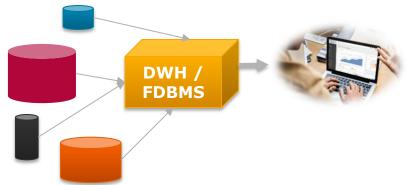


# Distributed Data Management Distributed DBMSs

Thorsten Papenbrock


F-2.04, Campus II Hasso Plattner Institut

# Distributed DBMSs Drivers of Distribution

### Distributed data creation

- Relevant data is created distributedly by independent sources/systems but integrated to enable global analytics.
  - Traditional cause for data distribution
- Goal: Integrate disconnected data in one central system to satisfy an information need.
- Systems: Data Warehouses (DWH); Federated Database Management Systems (FDBMS)

**Data Stream** 



# Distributed data processing

- Relevant data is artificially distributed to independent workers/systems for faster data analytics.
  - > Modern cause for data distribution
- Goal: Partition and distribute large datasets to satisfy storage and analytical needs.
- Systems: Big Data Analytics Systems (sharded DBMSs, batch- and stream systems)

ThorstenPapenbrock

Slide 2





Question: "Find all humans ESTs (DNA-sequences), that according to BLAST are at least 60% and across at least 50 amino acids identical with mouse-channel genes in the tissue of the central nervous system."

- Various sources of information needed:
  - Mouse Genome Database (MGD) @ Jackson Labs
  - SwissProt @ EBI
  - BLAST tool @ NCBI
  - GenBank nucleotide sequence database @ NCBI







Source for example: A Practitioner's Guide to Data Management and Data Integration in Bioinformatics, Barbara A. Eckman in Bioinformatics by Zoe Lacroix and Terence Critchlow, 2003, Morgan Kaufmann.

Distributed Data Management

Distributed DBMSs



- 🔆 🍇 📣 🖬 🎸



Question: "Find all humans ESTs (DNA-sequences), that according to BLAST are at least 60% and across at least 50 amino acids identical with mouse-channel genes in the tissue of the central nervous system."

 Find "channel" sequence in tissue of central nervous system in MGD HTML-form



| 撰 MGI 2.7 - Gene Expression Data Query Form - Netscape                        | _ 🗆 × |
|-------------------------------------------------------------------------------|-------|
| <u>File Edit View Go Communicator Help</u>                                    |       |
|                                                                               |       |
| Gene Expression Data Query Form                                               | -     |
|                                                                               |       |
| Retrieve Reset Form                                                           |       |
|                                                                               |       |
| Sort by: O Gene symbol O Age O Anatomical structure O Assay Type O Author     |       |
| Max number of items returned: C 10 💿 100 C 500 C No limit                     |       |
| Return: 👁 Assays C Assay Results                                              |       |
| C C 1 107                                                                     | _     |
| Gene Symbol/Name:                                                             |       |
| 🗖 NOT contains 💌 channel Search current & withdrawn & synonyms 💌              |       |
| Gene Classifications: (You can browse the Gene Ontology (GO) Classifications) |       |
| contains                                                                      |       |
|                                                                               |       |
| 🗹 Molecular Function 🗹 Biological Process 🗹 Cellular Component                |       |
| Chromosomal Location:                                                         |       |
| Chromosome: ANY                                                               |       |
| Restrict search to a chromosomal region? (specify one of the following)       |       |
| Between and (Enter cM positions or locus symbols) Include rendpoints          |       |
|                                                                               | ~     |
| Within cM of locus locus.                                                     |       |
| Expression                                                                    |       |
| O detected O not detected I either                                            |       |
| Developmental Stage(s): (You can browse Stage descriptions)                   |       |
| ANY                                                                           |       |
| TS 1 (0.0-2.5 dpc)                                                            |       |
| TS 3 (1.0-2.5 dpc)                                                            |       |
| in 💌 TS 4 (2.0-4.0 dpc) 💌                                                     |       |
| Anatomical Structure(s): (You can browse the Anatomical Dictionary)           |       |
| contains 🔽 brain, spinal cord                                                 |       |
| Include: 🗹 substructures 🗆 superstructures                                    |       |

Document: Done

Source for example: A Practitioner's Guide to Data Management and Data Integration in Bioinformatics, Barbara A. Eckman in Bioinformatics by Zoe Lacroix and Terence Critchlow, 2003, Morgan Kaufmann.

#### Distributed Data Management

Distributed DBMSs





Question: "Find all humans ESTs (DNA-sequences), that according to BLAST are at least 60% and across at least 50 amino acids identical with mouse-channel genes in the tissue of the central nervous system."

- Find "channel" sequence in tissue of central nervous system in MGD HTML-form
- MGD Result
  - 14 genes from
     17 experiments



| Query Results Sunnaary<br>7 matching assays displayed |                      |             |                |                                                  |
|-------------------------------------------------------|----------------------|-------------|----------------|--------------------------------------------------|
| Gene                                                  | Assay Type           | Assay       | RefID          | Reference                                        |
| Atp61                                                 | Northern blot        | MGI:2150866 | <u>J:71376</u> | Nishi T, J Biol Chem 2001 Sep 7;276(36):34122-30 |
| Caenb3                                                | RT-PCR               | MGI:1205020 | <u>J:46439</u> | Freeman TC, MGI Direct Data Submission 1998;():  |
| <u>Gja1</u>                                           | Immunohistochemistry | MGI:1338492 | <u>J:31725</u> | Yancey SB, Development 1992 Jan;114(1):203-12    |
| <u>Gja1</u>                                           | Immunohistochemistry | MGI:1338557 | <u>J:31725</u> | Yancey SB, Development 1992 Jan;114(1):203-12    |
| <u>Kcna4</u>                                          | Immunohistochemistry | MGI:1335744 | <u>J:41027</u> | Zhong W, Development 1997 May;124(10):1887-97    |
| <u>Kcnab2</u>                                         | RT-PCR               | MGI:1204928 | <u>J:46439</u> | Freeman TC, MGI Direct Data Submission 1998;():  |
| <u>Kcnh1</u>                                          | RT-PCR               | MGI:1205795 | <u>J:46439</u> | Freeman TC, MGI Direct Data Submission 1998;():  |
| <u>Konj12</u>                                         | RT-PCR               | MGI:1204727 | <u>J:46439</u> | Freeman TC, MGI Direct Data Submission 1998;():  |
| <u>Kenj2</u>                                          | RT-PCR               | MGI:1205781 | <u>J:46439</u> | Freeman TC, MGI Direct Data Submission 1998;():  |
| Kenj3                                                 | RT-PCR               | MGI:1205497 | <u>J:46439</u> | Freeman TC, MGI Direct Data Submission 1998;():  |
| Kcnj4                                                 | RT-PCR               | MGI:1204196 | <u>J:46439</u> | Freeman TC, MGI Direct Data Submission 1998;():  |
| Kcnj4                                                 | RT-PCR               | MGI:1204198 | <u>J:46439</u> | Freeman TC, MGI Direct Data Submission 1998;():  |
| Kenj5                                                 | RT-PCR               | MGI:1205098 | <u>J:46439</u> | Freeman TC, MGI Direct Data Submission 1998;():  |
| <u>Kenj6</u>                                          | RT-PCR               | MGI:1204201 | <u>J:46439</u> | Freeman TC, MGI Direct Data Submission 1998;():  |
| <u>Kenj9</u>                                          | RT-PCR               | MGI:1204204 | <u>J:46439</u> | Freeman TC, MGI Direct Data Submission 1998;():  |
| <u>Kenma1</u>                                         | RT-PCR               | MGI:1205940 | <u>J:46439</u> | Freeman TC, MGI Direct Data Submission 1998;():  |
| Kenma1                                                | RT-PCR               | MGI:1205942 | <u>J:46439</u> | Freeman TC, MGI Direct Data Submission 1998;():  |

Document Done

Source for example: A Practitioner's Guide to Data Management and Data Integration in Bioinformatics, Barbara A. Eckman in Bioinformatics by Zoe Lacroix and Terence Critchlow, 2003, Morgan Kaufmann.

#### Distributed Data Management

Distributed DBMSs

#### ThorstenPapenbrock Slide **5**

- 🐝 🏎 🔊 🖪





Question: "Find all humans ESTs (DNA-sequences), that according to BLAST are at least 60% and across at least 50 amino acids identical with mouse-channel genes in the tissue of the central nervous system."

- Find "channel" sequence in tissue of central nervous system in MGD HTML-form
- 2. Examine the details for each of the 14 genes on SwissProt
  - On average 5 SwissProt links per gene

| dit ⊻iew <u>G</u> o <u>(</u> | larkers and Phenotypes Query Results (Detail:<br>Communicator Help | sj - Netscape            |                |
|------------------------------|--------------------------------------------------------------------|--------------------------|----------------|
| 111 / F ann / F ann /        |                                                                    |                          |                |
| e Classificatio              | ons: (You can browse the Gene Ontology (                           | GO) Classifications)     |                |
| Category                     | Classification Term                                                | Evidence                 | Reference      |
| Biological Pr                | ocess ATP biosynthesis                                             | electronic<br>annotation | <u>J:60000</u> |
|                              | ponentmembrane fraction                                            | electronic<br>annotation | <u>J:60000</u> |
| Cellular Con                 | ponent proton-transporting ATP synthase complex                    | electronic<br>annotation | <u>J:72245</u> |
|                              | inction electron transporter                                       | electronic<br>annotation | <u>J:60000</u> |
| Molecular F                  | nction hydrogen-transporting two-sector<br>ATPase                  | electronic<br>annotation | <u>J:72245</u> |
| r Database I                 | inks for this Marker:                                              |                          |                |
| Acc ID                       | Links                                                              | Reference                |                |
| AB059662                     | (DDBJ, EMBL, GenBank)                                              | <u>J:71631</u>           |                |
| AF356008                     | (DDBJ, EMBL, GenBank)                                              | <u>J:71376</u>           |                |
| AK002570                     | (DDBJ, EMBL, GenBank)                                              | J:65060                  |                |
| AK002871                     | (DDBJ, EMBL, GenBank)                                              | J:65060                  |                |
| AK014361                     | (DDBJ, EMBL, GenBank)                                              | J:65060                  |                |
| M64298                       | (DDBJ, EMBL, GenBank)                                              | J:20078                  |                |
| U13842                       | (DDBJ, EMBL, GenBank)                                              | <u>J:31176</u>           |                |
| AAL02098                     | (SWISS-PROT (EBI), SWISS-PROT (S                                   | IB)) <u>J:53168</u>      |                |
| BAB22195                     | (SWISS-PROT (EBI), SWISS-PROT (S                                   | IB)) <u>J:53168</u>      |                |
| BAB22419                     | (SWISS-PROT (EBI), SWISS-PROT (S                                   | IB)) <u>J:53168</u>      |                |
| BAB64538                     | (SWISS-PROT (EBI), SWISS-PROT (S                                   |                          |                |
| P23967                       | (SWISS-PROT (EBI), SWISS-PROT (S                                   | TD\\ L52160              |                |

Source for example: A Practitioner's Guide to Data Management and Data Integration in Bioinformatics, Barbara A. Eckman in Bioinformatics by Zoe Lacroix and Terence Critchlow, 2003, Morgan Kaufmann.

#### **Distributed Data Management**

Distributed DBMSs



HPI Hasso Plattner Institut

Question: "Find all humans ESTs (DNA-sequences), that according to BLAST are at least 60% and across at least 50 amino acids identical with mouse-channel genes in the tissue of the central nervous system."

- Find "channel" sequence in tissue of central nervous system in MGD HTML-form
- 2. Examine the details for each of the 14 genes on SwissProt
- 3. Examine each SwissProt entry with the BLAST algorithm

|      |                                                                                  | 7                                                  |  |
|------|----------------------------------------------------------------------------------|----------------------------------------------------|--|
|      | 🔆 Netscape                                                                       |                                                    |  |
|      | <u>File E</u> dit ⊻iew <u>G</u> o <u>C</u> ommunicator <u>H</u> elp              |                                                    |  |
|      | panninine/panne/panne/                                                           |                                                    |  |
| sue  | ID AALO2098 PRELIMINARY; PRT; 155 A.<br>AC AALO2098;                             | λ.                                                 |  |
|      | DT 01-NOV-2001 (EMBLrel. 63, Created)                                            |                                                    |  |
| 1GD  | DT 01-NOV-2001 (EMBLrel. 63, Last sequen                                         | ce undate)                                         |  |
|      | DT 01-NOV-2001 (EMBLrel. 63, Last annota:                                        |                                                    |  |
|      | DE Vacuolar proton-translocating ATPase                                          |                                                    |  |
|      | OS Mus musculus (Mouse).                                                         |                                                    |  |
|      | OC Eukaryota; Metazoa; Chordata; Craniat;                                        | a; Vertebrata; Euteleostomi;                       |  |
| C    | OC Mammalia; Eutheria; Rodentia; Sciurog                                         | nathi; Muridae; Murinae; Mus.                      |  |
| DT I | OX NCBI_TaxID=10090;                                                             |                                                    |  |
| -    | RN [1]                                                                           |                                                    |  |
|      | RP SEQUENCE FROM N.A.                                                            |                                                    |  |
|      | RC STRAIN=BALB/c;                                                                |                                                    |  |
|      | <pre>RX MEDLINE=21423991; PubMed=11441017;</pre>                                 |                                                    |  |
|      | RA Nishi T., Kawasaki-Nishi S., Forgac M                                         |                                                    |  |
| ,    | RT "Expression and Localization of the M                                         | -                                                  |  |
|      | RT V-ATPase 21-kDa Subunit c' (Vma16p).".                                        | ;                                                  |  |
|      | RL J. Biol. Chem. 276:34122-34130(2001).                                         |                                                    |  |
|      | DR EMBL; AF356008; AAL02098.1;                                                   |                                                    |  |
|      | SQ SEQUENCE 155 AA; 15808 MW; 880C280                                            |                                                    |  |
|      | MADIKNNPEY SSFFGVNGAS SAMVFSANGA AYGT.<br>MAGIIAIYGL VVAVLIANSL TDGITLYRSF LOLG. |                                                    |  |
|      | TAQQPRLFVG MILILIFAEV LGLYGLIVAL ILST                                            |                                                    |  |
|      | //                                                                               | ĸ                                                  |  |
|      | //                                                                               |                                                    |  |
|      |                                                                                  |                                                    |  |
|      | Direct BLAST submission at<br><u>EMBnet-CH/SIB (Switzerland)</u>                 | Direct BLAST submission at<br>NCBI (Bethesda, USA) |  |

Source for example: A Practitioner's Guide to Data Management and Data Integration in Bioinformatics, Barbara A. Eckman in Bioinformatics by Zoe Lacroix and Terence Critchlow, 2003, Morgan Kaufmann.

#### Distributed Data Management

Distributed DBMSs





Question: "Find all humans ESTs (DNA-sequences), that according to BLAST are at least 60% and across at least 50 amino acids identical with mouse-channel genes in the tissue of the central nervous system."

- Find "channel" sequence in tissue of central nervous system in MGD HTML-form
- 2. Examine the details for each of the 14 genes on SwissProt
- 3. Examine each SwissProt entry with the BLAST algorithm
- 4. Examine each BLAST result to ...
  - 1. eliminate non-human hits
  - check other predicates (>60% identical, etc.).

| wiss-BLAST results - Netscape<br>Edit View Go Communicator Help                                                                  |       |       |
|----------------------------------------------------------------------------------------------------------------------------------|-------|-------|
| For New Bo Forumerson Beb                                                                                                        |       |       |
| 7. 7.                                                                                                                            | cure  | L     |
| quences producing significant alignments: (                                                                                      | bits) | Value |
|                                                                                                                                  |       |       |
| BF383501.1 BF383501 602045186F1 NCI CGAP L19 Mus musculus cDN                                                                    | 251   | 8e-67 |
| BI555191.1 BI555191 603236136F1 NIH_CGAP_Mam3 Mus musculus cD                                                                    | 251   | 8e-67 |
| BE285425.1 BE285425 601096726F1 NCI CGAP Mam5 Mus musculus cD                                                                    | 251   | 8e-67 |
| BI651120.1 BI651120 603297590F1 NIH_CGAP_Mam3 Mus musculus cD                                                                    | 251   | 8e-67 |
| AU921969.1 AU921969 EST353273 Rat gene index, normalized rat,                                                                    | 251   | 8e-67 |
| BI646796.1 BI646796 603276734F1 NIH CGAP Mam3 Mus musculus cD                                                                    |       |       |
|                                                                                                                                  |       |       |
| BF123349.1 BF123349 601759145F1 NCI_CGAP_Mam5 Mus musculus cD                                                                    |       |       |
| BI693533.1 BI693533 603341913F1 NCI_CGAP_Mam2_Mus_musculus_cD                                                                    |       |       |
| BI666010.1 BI666010 603287067F1 NCI_CGAP_Mam6 Mus musculus cD                                                                    | 251   | 8e-67 |
| b AL633622.1 AL633622 AL633622 XGC-mastrula Silurana tropicali                                                                   | 228   | 7e-60 |
| b AL639595.1 AL639595 AL639595 XGC-neurola Silurana tropicalis                                                                   | 228   | 7e-60 |
| b AL594253.1 AL594253 AL594253 XGC-gastrula Silurana tropicali                                                                   |       |       |
| b AL557998.1 AL557998 AL557998 LTI NFLOO8 TC2 Homo sapiens cDN                                                                   |       |       |
|                                                                                                                                  |       | 2e-59 |
|                                                                                                                                  |       | 2e-59 |
| BE729329.1 BE729329 601561519F1 NIH MGC 20 Homo sapiens cDNA                                                                     |       |       |
|                                                                                                                                  |       | 2e-59 |
| BI765781.1 BI765781 603046569F1 NIH NGC 116 Homo sapiens cDNA                                                                    |       |       |
|                                                                                                                                  |       | 2e-59 |
|                                                                                                                                  |       | 2e-59 |
| BG741416.1 BG741416 602631991F1 NCI CGAP Skn3 Homo sapiens cD                                                                    |       |       |
|                                                                                                                                  |       | 2e-59 |
| AV249148.1 AV249148 2820881.5prime NIH NGC 7 Homo sapiens cDN                                                                    |       |       |
| BF727320.1 BF727320 bv19h07.v1 Human Lens cDNA (Un-normalized                                                                    |       | 2e-59 |
| BI328911.1 BI328911 602980634F1 NCI CGAP Li9 Mus musculus cDN                                                                    |       | 3e-59 |
| BF101272.1 BF101272 601754562F1 NCI CGAP Mam1 Mus musculus cD                                                                    |       |       |
| b AL627969.1 AL627969 AL627969 XGC-gastrula Silurana tropicali                                                                   |       | 6e-59 |
| b AL62/969.1 AL62/969 AL62/969 AGC-gastrula Silurana tropicali<br>b AL643955.1 AL643955 AL643955 XGC-neurola Silurana tropicalis |       | 6e-59 |
| BI706803.1 BI706803 fg10e10.v1 Zebrafish adult retina cDNA Da                                                                    |       | 8e-59 |
|                                                                                                                                  |       | 8e-59 |
| BE789647.1 BE789647 601481404F1 NIH MGC 68 Homo sapiens cDNA                                                                     |       |       |
| BI447381.1 BI447381 dah87e12.y1 NICHD XGC Emb2 Xenopus laevis                                                                    |       |       |
| BI475274.1 BI475274 fq30d06.y3 zebrafish adult brain Danio re                                                                    |       | 8e-59 |
| AW460815.1 AW460815 da25c08.y1 Xenla 13LiCl Xenopus laevis cD                                                                    |       |       |
|                                                                                                                                  |       | 8e-59 |
|                                                                                                                                  |       | 8e-59 |
| BI429515.1 BI429515 fr7Oh03.y1 zebrafish adult brain Danio re                                                                    |       |       |
| BI472934.1 BI472934 fr93f12.y1 zebrafish adult brain Danio re                                                                    | 225   | 8e-59 |
| Document: Done                                                                                                                   |       |       |

Source for example: A Practitioner's Guide to Data Management and Data Integration in Bioinformatics, Barbara A. Eckman in Bioinformatics by Zoe Lacroix and Terence Critchlow, 2003, Morgan Kaufmann.

#### Distributed Data Management

Distributed DBMSs

ThorstenPapenbrock Slide **8** 

🔆 👙 🍇





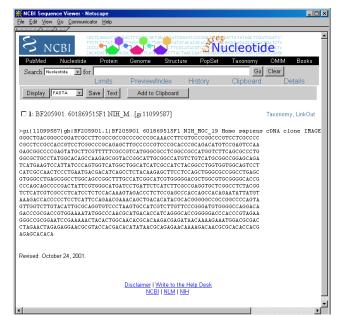
Question: "Find all humans ESTs (DNA-sequences), that according to BLAST are at least 60% and across at least 50 amino acids identical with mouse-channel genes in the tissue of the central nervous system."

- Find "channel" sequence in tissue of central nervous system in MGD HTML-form
- 2. Examine the details for each of the 14 genes on SwissProt
- 3. Examine each SwissProt entry with the BLAST algorithm
- 4. Examine each BLAST result
- 5. For each remaining result: retrieve EST-sequence from GenBank



Source for example: *A Practitioner's Guide to Data Management and Data Integration in Bioinformatics,* Barbara A. Eckman in Bioinformatics by Zoe Lacroix and Terence Critchlow, 2003, Morgan Kaufmann.

#### Distributed Data Management


Distributed DBMSs





Question: "Find all humans ESTs (DNA-sequences), that according to BLAST are at least 60% and across at least 50 amino acids identical with mouse-channel genes in the tissue of the central nervous system."

- Find "channel" sequence in tissue of central nervous system in MGD HTML-form
- Examine the details for each of the 44 dense of SwitchProt.
   Examine each SwissProtectly with the BEAST argorithm
- 4. Examine each BLAST result
- 5. For each remaining result: retrieve EST-sequence from GenBank



Source for example: A Practitioner's Guide to Data Management and Data Integration in Bioinformatics, Barbara A. Eckman in Bioinformatics by Zoe Lacroix and Terence Critchlow, 2003, Morgan Kaufmann.

#### Distributed Data Management

Distributed DBMSs





Question: "Find all humans ESTs (DNA-sequences), that according to BLAST are at least 60% and across at least 50 amino acids identical with mouse-channel genes in the tissue of the central nervous system."

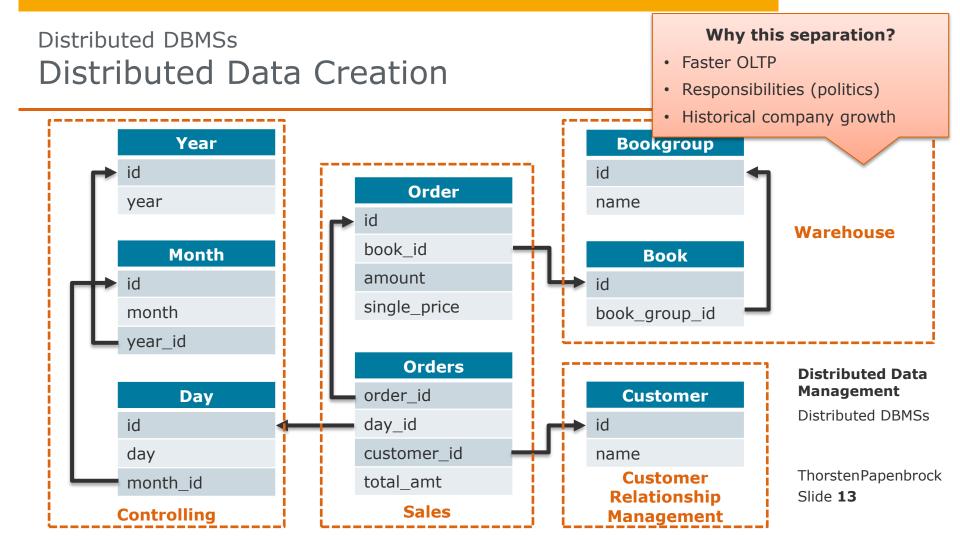
 If there was an integrated database with all four sources, the following "simple" SQL query does all previous manual steps:

| SELECT | g.accnum,g.sequence                    |
|--------|----------------------------------------|
| FROM   | genbank g, blast b, swissprot s, mgd m |
| WHERE  | m.exp = "CNS"                          |
| AND    | m.defn LIKE ``%channel%"               |
| AND    | m.spid = s.id AND s.seq = b.query      |
| AND    | b.hit = g.accnum                       |
| AND    | b.percentid >= 60 AND b.alignlen >= 50 |

Source for example: A Practitioner's Guide to Data Management and Data Integration in Bioinformatics, Barbara A. Eckman in Bioinformatics by Zoe Lacroix and Terence Critchlow, 2003, Morgan Kaufmann.

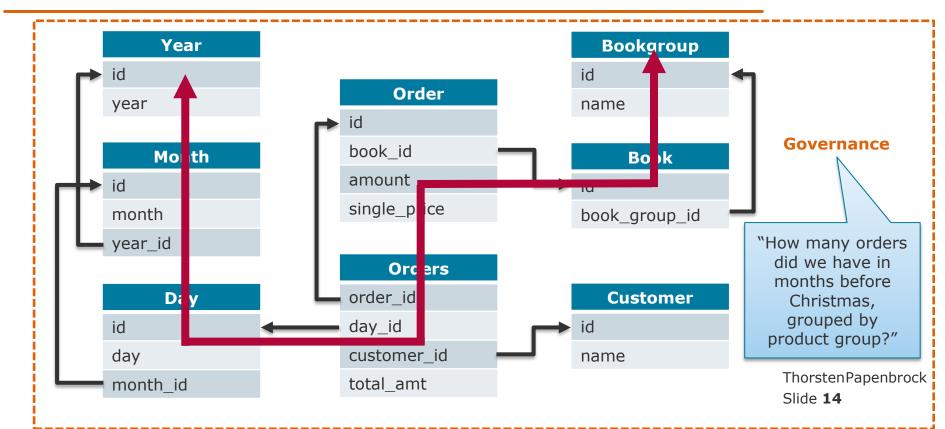
Distributed Data Management

Distributed DBMSs


ThorstenPapenbrock

Slide 11

# Distributed DBMSs Overview


- 1. Distributed DBMSs
- 2. Materialized vs. Virtual
- 3. Data Warehouses
- 4. Federated Database Management Systems





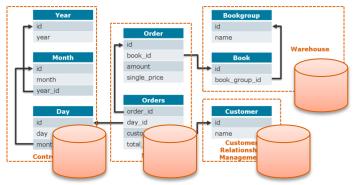
Distributed DBMSs Distributed Data Creation





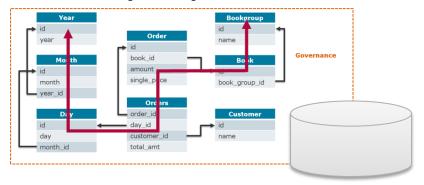
Distributed DBMSs Distributed Data Creation

\_\_\_\_\_




|                               | <pre>SELECT Y.year, BG.name, count(B.id) FROM year Y, month M, day D, order O, orders OS, book B, bookgroup BG</pre> |                              |                                       |  |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------------------|--|
| WHERE                         | M.year = Y.id                                                                                                        |                              | Governance                            |  |
| AND                           |                                                                                                                      | Six joins on<br>large tables |                                       |  |
| AND                           | O.day_id = D.id                                                                                                      |                              |                                       |  |
| AND                           | OS.order_id = 0.id                                                                                                   |                              | "How many orders                      |  |
| AND                           | B.id = O.book id                                                                                                     | large intermediate tables    | did we have in months before          |  |
| AND B.book_group_id = BG.id   |                                                                                                                      |                              | Christmas,                            |  |
| AND day $< 24$ and month = 12 |                                                                                                                      |                              | grouped by<br>product group?"         |  |
| GROUP                         | BY Y.year, BG.name<br>BY Y.year                                                                                      |                              | ThorstenPapenbrock<br>Slide <b>15</b> |  |

# Distributed DBMSs Conflicting Goals




Online Transaction Processing (OLTP)

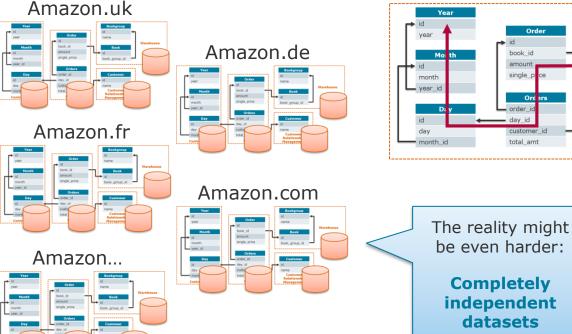


- Local, isolated databases
- Fast point reads and writes

Online Analytics Processing (OLAP)



- One integrated database
- Fast aggregations, joins, filters, projections and other complex read operations


#### Distributed Data Management

Distributed DBMSs


# Distributed DBMSs Conflicting Goals



Online Transaction Processing (OLTP)



### Online Analytics Processing (OLAP)



Distributed Data Management

Distributed DBMSs

# Distributed DBMSs

## Online Transaction Processing (OLTP)

- "Fast processing of operational data, i.e., transactions while maintaining data integrity in multi-access environments"
- Performance characteristic: transactions per second
- Often: time-critical, mixed-workload data with high velocity
- Dominating operations: INSERT, UPDATE, DELETE

## Online Analytical Processing (OLAP)

- "Effective answering of analytical queries on already collected data"
  - Arbitrary, complex, and arbitrarily complex workloads
- Performance characteristic: query response time
- Often: pre-aggregated, multi-dimensional, and historical data
- Dominating operations: SELECT, GROUP, Aggregation





**Distributed Data Management** Distributed DBMSs

# Distributed DBMSs



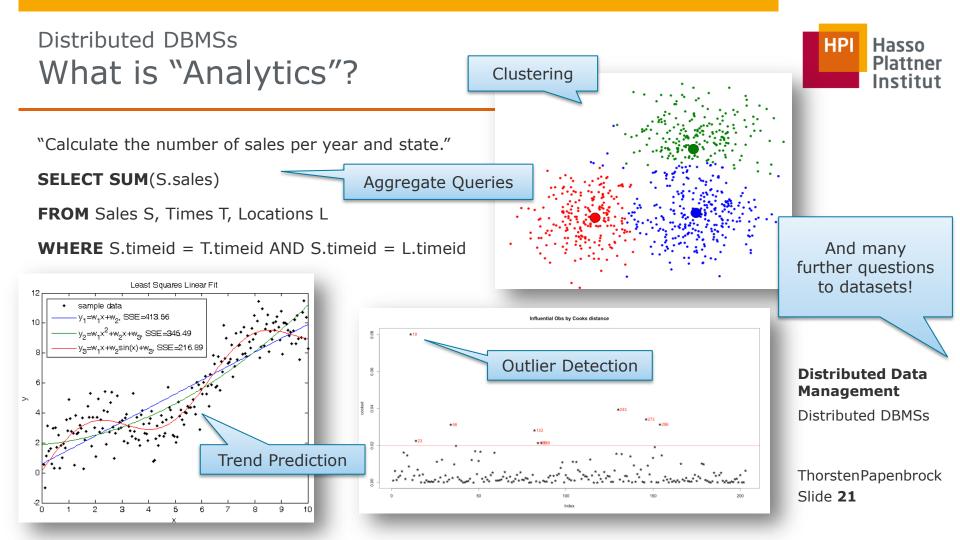
| Property             | OLTP                                              | OLAP                                      |
|----------------------|---------------------------------------------------|-------------------------------------------|
| Main read pattern    | Small number of records per query, fetched by key | Aggregate over large number of records    |
| Main write pattern   | Random-access, low-latency writes from user input | Bulk import (ETL) or event stream         |
| Primarily used by    | End user/customer, via (web) application          | Internal analyst, for decision support    |
| What data represents | Latest state of data (current point in time)      | History of events that happened over time |
| Data size            | Kilobytes to Gigabytes                            | Terabytes to petabytes                    |

Distributed Data Management

Distributed DBMSs

# Distributed DBMSs




|                        | OLTP System<br>Online Transaction Processing<br>(Operational System)                                                                                       | OLAP System<br>Online Analytical Processing<br>(Data Warehouse)                                                                                                |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Source of data         | Operational data; OLTPs are the original source of the data.                                                                                               | Consolidation data; OLAP data comes from the various OLTP Databases                                                                                            |
| Purpose of<br>data     | To control and run fundamental business<br>tasks                                                                                                           | To help with planning, problem solving, and decision support                                                                                                   |
| What the data          | Reveals a snapshot of ongoing business<br>processes                                                                                                        | Multi-dimensional views of various kinds of<br>business activities                                                                                             |
| Inserts and<br>Updates | Short and fast inserts and updates initiated by end users                                                                                                  | Periodic long-running batch jobs refresh the data                                                                                                              |
| Queries                | Relatively standardized and simple queries<br>Returning relatively few records                                                                             | Often complex queries involving aggregations                                                                                                                   |
| Processing<br>Speed    | Typically very fast                                                                                                                                        | Depends on the amount of data involved; batch<br>data refreshes and complex queries may take<br>many hours; query speed can be improved by<br>creating indexes |
| Space<br>Requirements  | Can be relatively small if historical data is archived                                                                                                     | Larger due to the existence of aggregation<br>structures and history data; requires more<br>indexes than OLTP                                                  |
| Database<br>Design     | Highly normalized with many tables                                                                                                                         | Typically de-normalized with fewer tables; use of star and/or snowflake schemas                                                                                |
| Backup and<br>Recovery | Backup religiously; operational data is<br>critical to run the business, data loss is<br>likely to entail significant monetary loss and<br>legal liability | Instead of regular backups, some environments<br>may consider simply reloading the OLTP data as<br>a recovery method                                           |

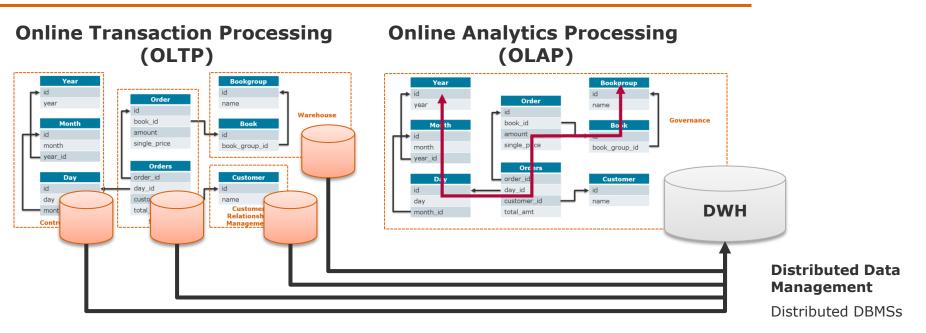
#### **Distributed Data Management**

Distributed DBMSs

ThorstenPapenbrock Slide **20** 

source: www.rainmakerworks.com



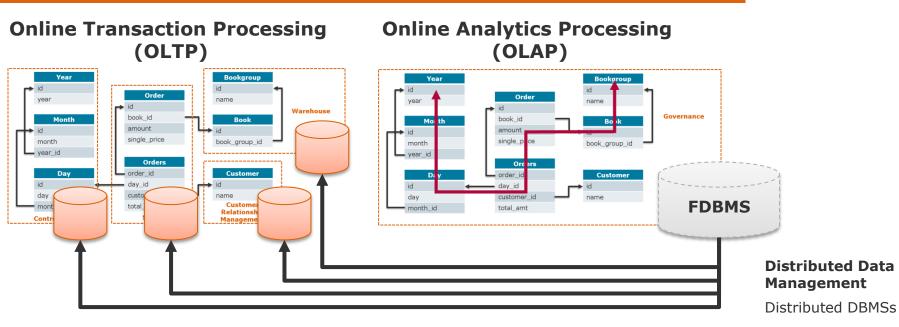

# Distributed DBMSs Conflicting Goals



**Online Transaction Processing Online Analytics Processing** (OLTP) (OLAP) Year Bookgroup Year Bookaroup id Order Order name id Warehouse book id Governance Month book id Book Mo th Bo amount amount single price single\_ month book aroup id month book group id 🗕 vear id year\_id Orders Orders Dav order\_id Customer order Customer Dav id day\_id id id day\_id day name custo customer id day name total Custom mon total amt month\_id Relationsh Conti Managem **Distributed Data** Management Distributed DBMSs So since OLTP and OLAP workloads do exist, ThorstenPapenbrock how do we solve this conflict? Slide 22

Distributed DBMSs Solution A: Materialized Integration






Frequently copy data from OLTP systems over to OLAP systems.

Data Warehouse (DWH)

Distributed DBMSs Solution B: Virtual Integration





The OLAP systems defines analytical views that fetch the data on demand.

Federated Database Management Systems (FDBMS)

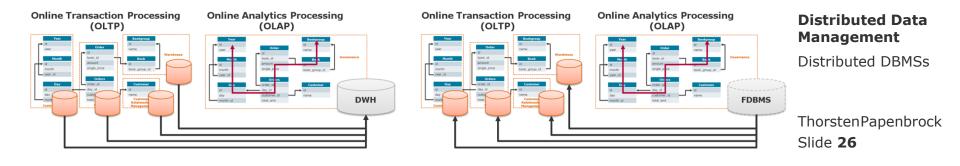
# Distributed DBMSs Overview

- 1. Distributed DBMSs
- 2. Materialized vs. Virtual
- 3. Data Warehouses
- 4. Federated Database Management Systems



## Materialized

- A-priori integration
- Centralized data store
- Centralized query processing
- Typical example: data warehouse


### Virtual

- On-demand integration
- Decentralized data
- Decentralized query processing
- Typical example: mediator-based information system

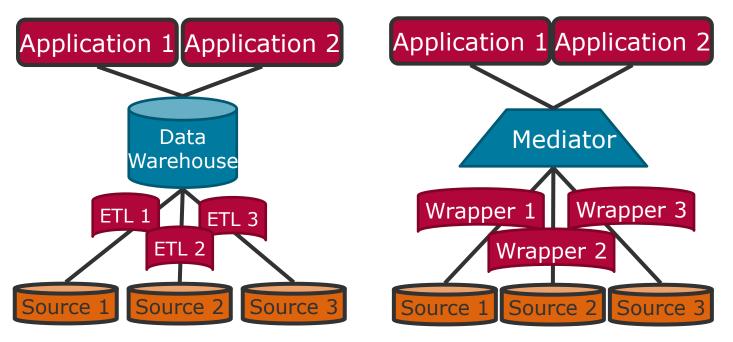
HPI

Hasso Plattner

Institut





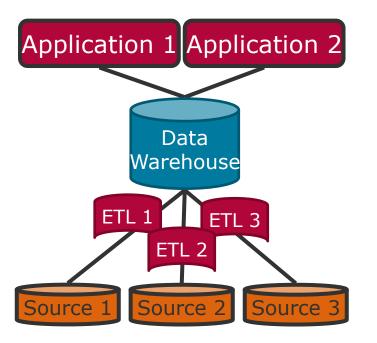

Materialized Virtual Application 1 Application 2 Application 1 Application 2 Data Mediator Warehouse Source 3 Source 2 Source 3 Source 1 Source 2 Source 1

#### Distributed Data Management

Distributed DBMSs



## Materialized




Virtual

#### Distributed Data Management

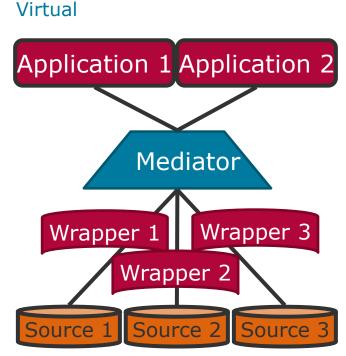
Distributed DBMSs

## Materialized



- Push-model for Data
  - Periodically import data
  - Redundant storage
  - Materialized (aggregate) views
- Schema design
  - Bottom up
  - Schema integration
- Query processing as usual
  - OLAP queries
  - Star schema

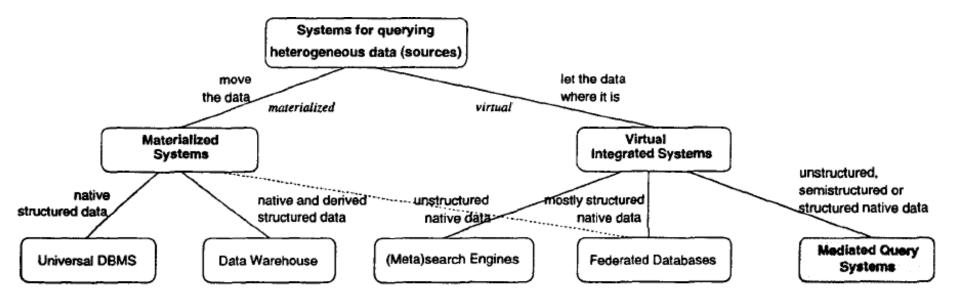
#### Distributed Data Management


Distributed DBMSs



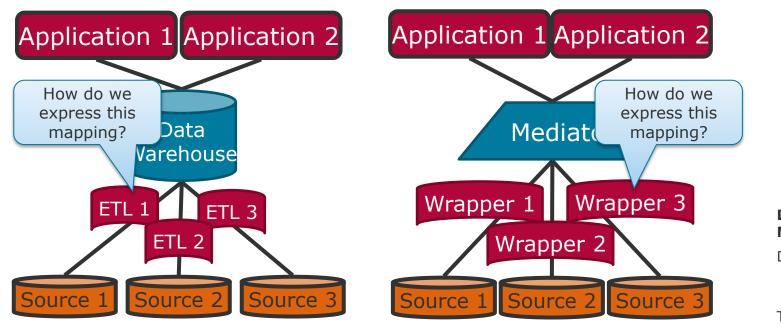


## Pull-model for data


- Only transfer data for query at hand
- Schema design
  - Top down
  - Schema mapping
- Query processing
  - Difficult optimization
  - Heterogeneous costs and abilities of sources



#### Distributed Data Management


Distributed DBMSs

# Materialized vs. Virtual<br/>TaxonomyAn Overview and Classification of Mediated Query Systems<br/>Ruxandra Domenig; Klaus R. Dittrich<br/>Department of Information Technology, University of Zurich<br/>{domenig/dittrich}@ifi.unizh.chHPIHasso<br/>Plattner<br/>Institut

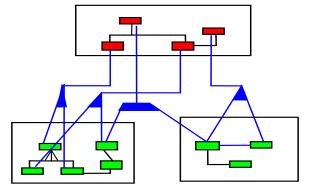




### Materialized

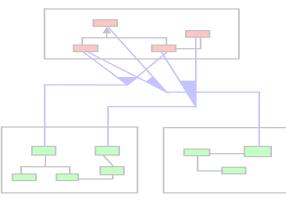


Virtual


#### Distributed Data Management

Distributed DBMSs

# Materialized vs. Virtual Global as View / Local as View


## Global as View (GaV)

- Relations of the global integrated schema are expressed as views on the local source schemata.
- Idea: Views tell where the global relations get their data from.



## Local as View (LaV)

- Relations of the local source schemata are expressed as views on the global integrated schema.
- Idea: Views tell what parts of the global relations can be found in each local relation.



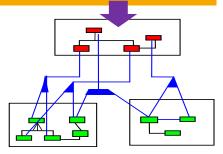
#### Distributed Data Management

Distributed DBMSs



Materialized vs. Virtual GaV Query Processing

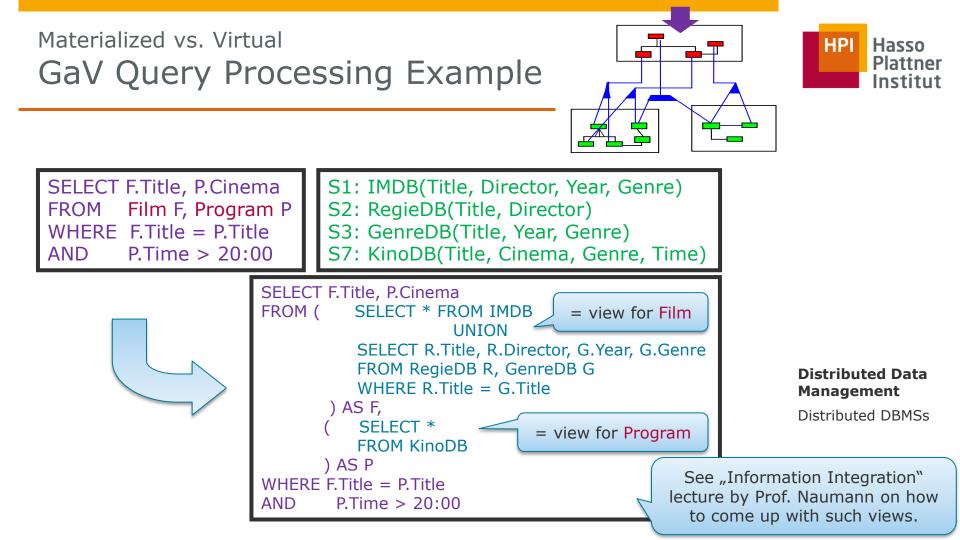
## Given:


- A query against the global integrated schema (in particular: against relations of the global schema)
- For each global relation, a view on local relation(s)

# Find:

- All valid tuples for the query
- But: Data is stored in local sources.

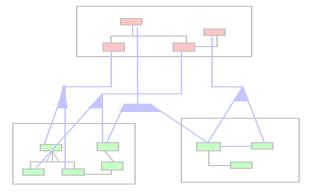
## Idea:


- Replace each relation in the query by the corresponding view definition: "view expansion" or "query unfolding"
- Result: A nested query



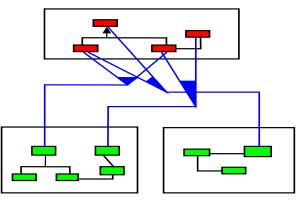


Distributed Data Management


Distributed DBMSs



# Materialized vs. Virtual Global as View / Local as View


Global as View (GaV)

- Relations of the global integrated schema are expressed as views on the local source schemata.
- Idea: Views tell where the global relations get their data from.



## Local as View (LaV)

- Relations of the local source schemata are expressed as views on the global integrated schema.
- Idea: Views tell what parts of the global relations can be found in each local relation.



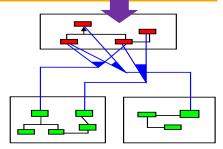
#### Distributed Data Management

Distributed DBMSs



Materialized vs. Virtual LaV Query Processing

## Given:


- A query against the global integrated schema (in particular: against relations of the global schema)
- For each local relation, a view on global relation(s)

## Find:

- All valid tuples for the query
- But: Data is stored in local sources.

## Idea:

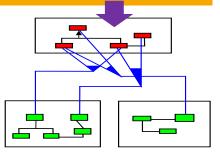
 Run the query against all local relations whose views can contribute to the result of the query; join/union all local results.





Distributed Data Management

Distributed DBMSs


Materialized vs. Virtual LaV Query Processing (formal)

## Given:

- A query q against the global integrated schema (in particular: against relations of the global schema)
- For each local relation, a view on global relation(s)

## Find:

- Sequence of queries q<sub>1</sub>◊...◊q<sub>n</sub>
- Each q<sub>i</sub> can be executed by a single view
- Suitable combination of queries q<sub>1</sub>,...,q<sub>n</sub> answers q
- Within a plan, use joins:  $\diamond \rightarrow \bowtie$
- Multiple plans are combined by UNION :  $\diamond \rightarrow \upsilon$
- Tuples created by  $q_1 \bowtie \dots \bowtie q_k$  are valid result tuples for q.

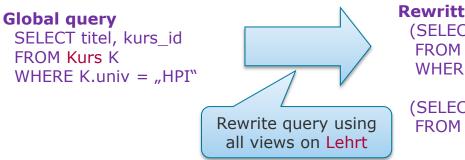


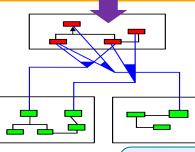


#### Distributed Data Management

Distributed DBMSs

Materialized vs. Virtual


# LaV Query Processing Example


#### **Global schema**

Lehrt(prof,kurs\_id, sem, eval, univ) Kurs(kurs\_id, titel, univ)

#### Source 1: All database courses

CREATE VIEW DB-kurs AS SELECT K.titel, L.prof, K.kurs\_id, K.univ FROM Lehrt L, Kurs K WHERE L.kurs\_id = K.kurs\_id AND L.univ = K.univ AND K.titel LIKE "%\_Datenbanken"







Express the content of each local relation as a view on the global schema.

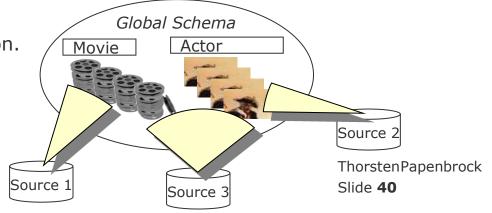
#### Source 2: All HPI lectures

```
CREATE VIEW HPI-VL AS
SELECT K.titel, L.prof, K.kurs_id, K.univ
FROM Lehrt L, Kurs K
WHERE L.kurs_id = K.kurs_id
AND K.univ = "HPI"
AND L.univ = "HPI"
AND K.titel LIKE "%VL_%"
```

#### **Rewritten query**

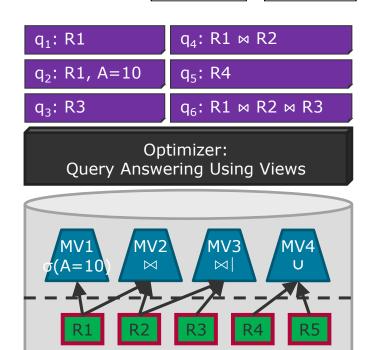
(SELECT titel, kurs\_id FROM DB-kurs D WHERE D.univ = "HPI") UNION (SELECT titel, kurs\_id FROM HPI-VL)

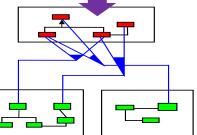
#### Distributed Data Management


Distributed DBMSs

See "Information Integration" lecture by Prof. Naumann for more details on the rewriting algorithm. Materialized vs. Virtual Why LaV 1: Data Integration

 The global schema models the world (e.g. the entire domain of movies).





- In theory, this establishes the extension, i.e., the content of the database.
- In practice, there exist many databases on movies, actors etc. But nobody knows (or has) this extension.
  - > Information integration tries to collect whatever is available.
- Every source stores a part of the extension.
- Every source describes its content as views on the global schema.
  - Because the source provides the schema, it is easy to add more sources over time.

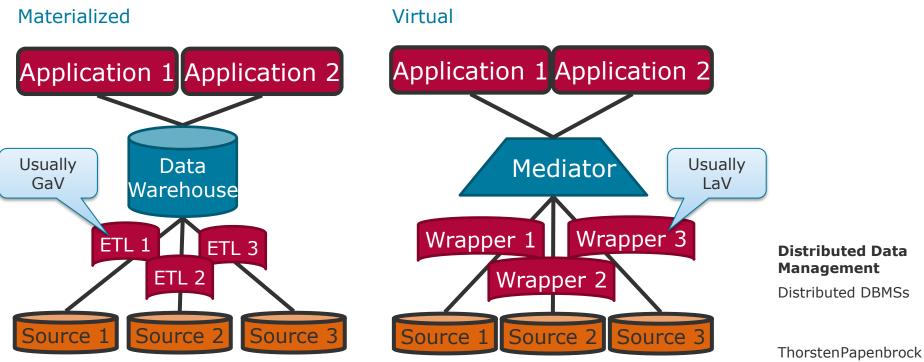


## Materialized vs. Virtual Why LaV 2: Query Optimization

- Materialized views (MVs) on database schema
  - Aka. Materialized Query Table
  - Aka. Advanced Summary Table
- Which MVs (and their pre-calculated intermediate results) can help in determining a query result?
- Challenges:
  - It is not always better to use an MV over e.g. indixes.
  - MVs need to kept up-to-date.








#### Distributed Data Management

Distributed DBMSs

Materialized vs. Virtual Back to Materialized vs. Virtual Integration





Materialized vs. Virtual Back to Materialized vs. Virtual Integration

|                             | Materialized    | Virtual         |
|-----------------------------|-----------------|-----------------|
| Up-to-date                  | -               | +               |
| Response time               | +               | -               |
| Flexibility                 | - (usually GaV) | + (usually LaV) |
| Query processing complexity | -               |                 |
| Source-autonomy             | -               | +               |
| Query capabilities          | +               | -               |
| Read/Write                  | +/+             | +/-             |
| Storage requirement         | -               | +               |
| Completeness                | +               | ? (OWA, CWA)    |
| Data cleansing              | +               | -               |
| Information quality         | +               | -               |

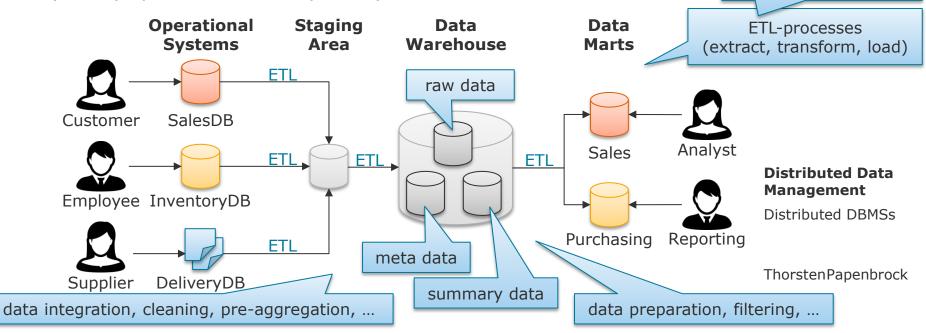
HPI Hasso Plattner Institut

Distributed Data Management

Distributed DBMSs

## Distributed DBMSs Overview

- 1. Distributed DBMSs
- 2. Materialized vs. Virtual
- 3. Data Warehouses
- 4. Federated Database Management Systems




# Data Warehouses Architecture

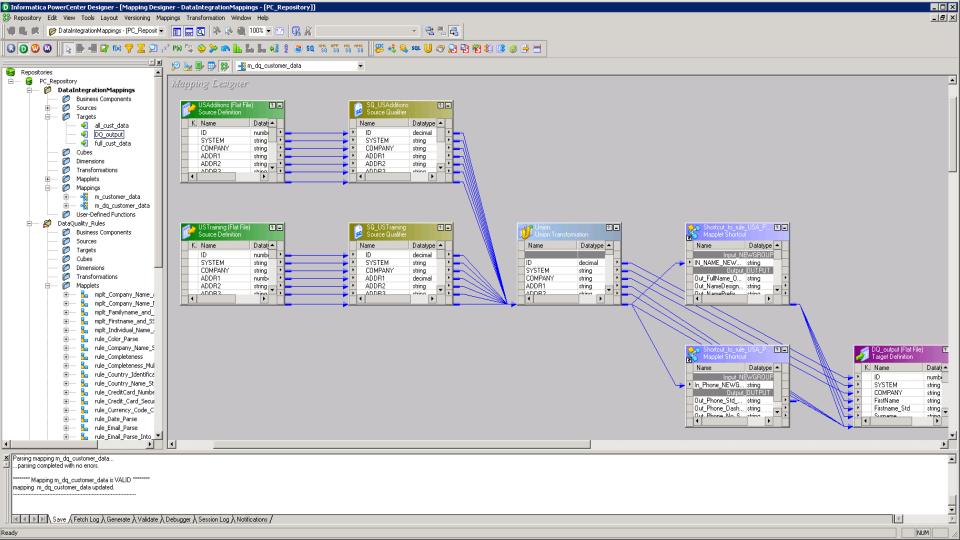


= batch processes (think of Spark jobs)

Data Warehouse: "A central repository of integrated, potentially pre-aggregated historical data from one ore more distinct sources (usually operational/OLTP systems)"

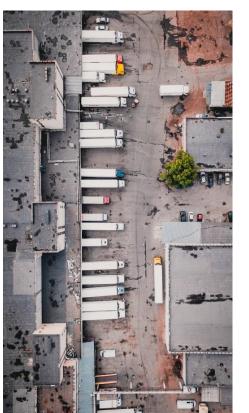


Data Warehouses
Extract-Transform-Load (ETL)


- ETL processes take data from a source, convert it into data analytics-friendly representations and sink the result into a data warehouse.
- ETL processes are ...
  - batch processes comparable to modern Spark-jobs.
  - the equivalent to schema mappings in virtual integration.
  - functional/procedural implementations of the views in the GaV model.
  - more powerful than simple views, i.e., can express more complex logic (data cleaning, data encoding, side effects, machine learning etc.).
- ETL processes offer ...
  - import filters (read and convert data from sources)
  - standard transformations (join, aggregate, filter, convert, ...)
  - de-duplication (find and merge multiple records referring to the same entity)
  - aggregations (simple aggregates, sketches, histograms, ...)
  - quality management (test against master data, business rules, constraints, ...)

#### Distributed Data Management

Distributed DBMSs


ThorstenPapenbrock





# Data Warehouses Application Areas

- Customer Relationship Management (CRM)
  - Premium customer identification
  - Personalization
  - Mass-marketing
- Controlling / Accounting
  - Cost center discovery
  - Organizational units analysis
  - Human resources management
- Logistics
  - Fleetmanagement and -tracking
- Digital health
  - Experimental studies
  - Patient monitoring





**Distributed Data Management** Distributed DBMSs

# Data Warehouses Popular DWH DBMSs

#### HPI Hasso Plattner Institut

## Commercial

- Microsoft SQL Server
- SAP HANA
- Teradata
- Vertica
- ParAccel
- ...

## Open-Source

- Apache Hive
- Spark SQL
- Cloudera Impala
- Facebook Presto
- Apache Tajo
- Apache Drill

•

Most of these are **Hadoop**-based and use some kind of **MapReduce** paradigm.

#### Distributed Data Management

Distributed DBMSs

# Data Warehouses The Pros and Cons

### Advantages

- Compute-intense analytical queries do not interfere with operational business.
- Data is static and does not change while queries are run.
- Data can be sorted by certain keys that are often queried as range or group (e.g. timestamps, version-IDs, tags, or country codes), whereas operational data is usually not sorted for better insert performance.
- Data can be compressed more aggressively to improve read performance.
- Analytics-friendly data layouts, e.g., star-schemata, data cubes, or materialized views as well as indexes for analytical query patters are possible.

#### Distributed Data Management

Distributed DBMSs

#### Disadvantages

Data is not up-to-date (one ETL-cycle ≈ one day old)



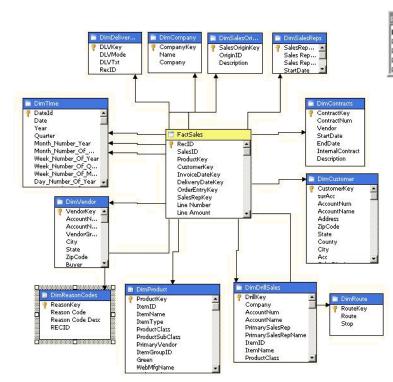
# Data Warehouses Stars and Snowflakes

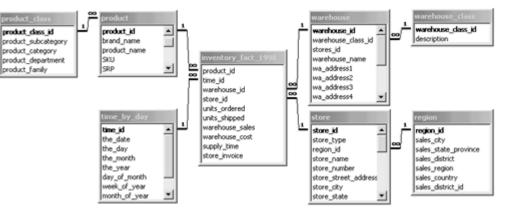
#### Star Schema

- An acyclic graph of relational tables with depth 1
  - Root = "fact table"
  - Leaves = "dimension tables"
- Fact tables: contain events (transactions, measurements, snapshots,...)
  - Usually very large tables (long and wide)
  - Examples: sales, page views, clicks, shippings, sensor readings, ...
- Dimension tables: contain entity data and descriptive information
  - Usually small tables with fixed domain
  - Examples: products, employees, customers, dates, locations, ...
- Answer for each event: who, what, where, when, how, or why

#### Snowflake Schema

 Same as star schema, but with arbitrary depth, i.e., dimension tables might have further dimension tables





Distributed DBMSs



## Data Warehouses Stars and Snowflakes – Examples







Distributed Data Management

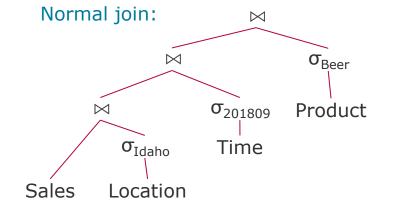
Distributed DBMSs

Data Warehouses Stars and Snowflakes – Benefits

- Improved query performance for (most) aggregation queries:
  - Better join-performance than normalized data
  - Better scan performance than one big table
  - May contain pre-aggregated data
- Simpler queries:
  - Clear join logic and manageable number of joins
- Redundancy reduction via data integration:
  - Redundant information in different sources is consolidated into same tables
  - Redundant information in one source table might get normalized into one dimension table

#### Distributed Data Management

Distributed DBMSs

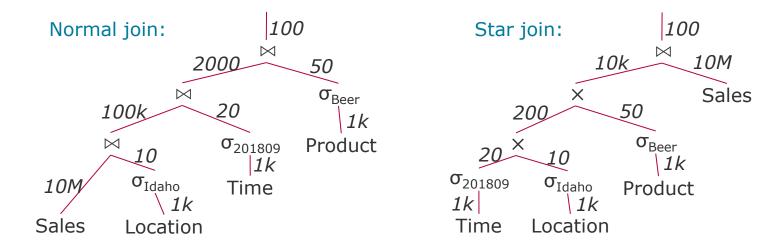



## Data Warehouses Stars and Snowflakes – Star Join



SELECT \*

- FROM Sales S, Location L, Time T, Product P
  WHERE S.L\_ID = L.ID AND S.T\_ID = T.ID AND S.P\_ID = P.ID
  AND L.state = ,Idaho`
  AND Year\_Month(T.Date) = 201809
- AND P.Category = ,Beer '
- Some sizes
  - Sales: 10,000,000
  - Locations: 1,000
    - 10 in Idaho
  - Times: 1,000 days
    - 20 in September 2018
  - Products: 1,000
    - 50 Beers




Distributed Data Management

Distributed DBMSs

## Data Warehouses Stars and Snowflakes – Star Join





Distributed Data Management

Distributed DBMSs

- Intermediate result sizes
  - Normal joins: 100k + 2000
  - Star join: 200 + 10k

# Data Warehouses Pre-Aggregation

## Observation

- Most analytical queries in data warehouses are aggregate queries.
- Aggregation patterns repeat frequently.
  - Pre-calculate common aggregates!

## Materialized Views

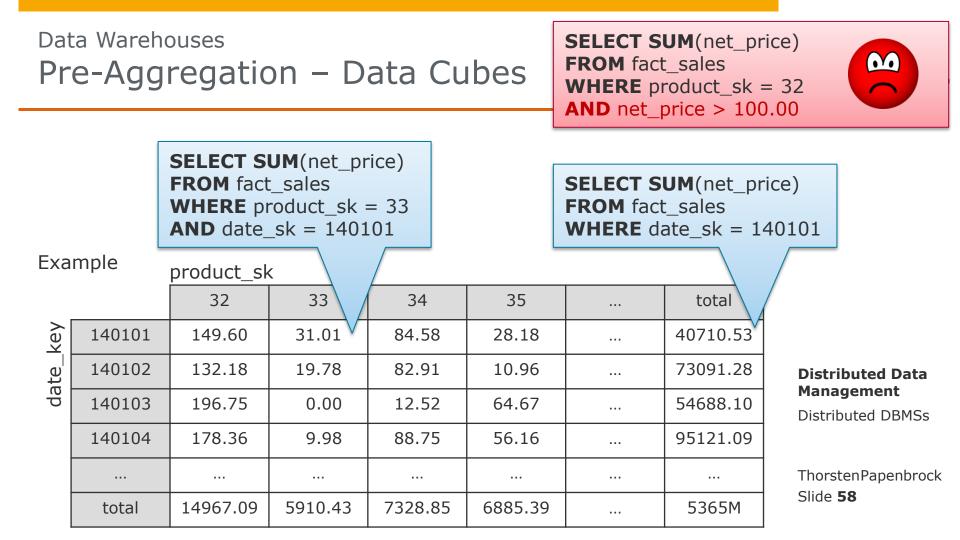
- Are query results that are written back to disk.
- DBMS query optimizers can automatically use these views to answer queries or parts of queries (see LaV).
- Strategies to improve data analytics:
  - Pre-calculation: estimate common aggregates and pre-calculate them
  - Lazy pre-calculation: store each aggregate once it was queried



**Distributed Data Management** Distributed DBMSs

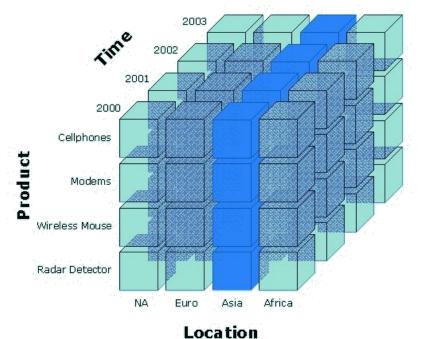


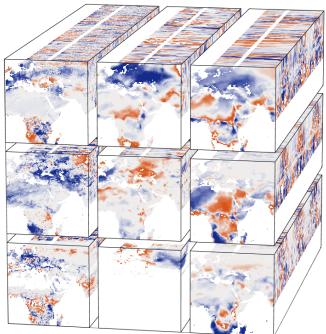
Data Warehouses Pre-Aggregation – Data Cubes


### Data Cube

A set of materialized views for multi-dimensional aggregates **SELECT** product\_sk, date\_sk, (i.e., a grid of aggregates grouped by different dimensions) sum(net price) **FROM** fact sales **GROUP BY** product\_sk, date\_sk Example product\_sk In general more 32 33 34 35 total ... than two + ++ dimensions key 149.60 31.01 84.58 28.18 140101 40710.53 ... + date 140102 132.18 19.78 82.91 10.96 73091.2 **Distributed Data** ... Management + 140103 196.75 0.00 12.52 64.67 54688.10 ... Distributed DBMSs +140104 178.36 88.75 56.16 95121.0 9.98 ... + + ThorstenPapenbrock . . . ... ... ... ... ... ... Slide 57 14967.09 5365M 5910.43 7328.85 6885.39 total ...

HPI

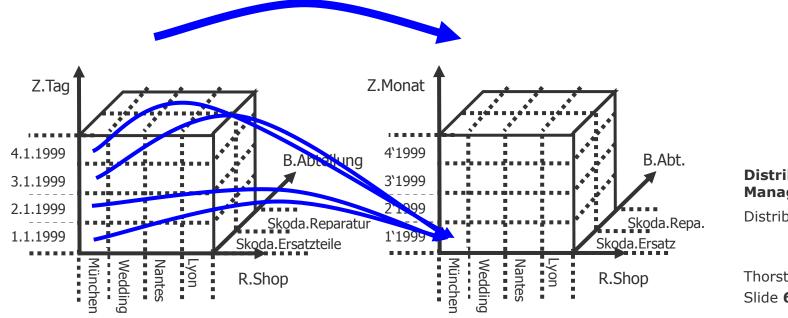

Hasso Plattner


Institut



## Data Warehouses Pre-Aggregation – Data Cubes: Dimension





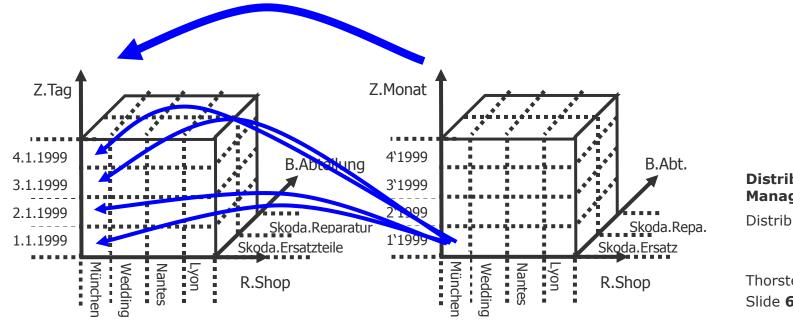



#### **Distributed Data Management** Distributed DBMSs

## Roll-Up

Aggregate one dimension of a data cube.




#### **Distributed Data Management**

Distributed DBMSs

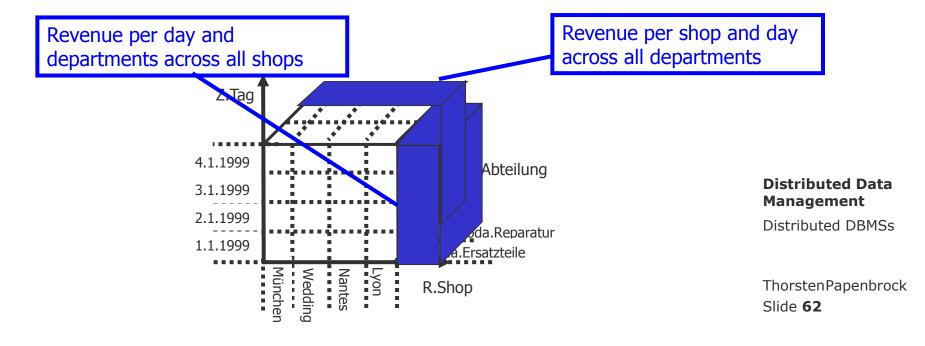


### Drill-Down

• Unfold one dimension of a data cube.



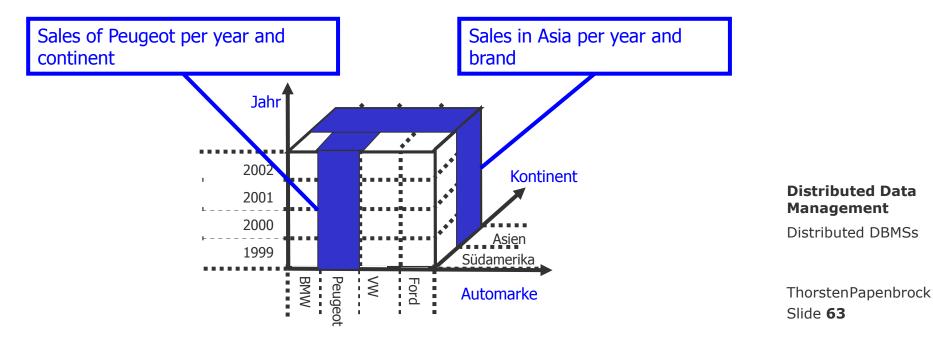
#### **Distributed Data Management**


Distributed DBMSs





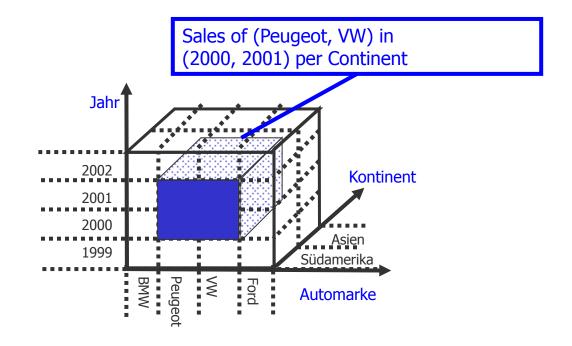
### Aggregate-to-TOP


Aggregate all values in one dimension; reduce cube dimensionality by 1.





### Slicing


Select/filter a value for one dimension; reduce cube dimensionality by 1.





## Dicing

• Select/filter some values for multiple dimension; make cube smaller.



#### Distributed Data Management

Distributed DBMSs

# Data Warehouses Column-oriented Storage

### Observation

- Data warehouse tables are often very wide (>100 columns), but analytical queries access only very few columns.
  - Usually 4 to 5 and rarely "SELECT \*"
- Most data models (relational, key-value, column family, document) store data record-wise and, hence, must read, parse and filter all data for analytical queries.

### Column-oriented Storage

- Store data attribute-wise instead of record-wise:
  - One file per attribute
  - Values ordered by record index in each file
  - For each query: scan only required attribute files



Distributed DBMSs





### fact\_sales table

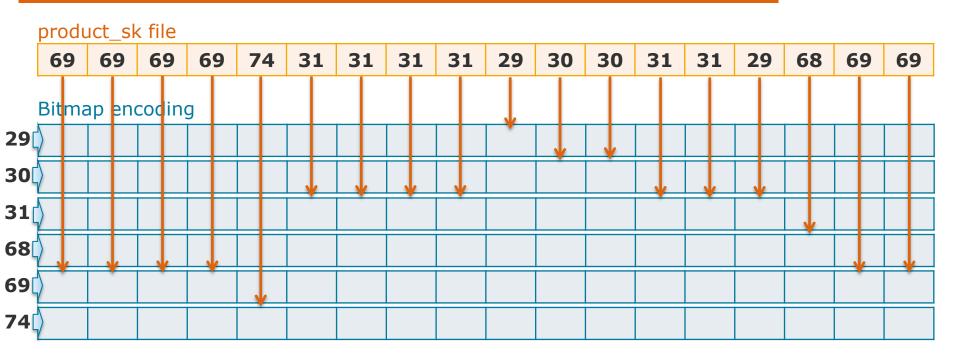
| date_key | product_sk | store_sk | promotion_sk | customer_sk | quantity | net_price | discount_price |
|----------|------------|----------|--------------|-------------|----------|-----------|----------------|
| 140102   | 69         | 4        | NULL         | NULL        | 1        | 13.99     | 13.99          |
| 140102   | 69         | 5        | 19           | NULL        | 3        | 14.99     | 9.99           |
| 140102   | 69         | 5        | NULL         | 191         | 1        | 14.99     | 14.99          |
| 140102   | 74         | 3        | 23           | 202         | 5        | 0.99      | 0.89           |
| 140103   | 31         | 2        | NULL         | NULL        | 1        | 2.49      | 2.49           |
| 140103   | 31         | 3        | NULL         | NULL        | 3        | 14.99     | 9.99           |
| 140103   | 31         | 3        | 21           | 123         | 1        | 49.99     | 39.99          |
| 140103   | 31         | 8        | NULL         | 233         | 1        | 0.99      | 0.99           |
| file 1   | file 2     | file 3   | file 4       | file 5      | file 6   | file 7    | file 8         |



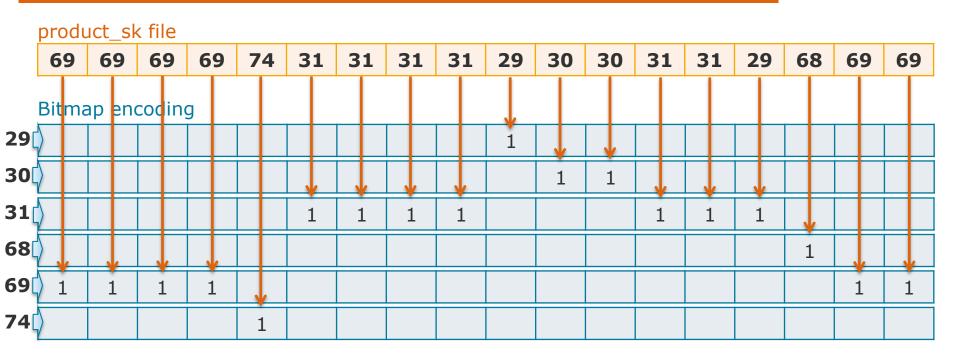
### product\_sk file

| 69          | 69 | 69 | 69 | 74 | 31 | 31 | 31 | 31 | 29 | 30 | 30 | 31 | 31 | 29 | 68 | 69 | 69 |
|-------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| q ntic file |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 1           | 3  | 1  | 5  | 1  | 3  | 1  | 1  | 7  | 2  | 1  | 5  | 4  | 4  | 1  | 2  | 5  | 3_ |

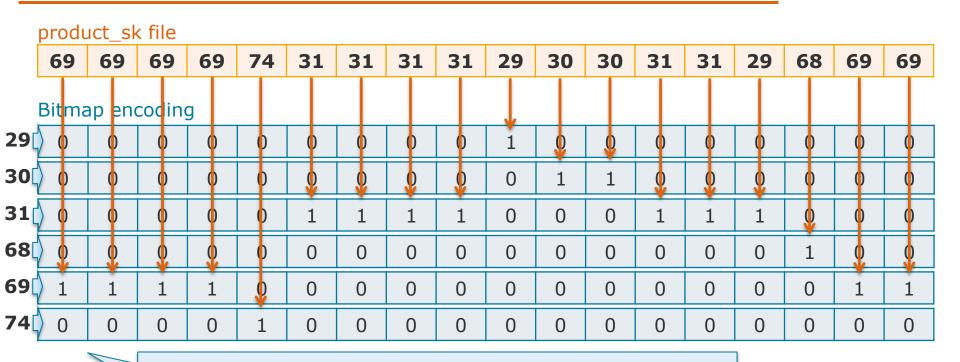
SELECT product\_sk, SUM(quantity) AS product\_sales
FROM fact\_sales
WHERE product\_sk IN (30, 68, 69)
GROUP BY product\_sk;


- 1. Scan the product\_sk file for values 30, 68, and 69; remember the position (=row) of each occurrence.
- Read the quantities at the retrieved positions in the quantity file and sum them up.




#### Distributed Data Management

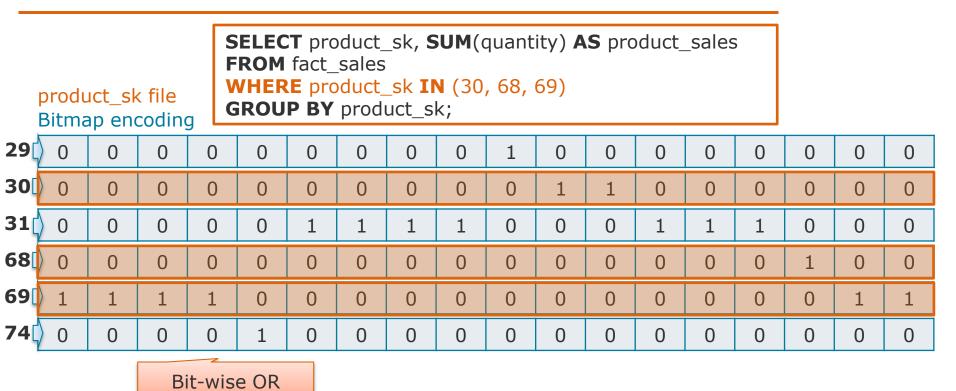
Distributed DBMSs












Smaller? ... Here, yes:

18 · 32 Bit = **576 Bit** vs. 6 · (32 Bit + 32 Bit) = **384 Bit** 



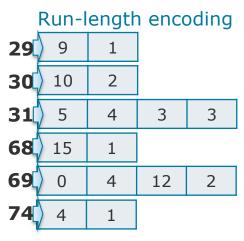


Data Warehouses

## Column-oriented Storage – Example

For more compression techniques see:

Daniel Abadi et. al. "The Design and Implementation of Modern Column-Oriented Database Systems", 2013.


#### product\_sk file

#### Bitmap encoding

| 29 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |   |
|----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 30 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |   |
| 31 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | < |
| 68 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |   |
| 69 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |   |
| 74 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |   |

Problem:

Bitmaps are very long and sparse in practice!



| 9 zer   | os, 1 ones | s, rest zeros | ntt                |
|---------|------------|---------------|--------------------|
| 10 zero | os, 2 ones | s, rest zeros |                    |
| 5 zer   | os, 4 ones | s, 3 zeros,   | 3 ones, rest zeros |
| 15 zero | os, 1 ones | s, rest zeros |                    |
| 0 zer   | os, 4 ones | s, 12 zeros,  | 2 ones, rest zeros |
| 4 zer   | os, 1 ones | s, rest zeros |                    |

See also: Roaring Bitmaps http://roaringbitmap.org/

#### Distributed Data Management

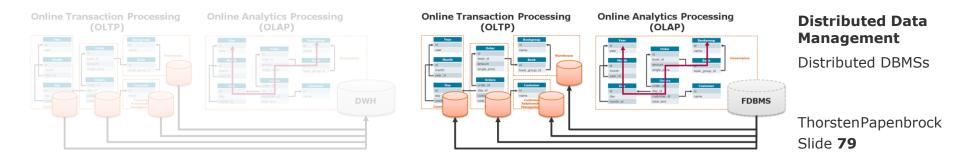
Distributed DBMSs

## Distributed DBMSs Overview

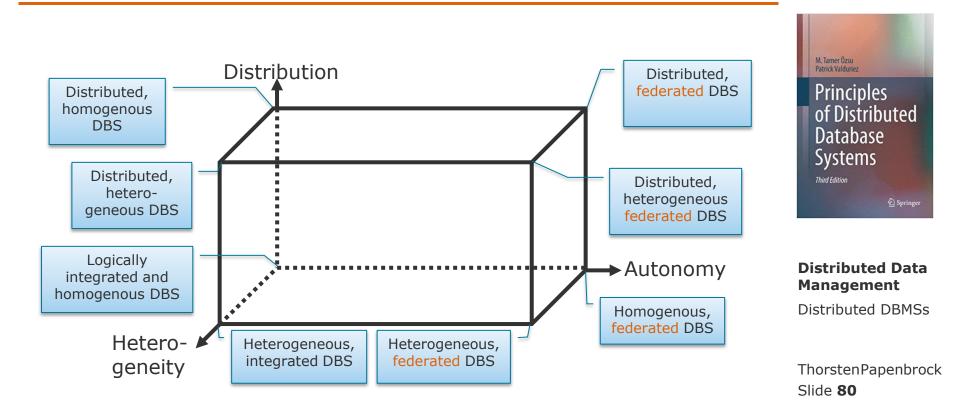
- 1. Distributed DBMSs
- 2. Materialized vs. Virtual
- 3. Data Warehouses
- 4. Federated Database Management Systems



# Federated Database Management Systems Recap




### Materialized


- A-priori integration
- Centralized data store
- Centralized query processing
- Typical example: data warehouse

## Virtual

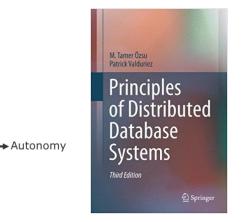
- On-demand integration
- Decentralized data
- Decentralized query processing
- Typical example: mediator-based information system



Federated Database Management Systems Classification of Distributed DB Systems



Hasso Plattner


Institut

Federated Database Management Systems HPI Hasso Plattner Classification of Distributed DB Systems Institut M. Tamer Özsu Patrick Valduriez Distribution Principles Peer-to-peer of Distributed Database Systems Client/Server Third Edition **Distributed Data** Autonomy Lesses. Management Distributed DBMSs Hetero-Tight Semi-Isolation Integration autonomous geneity ThorstenPapenbrock

## Federated Database Management Systems Connecting the three Dimensions

Distribution

Heterogeneity

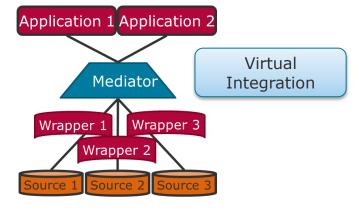


HPI

Hasso

Plattner

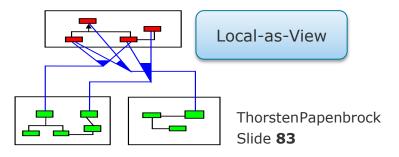
Institut


- Distribution leads to Autonomy:
  - Intra-organisation: Historically
  - Inter-organisation: Internet & WWW
- Autonomy leads to Heterogeneity:
  - Responsibility is with local admins.

Distributed Data Management

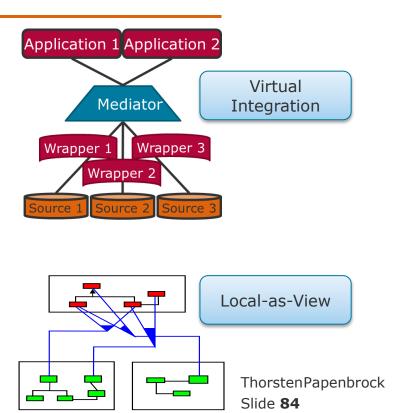
Distributed DBMSs

# Federated Database Management Systems The Federated Approach


- Create the global schema (schema integration).
  - Store it as DBMS schema.
- Create wrappers for each data source that ...
  - map from local schemata to the global schema.
  - model the query capabilities of each source.
- Data remains at the sources.
- Data sources remain autonomous.
  - Are not even aware of participation
- Global schema takes declarative queries that are transparently mapped to wrappers.
- Query execution is as distributed as possible.
  - Send sub-queries to sources; wait for results.
  - Federated system replaces missing capabilities.



ΗP


Hasso Plattner

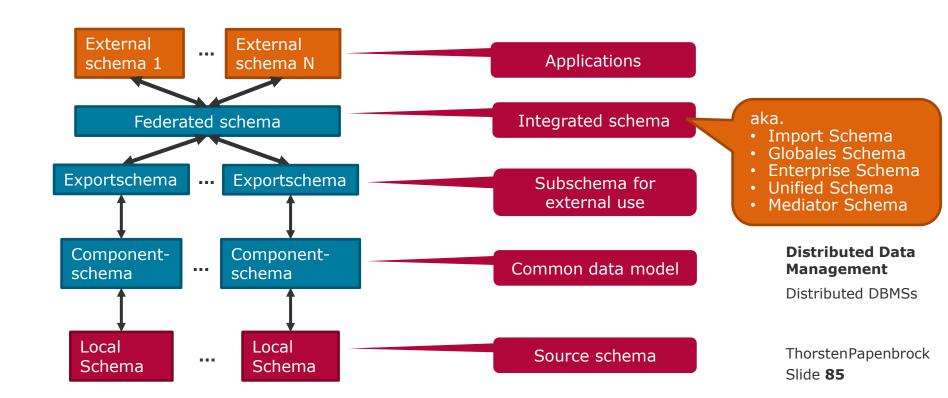
Institut



Federated Database Management Systems The Federated Approach – Applications

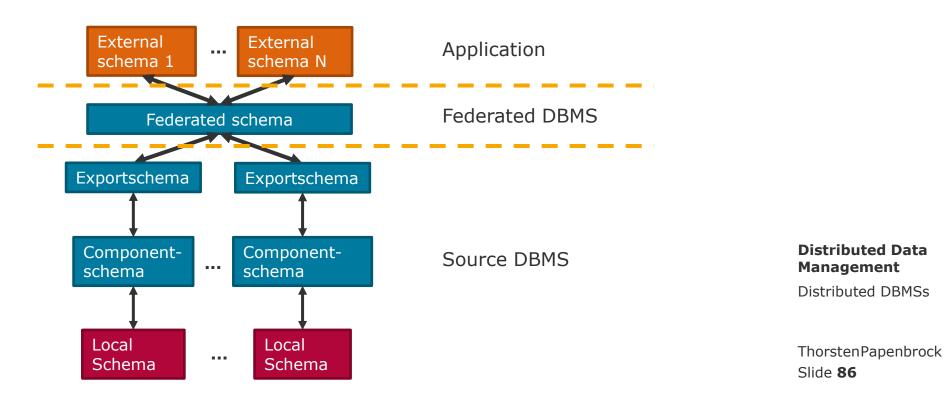
- Meta-search engines
- Company mergers
  - Customer data
  - HR data
- Clinical information systems
  - X-ray/CRT images
  - Medial charts
  - Administrative information
  - Insurance information...




HPI

Hasso Plattner

Institut


Federated Database Management Systems
5-Layer Architecture





Federated Database Management Systems
5-Layer Architecture





# Distributed DBMSs **Exercise**



- 1. Why does query optimization using materialized views resemble Local as View and not Global as View?
- 2. Provide a brief explanation as to why star schemes are typically not suitable for OLTP.
- 3. When is bitmap compression most effective?
- 4. Apply bitmap compression to the string "CABBBBCCBCDBDAA" and give the result.

Distributed Data Management

Distributed DBMSs

Tobias Bleifuß Slide **87** 

