
Dr. Thorsten Papenbrock February 21, 2020
Information Systems Group
Hasso Plattner Institute

Distributed Data Management – Exam
Winter Term 2019/2020 Musterlösung:

Musterlösung

Matriculation Number:

0 1 2 3 4 5 6 7 8 9 Σ

1 7 8 15 6 5 3 7 6 12 70

Important Rules:

• The exam must be solved within 180 minutes (14:00 – 17:00).

• Fill in your matriculation number (Matrikelnummer) above and on every page.

• Answers can be given in English or German.

• Any usage of external resources (such as scripts, prepared pages, electronic devices,
or books) is not permitted.

• Make all calculations transparent and reproducible!

• Use the free space under each task for your answers. If you need more space,
continue on the back of the page. Use the extra pages at the end of the exam
only if necessary. Provide a pointer to an extra page if it should be considered for
grading. The main purpose of the extra pages is for drafting.

• Please write clearly. Do not use the color red or pencils.

• If you have any questions, raise your hand.

• The exam consists of 34 pages including cover page and extra pages.

• For any multiple choice question, more or fewer than one answer might be correct.

• Good luck!

Exam DDM (Winter 2019/20)
Dr. Thorsten Papenbrock, Information Systems Group

Matriculation Number:�
Hasso Plattner Institute

Task 0: Matriculation Number

Fill in your matriculation number (Matrikelnummer) on every page including the cover
page and the extra pages (even if you don’t use them).

Hint: Do it now! 1 point

Task 1: Distributed Systems

1. Which of the following statements about distributed systems are true? Tick all
true statements. 4 points

f A distributed system is a group of independent compute nodes that communi-
cate and collaborate to solve a common task.

f A distributed system is reliable only if it prevents faults, errors and failures.

f A distributed system can be scaled vertically by adding more nodes into the
cluster.

f A distributed system that uses task-parallelism cannot guarantee ACID.

Musterlösung:

� That is exactly the definition.
� A distributed system is reliable if it is fault-tolerant, i.e., if faults do not lead
to failures. We cannot prevent faults.
� Adding more nodes is horizontal scaling.
� Task-parallelism might make ACID a bit more complicated, but there is no
inherent contradiction. The same techniques (locking, snapshotting, logging etc.)
also apply if certain subtasks are being executed in parallel.

Grading: 1P for each correctly ticked or non-ticked field

2. Consider the following situation: You are given two algorithms, mineFast and mi-
neDistributed, that both solve the frequent itemset mining problem. The algorithm
mineFast is highly efficient, but non-distributable; the algorithm mineDistributed,
on the contrary, is not quite as efficient, but distributable. While experimenting
with different datasets on one machine, you found that mineFast is on average
twice as fast as mineDistributed. You also figured out that 60% of mineDistribu-
ted ’s runtime is distributable and the algorithm scales linearly with the number of
available machines. Given that you have five equal machines, which algorithm is
the faster approach? What is the expected runtime x of mineDistributed for some

2

Exam DDM (Winter 2019/20)
Dr. Thorsten Papenbrock, Information Systems Group

Matriculation Number:�
Hasso Plattner Institute

input dataset on five machines given the runtime y of mineFast for that same input
dataset on one machine? 3 points

Musterlösung:

Calculate the runtime x of mineDistributed on 5 nodes given its runtime z on one
node:
x = 40% * z + 60% * z / 5 =
z * (0.4 + 0.6 / 5) =
z * 0.52
We know that z is 2 times larger than mineFast ’s runtime y, i.e., z = 2 * y:
x = (y * 2) * 0.52 = y * 1.04
This is mineDistributed ’s runtime on 5 nodes relative to mineFast ’s runtime.
Hence, the distribution does not pay off in this setting, because mineDistributed
is 1.04 * mineFast ’s runtime, which is larger than mineFast ’s runtime.

Grading:

• 1P correct answer, i.e., mineFast is faster

• 1P correct calculation attempt or only finding that mineDistributed ’s runtime
on 5 nodes is x * 0.52

• 1P correct calculation of mineDistributed ’s runtime is mineFast ’s runtime *
1.04.

3

Exam DDM (Winter 2019/20)
Dr. Thorsten Papenbrock, Information Systems Group

Matriculation Number:�
Hasso Plattner Institute

Task 2: Data Models and Query Languages

1. The graph below depicts a network of seven users. Some users know other users.
Assume that a user can ask the users that she knows for their known users so that
she then also knows these users – in that way, the knows edge becomes transitive.
Iteratively calculating all transitive knows edges provides us with the transitive
closure of the depicted graph that holds an explicit knows edge between a user and
all other users that it can reach via direct or indirect knows edges. If we calculate
the transitive closure with a Bulk Synchronous Parallel (BSP) transitive closure
algorithm, how many steps would that algorithm need? Illustrate your answer or
explain it in one or two sentences! 2 points

Musterlösung:

Solution:

– Step 0 –
All users know nobody.

4

Exam DDM (Winter 2019/20)
Dr. Thorsten Papenbrock, Information Systems Group

Matriculation Number:�
Hasso Plattner Institute

– Step 1 –
User 1: 2,3
User 2: 3
User 3: 4
User 4: 5,6
User 5: -
User 6: 7
User 7: -

– Step 2 –
User 1: 2,3,4
User 2: 3,4
User 3: 4,5,6
User 4: 5,6,7
User 5: -
User 6: 7
User 7: -

– Step 3 –
User 1: 2,3,4,5,6
User 2: 3,4,5,6
User 3: 4,5,6,7
User 4: 5,6,7
User 5: -
User 6: 7
User 7: -

– Step 4 –
User 1: 2,3,4,5,6,7
User 2: 3,4,5,6,7
User 3: 4,5,6,7
User 4: 5,6,7
User 5: -
User 6: 7
User 7: -

Grading:

• 2P correct answer; 1P if the BSP approach seems to be understood, but some
calculation is wrong; also 2P if the first step was skipped, because nodes may
get their direct contacts via initialization

5

Exam DDM (Winter 2019/20)
Dr. Thorsten Papenbrock, Information Systems Group

Matriculation Number:�
Hasso Plattner Institute

• Note that the graph topology does not change although we create transitive
edges in processor states: messages always follow the edges in the original
graph!

6

Exam DDM (Winter 2019/20)
Dr. Thorsten Papenbrock, Information Systems Group

Matriculation Number:�
Hasso Plattner Institute

2. The following graph describes the schema of a database storing twitter users and
their tweets. Each circle describes a possible label for node instances and each
edge their possible relationships to other nodes. Assume that the graph/schema is
not completely shown here and further nodes and edges might exist (open world
assumption). The database was created in Neo4J and you have to use Cypher to
query its content.

Hashtag

Link

Source

User Tweet
POSTS

MENTIONS

RETWEETS

REPLIES

TAGS

id
name
image

id
text

url
date

tag
length

label
ref

LIKES

Write one Cypher query that adds a node with two edges to the depicted graph.
The node we want to add has the new label Website and an attribute content
with value “my CV.pdf”. There should also be a new edge labeled REFERENCES

that points from the Link node with url “www.usr42.com” to the new Website

node and a new edge labeled DESCRIBES that points from the new Website node
to the User node with id “42”. 3 points

Musterlösung:

MATCH (user:User {id=42})
MATCH (link:Link {url=www.usr42.com})
CREATE (link)-[:REFERENCES]->(:Website {content=my CV.pdf})
-[:DESCRIBES]->(user)

Grading:

• If bracket types are not correct or the syntax is a little bit wrong, we do not
mark that as an error

• 1P Website node

• 1P DESCRIBES edge

• 1P REFERENCES edge

3. Still consider the graph of twitter users and tweets depicted above. We are now
interested in tweets with the Hashtag tag “#ClimateChange” that have been re-
tweeted at least 1000 times. Write a Cypher query that returns all these popular
climate change Tweet nodes. 3 points

7

Exam DDM (Winter 2019/20)
Dr. Thorsten Papenbrock, Information Systems Group

Matriculation Number:�
Hasso Plattner Institute

Musterlösung:

MATCH (:Hashtag {tag=“#ClimateChange”})-[:TAGS]->(tweet:Tweet)
<-[:RETWEETS*1000..]-(:Tweet))
RETURN tweet

Grading:

• If bracket types are not correct or the syntax is a little bit wrong, we do not
mark that as an error

• 1P MATCHing the Hashtag

• 1P MATCHing to at least 1000 retweets

• 1P returning the correct tweet

8

Exam DDM (Winter 2019/20)
Dr. Thorsten Papenbrock, Information Systems Group

Matriculation Number:�
Hasso Plattner Institute

Task 3: Actor Programming

1. Which of the following statements on the actor model and actor programming are
true? Tick the true ones. 6 points

f An actor is a special type of a thread that has its own private state, a mailbox
and behavior.

f Actor messages need to be serializable, because the actor system needs to
serialize and de-serialize every message that is sent from one actor to another.

f The specification of an actor system in Akka guarantees only at-most-once
message delivery, because Akka uses fire-and-forget messaging and when firing
messages with the UDP protocol, these messages might get lost.

f The actor model is very flexible: It allows the implementation of both task-
and data-parallel applications, it supports pull- and push-based communication
protocols and it lets us dynamically spawn and terminate actors at runtime.

f The reaper pattern defines a special actor, called the reaper, who sends out
PoisonPill messages that terminate all actors in the actor system in a clean
way.

f Using a side channel for large messages is advisable, because large messages
may otherwise block important system messages, such as cluster heartbeats.

Musterlösung:

� Actors are objects not threads. They are scheduled on threads and are therefore
loosely coupled to threads – they do, in particular, not extend them.
� The actor system does not need to serialize all messages. Within one actor
system, messages are send via reference.
�
�
� The reaper does not send any messages to any actor. It just waits for all actors
to terminate and then terminates the actor system.
�

Grading: 1P for each correctly ticked or non-ticked field

2. The Actor model implementation in Akka ensures that every user defined actor
is supervised by some other actor. If an actor encounters an error or crashes, its
supervisor is notified so that the supervisor can analyze and handle the error.
The supervisor then has four different options according to the actors’ lifecycles to
proceed the program. What are these four options? 2 points

9

Exam DDM (Winter 2019/20)
Dr. Thorsten Papenbrock, Information Systems Group

Matriculation Number:�
Hasso Plattner Institute

Musterlösung:

0.5P resume child actor
0.5P restart child actor
0.5P stop child actor
0.5P escalate

10

Exam DDM (Winter 2019/20)
Dr. Thorsten Papenbrock, Information Systems Group

Matriculation Number:�
Hasso Plattner Institute

3. The following two actors should implement the Network Time Protocol (NTP)
algorithm. Fill out the gaps in the code such that the Client actor frequently
synchronizes its time according to the Server actor’s reference time. 7 points

Hint: Use the space on this page for drafting. Then write your solution into the
gaps of the already provided template code. Use the back of the template pages if
you need more space.

Musterlösung:

Grading: Do not be strict about the syntax: missing ; or small mistakes are ok

ERROR: The algorithm solution and its gab-version have a bug in the scheduled
messaging part. The code (and expected solution) periodically sends the same
TimeSyncRequest message, which is a problem, because every message needs to
carry the current time, i.e., it needs to be a new message.

ELEGANT SOLUTION ATTEMPT: Instead of passing an object to the scheduler,
pass an anonymous function that creates a fresh version of the message with every
call:
() -> new Server.TimeSyncRequest(this.getCurrentTime())

Unfortunately, schedulers do not accept functions and knowing how to formulate
anonymous functions in Java is not required for this exam.

WORKING SOLUTION ATTEMPT: Upon receiving the first TimeSyncRespon-
se, the algorithm could stop the Cancellable and create a new one for the next
TimeSyncRequest (or simply send the next TimeSyncRequest directly). The al-
gorithm would work, but it had various issues. First, if the scheduler sends two
TimeSyncRequest, the response to the second message would mess up the clients
time. Second, the request intervals are not equi-distant, because the sync time,
which as we know varies as bit, is added to the request intervals.

ALGORITHM FIX: To fix the task, the scheduler needs to send a message to the
client (and not the server). Upon receiving that static, periodic message, the client
needs to create a new TimeSyncRequest message with the current time and send
that message to the server. Because both the recipient of the scheduled message
and the Receive object were given in this task, this solution was not programmable.

GRADING: The algorithms needs to send a TimeSyncRequest with the current
time in some way. This will grand full points for the gap. Not sending a Time-
SyncRequest makes the NTP protocol incomplete so that the points cannot be
given.

Client:
1P send TimeSyncRequest
0.5P send thisCurrentTime() with TimeSyncRequest

11

Exam DDM (Winter 2019/20)
Dr. Thorsten Papenbrock, Information Systems Group

Matriculation Number:�
Hasso Plattner Institute

0.5P time0 in TimeSyncResponse
0.5P time1 in TimeSyncResponse
0.5P time2 in TimeSyncResponse
1P calculation of newOffset as ((1-0)+(2-3))/2
0.5P update this.offset
0.5P graceful update e.g. use of this.offsetAdjustmentFactor

Server:
0.5P time0 in TimeSyncRequest
0.5P send time0 back
0.5P get time1 locally
0.5P get time2 locally (using the same time as time1 is ok)

Musterlösung:

Musterlösung:

12

Exam DDM (Winter 2019/20)
Dr. Thorsten Papenbrock, Information Systems Group

Matriculation Number:�
Hasso Plattner Institute

package de.hpi.ddm.ntp;

import java.io.Serializable;
import java.util.concurrent.TimeUnit;
import akka.actor.AbstractLoggingActor;
import akka.actor.ActorRef;
import akka.actor.Cancellable;
import akka.actor.Props;
import scala.concurrent.duration.Duration;

public class Client extends AbstractLoggingActor {

public static Props props(final ActorRef server) {
return Props.create(Client.class, () -> new Client(server));

}

public Client(final ActorRef server) {
this.timeSyncProcess = this.getContext().system().scheduler().schedule(

Duration.create(0, TimeUnit.SECONDS),
Duration.create(3, TimeUnit.SECONDS),
server,
--

 |
 |
 --

this.getContext().dispatcher(), null);
}

@Override
public void postStop() throws Exception {

this.timeSyncProcess.cancel();
}

public static class TimeSyncResponse implements Serializable {
private static final long serialVersionUID = 1208000708229308005L;
--

 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 --

}

private final Cancellable timeSyncProcess;
private long offset = 0;
private float offsetAdjustmentFactor = 0.3f;

private long getCurrentTime() {
return System.currentTimeMillis() + this.offset;

}

@Override
public Receive createReceive() {

return receiveBuilder()
.match(TimeSyncResponse.class, this::handle)
.matchAny(object -> this.log().info("Unknown message: \"{}\"", object.toString()))
.build();

}

private void handle(TimeSyncResponse message) {
--

 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 --

}
}

13

Exam DDM (Winter 2019/20)
Dr. Thorsten Papenbrock, Information Systems Group

Matriculation Number:�
Hasso Plattner Institute

package de.hpi.ddm.ntp;

import java.io.Serializable;
import java.util.concurrent.TimeUnit;
import akka.actor.AbstractLoggingActor;
import akka.actor.ActorRef;
import akka.actor.Cancellable;
import akka.actor.Props;
import scala.concurrent.duration.Duration;

public class Client extends AbstractLoggingActor {

public static Props props(final ActorRef server) {
return Props.create(Client.class, () -> new Client(server));

}

public Client(final ActorRef server) {
this.timeSyncProcess = this.getContext().system().scheduler().schedule(

Duration.create(0, TimeUnit.SECONDS),
Duration.create(3, TimeUnit.SECONDS),
server,
new Server.TimeSyncRequest(this.getCurrentTime()),
this.getContext().dispatcher(), null);

}

@Override
public void postStop() throws Exception {

this.timeSyncProcess.cancel();
}

public static class TimeSyncResponse implements Serializable {
private static final long serialVersionUID = 1208000708229308005L;

public long time0;
public long time1;
public long time2;

public TimeSyncResponse(final long time0, final long time1, final long time2) {
this.time0 = time0;
this.time1 = time1;
this.time2 = time2;

}
}

private final Cancellable timeSyncProcess;
private long offset = 0;
private float offsetAdjustmentFactor = 0.3f;

private long getCurrentTime() {
return System.currentTimeMillis() + this.offset;

}

@Override
public Receive createReceive() {

return receiveBuilder()
.match(TimeSyncResponse.class, this::handle)
.matchAny(object -> this.log().info("Unknown message: \"{}\"", object.toString()))
.build();

}

private void handle(TimeSyncResponse message) {
final long time0 = message.time0;
final long time1 = message.time1;
final long time2 = message.time2;
final long time3 = this.getCurrentTime();

final long newOffset = ((time1 - time0) + (time2 - time3)) / 2;

this.offset = this.offset + (long) Math.ceil(newOffset * this.offsetAdjustmentFactor);
}

}

14

Exam DDM (Winter 2019/20)
Dr. Thorsten Papenbrock, Information Systems Group

Matriculation Number:�
Hasso Plattner Institute

package de.hpi.ddm.ntp;

import java.io.Serializable;
import akka.actor.AbstractLoggingActor;
import akka.actor.Props;

public class Server extends AbstractLoggingActor {

public static Props props() {
return Props.create(Server.class);

}

public static class TimeSyncRequest implements Serializable {
private static final long serialVersionUID = -3057724412864626584L;
--

 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 --

}

private long getCurrentTime() {
return System.currentTimeMillis();

}

@Override
public Receive createReceive() {

return receiveBuilder()
.match(TimeSyncRequest.class, this::handle)
.matchAny(object -> this.log().info("Unknown message: \"{}\"", object.toString()))
.build();

}

protected void handle(TimeSyncRequest message) {
--

 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 --

}
}

15

Exam DDM (Winter 2019/20)
Dr. Thorsten Papenbrock, Information Systems Group

Matriculation Number:�
Hasso Plattner Institute

package de.hpi.ddm.ntp;

import java.io.Serializable;
import akka.actor.AbstractLoggingActor;
import akka.actor.Props;

public class Server extends AbstractLoggingActor {

public static Props props() {
return Props.create(Server.class);

}

public static class TimeSyncRequest implements Serializable {
private static final long serialVersionUID = -3057724412864626584L;

public long time0;

public TimeSyncRequest(final long time0) {
this.time0 = time0;

}
}

private long getCurrentTime() {
return System.currentTimeMillis();

}

@Override
public Receive createReceive() {

return receiveBuilder()
.match(TimeSyncRequest.class, this::handle)
.matchAny(object -> this.log().info("Unknown message: \"{}\"", object.toString()))
.build();

}

protected void handle(TimeSyncRequest message) {
final long time0 = message.time0;
final long time1 = this.getCurrentTime();
final long time2 = this.getCurrentTime();

this.sender().tell(new Client.TimeSyncResponse(time0, time1, time2), this.self());
}

}

16

Exam DDM (Winter 2019/20)
Dr. Thorsten Papenbrock, Information Systems Group

Matriculation Number:�
Hasso Plattner Institute

Task 4: Replication and Partitioning

1. Assume you have a cluster of 12 801 nodes. The cluster runs a leaderless replicated,
distributed database. Quorum reads and writes are used to ensure consistency and
a gossip protocol ensures that all updates will eventually spread to all nodes in the
cluster. For this task, assume also that the gossip protocol is perfect, i.e., newly
written data is always gossiped to nodes that do not already know it.

Which read (r) and write (w) values do we need to define in our quorum q(r,w) if
writes should return as fast as possible and every successfully written value should
reach all cluster nodes in not more than seven rounds of gossip? 4 points

Musterlösung:

with 0 gossip rounds: 12801
with 1 gossip rounds: 12801 / 2 = 6400.5 -> 6401
with 2 gossip rounds: 12801 / 2 / 2 = 3200.5 -> 3201
with 3 gossip rounds: 12801 / 2 / 2 / 2 = 1600.5 -> 1601
with 4 gossip rounds: 12801 / 2 / 2 / 2 / 2 = 800.5 -> 801
with 5 gossip rounds: 12801 / 2 / 2 / 2 / 2 / 2 = 400.5 -> 401
with 6 gossip rounds: 12801 / 2 / 2 / 2 / 2 / 2 / 2 = 200.5 -> 201
with 7 gossip rounds: 12801 / 2 / 2 / 2 / 2 / 2 / 2 / 2 = 100.5 -> 101

in general:
w ∗ 2rounds >= 12801
w >= 12801/2rounds = 12801/27 = 12801/128 = 100 + 1/128
w >= 101

consistency: r + w > n
r > n - w = 12801 - 101 = 12700

answer: q(12701,101)

Grading:

• 1P w = 101 correctly calculated

• 1P r = 12701 correctly calculated

• 1P gossip protocol correctly understood

• 1P quorum consistency condition r + w > n

17

Exam DDM (Winter 2019/20)
Dr. Thorsten Papenbrock, Information Systems Group

Matriculation Number:�
Hasso Plattner Institute

2. What is the disadvantage of the modulo operation when used for partitioning key
spaces? What other approach prevents this issue? 2 points

Musterlösung:

Grading:

• 1P modulo is not stable, i.e., it requires a lot of data shuffling if the number
of partitions changes.

• 1P alternative: consistent hashing (data stealing; fixed number of partitions
per node)

18

Exam DDM (Winter 2019/20)
Dr. Thorsten Papenbrock, Information Systems Group

Matriculation Number:�
Hasso Plattner Institute

Task 5: Consistency and Transactions

1. Given a database management system that implements Lamport Timestamps for
causal write ordering. A lamport timestamp is a pair (c, i) with a write counter c
and a node identifier i. Every write operation is associated with such a timestamp.
We can use these timestamps for write ordering, because lamport timestamps are
comparable: (c, i) > (c′, i′) iff (c > c′)∨(c = c′∧i > i′). Add the lamport timestamps
in the following example. What is the final value of the field x on leader 1 and on
leader 2? 3 points

Musterlösung:

Grading:

• 1P line is within phase 2

• 1P line is exactly within Node 1’s pre-commit processing

19

Exam DDM (Winter 2019/20)
Dr. Thorsten Papenbrock, Information Systems Group

Matriculation Number:�
Hasso Plattner Institute

2. The following figure depicts the Three-Phase Commit (3PC) protocol. If the coor-
dinator in that protocol dies, another coordinator can take over and finish the
transaction by either rolling it back or consistently committing it. Draw two ver-
tical lines into the 3PC process:

I.) The first line should be at exactly that place up until which a new coordinator
would definitely roll the transaction back, i.e., coordinator crashes left to that line
would cause the transaction to be rolled back.

II.) The second line should be at exactly that place from which onwards a new
coordinator would definitely commit the transaction, i.e., coordinator crashes right
to that line would cause the transaction to be committed.

Coordinator crashed in between these two vertical lines could lead to both rollback
and commit situations depending on what information has been lost. 2 points

Musterlösung:

Grading:

• 1P first line on send of pre-commit

20

Exam DDM (Winter 2019/20)
Dr. Thorsten Papenbrock, Information Systems Group

Matriculation Number:�
Hasso Plattner Institute

• 1P second line within Node 1’s pre-commit processing, because if the coordi-
nator dies before that and the pre-commit messages are lost, the new coordi-
nator would still roll the transaction back.

21

Exam DDM (Winter 2019/20)
Dr. Thorsten Papenbrock, Information Systems Group

Matriculation Number:�
Hasso Plattner Institute

Task 6: Data Warehousing

1. Consider the following data warehouse star schema and the join query on that
schema. Rewrite the join query as a star join and explain why the star join makes
sense especially in distributed data warehouses. 2 points

((Connections ./ Attack) ./ Service) ./ T ime

Musterlösung:

((Connections ./ (Attack × (Service× Time))

Or similar forms that use × between all dimension tables first and then ./ with
the facts table in the end.

Explanation: Star joins often produce smaller intermediate results on data ware-
house star schemata and this is important especially for distributed systems, becau-
se intermediate results often have to be send (at least partially) over the network.

Grading:

• 1P correct star join

• 1P for explanation

2. What kind of schema mapping strategy is expressed by the following schemata and
views? Write down the name of the strategy. 1 points

Musterlösung:

Grading:

• 1P Global-as-View oder GaV

22

Exam DDM (Winter 2019/20)
Dr. Thorsten Papenbrock, Information Systems Group

Matriculation Number:�
Hasso Plattner Institute

Task 7: Distributed Query Optimization

1. Which of the following statements about distributed query optimization are true?
Tick all true statements. 4 points

f The query optimizer should, if possible, always try to push selection, projection
and grouping operations to the nodes that hold the relevant data.

f The query optimizer does not need to push set operations, such as union,
intersect and except, to data nodes, because evaluating set operations on data
nodes does not reduce the network traffic.

f To minimize the network traffic for join operations, the query optimizer has to
run a full reducer semi-join program.

f Bloom filters can be used to approximate semi-joins: They might not remove
all non-joining tuples, but all removed tuples are true non-joining tuples.

Musterlösung:

�
� True for union, but pushing intersects and excepts to data nodes does reduce
the network traffic, because only one side of these operations needs to be send
to the other side’s data node.
� A full reducer reduces all relations, such that we send a minimum amount
of data if all relations have to be send to some third location that eventually
executes the join. If we can join tuples on data nodes already, the full reduction
increases the network traffic. The network traffic is also increased by the reduc-
tion process, if the final reduction is less than the traffic caused by the reduction
process. Hence, the statement is wrong.
�

23

Exam DDM (Winter 2019/20)
Dr. Thorsten Papenbrock, Information Systems Group

Matriculation Number:�
Hasso Plattner Institute

Grading: 1P for each correctly ticked or non-ticked field

2. The following picture shows four relations that should be joined. Write down a
reducer program of semi-joins that reduces R1. Then, write down the result of a
full reducer program, i.e., the reduced relations R1, R2, R3, and R4. 3 points

Musterlösung:

Reducer program for R1: R1 n (R2 n (R3 nR4))

Reduced relations:
R1′ = (1, 7)(4, 7)(5, 5)(6, 7)
R2′ = (5, 5)(7, 7)
R3′ = (7, 2)(5, 3)
R4′ = (2, 1)(3, 2)

Grading:

• 1P reducer program

• 0.5P for each correctly reduced relation

24

Exam DDM (Winter 2019/20)
Dr. Thorsten Papenbrock, Information Systems Group

Matriculation Number:�
Hasso Plattner Institute

Task 8: SSTables and LSM Trees

The following figures depict LSM tree instances with three levels, which are C0, C1, and
C2. In the LSM tree, we show only the keys and not their values. Assume that all values
have the same size, so that a B+-tree leaf can hold exactly up to two key-value pairs and
each SSTable can hold exactly up to three key-value pairs. The maximum depth of the
B+-tree shall be two, which means that the depicted tree cannot grow any further. We
now insert new elements into the LSM tree. Use the free space next to the figures for
drafting and write your final results into the LSM tree templates below each instance
figure.

1. Insert the key 18 into the depicted LSM tree instance: 1 points

LSM tree instance:

LSM tree template:

25

Exam DDM (Winter 2019/20)
Dr. Thorsten Papenbrock, Information Systems Group

Matriculation Number:�
Hasso Plattner Institute

2. Insert the key 3 into the depicted LSM tree instance: 2 points

3. Insert the key 10 into the depicted LSM tree instance: 3 points

26

Exam DDM (Winter 2019/20)
Dr. Thorsten Papenbrock, Information Systems Group

Matriculation Number:�
Hasso Plattner Institute

Musterlösung:

Grading:

• 1P 18 correctly inserted into the B-tree and only the B-tree

• 1P 3 replaces the leftmost leaf

• 1P 1,2,4 is the new first SSTable; no new SSTable, no further merges, the key
1 from the leaf replaces the key 1 in the former SSTable

• 1P 10 is in the root and leaf of the B-tree

• 1P 8 and 13,14,16 are the new SSTables in level C1

• 1P 7,10,11 and 15 are the new SSTables in level C2; it does not matter in
which order the SSTables are presented, i.e., whether 15 or 16,17,20 is in the
dotted SSTable box - the SSTables can be placed in any order, because they
are indexed and arbitrarily placed on disk anyway.

27

Exam DDM (Winter 2019/20)
Dr. Thorsten Papenbrock, Information Systems Group

Matriculation Number:�
Hasso Plattner Institute

Task 9: Batch Processing

Suppose you are given three datasets: A students dataset that contains general informa-
tion about students, a courses dataset that describes available courses for the students,
and an enrollment dataset, which is basically a join table between students and their
courses. The following code snippets read the three datasets into Spark Datasets:

val students = spark

.read

.option("quote", "\"")

.option("delimiter", ",")

.csv(s"data/students.csv")

.toDF("ID", "Name", "Semester", "Supervisor")

.as[(String, String, String, String)]

val enrollments = spark

.read

.option("quote", "\"")

.option("delimiter", ",")

.csv(s"data/enrollments.csv")

.toDF("StudentID", "CourseID", "Credits")

.as[(String, String, String)]

val courses = spark

.read

.option("quote", "\"")

.option("delimiter", ",")

.csv(s"data/courses.csv")

.toDF("ID", "Title", "Teacher", "Topic")

.as[(String, String, String, String)]

Use the three Datasets to solve the following tasks. You may use Spark’s Dataset and/or
DataFrame API but no SQL! Also have a look at the Dataset API documentation at
the end of this task. If you are not sure about how a particular interface, call, or class
works, make a good guess and provide a comment on how you think it works.

28

Exam DDM (Winter 2019/20)
Dr. Thorsten Papenbrock, Information Systems Group

Matriculation Number:�
Hasso Plattner Institute

1. Write a Spark transformation pipeline that starts with the enrollments Dataset,
then removes all those enrollments that grand less than 3 credits, then multiplies
the credits by 2/3 in order to transform them into SWS s, and finally displays
the results in tabular form with schema (StudentID, CourseID, SWS) on the
standard output. 4 points

Musterlösung:

Grading:

• 1P filter; missing the integer conversion is ok

• 1P map: 0.5P for multiplication, 0.5P for not missing the other values

• 0.5P toDF renaming

• 0.5P show

• We give only 0.5P for renaming and showing, because the next task gives
points for the same two operations.

2. Translate the following SQL query into a Spark transformation pipeline. 4 points

SELECT Semester, COUNT(ID) AS Students

FROM students

WHERE Semester <= 10

GROUP BY Semester;

Musterlösung:

Grading:

• 1P groupByKey

29

Exam DDM (Winter 2019/20)
Dr. Thorsten Papenbrock, Information Systems Group

Matriculation Number:�
Hasso Plattner Institute

• 1P mapGroups

• 1P filter

• 0.5P toDF renaming

• 0.5P show or some other action

• We give only 0.5P for renaming and showing, because the previous task gives
points for the same two operations.

• The action does not matter here, because the SQL query also does not imply
an action.

3. Rank all teachers by the number of enrollments that they got for all their courses.
You can assume that teachers have unique names in courses.Teacher and that
the enrollments file stores all enrollments for all courses ever given. Teacher that
never gave a course do not exist in the files and will not appear in the ranking.
Report a list of (Teacher, SumEnrollments) that is sorted by SumEnrollments.

4 points

Musterlösung:

It does not matter if col(ID), $ID or t._1 or =, ==, or === is used.

Grading:

• 1P joinWith

• 1P groupByKey

• 1P mapGroups

• 1P sort

• Bonus point: 1P for map after join

30

Exam DDM (Winter 2019/20)
Dr. Thorsten Papenbrock, Information Systems Group

Matriculation Number:�
Hasso Plattner Institute

31

Exam DDM (Winter 2019/20)
Dr. Thorsten Papenbrock, Information Systems Group

Matriculation Number:�
Hasso Plattner Institute

Extra page 1

32

Exam DDM (Winter 2019/20)
Dr. Thorsten Papenbrock, Information Systems Group

Matriculation Number:�
Hasso Plattner Institute

Extra page 2

33

Exam DDM (Winter 2019/20)
Dr. Thorsten Papenbrock, Information Systems Group

Matriculation Number:�
Hasso Plattner Institute

Extra page 3

34

