
Distributed Data Management 

Stream Processing 
Thorsten Papenbrock 

F-2.04, Campus II 

Hasso Plattner Institut 

 



Distributed Data Management 

Types of Systems 

Slide 2 

Stream Processing 
 

Thorsten Papenbrock 

Distributed Data 
Management 

Services (online systems) 

 Accept requests and send responses 

 Performance measure:  response time and availability 

 Expected runtime:  milliseconds to seconds 

Batch processing systems (offline systems) 

 Take (large amounts of) data; run (complex) jobs; produce some output 

 Performance measure:  throughput (i.e., data per time) 

 Expected runtime:  minutes to days 

Stream processing systems (near-real-time systems) 

 Consume volatile inputs; operate stream jobs; produce some output 

 Performance measure:  throughput and precision 

 Expected runtime:  near-real-time (i.e., as data arrives) 

OLTP 

OLAP 

now 



Batch processing systems (offline systems) 

 

 

 

 

 

Stream processing systems (near-real-time systems) 

 

 

Distributed Data Management 

Types of Systems 

map map reduce map map reduce map reduce 

map map reduce map map reduce map reduce 

bounded; 
persistent; fix size 

unbounded; 
volatile; any size 

can re-execute 

cannot re-execute 



Batch processing systems (offline systems) 

 

 

 

 

 

Stream processing systems (near-real-time systems) 

 

 

Distributed Data Management 

Types of Systems 

map map reduce map map reduce map reduce 

map map reduce map map reduce map reduce 

historic data 

live data 

one result 

one or a series of results 



Distributed Data Management 

Use Cases for Streaming Data 

Slide 5 

Thorsten Papenbrock 

Sensor Processing 

 Continuous and endless readings by nature 

Process Monitoring 

 Side effects of processes that are continuously observed 

Location Tracking 

 Continuous location updates of certain devices 

Log Analysis 

 Digital footprints of applications that grow continuously 

User Interaction 

 Continuous and oftentimes bursty click- and call-events 

Market and Climate Prediction 

 Changing stock market prices and weather characteristics 

… 



File 
File 
File 

Slide 6 

Thorsten Papenbrock 

  

Spark Streaming (Recap) 

Batched Stream Processing 

 Reasons: 

 Incremental processing: start processing data that is still being written to 

 Latency reduction: pipeline data to maximizing resource utilization 

 

 

 

Producer 
1 

Producer 
1 Producer 

File 

File 

File File File 

File 

File Transformation pipeline 

 read map filter reduce write 

File 

Input stream 
might be 

volatile, i.e., 
read-once only 

Stream processing reads the data exactly once 
and still guarantees fault-tolerance through 
check pointing and write ahead logs (WAL) 



Distributed Data Management 

Streams 

Slide 7 

Stream Processing 
 

Thorsten Papenbrock 

Distributed Data 
Management 

Data Stream 

 Any data that is incrementally made available over time 

 Examples: 

 Unix stdin and stdout 

 Filesystem APIs (e.g. Java’s FileInputStream) 

 Online media delivery (audio/video streaming) 

 Creation from … 

 static data: files or databases (read records line-wise) 

 dynamic data: sensor readings, service calls, transmitted data, logs, … 

Event 

 = an immutable record in a stream (often with timestamp) 

 “Something that happened” 

 Encoded in Json, XML, CSV, … maybe in binary format 

Any format that allows 
incremental appends 



Distributed Data Management 

Batch vs. Stream 

Slide 8 

Thorsten Papenbrock 

Stream Processing 
 

Distributed Data 
Management 

Batches Streams 

Write once, 
read often 

Send once, 
receive once 

maybe multiple 
receivers 



Overview 

Stream Processing 

Processing Streams Databases  
and Streams 

Transmitting 
Event Streams 

 

Slide 9 

Stream Processing 
 

Distributed Data 
Management 

Thorsten Papenbrock 



Transmitting Event Streams 

Event Transmission 

Slide 10 

Thorsten Papenbrock 

Stream Processing 
 

Distributed Data 
Management 

Dataflow Through Databases 

 

 

 

Dataflow Through Services 

 

 

 

Message-Passing Dataflow 

 

Process 1 Process 2 

Process 1 Process 2 

Process 1 Process 2 

Process 2 needs to poll the 
database for updates 

 bad performance 

 slow event propagation 

Working speed of process 2 
determines stream speed 

 maybe bad performance 

 ok-isch event propagation 

Asynchronous messaging and 
notification about new events 

 good performance 

 fast event propagation 



Transmitting Event Streams 

Message-Passing Dataflow (Recap) 

Slide 11 

Stream Processing 
 

Thorsten Papenbrock 

Distributed Data 
Management 

Communication 

 Objects send messages to other objects via queues. 

Message 

 Container for data (= events) 

 Often carries metadata (sender, receiver, timestamp, …) 

Message queue 

 Data structure (queue or list) assigned to communicating object(s) 

 Enqueues messages in order of arrival 

 Buffers incoming messages for being processed 

 Notifies subscribers if new messages are available 



Transmitting Event Streams 

Message Congestion 

Slide 12 

Stream Processing 
 

Thorsten Papenbrock 

Distributed Data 
Management 

What if the stream producer is faster than the stream consumer(s)? 

a) Drop messages 

 Delete messages that cannot be accepted. 

 Ok for use cases where timeliness is more important than 

completeness (e.g. for processing of sensor readings) 

b) Buffer messages 

 Store messages in a cache until resources are available. 

 Ok to capture load spikes and if there is no constant overload that 

fills up buffers permanently (e.g. for user activity event streams) 

c) Apply backpressure 

 Block the sender until resources are available. 

 Ok if the sender can be blocked and if the stream is not generated 

from outside (e.g. for reading a file as a stream from disk) 

Most messaging systems use 
a mix of all three options. 



Transmitting Event Streams 

Messaging Faults 

Slide 13 

Stream Processing 
 

Thorsten Papenbrock 

Distributed Data 
Management 

What if nodes crash or temporarily go offline? 

a) Fault ignorance 

 Failed messages are lost. 

 Ensures optimal throughput and latency 

b) Fault tolerance 

 Failed messages are recovered from checkpoints (disk or replicas). 

 Ensures messaging reliability 

More on fault tolerance later! 



Transmitting Event Streams 

Message Brokers (Recap) 

Slide 14 

Thorsten Papenbrock 

Message Broker 

 Also called message queue or message-oriented middleware 

 Part of the message-passing framework that delivers messages from their 

sender to the receiver(s) 

 Maintains queues that sender can post messages to 

 Notifies subscribers on new messages 

 Resolves sender an receiver addresses  

 Applies binary encoding when necessary 

 Define the … 

 message congestion strategy 

 messaging fault strategy 

 

Process 1 Process 2 

Message Broker 

   If it blocks and persists,  
        then it is a database, right? 



Transmitting Event Streams 

Message Brokers vs. Databases 

Slide 15 

Thorsten Papenbrock 

Stream Processing 
 

Distributed Data 
Management 

Message Broker 

 Short lived messages 

 Delete messages once 

successfully transmitted 

 Small working set 

 If the number of pending 

messages increases, the 

performance drops (disk!) 

 Subscription-based retrieval 

 Deliver messages to all 

subscribers of a queue 

 Push client communication 

 Knows clients and initiates 

communications 

Database 

 Long-term persisted records 

 Store records until  

explicitly deleted 

 Large working set 

 If the number of records 

increases, the performance 

is hardly affected 

 Query-based retrieval 

 Read records upon client 

query using indexes 

 Pull client communication 

 Clients are unknown and 

initiate communications 



Transmitting Event Streams 

Message Brokers 

Slide 16 

Thorsten Papenbrock 

Routing 

 Producer send messages to queues. 

 Message Broker notifies one or many consumers about such deliveries. 

 Routing strategies: 

a) One-to-one messages (Load Balancing) 

 Messages are routed to one subscriber 

 For data parallelism 

 

b) One-to-many messages (Fan-out) 

 Messages are routed to all subscribers 

 For task parallelism 

Stream Processing 
 

Distributed Data 
Management 

Replicate input stream 

Partition input stream 



Transmitting Event Streams 

Message Brokers 

Slide 17 

Thorsten Papenbrock 

Fault tolerance 

 Acknowledgement: 

 Consumer send an acknowledgement to the Message Broker when 

they successfully received/completed a message. 

 Message Broker removes any completed message from its queues. 

 Redelivery: 

 If acknowledgement fails to appear, the Message Broker redelivers it 

(perhaps to a different consumer). 

Stream Processing 
 

Distributed Data 
Management 



Transmitting Event Streams 

Message Brokers 

Slide 18 

Thorsten Papenbrock 

Fault tolerance 

 

Stream Processing 
 

Distributed Data 
Management 

m3 failed at consumer 2 and 
is redelivered to consumer 3. 

m3 is preserved 
but stream at 

consumer 3 is now 
out-of-order! 



Transmitting Event Streams 

Message Brokers: Persist or Forget 

Slide 19 

Thorsten Papenbrock 

Stream Processing 
 

Distributed Data 
Management 

       Persist 

 

 

 Keep entire message stream 

(until reaching size or time limit) 

 No need to track consumers 

 Let consumers go back in time 

 Database-like 

 Log-based Message Broker 

(e.g. Kafka, Kinesis or DistributedLog) 

Forget      i 

 

 

 Remove processed messages from stream 

(immediately after acknowledgement) 

 Track consumers to forget old content 

 The past is past 

 Volatile, light-weight 

 Queue-based Message Brokers 

(e.g. RabbitMQ, ActiveMQ or HornetQ) 



Transmitting Event Streams 

Log-based Message Broker 

Slide 20 

Stream Processing 
 

Distributed Data 
Management 

Thorsten Papenbrock 

 Message broker that persist messages as logs on disk (distributed, replicated) 

 Logs are immutable and append-only 

 Excellent sequential read performance 

 Support parallel, conflict-free reading by multiple clients 

 Uncontrolled one-to-many messaging (we do not know who will read a message) 

 Replicated Logs 

 For fault tolerance and better parallel read performance 

 Leader-based (to avoid complex replication protocols) 

 Partitioned Logs 

 For parallel writes 

 Message ordering guaranteed only within a partition  

(not between partitions)  

 Partitioning strategies:  

 round-robin, load, partition size, semantic keys, … 



Transmitting Event Streams 

Queue-based Message Broker 

Slide 21 

Stream Processing 
 

Distributed Data 
Management 

Thorsten Papenbrock 

 Message broker that store messages in queues (distributed, replicated) 

 Queues are mutable (usually in-memory) FIFO list data structures 

 Append messages at the end 

 Remove messages from the top 

 Controlled one-to-one or one-to-many messaging (usually via JMS1 or AMQP2 protocols) 

 Replicated/Mirrored Queues 

 For fault tolerance and availability only 

(no performance gain, because all replicas need to do all appends/removes) 

 Leader-based (to avoid complex replication protocols) 

 No partitioning for queues 

 Create multiple queues manually if needed 

 Reliability:  

 Send-and-acknowledge handshake with clients 

(keep messages until successfully acknowledged) 

1Java Message Service  
  (JMS) 2.0 Specification 
2Advanced Message Queuing Protocol  
  (AMQP) Specification 



Transmitting Event Streams 

Message Brokers: Persist or Forget 

Slide 22 

Thorsten Papenbrock 

Stream Processing 
 

Distributed Data 
Management 

https://content.pivotal.io/blog/ 
understanding-when-to-use-rabbitmq-or-apache-kafka 
 
http://kth.diva-portal.org/smash/get/ 
diva2:813137/FULLTEXT01.pdf 



Transmitting Event Streams 

Message Brokers: Persist or Forget 

Slide 23 

Thorsten Papenbrock 

Stream Processing 
 

Distributed Data 
Management 

       Persist 

 

 

 Keep entire message stream 

(until reaching size or time limit) 

 No need to track consumers 

 Let consumers go back in time 

 Database-like 

 Log-based Message Broker 

(e.g. Kafka, Kinesis or DistributedLog) 

Forget      i 

 

 

 Remove processed messages from stream 

(immediately after acknowledgement) 

 Track consumers to forget old content 

 The past is past 

 Volatile, light-weight 

 Queue-based Message Brokers 

(e.g. RabbitMQ, ActiveMQ or HornetQ) 



Transmitting Event Streams 

Kafka 

Slide 24 

Stream Processing 
 

Distributed Data 
Management 

Thorsten Papenbrock 

Topics and Partitions 

 Topics are logical groupings for event streams. 

 e.g. click-events, temperature-readings, location-signals 

 Every topic is created with a fixed number of partitions. 

 Partitions are ordered lists of logically dependent events in a topic.  

 e.g. click-events by user, temperature-readings by sensor, location-signals by car 

 Provide “happens-before semantic” for these events 

 Order is valid within each partition, not across different partitions. 

 Are accessed sequentially 

 Producers write new events sequentially. 

 Consumers read events  sequentially. 

 Purpose: 

 Parallelism: to read a topic in parallel 

 Load-balancing: to store the events of one topic on multiple nodes 

In many cases, event ordering is not a 
concern and partitions are simply 

arbitrary splits of a topic 
(for parallelization and load-balancing) 



Transmitting Event Streams 

Kafka 

Slide 25 

Stream Processing 
 

Distributed Data 
Management 

Thorsten Papenbrock 

Topics and Partitions 

Every partition has a leader that 
accepts all writes to that partition and 
forwards them to its follower replicas. 

Leaders for different partitions are 
distributed in the cluster to allow 

parallel writes to one topic. 

A producer can ask any broker 
to locate the leader of a 

partition that it wants to write 
(done via ZooKeeper). 



Transmitting Event Streams 

Kafka 

Slide 26 

Stream Processing 
 

Distributed Data 
Management 

Thorsten Papenbrock 

Producers and Consumers 

 Producers 

 Post to concrete partitions within a topic (only one leader can take these posts). 

 Define a Partitioner-strategy (on the producer side) to decide which partition is next. 

 Round-Robin Partitioner-strategy is used by default. 

 Custom Partitioner-strategies let producers define semantic grouping functions.  

 Consumers  

 Read concrete partitions within a topic (all broker with that partition can take these reads). 

 Hold an offset pointer for every partition that they read (on consumer side). 

 Poll and wait (no callback registration) 

 

 

 

 

“Kafka does not track acknowledgments from 
consumers […]. Instead, it allows consumers to use 

Kafka to track their position (offset) in each partition.” 

(Book: Kafka - The Definite Guide) 



Transmitting Event Streams 

Kafka 

Slide 27 

Stream Processing 
 

Distributed Data 
Management 

Thorsten Papenbrock 

Producers and Consumers 

 Producers 

 Post to concrete partitions within a topic (only one leader can takes these posts) 

 Define a Partitioner-strategy (on the producer side) to decide which partition is next 

 Round-Robin Partitioner-strategy is used by default 

 Custom Partitioner-strategies let producers define semantic grouping functions  

 Consumers  

 Read concrete partitions within a topic (all broker with that partition can take these reads) 

 Hold an offset pointer for every partition that they read (on consumer side) 

 Poll and wait (no callback registration) 

 

 

 

 



Transmitting Event Streams 

Kafka 

Slide 28 

Stream Processing 
 

Distributed Data 
Management 

Thorsten Papenbrock 

Producers and Consumers 

 Consumer Groups 

 A group of consumers that processes all events of one topic in parallel. 

 The offsets for a consumer group can be managed by Kafka on server side. 

 A dedicated group coordinator manages offsets, membership, scheduling etc. 

 Consumer commit successfully processed offsets to the group coordinator 

so that the coordinator can re-assign partitions to consumers. 

 

 

 

And in this way, Kafka kind of knows its consumers … 



Transmitting Event Streams 

Kafka 

Slide 29 

Stream Processing 
 

Distributed Data 
Management 

Thorsten Papenbrock 

Producers and Consumers 

 

 

#partitions > #consumer 

 Consumer take multiple 
partitions and process them 
alternatingly. 

#partitions = #consumer 

 Every consumer takes one 
partition; maximum 
parallelism. 

#partitions < #consumer 

 Some consumers idle, 
because the group reads 
every partition exactly once. 



Transmitting Event Streams 

Kafka 

Slide 30 

Stream Processing 
 

Distributed Data 
Management 

Thorsten Papenbrock 
Different consumers that read 
the same partition in parallel 

and at different locations. 

Producers and Consumers 

 

 

Different consumer groups that 
read same partitions in parallel 

(and at different locations). 



Transmitting Event Streams 

Kafka 

Slide 31 

Stream Processing 
 

Distributed Data 
Management 

Thorsten Papenbrock 

Log-based Message Broker 

 

= Stream B 

send message by 
appending to log 

Receive message by 
reading log sequentially; 
when reaching the end, 

wait and poll again 

partitioning (and replication) 

sequence offsets to ensure ordering 

Only one-to-many 
messaging! 



Transmitting Event Streams 

Kafka 

Slide 32 

Stream Processing 
 

Distributed Data 
Management 

Thorsten Papenbrock 

Log-based Message Broker 

 

No one-to-one 
scheduling: 

Max parallelism bound 
by number of partitions 

in a topic! 

Events with high processing costs block all subsequent events 

Storing a history for 
events costs memory 

Example: 

6 TB of disk capacity (= log size) 
150 MB/s write throughput 

 

11 h until an event is forgotten 
(at maximum event throughput!) 



Transmitting Event Streams 

Kafka 

Slide 33 

Stream Processing 
 

Distributed Data 
Management 

Thorsten Papenbrock 

Kafka APIs 

 Communication with Kafka happens via a specific APIs. 

 The API can manage the specifics of the reading/writing process transparently. 

 e.g. offset-tracking (consumers) and partition-scheduling (producers)  

 Two options: 

 A rich API that offers high abstraction, but limited control functions. 

 A low-level API that provides access to offsets and allows consumers to rewind 

them as the need. 

 

Event lifetime 

 Configurable: 

 By time of event  

 Max partition size 



Transmitting Event Streams 

Kafka 

Slide 34 

Stream Processing 
 

Distributed Data 
Management 

Thorsten Papenbrock 

Optimizations that make Kafka fast:  

 Sequential I/O: 

 Sequential writes avoid disk seek times. 

 Exclusive write access to logs avoids blocking (one writer per log). 

 Sequential reads enable pre-fetching and caching of messages. 

 Minimal serialization/deserialization: 

 Standardized binary formats let producers, brokers and consumers use the same  

data representations without individual modification. 

 Zero-copy policy: 

 Data exchange completely in kernel space without copying it to user space avoids  

costly kernel-space to/from user-space copy processes 

(due to standardized formats, there is no need to copy messages into user space). 

 Batch processing: 

 Batching of data reduces network calls and improves sequential writes. 

 Compression of batches (with LZ4, SNAPPY or GZIP) leads to better compression ratios. 



Transmitting Event Streams 

Kafka 

Slide 35 

Stream Processing 
 

Distributed Data 
Management 

Thorsten Papenbrock 

Further reading 

 Kafka: The Definitive Guide 

 

 https://www.oreilly.com/library/ 

view/kafka-the-definitive/ 

9781491936153/  

https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/
https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/
https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/
https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/
https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/
https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/
https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/
https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/
https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/
https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/
https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/


Transmitting Event Streams 

Message Brokers: Persist or Forget 

Slide 36 

Thorsten Papenbrock 

Stream Processing 
 

Distributed Data 
Management 

       Persist 

 

 

 Keep entire message stream 

(until reaching size or time limit) 

 No need to track consumers 

 Let consumers go back in time 

 Database-like 

 Log-based Message Broker 

(e.g. Kafka, Kinesis or DistributedLog) 

Forget      i 

 

 

 Remove processed messages from stream 

(immediately after acknowledgement) 

 Track consumers to forget old content 

 The past is past 

 Volatile, light-weight 

 Queue-based Message Brokers 

(e.g. RabbitMQ, ActiveMQ or HornetQ) 

Use if throughput matters,  
event processing costs are similar and 
the order of messages is important 

Use if one-to-one scheduling is needed, 
event processing costs differ and  
the order of messages is insignificant 



Transmitting Event Streams 

Message Brokers: Persist or Forget 

Slide 37 

Thorsten Papenbrock 

Stream Processing 
 

Distributed Data 
Management 

       Persist 

 

 

 Keep entire message stream 

(until reaching size or time limit) 

 No need to track consumers 

 Let consumers go back in time 

 Database-like 

 Log-based Message Broker 

(e.g. Kafka, Kinesis or DistributedLog) 

Forget      i 

 

 

 Remove processed messages from stream 

(immediately after acknowledgement) 

 Track consumers to forget old content 

 The past is past 

 Volatile, light-weight 

 Queue-based Message Brokers 

(e.g. RabbitMQ, ActiveMQ or HornetQ) 

Use if throughput matters,  
event processing costs are similar and 
the order of messages is important 

Wait throughput? 

Yes, because … 

 dumping events to storage instead of 
routing them to consumers is faster. 

 broker does not need to track 
acknowledgements for every event   
(only consumers track their queue offset). 

 broker can utilize batching and pipelining 
internally. 



Overview 

Stream Processing 

Processing Streams Databases  
and Streams 

Transmitting 
Event Streams 

 

Slide 38 

Stream Processing 
 

Distributed Data 
Management 

Thorsten Papenbrock 



Databases and Streams 

Data Storage – Keeping Systems in Sync 

Slide 39 

Stream Processing 
 

Distributed Data 
Management 

Thorsten Papenbrock 

Producer 
1 

Producer 
1 Producer 

Events 

Volatile 
write/delete 
instructions  

OLAP System OLTP System Search Index Caches 



Databases and Streams 

Data Storage – Keeping Systems in Sync 

Slide 40 

Stream Processing 
 

Distributed Data 
Management 

Thorsten Papenbrock 

Write conflict: 

Database and search index are inconsistent, 
because they don’t share a common leader  

(that implements e.g. 2PC or MVCC). 



Databases and Streams 

Data Storage – Keeping Systems in Sync 

Slide 41 

Stream Processing 
 

Distributed Data 
Management 

Thorsten Papenbrock 

Producer 
1 

Producer 
1 Producer 

OLAP System OLTP System Search Index Caches 

 

 

 
 

 

Persisting Message Broker 

Events 

Enables: 

 Global ordering of events 
( eventual consistency) 

 Fault-safe event delivery 

 Backpressure on high load 



Databases and Streams 

Data Storage – Keeping Systems in Sync 

Slide 42 

Stream Processing 
 

Distributed Data 
Management 

Thorsten Papenbrock 

Producer 
1 

Producer 
1 Producer 

OLAP System OLTP System Search Index Caches 

 

 

 
 

 

Persisting Message Broker 

Events 



Databases and Streams 

Message Broker to Database 

Slide 43 

Stream Processing 
 

Distributed Data 
Management 

Thorsten Papenbrock 

Data Change Event Streams 

 If events are change operations (writes/deletes) to individual objects (records) 

it suffices to store only the most recent log entry for each object to rebuild a database. 

 Log Compaction: 

 Periodically removes outdated log entries from the log 

 Lets the log grow linearly with the data 

Message Broker  Database 

 If the broker knows what the events mean (e.g. key-value mappings) 

it can apply log compaction. 

 Event log does not outgrow the maximum buffer size. 

 Message broker becomes a database. 

 Implemented by e.g. Apache Kafka 



Databases and Streams 

Message Broker to Database 

Slide 44 

Message Broker as a Database 

 Advantages: 

 Data Provenance/Auditability:  

 The line of events describes the history of every value. 

 Allows to follow a value back in time (e.g. the balance history of a bank account) 

 Fraud protection, temporal analytics, data recovery, … 

 Command Query Responsibility Segregation (CQRS): 

 Events describe what happened (= facts) not their implications. 

 Allows consumers to read/interpret events differently (= different views)  

 Multi-tenant systems, system evolution, data analytics, … 

 Disadvantages: 

 Non-standing reads are slow (need to scan and interpret the entire event history). 

 Deleting data means declaring it deleted (actually deleting data is hard). 

 

 



Overview 

Stream Processing 

Processing Streams Databases  
and Streams 

Transmitting 
Event Streams 

 

Slide 45 

Stream Processing 
 

Distributed Data 
Management 

Thorsten Papenbrock 



Complex Event Processing (CEP) 

 “Check a stream for patterns; whenever something special happens, raise a flag.” 

 Similar to pattern matching with regular expressions (often SQL-dialects) 

 Implementations: Esper, IBM InfoSphere, Apama, TIBICO StreamBase, SQLstream 

Stream Analytics 

 “Transform or aggregate a stream; continuously output current results.” 

 Often uses statistical metrics and probabilistic algorithms: 

 Bloom filters (set membership) 

 HyperLogLog (cardinality estimation) 

 HDHistogram, t-digest, decay (percentile approximation) 

 Implementations: Storm, Flink, Spark Streaming, Concord, Samza,  

     Kafka Streams, Google Cloud Dataflow, Azure Stream Analytics 

 

Processing Streams 

Scenarios 

Slide 46 

Thorsten Papenbrock 

Bounded memory  
consumption 

Approximation is 
often used for 

optimization, but 
Stream Processing 
is not inherently 

approximate! 



Maintaining Materialized Views 

 “Serve materialized views with up-to-date data from a stream.” 

 Views are also caches, search indexes, data warehouses, and any derived data system  

 Implementations: Samza, Kafka Streams (but also works with Flink, Spark, and co.) 

Search on Streams 

 “Search for events in the stream; emit any event that matches the query.” 

 Similar to CEP but the standing queries are indexed, less complex, and more in number 

 Implementations: Elasticsearch 

Message Passing 

 “Use the stream for event communication; actors/processes consume and produce events.” 

 Requires non-blocking one-to-many communication 

 Implementations: Any message broker; RPC systems with one-to-many support 

 

Processing Streams 

Scenarios 
Usually consider 

entire stream, i.e., 
no window! 

Stream = Database 
(using log compaction etc.)  



File 
File 
File 

Slide 48 

Thorsten Papenbrock 

  

Spark Streaming (Recap) 

Batched Stream Processing 

 Reasons: 

 Incremental processing: start processing data that is still being written to 

 Latency reduction: pipeline data to maximizing resource utilization 

 

 

 

Producer 
1 

Producer 
1 Producer 

File 

File 

File File File 

File 

File Transformation pipeline 

 read map filter reduce write 

File 

Input stream 
might be 

volatile, i.e., 
read-once only 

Stream processing reads the data exactly once 
and still guarantees fault-tolerance through 
check pointing and write ahead logs (WAL) 



Spark Streaming (Recap) 

Processing Streams 

Examples 

val articles = spark 

  .read 

  .text("/mnt/data/articles/*.csv") 

 

val words = articles.as[String].flatMap(_.split(" ")) 

val urls = words.filter(_.startsWith("http")) 

val occurrences = urls.groupBy("value").count() 

 

occurrences.show() 

 

 

 

val articles = spark 

  .readStream 

  .text("/mnt/data/articles/*.csv") 

 

val words = articles.as[String].flatMap(_.split(" ")) 

val urls = words.filter(_.startsWith("http")) 

val occurrences = urls.groupBy("value").count() 

 

val query = occurrences.writeStream 

  .outputMode("complete") 

  .format("console") 

  .start()  

query.awaitTermination() 

"complete"  write the entire result for 
  every result update 
"append"  append new results;  
  old results should not change 
"update"  output only changed results 

Streaming input sources: 
  Files text, csv, json, parquet 

  Kafka Apache Kafka message broker 
  Socket UTF8 text data from a socket 
  Rate Generated data for testing 

Streaming output sinks: 
  Files "parquet", "orc", "json", "csv", etc. 
  Kafka "kafka" pointing to a Kafka topic 
  Foreach .foreach(...)  

  Console "console" 
  Memory "memory" with .queryName("…")  



Storm 

 A free and open source distributed real-time computation system (stream processor) 

 Competes with Apache Flink in stream processing speed 

 Creates a directed acyclic graph (DAG) of “spout” and “bolt” vertices 

 Spout = streaming data source 

 Bolt = data transformation operator 

 

 Designed for: 

 real-time analytics 

 online machine learning 

 continuous computation 

 distributed RPC 

 ETL 

 

 

Processing Streams 

Examples 

Slide 50 

Thorsten Papenbrock 

 Guarantees: 

 scalability 

 fault-tolerance  

 “best effort”, “at least once”, and  

“exactly once” processing capabilities 

 ease to set up and operate 

 



Processing Streams 

Examples 

Slide 51 

Thorsten Papenbrock 

http://admicloud.github.io/ 
www/storm.html A source that streams some text lines 

Text to be streamed 

Output format 



Processing Streams 

Examples 

Slide 52 

Thorsten Papenbrock 

http://admicloud.github.io/ 
www/storm.html 

Storm bolds implement UDFs 

A flatMap() implementation 



Processing Streams 

Examples 

Slide 53 

Thorsten Papenbrock 

http://admicloud.github.io/ 
www/storm.html 

Another flatMap() implementation 

Streaming output: emit every update 



Processing Streams 

Examples 

Slide 54 

Thorsten Papenbrock 

http://admicloud.github.io/ 
www/storm.html 

Parallelism hint for spouts/bolts 

Define the grouping for the input of each bolt: 

             - shuffle:  assign randomly 

             - field:      assign by field value 

Execute on cluster 

Execute locally 

Runs until explicitly stopped 

More on Apache Storm @ http://storm.apache.org/  

http://storm.apache.org/
http://storm.apache.org/


Processing Streams 

Examples 

Slide 55 

Thorsten Papenbrock 

http://admicloud.github.io/ 
www/storm.html 

In-memory data structure  

that grows indefinitely large 

Implemented as a narrow flatMap() 

and not as a wide groupBy()  

to avoid blocking of the pipeline 



Processing Streams 

Challenges and Limits 

Slide 56 

Stream Processing 
 

Distributed Data 
Management 

Thorsten Papenbrock 

Goal 

 Query and analyze streaming data in real-time (i.e. as data passes by). 

Challenges 

 Limited memory resources (but endlessly large volumes of data) 

 Only a fixed-size window of the stream is accessible at a time. 

 Old data is permanently gone (and not accessible any more) 

 Only one-pass algorithms can be used. 

 Endlessness contradicts certain operations 

 E.g. sorting makes no sense, i.e., no sort-merge-joins or groupings 

(on the entire stream!). 

 Input cannot be re-read or easily back-traced 

 Fault tolerance must be ensured differently. 

 



Windows 

 A continuous segment of the stream usually implemented as a buffer 

 New events oust the oldest events from the window. 

 Events within the window can be accessed arbitrarily often. 

 Bounded in size usually using a time interval or a maximum number of events 

 

 

 

 

 

 

 

Processing Streams 

Concepts 

Slide 57 

Stream Processing 
 

Distributed Data 
Management 

Thorsten Papenbrock 

Window 

 

 

 At the heart of processing 
infinite streams, as they let us 

make exact statements  
for concrete sub-sequences 

While sliding over 
the events, 

successive windows 
may or may not 

overlap 



Standing queries 

 Persisted queries that are served with volatile event data (reversed DBMS principle) 

 Produce a streaming output of “complex events” 

 Apply event checking, pattern matching, correlation analysis, aggregation, … 

 Operate on windows 

Processing Streams 

Concepts 

Slide 58 

Stream Processing 
 

Distributed Data 
Management 

Thorsten Papenbrock 

Window 

 

 

 
Standing 

Query 



Processing Streams 

Windows 

Slide 59 

Stream Processing 
 

Distributed Data 
Management 

Thorsten Papenbrock 

9 6 8 4 7 3 8 4 2 1 3 2 

Tumbling Windows 

 Fixed-length, non-overlapping windows 

 New window starts when previous window ended (e.g. successive intervals of 3 seconds or 100 events) 

Hopping Windows 

 Fixed-length, overlapping windows with fix steps 

 Defined by window length and hop width (e.g. intervals of 3 seconds starting every 2 seconds) 

Sliding Windows 

 Fixed-length, overlapping windows with event dependent steps 

 Either new events oust old events or events stay for a certain amount of time 

Session Windows 

 Arbitrary-length, overlapping windows 

 Fix start- and end-event (e.g. user logs in; user logs out or session times out) 

 

 

File-based micro-batching! 



How does parallelization happen? 

Processing Streams 

Windows and Parallelization 

Slide 60 

Stream Processing 
 

Distributed Data 
Management 

Thorsten Papenbrock 

Window 

 

 

 

6 5 2 1 

Standing 
Query 

One input stream of events;  
not pre-partitioned by e.g. HDFS 

Process sequences of 
logically related events 

The framework does not 
automatically know which 

elements belong together and 
which can be processed in parallel. 

4 3 

We expect a repartition() here, but for streaming scenarios 
and overlapping windows, this should be a stable operation in 
accordance with event/ingestion/processing time and order. Different windows can be 

processed in parallel, but how do 
we parallelize one window? 



Non-Keyed Windows 

 Partition a stream into another stream of buckets 

 For parallel processing, events need to be replicated (not supported by all streaming frameworks) 

 Usually no parallelization without keying 

 

 

Keyed Windows 

 Partition a stream into multiple other streams of buckets (one per key value) 

 Output streams can naturally be processed in parallel without replication 

 Default stream parallelization technique 

 

 

Processing Streams 

Windows and Parallelization 

Slide 61 

Stream Processing 
 

Distributed Data 
Management 

Thorsten Papenbrock 

2,12 

1,11 

3,10 

2,7 

1,6 

3,9 

2,4 

1,2 

3,8 

2,3 

1,1 

3,5 

6 5 4 3 2 1 

Also called partitioned windows 



Non-Keyed Windows 

 

 

 

 

 

Keyed Windows 

 

 

Processing Streams 

Windows and Parallelization 

Slide 62 

Stream Processing 
 

Distributed Data 
Management 

Thorsten Papenbrock 

2,12 

1,11 

3,10 

2,7 

1,6 

3,9 

2,4 

1,2 

3,8 

2,3 

1,1 

3,5 

6 5 4 3 2 1 

stream 
   .windowAll(...)            <-  required: "assigner" 
  [.trigger(...)]             <-  optional: "trigger" (else default trigger) 
  [.evictor(...)]             <-  optional: "evictor" (else no evictor) 
  [.allowedLateness(...)]     <-  optional: "lateness" (else zero) 
  [.sideOutputLateData(...)] <-  optional: "output tag" (else no side output for late data) 
   .reduce/aggregate/fold/apply()      <-  required: "function" 
  [.getSideOutput(...)]     <-  optional: "output tag" 

stream 
   .keyBy(...)  <-  keyed versus non-keyed windows 
   .window(...)            <-  required: "assigner" 
  [.trigger(...)]             <-  optional: "trigger" (else default trigger) 
  [.evictor(...)]             <-  optional: "evictor" (else no evictor) 
  [.allowedLateness(...)]  <-  optional: "lateness" (else zero) 
  [.sideOutputLateData(...)] <-  optional: "output tag" (else no side…) 
   .reduce/aggregate/fold/apply()      <-  required: "function" 
  [.getSideOutput(...)]     <-  optional: "output tag" 

https://ci.apache.org/projects/flink/flink-docs-
stable/dev/stream/operators/windows.html#triggers  

https://ci.apache.org/projects/flink/flink-docs-stable/dev/stream/operators/windows.html
https://ci.apache.org/projects/flink/flink-docs-stable/dev/stream/operators/windows.html
https://ci.apache.org/projects/flink/flink-docs-stable/dev/stream/operators/windows.html
https://ci.apache.org/projects/flink/flink-docs-stable/dev/stream/operators/windows.html
https://ci.apache.org/projects/flink/flink-docs-stable/dev/stream/operators/windows.html
https://ci.apache.org/projects/flink/flink-docs-stable/dev/stream/operators/windows.html


Flink 

Processing Streams 

Examples 

Slide 63 

Thorsten Papenbrock 

val env = StreamExecutionEnvironment.getExecutionEnvironment 

val text = env.socketTextStream("localhost", 4242, '\n') 

 

val windowCounts = text 

  .flatMap { w => w.split("\\s") } 

  .map { w => WordWithCount(w, 1) } 

  .keyBy("word") 

  .timeWindow(Time.seconds(5), Time.seconds(1)) 

  .sum("count")   

windowCounts.print().setParallelism(1) 

env.execute("Socket Window WordCount") 

 

case class WordWithCount(word: String, count: Long) 

Get the execution environment 

Get input data by connecting to the socket 

Parse the data, map the words, and group them 

Print the results with a single thread, rather than in parallel 

Define a sliding window of size 5 seconds that slides every 1 second 

Aggregate the counts per window 

More on Apache Flink @ https://flink.apache.org/  

https://flink.apache.org/
https://flink.apache.org/


Continuous Query Language 

 Developed at Stanford University: http://www-db.stanford.edu/stream  

 Used to define standing queries for windows of a stream  

Processing Streams 

Examples 

Slide 64 

Thorsten Papenbrock 

SELECT count(*) 
FROM Requests R [RANGE 1 Day PRECEDING] 
WHERE R.domain = ‘stanford.edu’ 

“Count the number of requests to stanford.edu for the last 1 day.” 

SELECT count(*) 
FROM Requests R [PARTITION BY R.client_id  
               ROWS 10 PRECEDING 
               WHERE R.domain = ‘stanford.edu’] 
WHERE R.url LIKE ‘http://cs.stanford.edu/%’ 

“From the last 10 requests of a user to standord.edu, count all her calls to cs.” 

window (defined using time) 

partitioning (by attribute value) 

window (defined using size) 

stream 

CQL 

http://www-db.stanford.edu/stream
http://www-db.stanford.edu/stream
http://www-db.stanford.edu/stream


Processing Streams 

Events and Time 

Slide 65 

Stream Processing 
 

Distributed Data 
Management 

Thorsten Papenbrock 

Event Time 

 Creation time of the event on the producer (when it occurred) 

Ingestion Time 

 Arrival time of the event at the stream processor (when it was received) 

Processing Time 

 Operation time of the event on the stream processor (when it had an effect) 

Stream processors (e.g. Flink) 
let you choose which time to 

use for windowing! 



Slide 66 

Stream Processing 
 

Distributed Data 
Management 

Thorsten Papenbrock 

Event Time 

Processing Time 

Processing Streams 

Event Time vs. Processing Time 



Processing Streams 

Events and Time 

Slide 67 

Stream Processing 
 

Distributed Data 
Management 

Thorsten Papenbrock 

Event Time 

 Creation time of the event on the producer (when it occurred) 

Ingestion Time 

 Arrival time of the event at the stream processor (when it was received) 

Processing Time 

 Operation time of the event on the stream processor (when it had an effect) 

 

Unpredictable Time Lag 

 Events might be delayed due to … 

 congestion, queuing, faults, … 

 Events might be out-of-order due to … 

 message loss and resend, alternative routing, … 

 Event time might be measured differently due to … 

 multiple clocks in distributed systems, clock skew and correction, … 

 

Recall lecture on 
“Distributed Systems” 



Processing Streams 

Event Time vs. Processing Time 

Slide 68 

Stream Processing 
 

Distributed Data 
Management 

Thorsten Papenbrock 

Solutions 

 Assign timestamps as early as possible: 

 producer > leader > time-synced worker > un-synced worker  

 Assign multiple timestamps 

 creation-time, send-time, receive-time, forward-time, … 

 Solve time lag programmatically: 

 Exchange a fixed event frequency (e.g. frequency = 1 second) 

 Reasoning over events (e.g. order(X) > pay(X) > deliver(X)) 

 

 

filming order ≠ narrative order 

Many events (e.g. sensor or log) 
carry timestamps naturally 

Used to calculate the lag 



Processing Streams 

Completing a Window 

Slide 69 

Stream Processing 
 

Distributed Data 
Management 

Thorsten Papenbrock 

Problem 

 How does a stream worker know that all events for a certain window have arrived? 

(as events might be delayed  straggler events) 

 

Solution 

 Declare a window as completed if … 

a) the first event for next window arrives or 

b) a timeout for this window has elapsed. 

 Handle straggler events after completion of their window by … 

a) ignoring them (maybe counting/reporting ignored stragglers) or 

b) publishing an update for their window or 

c) assigning them to the next window. 



Processing Streams 

Fault Tolerance 

Slide 70 

Stream Processing 
 

Distributed Data 
Management 

Thorsten Papenbrock 

map map reduce map map reduce map reduce 

cannot re-execute 

Issues 

 Unbounded:  

 Jobs cannot wait making their output visible until their stream finishes  

 Volatile:  

 If a fault occurs, stream data cannot be re-read 

 

 

unbounded; 
volatile; any size 



Processing Streams 

Fault Tolerance 

Slide 71 

Stream Processing 
 

Distributed Data 
Management 

Thorsten Papenbrock 

Microbatching and Checkpointing  

 Microbatches (see Spark): 

 Tumbling windows that are treated as batches (cached, checkpointed, …). 

 Windows represent state that is written to disk and serves to recover from faults. 

 Checkpoints (see Flink): 

 Rolling checkpoints that are triggered periodically by barriers in the event stream. 

 Operator state is written to disk and serves to recover from faults. 

 Checkpoints are not tied to particular window sizes. 

 Both strategies ensure that every event is processed 

 No event is lost until it produced some output. 

 Still problematic: 

 Actions that recover from faults might produced redundant outputs  

to external event sinks (databases, message brokers, HDFS, …). 

 



Processing Streams 

Fault Tolerance 

Slide 72 

Thorsten Papenbrock 

Atomic Commit (revisited) 

 Avoid redundant outputs using a commit protocol in conjunction with every event sink. 

 Commits are logged, which helps to check whether an output happened before. 

 Single event commits are cheaper than transaction commits. 

 Still a research area with only a few systems supporting it: 

 Google Cloud Dataflow, VoltDB, Kafka (in development) 

Idempotence  

 Avoid redundant output effects using only idempotent output operations. 

 Idempotent operation = operation that has the same effect regardless how often it is applied. 

 Examples (multiple calls always replace the existing data with itself): 

 Set key to value; Create file with name; Delete resource; Overwrite content with text 

 Many non-idempotent operations can be made idempotent: 

 Add an offset/identifier to each output event that identifies redundancy. 

 

 



Processing Streams 

Joins 

Slide 73 

Stream Processing 
 

Distributed Data 
Management 

Thorsten Papenbrock 

Stream-Stream Join 

 Task: Join events in stream A with events in stream B. 

 Problem: Joins require all events of one side to be randomly accessible, but stream is endless. 

 Solution: Window Joins 

 One side of the join is kept in memory as a window  

(e.g. session window of logged-in users). 

 The other side of the join is probed against the events of that window 

(e.g. request events to an API). 

 Straggler events are dropped. 

Stream-Table Join 

 Task: Join events in a stream with events in a database. 

 Problem: Database is too large for memory and too slow for stream checks. 

 Solution: Database Partitioning/Replication  

 Forward the stream to different partitions/replica that perform different parts of the join. 



Processing Streams 

Further Reading 

Slide 74 

Stream Processing 
 

Distributed Data 
Management 

Thorsten Papenbrock 

T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J. 
Fernández-Moctezuma, R. Lax, S. McVeety, D. Mills, F. Perry, E. 
Schmidt, and S. Whittle. The dataflow model: a practical 
approach to balancing correctness, latency, and cost in massive-
scale, unbounded, out-of-order data processing. Proceedings of 
the VLDB Endowment 8, 12 (August 2015), 1792-1803. 
DOI=http://dx.doi.org/10.14778/2824032.2824076  

https://ci.apache.org/projects/
flink/flink-docs-release-1.6/  

https://ci.apache.org/projects/flink/flink-docs-release-1.6/
https://ci.apache.org/projects/flink/flink-docs-release-1.6/
https://ci.apache.org/projects/flink/flink-docs-release-1.6/
https://ci.apache.org/projects/flink/flink-docs-release-1.6/
https://ci.apache.org/projects/flink/flink-docs-release-1.6/
https://ci.apache.org/projects/flink/flink-docs-release-1.6/
https://ci.apache.org/projects/flink/flink-docs-release-1.6/
https://ci.apache.org/projects/flink/flink-docs-release-1.6/
https://ci.apache.org/projects/flink/flink-docs-release-1.6/


Processing Streams 

Further Reading 

Slide 75 

Stream Processing 
 

Distributed Data 
Management 

Thorsten Papenbrock 

https://www.oreilly.com/ideas/the-
world-beyond-batch-streaming-101  

https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101


Processing Streams 

Further Reading 

Slide 76 

Stream Processing 
 

Distributed Data 
Management 

Thorsten Papenbrock 

1. Data Mining 

2. Large-Scale File Systems and Map-Reduce 

3. Finding Similar Items 

4. Mining Data Streams 

 Sampling and Filtering 

 Counting and Aggregation 

 Estimation 

 Decaying Windows 

5. Link Analysis 

6. Frequent Itemsets 

7. Clustering 

8. Advertising on the Web 

9. Recommendation Systems 



Given is a stream of elements e1, ..., en. The task is to select a random 

sample of k elements (k <= n) from the stream, where each element of the 

stream should have the same probability to be sampled. The size of the 

stream is not known in advance. 

Give an algorithm that solves this problem with O(k) memory and show that 

each element has the same probability to be sampled. 

Stream Processing 
Check yourself 

Slide 77 

Stream Processing 
 

Distributed Data 
Management 

Tobias Bleifuß 



Homework 

Log Data Analytics 

Slide 78 

Thorsten Papenbrock 

Stream Processing 
 

Distributed Data 
Management 



Homework 

Log Data Analytics 

Assignment 

 Task 

 Data Exploration: Find interesting insights in a log stream, such as 

 the 90th percentile response size 

 average number of requests per hour 

 most popular clients and resources 

 Don’t break the memory! 

 Dataset 

 Two month's worth of all HTTP requests to the NASA Kennedy Space 

Center WWW server in Florida: 

http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html 

 Parameter 

 “java -jar YourAlgorithmName.jar --path access_log_Aug95 --cores 4” 

 Default path should be “./access_log_Aug95” and default cores 4 

 

Slide 79 

Thorsten Papenbrock 

Stream Processing 
 

Distributed Data 
Management 

http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html
http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html
http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html
http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html


Homework 

Inclusion Dependency Discovery - Rules 

Assignment 

 Expected output 

 Write your discoveries (text + value) to the console 

 Use the following style for your output:  

<text> : <value> 

 Example output: 
 

90th percentile response size : 7265 

average number of requests per hour : 233 

most popular client : www.hpi.de 

most popular resource : www.hpi.de/DDM 

Slide 80 

Thorsten Papenbrock 

Stream Processing 
 

Distributed Data 
Management 



Homework 

Inclusion Dependency Discovery - Rules 

Assignment 

 Submission deadline 

 27.01.2019 23:59:59 

 Submission channel 

 ftp-share that we make available via email 

 Submission artifacts 

 Source code as zip (Maven project; Java or Scala) 

 Jar file as zip (fat-jar) 

 a slide with your transformation pipeline(s) 

 Teams 

 Please solve the homework in teams of two students 

 Provide the names of both students in your submission (= folder name) 

 
Slide 81 

Thorsten Papenbrock 

Stream Processing 
 

Distributed Data 
Management 



Team: Most Metrics 
          (Size Window) 

Team: Most Metrics 
          (Time Window) 

Team: Disc Writing 
          (Time Window) 

Team: Output Summary 
          (Time Window) 

Team: Client Analytics 
          (Keyed Session Window) 

Team: Nice Use Case 
          (Keyed Window) 



Distributed Data Management 

Introduction 
Thorsten Papenbrock 

G-3.1.09, Campus III 

Hasso Plattner Institut 

 


