝑑𝑠 > 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑠 𝑟𝑜𝑢𝑛𝑑𝑠 > 𝑙𝑜𝑔2 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑠

Leaderless Replication

Gossip

Slide 42

Thorsten Papenbrock

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 4 8 16 32 64 128 256 512 1k 2k 4k 8k 16k 32k 65k 131k

round:

replicas:

Gossip Protocol

 Example:

 100,000 replicas (= agents)

 3 sec gossip frequency

 What is the expected time for one change being known to all replicas?

Rounds of gossip:

2𝑟𝑜𝑢𝑛𝑑𝑠 > 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑠 𝑟𝑜𝑢𝑛𝑑𝑠 > 𝑙𝑜𝑔2 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑠 ⇒ 𝑟𝑜𝑢𝑛𝑑𝑠 > 𝑙𝑜𝑔2 100,000 ≈ 16.61

Expected time to convergence:

𝑡𝑖𝑚𝑒 = 𝑟𝑜𝑢𝑛𝑑𝑠 ∗ 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 ⇒ 𝑡𝑖𝑚𝑒 = 17 ∗ 3 𝑠𝑒𝑐 = 51 𝑠𝑒𝑐

Leaderless Replication

Gossip

Slide 43

Thorsten Papenbrock

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 4 8 16 32 64 128 256 512 1k 2k 4k 8k 16k 32k 65k 131k

round:

replicas:

Gossip Protocol

 General conditions:

 Interactions happen periodically and pair-wise between random agents

 To ultimately reach all agents!

 Interactions change the state of at least one agent to reflect the state of the other

 Change to the most recent version!

 Interaction frequency is low compared to typical message latencies

 Protocol costs are negligible!

 Information exchange leads to redundancy due to the replication

 Some updates are communicated to one agent multiple times!

 Information exchanged during interactions is of bounded size

 Not entire database!

Leaderless Replication

Gossip

Slide 44

Replication

Distributed Data
Management

Thorsten Papenbrock

How to quickly find only
the changed areas?

Leaderless Replication

Gossip

Slide 45

Thorsten Papenbrock

e.g. SHA-1

Merkle Trees

 Hash trees:

 Leaves are hashes of the data

 Inner nodes are hashes of child nodes

 Usually binary search trees, but higher

degrees are possible

 Hashes identify same data, i.e., if two

nodes in two trees have the same hash,

then their underlying data is the same

 Change identification algorithm:

 Match Merkle Trees level-wise for differing hashes

 Exchange data with differing hash paths

 Uses: Amazon Dynamo, Cassandra, and Riak

Exchanged data
small and bound
by tree height

Leaderless Replication

Gossip

Slide 46

Thorsten Papenbrock

73 42

8 13

24 69

11 11

64 64

T2 T2

Multi-Leader

Replication

Single-Leader

Replication

Leaderless

Replication

Overview

Replication

Slide 47

Replication

Distributed Data
Management

Thorsten Papenbrock

Replication

Check yourself

Slide 48

Replication

Distributed Data
Analytics

Tobias Bleifuß

Consider a replication scenario with 3 replicas using quorum-consistency (as

specified on slide 30). The last accepted write to a particular data item

succeeded on 2 out of 3 nodes:

1. Which quorum configurations are possible if the quorum shall guarantee

that queries read the newest version?

2. For each of those configurations list all combinations of unavailable nodes

such that the next read query would still succeed.

Replica 1 Replica 2 Replica 3

✓ ✓ X

Distributed Data Management

Introduction
Thorsten Papenbrock

G-3.1.09, Campus III

Hasso Plattner Institut

