
Machine Learning for Data 
Streams

Alexander Albrecht
WS 2019/20



Use Cases for Machine Learning & Data Streams

2

Sensor Processing

Process Monitoring

Location Tracking

Log Analysis

User Interaction

Market and Climate Prediction, etc. 



Seminar - Learning Goals
Understand, implement, and deploy a challenging machine learning (ML) 
algorithm. (no optimization required)

Learn about state-of-the-art streaming techniques.

Build an ML-algorithm for data streams using Kafka and Kafka Streams.

Solve problems that arise from distributed computing.

Evaluate the quality and performance of your algorithm.

Write a scientific documentation.

Reveal new research questions for distributed computing (at best) 3



Seminar - Organization
Choose a research project (A, B, C or D).

Study the literature of your topic (books, papers, and online material).

Design a distributed algorithm with Kafka Streams that solves the problem of your 
projects.

Evaluate your solution w.r.t. accuracy/quality and performance.

Document your approach by writing a scientific documentation about as a GitHub 
page.

4



Seminar - Organization
Extent 4 SWS

Location Campus II, Building F, Room F-E-06

Dates Tuesday, 9:15 - 10:45 AM

Class At most 8 participants (4 teams á 2 students)

Register Informal email to alexander.albrecht@bakdata.com by October 18
(notification October 21)

5



Seminar - Registration Email
Add your distributed programming experience (lectures, seminars, some other 
courses, or projects).

Add a ranking of up to three research projects (A, B, C or D) that interest you 
(from the list shown today or own suggestions).

We do the final assignment in our first Kick-off meeting; so this is not a commit!

<optional> Add a team partner; you get either accepted or rejected together if 
seats get tight.

6



Seminar - Grading
10% Active participation during all seminar events.

00% Regular meetings with advisor.

10% Short presentation of the selected research paper.

15% Intermediate presentation demonstrating insights regarding your 
research prototype.

15% Final presentation demonstrating your solution.

20% Implementation of a research prototype with Kafka and Kafka Streams 
(on GitHub).

30% Documentation (on GitHub). 7



Project A
Distributed Model Training with 

Parameter Server

8



Machine Learning (ML) Algorithms
● Linear Regression
● Logistic Regression
● Support Vector Machine
● Clustering
● Neural Networks
● …

9



Learning ML Models

Parameter 
Server
aggregate gradients
optimize model

Model
Worker I

Model
Worker II

With ½ data With ½ data

model updates
(gradients)

model updates
(gradients)

model
parameters

10



Modify Model’s Parameters
Optimization method - (Stochastic) gradient descent: Follow the gradient of error 
w.r.t. to model’s parameters improvement

model’s parameter θ 

error

11



Anatomy of Existing Parameter Server Systems
BSP Systems: Bulk Synchronous Parallel. One worker cannot continue to the 
next iteration until the Parameter Server receives all model updates and 
broadcasts a newly updated global parameter.

ASP Systems: Asynchronous Parallel. Workers proceed without waiting for 
each other, making ASP systems often faster than BSP systems in homogeneous 
clusters.

SSP Systems: Stale Synchronous Parallel. The fastest worker cannot exceed 
the slowest one more than a predefined number K of iterations.

12



Research Papers
Li, Mu, et al. "Scaling distributed machine learning with the parameter server." 
11th USENIX Symposium on Operating Systems Design and Implementation 
(OSDI 14). 2014.

Abadi, Martín, et al. "Tensorflow: A system for large-scale machine learning." 12th 
USENIX Symposium on Operating Systems Design and Implementation (OSDI 
16). 2016.

Jiang, Jiawei, et al. "Heterogeneity-aware distributed parameter servers." 
Proceedings of the 2017 ACM International Conference on Management of Data 
(SIGMOD ’17). 2017.

13

https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-li_mu.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://dl.acm.org/citation.cfm?id=3035933


Additional Readings
Hogwild!? Implementing Async SGD in Python
Scott Rome, November 18, 2017 

How to Implement Linear Regression with Stochastic Gradient Descent from 
Scratch with Python
Jason Brownlee, October 28, 2016

Implementing Minibatch Gradient Descent for Neural Networks
Agustinus Kristiadi, June 21, 2016

An overview of gradient descent optimization algorithms
Sebastian Ruder, January 19, 2016 

14

https://srome.github.io/Async-SGD-in-Python-Implementing-Hogwild!/
https://machinelearningmastery.com/implement-linear-regression-stochastic-gradient-descent-scratch-python/
https://machinelearningmastery.com/implement-linear-regression-stochastic-gradient-descent-scratch-python/
https://wiseodd.github.io/techblog/2016/06/21/nn-sgd/
http://ruder.io/optimizing-gradient-descent/


Project B
Gradient Boosting Decision Tree

15



Gradient Boosting Decision Tree
Gradient boosting tree (GBDT) is one of the most preferred choices in data 
analytics competitions such as Kaggle and KDDCup

Introduction to Boosted Trees, 
https://xgboost.readthedocs.io/en/latest/tutorials/model.html

16

https://xgboost.readthedocs.io/en/latest/tutorials/model.html


Illustration of GBDT

17



Distributed implementations of GBDT 
1. The training instances are partitioned onto a set of workers.
2. To split one tree node, each worker computes the gradient statistics of the 

instances. For each feature, an individual gradient histogram needs to be 
built.

3. A coordinator aggregates the gradient histograms of all workers, and finds the 
best split feature and split value.

4. The coordinator broadcasts the split result. Each worker splits the current tree 
node, and proceeds to new tree nodes

18



Research Papers

19

Fu, Fangeheng, et al. "An experimental evaluation of large scale gbdt systems." 
Proceedings of the VLDB Endowment 12.11 (2019): 1357-1370.

Jiang, Jie, et al. "TencentBoost: a gradient boosting tree system with parameter 
server." 2017 IEEE 33rd International Conference on Data Engineering (ICDE). 
IEEE, 2017.

Ponomareva, Natalia, et al. "Tf boosted trees: A scalable tensorflow based 
framework for gradient boosting." Joint European Conference on Machine 
Learning and Knowledge Discovery in Databases. Springer, Cham, 2017.

Chen, Tianqi, and Carlos Guestrin. "Xgboost: A scalable tree boosting system." 
Proceedings of the 22nd acm sigkdd international conference on knowledge 
discovery and data mining. ACM, 2016.

http://www.vldb.org/pvldb/vol12/p1357-fu.pdf
https://ieeexplore.ieee.org/document/7929984
https://ieeexplore.ieee.org/document/7929984
http://ecmlpkdd2017.ijs.si/papers/paperID705.pdf
http://ecmlpkdd2017.ijs.si/papers/paperID705.pdf
https://www.kdd.org/kdd2016/papers/files/rfp0697-chenAemb.pdf


Project C
Collaborative Filtering: 

Alternating Least Squares (ALS) 

20



Collaborative Filtering
Calculate a rating matrix from a subset of its entries.

Building a Recommendation Engine with Spark,
https://mapr.com/ebooks/spark/08-recommendation-engine-spark.html

21

User/
Item

Movie 
A

Movie 
B

Movie 
C

Movie 
D

Alice ? 4 ? 3

Bob 3 ? 2 ?

Carol ? 5 ? 2

Dave ? ? 4 ?

Alice 1.4 0.9

Bob 1.2 1

Carol 1.5 0.9

Dave 1.2 0.8

A B C D

1.4 1.3 0.9 1.2

0.8 1.1 2 0.8
*

https://mapr.com/ebooks/spark/08-recommendation-engine-spark.html


Alternating Least Squares (ALS)
Bulk Synchronous Parallel (BSP) System. Algorithm currently serves as the 
collaborative filtering method in Apache Spark machine learning library – Spark 
MLlib

Zhou, Yunhong, et al. "Large-scale parallel collaborative filtering for the netflix 
prize." International conference on algorithmic applications in management. 
Springer, Berlin, Heidelberg, 2008.

Das, Ariyam, et al. "Collaborative Filtering as a Case-Study for Model Parallelism 
on Bulk Synchronous Systems." Proceedings of the 2017 ACM on Conference on 
Information and Knowledge Management. CIKM, 2017.

22

https://spark.apache.org/docs/latest/mllib-collaborative-filtering.html
https://spark.apache.org/docs/latest/mllib-collaborative-filtering.html
https://link.springer.com/chapter/10.1007/978-3-540-68880-8_32
https://link.springer.com/chapter/10.1007/978-3-540-68880-8_32
https://dl.acm.org/citation.cfm?id=3132862
https://dl.acm.org/citation.cfm?id=3132862


Project D
Approximate Nearest Neighbor Search

23



Annoy - Approximate Nearest Neighbors at Spotify

24



Further Readings
Fu, Cong, et al. "Fast approximate nearest neighbor search with the navigating 
spreading-out graph." Proceedings of the VLDB Endowment 12.5 (2019): 
461-474.

Dong, Wei, Charikar Moses, and Kai Li. "Efficient k-nearest neighbor graph 
construction for generic similarity measures." Proceedings of the 20th International 
Conference on World Wide Web. WWW, 2011.

https://github.com/spotify/annoy

25

http://www.vldb.org/pvldb/vol12/p461-fu.pdf
http://www.vldb.org/pvldb/vol12/p461-fu.pdf
http://wwwconference.org/proceedings/www2011/proceedings/p577.pdf
http://wwwconference.org/proceedings/www2011/proceedings/p577.pdf
https://github.com/spotify/annoy

