
Distributed Data Management

Partitioning
Thorsten Papenbrock

F-2.04, Campus II

Hasso Plattner Institut

Distributing Data

Replication vs. Partitioning

Slide 2

Partitioning

Distributed Data
Management

Thorsten Papenbrock

Replication

 Store copies of the same data on several nodes

 Introduces redundancy

 Improves scalability (parallel I/O; no memory scalability!)

 Improves availability (nodes can fully take the load of failed nodes)

 Improves latency (requests can be served by the closest/underutilised node)

Partitioning

 Store the data split in subsets (partitions) on several nodes

 Also known as sharding

 Improves scalability (some parallel I/O; memory consumption)

 Improves availability (node failures take out only parts of the data)

 Improves latency (place partitions close to where they are accessed most)

Different mechanisms but usually used together

our focus now

Distributing Data

Horizontal vs. Vertical Partitioning

Slide 3

Partitioning

Distributed Data
Management

Thorsten Papenbrock

Used in most
distributed systems

Used in column-
based DBMSs

Different dimensions but
essentially the

same partitioning strategies

Distributing Data

Replication and Partitioning

Slide 4

Partitioning

Distributed Data
Management

Thorsten Papenbrock

Partition 1
Leader

Partition 3
Follower

Partition 2
Follower

Partition 1
Follower

Partition 4
Follower

Partition 2
Leader

Partition 2
Follower

Partition 4
Follower

Partition 3
Leader

Partition 1
Follower

Partition 4
Leader

Partition 3
Follower

Node 1

Node 3

Node 2

Node 4

User

read

Distributing Data

Partitioning

Slide 5

Partitioning

Distributed Data
Management

Thorsten Papenbrock

Synonymes

 shard (MongoDB, Elasticsearch, SolrCloud)

 region (HBase)

 tablet (Bigtable)

 vnode (Cassandra, Riak)

 vBucket (Couchbase)

Partitioning Algorithm

 Each data item (record, row, document, …) belongs to exactly one partition

(considering replicated partitions as same partitions).

 Algorithm tasks:

1. Given any data item, assign it to a partition.

2. Keep partitions (possibly) balanced.

Overview

Partitioning

Slide 6

Partitioning

Distributed Data
Management

Thorsten Papenbrock

Partitioning of Key-Value Data

 Partitioning by Key Range

 Partitioning by Hash of Key

Partitioning and Secondary Indexes

 Partitioning Secondary Indexes by Document

 Partitioning Secondary Indexes by Term

Rebalancing Partitions

 Strategies for Rebalancing

 Operations: Automatic or Manual Rebalancing

Request Routing

 Parallel Query Execution

Overview

Partitioning

Slide 7

Partitioning

Distributed Data
Management

Thorsten Papenbrock

Partitioning of Key-Value Data

 Partitioning by Key Range

 Partitioning by Hash of Key

Partitioning and Secondary Indexes

 Partitioning Secondary Indexes by Document

 Partitioning Secondary Indexes by Term

Rebalancing Partitions

 Strategies for Rebalancing

 Operations: Automatic or Manual Rebalancing

Request Routing

 Parallel Query Execution

Partitioning of Key-Value Data

Concepts

Slide 8

Partitioning

Distributed Data
Management

Thorsten Papenbrock

Key-Value Data

 All data models:

 relational (ID → record)

 key-value (key → value)

 column-family (row key → super column)

Dimension

 Horizontal partitioning: distribution of rows, records, key-value pairs, …

 Vertical partitioning: distribution of columns, super columns, value groups, …

Unbalancing issues

 Size/Load Skew: Some partitions have more data/queries than others.

 Hot spots: Partitions that have disproportionately high load.

 document (key → document)

 graph (key → node/edge)

Different dimensions but
similar techniques

Partitioning of Key-Value Data

Partitioning by Key Range

Slide 9

Partitioning

Distributed Data
Management

Thorsten Papenbrock

Range Partitioning

 Arrange keys in a continuous, sorted range.

 Split this range into partitions:

 also continuous and sorted

 identified by min and max key value

 not evenly spaced if key range is skewed:

 e.g. as many words in [A,Ble] as in [Usa,Z]

 implemented as (for instance) SSTables and LSM-Trees

Partition lookup for (new or existing) key

 Find partition where 𝑚𝑖𝑛 ≤ 𝑘𝑒𝑦 < 𝑚𝑎𝑥 (binary search).

Properties

 Strength: range queries

 Weakness: load skew if certain key ranges are accessed more frequently than others

E.g. if a timestamp is the key, all
inserts (and most reads) go to the
partition with the newest entries.

Partitioning of Key-Value Data

Partitioning by Hash of Key

Hash Partitioning

 Map the (skewed) range of keys to a uniformly distributed range of hashes.

 Use equidistant range partitioning on the range of hashes.

 Hash function:

 calculates the key-to-hashes mapping (one-way-function)

 skewed input, uniform output

 e.g. MD5: a 128-bit hash function that maps arbitrary strings to

numbers between 0 and 2128 – 1

Partition lookup for (new or existing) key

 Calculate hash

 Find partition where

𝑚𝑖𝑛 ≤ 𝑘𝑒𝑦 < 𝑚𝑎𝑥 (binary search)

Why not simply hash % n?

 Later!

Partitioning of Key-Value Data

Partitioning by Hash of Key

Hash Partitioning

 Consistent Hashing

 Used to keep partition-to-node assignments stable

 Range of keys is modeled as a ring.

 Nodes are hashed to positions on the ring.

 Each node Ni is responsible for all hashes k

between its position i and the position j of

its clockwise predecessor Nj with j < 𝑘 ≤ 𝑖.

 If a node enters, it “steals” values from one node.

 If a node leaves, it “leaves” all its values to its higher neighbor.

 Most assigned values stay untouched.

 Partition sizes my be unbalanced.

N5

N1

N4

N2

N3

Partitioning of Key-Value Data

Partitioning by Hash of Key

Hashing

 Use cases:

 Cryptography

 Checksums

 Partitioning

 Algorithm: (MD4, MD5, SHA-1, SHA-2, …)

 Interpret key as bit-sequence.

 Divide key into blocks of equal size k (e.g. k = 64 * 8 bit).

 Pad last block if it is too short.

 For each block:

 Combine the k block-bits with the s buffer bits (e.g. s = 128 bit)

(first block starts with a standard seed sequence).

 Combine algorithm uses some hashing-specific combination of bit-operations

(AND, OR, bit-shifts, XOR, NOT, …).

Seed

Key Padding

00101010 01011110 01101111 10011101 01000000

Hash
s bits s bits s bits s bits s bits s bits

k bits k bits k bits k bits k bits

Merkle–Damgård construction:
A generic method to hash
arbitrary-length inputs to

fixed-length hashes.

Partitioning of Key-Value Data

Partitioning by Hash of Key

Hashing

 Use cases:

 Cryptography

 Checksums

 Partitioning

 Algorithm: (MD4, MD5, SHA-1, SHA-2, …)

 MD5:

“Message Digest 5”

 SHA-2:

“Secure Hash Algorithm”

Seed

Key Padding

00101010 01011110 01101111 10011101 01000000

Hash
s bits s bits s bits s bits s bits s bits

k bits k bits k bits k bits k bits

MD5

s = 128 bits divided
into four 32 bit words

F(X,Y,Z) :=

(X and Y) or (not(X) and Z)

The current part of the
input key (= k bits)

Constant that changes
in every step

Bitshift

Weak for encryption,
but good for partitioning

Partitioning of Key-Value Data

Partitioning by Hash of Key

Hashing

 Use cases:

 Cryptography

 Checksums

 Partitioning

 Example:

Seed

Key Padding

00101010 01011110 01101111 10011101 01000000

Hash
s bits s bits s bits s bits s bits s bits

k bits k bits k bits k bits k bits

Digest (= Hash) with
fix length independent

of input length

Overview

Partitioning

Slide 15

Partitioning

Distributed Data
Management

Thorsten Papenbrock

Partitioning of Key-Value Data

 Partitioning by Key Range

 Partitioning by Hash of Key

Partitioning and Secondary Indexes

 Partitioning Secondary Indexes by Document

 Partitioning Secondary Indexes by Term

Rebalancing Partitions

 Strategies for Rebalancing

 Operations: Automatic or Manual Rebalancing

Request Routing

 Parallel Query Execution

Partitioning and Secondary Indexes

Secondary Indexes

Slide 16

Partitioning

Distributed Data
Management

Thorsten Papenbrock

Secondary Index

 Any index (in addition to the primary key index) that …

 may not identify all records uniquely.

 cannot be implemented as a clustered index (sorting/grouping not possible).

 Used to …

 search for items with a certain value/property.

 accelerate frequent/complex queries.

 Does not map neatly to partitions and is larger than a clustered index.

 Must be partitioned as well.

Example: Indexes on color and maker of cars

 CREATE INDEX idx_color_filter ON Cars (color);

 CREATE INDEX idx_make_filter ON Cars (make);

Partitioning and Secondary Indexes

Partitioning Secondary Indexes …

by Document: Local Index

 Every partition manages its own index with

all pointers to local data items.

 Vertically partitioned index

 Insert/update/delete: performed locally

 Select: queries all partition indexes

by Term: Global Index

 Index entries are partitioned by their key

independently from local data items.

 Horizontally partitioned index

 Insert/update/delete: require remote updates

 Select: queries only one partition index

Partitioning and Secondary Indexes

Partitioning Secondary Indexes …

by Document: Local Index

 Every partition manages its own index with

all pointers to local data items

 Vertically partitioned index

 Insert/update/delete: performed locally

 Select: queries all partition indexes

by Term: Global Index

 Index entries are partitioned by their key

independently from local data items

 Horizontally partitioned index

 Insert/update/delete: require remote updates

 Select: queries only one partition index

OLTP view:

Secondary indexes must not cost
much even if this makes them

less effective.

OLAP view:

Write costs can be expensive
because they are one-time efforts

but reads must be efficient.

MongoDB

Riak

Cassandra

Elasticsearch

SolrCloud

VoltDB

DynamoDB

Riak

Oracle Data Warehouse

Overview

Partitioning

Slide 19

Partitioning

Distributed Data
Management

Thorsten Papenbrock

Partitioning of Key-Value Data

 Partitioning by Key Range

 Partitioning by Hash of Key

Partitioning and Secondary Indexes

 Partitioning Secondary Indexes by Document

 Partitioning Secondary Indexes by Term

Rebalancing Partitions

 Strategies for Rebalancing

 Operations: Automatic or Manual Rebalancing

Request Routing

 Parallel Query Execution

Rebalancing Partitions

Rebalancing

Slide 20

Partitioning

Distributed Data
Management

Thorsten Papenbrock

Things change:

 Query load → add more CPUs

 Data size → add more disks and RAM

 Nodes fail → other nodes need to take over

 Require to move data around (rebalancing)!

Rebalancing requirements

 Balanced result: even data distribution after rebalancing

 Downtime-less: continue accepting reads/writes during rebalancing

 Minimal data shift: move no more data than necessary between nodes

How not to do it: hash % n

 Hash % n results in numbers between 0 and n-1 to assign nodes with.

 BUT: if n changes, most hashes yield new node numbers, i.e., need to move!

 Example: 123456 % 10 = 6, 123456 % 11 = 3, 123456 % 12 = 0, …

hash % n is still useful for

e.g. load balancing or
fixed partitionings,

because lookup is in O(1)

Rebalancing Partitions

Fixed Number of Partitions

Slide 21

Partitioning

Distributed Data
Management

Thorsten Papenbrock

Idea

 Create many more partitions p than there are nodes n, i.e., several partitions per node.

 Let new nodes “steal” partitions from all other nodes until distribution is even again.

 Key → partition mappings stay fix

Wait!

 We only moved the problem:

 Partition → node mappings change!

 But: Partition → node mapping is …

 much smaller (say 1000 partitions).

 usually fix in size (= #partitions).

 Only a (partial) rewrite of a

small data structure

Rebalancing Partitions

Fixed Number of Partitions

Slide 22

Partitioning

Distributed Data
Management

Thorsten Papenbrock

Idea

 Create many more partitions p than there are nodes n, i.e., several partitions per node.

 Let new nodes “steal” partitions from all other nodes until distribution is even again.

 Key → partition mappings stay fix

Choosing p is difficult

 If p is too large (partitions small):

 Expensive partition management

 If p is too small (partitions large):

 Expensive rebalancing and recovery

Implementations

 Riak, Elasticsearch, Couchbase,

Voldemort

Rebalancing Partitions

Dynamic Partitioning

Idea

 Create some initial number of partitions (e.g. p = n for p partitions and n nodes).

 If a partition exceeds some max size threshold, split it.

 If a partition falls below some min size threshold, merge it.

 Number of partitions proportional to dataset size.

Partition to node assignment

 Distribute partitions evenly between all nodes.

 If new nodes enter, let them steal.

 Same as for fixed number of partitions

Implementations

 Hbase, RethinkDB, MongoDB

Idea similar to B-Trees:

Split too large nodes.
Merge too small nodes.

Works well for any partitioning that
splits ranges (of keys or hashes).

partition → node
mappings that change!

Rebalancing Partitions

Fixed Number of Partitions per Node

Idea

 Create a fix number of p partitions on each of the n nodes.

 Let new nodes fill their own p partitions by randomly splitting partitions on other nodes.

 Steal half of p partitions from other nodes.

Implementations

 Cassandra, Ketma

Works well for any partitioning that
splits ranges (of keys or hashes).

partition → node
mappings that change!

Node 0
Node 2

Node 1
Node 3

Node 4

Load may occasionally be
unbalanced but is expected

to even out over time

Slide 24

Thorsten Papenbrock

Overview

Partitioning

Slide 25

Partitioning

Distributed Data
Management

Thorsten Papenbrock

Partitioning of Key-Value Data

 Partitioning by Key Range

 Partitioning by Hash of Key

Partitioning and Secondary Indexes

 Partitioning Secondary Indexes by Document

 Partitioning Secondary Indexes by Term

Rebalancing Partitions

 Strategies for Rebalancing

 Operations: Automatic or Manual Rebalancing

Request Routing

 Parallel Query Execution

Request Routing

Partition Lookup

Slide 26

Partitioning

Distributed Data
Management

Thorsten Papenbrock

Ask any node

All nodes store a
lookup table copy and
can redirect queries.

Ask node directly

All clients store a
lookup table copy and
can locate partitions.

Ask a router

A routing tier stores the
lookup table copy and
can redirect queries.

Partitions move between nodes
regardless of the rebalancing strategy

Request Routing

Partition Lookup

Slide 27

Partitioning

Distributed Data
Management

Thorsten Papenbrock

Ask any node

All nodes store a
lookup table copy and
can redirect queries.

Ask node directly

All clients store a
lookup table copy and
can locate partitions.

Ask a router

A routing tier stores the
lookup table copy and
can redirect queries.

Partitions move between nodes
regardless of the rebalancing strategy

Requires a consensus
protocol to propagate
partition movement.

Usually use a separate
coordination service that

tracks nodes and partitions

Usually use a separate
coordination service that

tracks nodes and partitions.

Request Routing

Partition Lookup: ZooKeeper

Apache ZooKeeper

 A coordination service for services in distributed systems

 Tracks and offers cluster metadata:

 naming, localization, configuration, and synchronization of services

 Itself implemented as a

distributed key-value store

 Leader-follower replication

Subscriber Model:

 Each router/client maintains

a TCP connection.

 Nodes send heart beats

and partition updates.

 Router/clients get partition

addresses upon request.

Request Routing

Partition Lookup: ZooKeeper

ZooKeeper users:

 Espresso, HBase, SolrCloud, Kafka,

OpenStack Nova, Hadoop YARN …

Features:

 Service discovery (e.g. find IP and port for a specific service)

 Linearizable atomic operations (e.g. atomic compare-and-set for implementing locks/leases)

 Total ordering of operations (e.g. generating monotonically increasing IDs for transactions)

 Failure detection (e.g. heartbeat failure detection to initiate leader elections)

 Change notification (e.g. notify clients about new/failed clients in the cluster)

 Automatic cluster management (e.g. leader election, partition re-balancing, …)

Many further SOA and Cloud
systems that are no DBMSs!

More details on these features
in the following sessions!

Partitioning

Check yourself

Slide 30

Partitioning

Distributed Data
Management

Tobias Bleifuß

The consistent hashing method as described on slide 11 has a number of

shortcomings. To overcome those issues, real-world implementations often

introduce additional virtual nodes for each physical node in the system.

1) Can you name three different shortcomings?

Hint: Think of assumptions that might not hold in practice.

2) How could virtual nodes solve those issues?

Distributed Data Management

Introduction
Thorsten Papenbrock

G-3.1.09, Campus III

Hasso Plattner Institut

