[Ddm-2018] Check yourself solutions

Distributed DBMS

1. Why does query optimization using materialized views resemble Local as
View and not Global as View?

In this case, the question is whether the materialized views (MVs) can be used
to answer queries written against the original database schema (i.e. without
the MVs). MVs are pre-calculated results of queries, so these queries specify
the MV. As the MVs act as data sources just like the original relations,

this exactly resembles the situation that we find in the case of Local as

View: ,Relations of source schemata are expressed as views on global
schema.” (slide 32) The only significant difference is that in a typical data
integration scenario, there are no sources available that are such simple views
on our schema as the tables in the database system are (SELECT * FROM t) .

2. Provide a brief explanation as to why star schemes are typically not suitable
for OLTP.

From the lecture you should know that OLAP and OLTP describe workloads that
differ in several dimensions (see slides 50 and 51). In particular, OLTP queries
are characterized by random-access queries that both read and write and
require low latency and high throughput.

A star schema is denormalized and often contains a high degree of
redundancy. Due to that reason larger amounts have of data to be written,
which in turn can have a negative effect on write performance. Furthermore,
denormalization can also lead to inconsistencies in the data.

You could also have mentioned that data in star schemata are often
already pre-aggregated and therefore may not contain all the necessary data
(although of course you do not have to pre-aggregate).

In addition, it would be valid to argue that a more frequent locking of
the central fact table may reduce the potential for parallelizing the queries
and thus reduce throughput.

3. When is bitmap compression most effective?

The most important fact you had to mention here is that for bitmap
compression to be effective the number of distinct values must be small
compared to the number of tuples in the database. Some solutions have only
mentioned the number of distinct values (cardinality), ignoring the number of
entries as a reference. You should also be aware that bitmap compression
alone does not imply run length encoding and therefore the order of values is
insignificant.

4. Apply bitmap compression to the string "CABBBBCCBCDBDAA" and give the
result.

With the exception of minor mistakes, | think all the solutions were right:

1o0f6 9/20/19, 11:14 AM

[Ddm-2018] Check yourself solutions

CABBBBCCBCDBDAA
A|1010000000000011
BI001111001001000
C|100000110100000
D|000000000010100

As with 3, you were not asked for RLE and should therefore not apply it here.

Encoding and Evolution
Remember you were given the following code snippet:

public class IntLinkedList {
int size;
IntNode first;
IntNode last;

private static class IntNode {
int item;
IntNode next;
IntNode prev;

}

}
You were asked to answer the following two questions:
1. Give reasons why the default Java serializer should not be used here.

This question is based on item 75 taken from the book "Joshua Bloch -
Effective Java - Second Edition". The example there is a list of strings, but all
the arguments given by the author there also apply here. I'll summarize them
here.

Space requirement:

The default Java serialization would take up much more space than necessary.
Not only would the serialization include the class definitions, but also a lot of
information that are not necessary for deserialization, such as the internal
entries including their links to the previous and next entry. Precisely because
the serialized form contains so much redundant information, it is vulnerable to
(potentially malicious) inconsistencies.

Time requirement:

Because serialization happens without knowledge of the topology, the
serializer must follow all links in the object graph. It would be sufficient to
follow each next link. This takes more time, but can also cause stack
overflows if the list is very large.

20f6 9/20/19, 11:14 AM

[Ddm-2018] Check yourself solutions

Expose internal representation:

The default serialized form would contain references to the private IntNode
class, which would thereby become part of the public API. If the
implementation changes in the future, you would never completely get away
from this LinkedList implementation, even if it is no longer in use.

2. How would a more reasonable serialization look like?

All your submitted solutions proposed alternative serializations with libraries
presented in the lecture such as Thrift or Avro. However, this does not fix all of
the above-mentioned disadvantages (although it makes the serialization more
space efficient). A much simpler serialization would be the length of the list
and a correspondingly long sequence of integer primitives.

Storage & Retrieval

The compacted merge of the two segments looks like this:

accident 63
ambition 27
anxiety 78
area 56
argument 79
assistance 50
assumption | 87
atmosphere | 40
attitude 53

That looked good on every submission | received. There was one question
whether the right input segment could be called an SSTable at all since it has
duplicate values for certain keys. According to the definition on slide 21 they
should indeed not be called SSTable, but for example "segment file".

For the second part of the question (in which order the elements would be
accessed) there were several valid answers. You can either run the
compaction of the right file separately or run the compaction and the merge
in one step. For the latter method, we could run two iterators backwards over
both files simultaneously. In each step we would then consider the iterator
with the larger key or in case of identical keys the iterator on the new file. If
this iterator’'s key does not correspond to the last key written, we would
include the current key-value pair in the output file and advance the iterator.
We would repeat process that until both files were read entirely. This would
result in the following order of access:

[Iterator A lterator B Output

30f6 9/20/19, 11:14 AM

Thorsten
Task has been updated in the slides, because it had a bug (segment files and SSTables had been mixed up). The new solution is as follows:

1. Compacted segment file:

assistance 50
argument 79
area 56
anxiety 78
ambition 27
accident 63
attitude 53
atmosphere 40
assumption 87

2. Compacted SSTable:

accident 63
ambition 27
anxiety 78
area 56
argument 79
assistance 50
assumption 87
atmosphere 40
attitude 53

[Ddm-2018] Check yourself solutions

attitude 53 assistance | 50 | attitude 53

atmosphere | 40 assistance | 50 | atmosphere | 40

assumption | 87 assistance | 50 | assumption | 87

argument 59 assistance | 50 | assistance | 50

argument 59 argument | 79 | argument 79

argument 59 argument | 85

argument 59 area 56 | area 56
area 71 anxiety 78
ambition 62 anxiety 78 | anxiety 78

ambition 62 ambition 27 | ambition 27

ambition 62 ambition 14

accident 63| accident 63

Replication

The first part of the task was to find out which quorum configurations are
possible. Our configuration consists of n=3 nodes. We know that we need w +
r > n to guarantee that each query will contain the newest version of a value.
Furthermore, we know that a write query succeeded with only two available
nodes, so w <= 2. This leaves us with three possible configurations: r=2,w=2;
r=3,w=1and r=3,w=2.

The number of nodes that can be unavailable for a successful read query is
given as n - r. This means that for r=3 all the nodes must be available, so no
combinations of unavailable nodes are possible in this case. For r=2 one node
can fail, which means there are three different node combinations {n1}, {n2}
and {n3} that can be unavailable in case of a successful read query.

Partitioning

Among the possible disadvantages of consistent hashing are the following:

- When a node exits, all its data must be copied to exactly one other node. On
the one hand, this node must bear the complete write load of this copy
process and on the other hand, this node is responsible for now (expectedly)

double the amount of data.

- It is assumed that all machines involved are of about the same power and
should therefore be responsible for the same amount of data.

- The hash values could be non-uniformly distributed and therefore

4 0f6 9/20/19, 11:14 AM

[Ddm-2018] Check yourself solutions

inadvertently cause an uneven load among the nodes.

All of these problems can be mitigated by virtual nodes. Each physical node is
hashed to several virtual positions on the ring. This solves the first problem
because it is likely that the following nodes of the virtual nodes of a physical
node are different and therefore the load is distributed among them. The
second problem can be solved by making the number of virtual nodes per
physical machine dependent on their power. The third problem is diminished
by the larger number of nodes on the ring. As the ranges for which individual
virtual nodes are responsible shrink, the probability of a disproportionately
large number of values in one of the ranges decreases.

Distributed Systems

Here we were given heartbeat intervals (in s):

14, 34, 15, 11, 17, 10, 35, 29, 28, 21

The accrual failure detector would first estimate the underlying distribution:
Samle mean x=(14+34+15+11+17+10+4+35+29+28+21)/10=21,4

Sample standard deviation s = sqrt(((14-21,4)"2+...(21-21.4)"2)/9) = 9.42
The probability for P_later can now for example be looked up in a

tableau: https://en.wikipedia.org/wiki/Standard_normal_table

Our value for Z would be (31-21,4)/9,42~=1,02 which would give us a
probability of about 15,4% that the heartbeat will still arrive.

The value for ¢ is -log _10(0,154)~=0,81

For the parameters u=15.0 and 0~2=100.0, the value for Z would be
(31-15)/10=1.6 and the probability P_later about 5,5%.
So our estimation for the probability is off by a factor of 2.8.

Consistency and Consensus

1) First you were asked to give the Lamport timestamp according to the
provided rules. Here is the solution:

’

1:1
,2: 3

D
= =

 ® O
NNN
Wi -
UUNI—‘

3r
3

M O
N =
N =

’

2)

The following event has a larger Lamport timestamp than e2,2 but cannot
have been influenced by e2,2: el,2

The following event has a smaller Lamport timestamp than e2,2 but cannot
have influenced e2,2: e3,1

50f6 9/20/19, 11:14 AM

[Ddm-2018] Check yourself solutions

3)

Vector clocks provide us with a mechanism to exactly determine which events
might have influenced a certain event:

el,1:[1,0,0]

el,2:[2,0,2]

e2,1: [0,1,0]
e2,2: [1,2,0]
e2,3:[1,3,0]

0,0,1]
3, [0,0,]

Now there is only one event with a larger vector clock than VC(e2,2): e2,3,
which can have been influenced by e2,2.

Also, all events with a smaller VC than VC(e2,2) can indeed have influenced
e2,2: el, 1l and e2,1.

Stream Processing

Here the task was to describe an algorithm that selects a random set of fixed
size from a stream where each element has equal probability to be in the
sample. The usual solution in literature for this problem is reservoir sampling
(https://en.wikipedia.org/wiki/Reservoir_sampling). It is an algorithm that
every computer scientist should have heard about and should know its basic
concept (the algorithm is also often asked for in job interviews).

For this task, variations of reservoir sampling would also have been accepted.
For example, algorithms that assign a random number (from a
correspondingly large space) to each element and always retain the k
elements with the k largest/smallest random numbers. The only requirement
for the solution is to use max O(k) memory. This would be the case here,
because only the k elements and the k numbers have to remain in memory.

6 of 6 9/20/19, 11:14 AM

