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QR code

Please, register to this event 
with the Corona Warn-App!

Please, always wear your mask 
and sit in a checkboard fashion.

When you sit, you can take the 
mask off.
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In this project seminar, we investigate and improve anomaly detection
algorithms for multivariate time series. You will receive a broad selection 
of state-of-the-art anomaly detection algorithms (with code and papers), 
various real-world and synthetic datasets, and information about the 
evaluation of time series anomaly detection (TSAD) approaches. Your are 
then challenged to beat these approaches in runtime and/or quality. 
Techniques that we consider for this task involve, i.a.,

□ workload parallelization and distribution,
□ streaming,
□ ensambling,
□ machine learning, and
□ hybridization.
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Background
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Measuring Anomaly Detection Quality
Algorithm Accuracy AUROC Hit-Precision Hit-Recall

No anomaly found 89.9 % 50.0 % 0.0 % 0.0 %

Only point found 90.0 % 50.5 % 100.0 % 50.0 %

Only sequence found 99.9 % 99.5 % 100.0 % 50.0 %

All anomalies found 100.0 % 100.0 % 100.0 % 100.0 %
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Different Semantics of AnomaliesSearching for unknowns

Why is this hard?

?
How does an anomaly look like?



■ Multivariate time series anomaly detection (TSAD) challenges
□ Localization

Anomalies can appear in only a single channel, in multiple 
channels, and in all channels at the same time.

□ Correlation
□ Dimensionality
□ Complexity
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■ Multivariate time series anomaly detection (TSAD) challenges
□ Localization
□ Correlation

Anomalies can appear as correlation anomalies, in which all 
individual channels behave normally but some subset of 
channels is out-of-sync.

□ Dimensionality
□ Complexity

Motivation
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■ Multivariate time series anomaly detection (TSAD) challenges
□ Localization
□ Correlation
□ Dimensionality

Due to the curse of dimensionality[1],
anomalies become very hard to detect
on multivarite datasets, even for
short datasets.

□ Complexity

Motivation
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[1]: doi:10.1007/978-0-387-39940-9_133
[2]: doi:10.1002/sam.11161

[2]■ Irrelevant attributes

■ Interpretability of scores

■ Exponential search space

■ ML: increased number of training
samples required

■ Distances: difference between sample 
pairs gets very small

■ kNN: emergence of hubs
(=samples that appear more
frequently in neighbor lists than others)

https://en.wikipedia.org/wiki/Curse_of_dimensionality
https://doi.org/10.1007/978-0-387-39940-9_133
https://doi.org/10.1002/sam.11161


■ Multivariate time series anomaly detection (TSAD) challenges
□ Localization
□ Correlation
□ Dimensionality
□ Complexity

Mutlivariate time series are not only long (high number of 
data points), but also wide (high number of channels / 
dimensions), which in many cases leads to huge amounts 
of data that need to be processed within certain time 
and memory limits.

Motivation
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Overview
■ Algorithms

■ Datasets

■ Dataset generators
□ GutenTAG
□ CoMuT

■ Algorithm & dataset evaluation
□ Evaluation Framework: TimeEval
□ First results of our large evaluation

What We Provide
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Icons made by
Freepik from

www.flaticon.com.

https://www.freepik.com/
https://www.flaticon.com/


Algorithm overview

What We Provide
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Algorithm overview

What We Provide
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2%
8%

64%

18%
8%

Programming Language
Java R Python Python, Pytorch Python, Tensorflow

3%

53%
14%

30%

Source Code Origin

PTSA

Own

Community

Original

Metric Value
Unsupervised 65
Semi-supervised 53
Supervised 7
Univariate 71
Multivariate 53



Datasets
■ 580 test case datasets (generated with GutenTAG)
■ 1143 benchmark datasets (~30% multivariate)

What We Provide

Schmidl & Wenig 
Large-Scale TSA 
Winter 2021/22
Chart 15



GutenTAG
Synthetic test case datasets

■ Variations in base curve, 
noise, trend, dimensions

■ Variations in anomaly
position, number of similar
anomalies, different anomalies

■ Different anomaly types: 
local & global extremums, 
frequency shifts, amplitude
change, jumps/platforms, 
mode/pattern/state change
regions, delayed or premature
patterns, variance change, 
noise change

What We Provide
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CoMuT
Synthetic multivariate test case
datasets
■ Different number of

dimensions
■ Always the same step

function with random noise
■ Anomalies are steps where

one or more channels don‘t
follow their switching
behavior

What We Provide
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TimeEval
■ Evaluation tool
■ Canonical algorithm

interface and dataset
format

■ Parallelized & distributed
execution of
experiments

■ Automatic result
collection and quality
and runtime assessment

What We Provide
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Evaluation results (preview)

What We Provide
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■ Each team develops an improved multivariate TSAD algorithm
■ Beats state-of-the-art for a specific use case / scenario

□ More reliable
The developed algorithm is more robust against uncommon 
data formats and values, missing data points, etc. It can 
produce results, where other algorithms give up.

□ More accurate
□ More efficient
□ More capable

Goals

Schmidl & Wenig 
Large-Scale TSA 
Winter 2021/22
Chart 20



■ Each team develops an improved multivariate TSAD algorithm
■ Beats state-of-the-art for a specific use case / scenario

□ More reliable
□ More accurate

The developed algorithm can produce qualitatively better results 
according to quality metrics, such as area under the ROC-curve (ROC-
AUC), PR-AUC, RANGE-PR-AUC, or average precision (AP).

□ More efficient
□ More capable

Goals
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■ Each team develops an improved multivariate TSAD algorithm
■ Beats state-of-the-art for a specific use case / scenario

□ More reliable
□ More accurate
□ More efficient

The developed algorithm can process larger datasets in shorter time 
and/or with lower memory requirements than the existing approaches 
while not (significantly) falling behind on result quality.

□ More capable

Goals
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■ Each team develops an improved multivariate TSAD algorithm
■ Beats state-of-the-art for a specific use case / scenario

□ More reliable
□ More accurate
□ More efficient
□ More capable

The developed algorithm can detect anomalies in certain datasets or 
of certain types that no existing algorithms can detect.

Goals

Schmidl & Wenig 
Large-Scale TSA 
Winter 2021/22
Chart 23



Ideas and Starting Points
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Ensembling Distribution

Novel preprocessing



Metadata
■ Project seminar for master students
■ Extent: 6 credit points, 4 SWS
■ Location: F-E.06, Campus II, HPI
■ Dates: Wednesdays, 17:00 – 18:30
■ Class: At most 8 participants (4 teams á 2 students)
■ Supervisors: Sebastian Schmidl, Phillip Wenig, Thorsten Papenbrock

(remote), and Felix Naumann
■ Website: https://hpi.de/naumann/teaching/current-courses/ws-21-22/large-scale-time-series-analytics.html

Team Meetings
■ Regular meetings with supervisors in the teams of 2 (bi-weekly?)
■ On-demand meetings

Organizational
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We probably meet in our seminar 
room during the semester

We can vote for a 
different time

https://hpi.de/naumann/teaching/current-courses/ws-21-22/large-scale-time-series-analytics.html
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Registration
■ until 29.10.2021 12:00
■ Send e-mail to sebastian.schmidl(at)hpi.de

□ Subject: "Registration to Large-Scale Time Series Analytics seminar"
□ Content:

– Prior knowledge, courses taken
– (optional) which person to team up with (both have to write an e-

mail)

■ Notification about participation on Friday, 29.10.2021, afternoon!

http://javascript:linkTo_UnCryptMailto(%27nbjmup%2Btfcbtujbo%5C%2FtdinjemAiqj%5C%2Fef%27);
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Date Topic

27.10.2021 (F-E.06) Seminar introduction

29.10.2021 12:00 Deadline registration

29.10.2021 (afternoon) Acceptance notification

03.11.2021 Kick-off & introduction to state-of-the-art

10.11.2021 Topic selection & team building

Week of 10.01.2022 Midterm presentation

March 2022 (based on 
students' voting)

Final presentation

March 2022 (based on 
students' voting)

Artifacts & report submission



■ Oral assessment
□ (10%) Active participation during all seminar events.
□ (30%) Presentations including:

– (15%) Midterm presentation
– (15%) Final presentation

■ Demonstration of a developed software program
□ (20%) Implementation & Documentation
□ (20%) Evaluation
□ (20%) Technical report writing

– ~6 pages per team / ~3 pages per person
– 2-column ACM template

Grading
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■ Reviews / Surveys
□ Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly detection: A Survey. ACM Compuing

Surveys 41, 3, Article 15 (July 2009), 58 pages. DOI:https://doi.org/10.1145/1541880.1541882

■ Series2Graph
□ Paul Boniol and Themis Palpanas. 2020. Series2Graph: Graph-based subsequence anomaly detection

for time series. Proc. VLDB Endow. 13, 12 (August 2020), 1821–1834. 
DOI:https://doi.org/10.14778/3407790.3407792

■ K-Means
□ Takehisa Yairi and Yoshikiyo Kato and Koichi Hori. 2001. Fault detection by mining association rules

from house-keeping data. Proceedings of the International Symposium on Artificial Intelligence, Robotics
and Automation in Space. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.76.2665

■ Matrix Profile (STOMP)
□ Y. Zhu et al. 2016. Matrix Profile II: Exploiting a Novel Algorithm and GPUs to Break the One

Hundred Million Barrier for Time Series Motifs and Joins. IEEE International Conference on Data Mining 
(ICDM), pp. 739-748, DOI:https://doi.org/10.1109/ICDM.2016.0085

■ Current Benchmarks are flawed
□ Wu, Renjie, and Eamonn Keogh. 2021. Current time series anomaly detection benchmarks are flawed

and are creating the illusion of progress. IEEE Transactions on Knowledge and Data Engineering (TKDE)

Starting Literature
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