
XStruct: Efficient Schema Extraction
from Multiple and Large XML Documents

Jan Hegewald, Felix Naumann, Melanie Weis
Humboldt-Universität zu Berlin

Unter den Linden 6, 10099 Berlin
{hegewald,naumann,mweis}@informatik.hu-berlin.de

Abstract

XML is the de facto standard format for data ex-
change on the Web. While it is fairly simple to gener-
ate XML data, it is a complex task to design a schema
and then guarantee that the generated data is valid ac-
cording to that schema. As a consequence much XML
data does not have a schema or is not accompanied
by its schema. In order to gain the benefits of hav-
ing a schema—efficient querying and storage of XML
data, semantic verification, data integration, etc.—this
schema must be extracted.

In this paper we present an automatic technique,
XStruct, for XML Schema extraction. Based on ideas
of [5], XStruct extracts a schema for XML data by ap-
plying several heuristics to deduce regular expressions
that are 1-unambiguous and describe each element’s
contents correctly but generalized to a reasonable de-
gree. Our approach features several advantages over
known techniques: XStruct scales to very large docu-
ments (beyond 1GB) both in time and memory con-
sumption; it is able to extract a general, complete, cor-
rect, minimal, and understandable schema for multiple
documents; it detects datatypes and attributes. Exper-
iments confirm these features and properties.

1 Schema Extraction from XML Docu-
ments

XML is a standard for storing information in a self-
structured way, i.e., documents contain the data as well
as its structure. However, the structure is included
only implicitly and furthermore only the specific part
of the structure that is relevant for that special XML
document.

To make the general structure explicit, the W3C
introduced DTD and XML Schema as possibilities to

define a schema independently of a concrete XML doc-
ument. XML Schema should be preferred over DTD,
because it supports datatypes, more flexible keys, for-
eign keys, and namespaces, to name just a few advan-
tages. Moreover XML Schema itself is written in XML
syntax and therefore can be processed using standard
XML processors. The existence of a schema to an XML
document offers several advantages:

• Today, in many companies XML serves as a for-
mat for data exchange. Especially in the field of
data exchange between companies, the recipient
has normally little influence on the quality of the
data. In the case of an automated processing of
the XML data this can lead to problems. In this
case a schema enables companies to define the for-
mat precisely and, maybe even more importantly,
to validate data against that specification, allow-
ing the detection of invalid formats and therefore
raising the quality of operational data.

• A second key point is the ability of query pro-
cessors and XML storage systems to answer
queries against XML data more efficiently when
its schema is known. By employing optimiza-
tion techniques, such as query pruning and query
rewriting, the algorithms may avoid exploring a
large part of the search space unnecessarily by ex-
ploiting the knowledge about the data’s structure.

To make use of these advantages for documents
whose schema is not known, it should be extracted
from the raw XML data. A schema for XML data
is particularly interesting when dealing with multiple
XML documents representing similar data. XStruct
addresses these two key tasks and is able to construct
a schema in a form of an XML Schema file for a collec-
tion of XML documents.

When extracting a schema for a document there
are some criteria defining the quality of the generated

schema [1]. These are:

• Correctness The produced schema must be of a
kind, that the input XML document conforms to
that schema. Schemata are especially important
for a collection of documents, since in that case
all of the processed documents must be valid with
respect to the extracted schema.

• Conciseness The generated schema should be
generalized in a way that the schema may cover
the entire structure of all documents with a short
definition.

• Precision On the other hand, we wish to have a
schema that is not too general, which means that
the schema should not be valid for too many other
documents whose structure is quite different from
the input ones.

• Readability Moreover, the schema should be eas-
ily human-readable and optimally close to schemas
that humans would have designed.

As one can see there is a trade-off between the second
and third criterion, which are both determinant factors
for the fulfillment of the fourth requirement. XStruct
produces schemas that are of good quality regarding
these criteria.

2 Related Work

The algorithms used in XStruct for inferring regular
expressions for an XML element’s children are based
on ideas of Min et al. [5]. XStruct extends their algo-
rithm to process multiple XML documents instead of
only one, therefore being able to produce one schema
that is valid for many XML documents. Further en-
hancements are described later.

The factoring algorithm of Garofalakis et al. [4] for
their XTRACT schema extraction application is used
to merge the inferred regular expressions for all ele-
ments of one type into a single regular expression. In
contrast to the work presented in [5], XTRACT is able
to process a collection of XML documents as its in-
put and to create a schema that is valid for all of the
documents. However, this schema may be incorrect
since the 1-unambiguity constraint, which is manda-
tory for DTDs and XML Schema according to their
definition by the W3C, is not guaranteed in the gen-
eralization algorithm of XTRACT, as Romberg shows
in [7]. Therefore the generated schemas are possibly
not correct ones. XStruct extends the ideas of both al-
gorithms and enriches the generated output with type
and attribute information of the input XML data.

Other work on extracting schemas from semistruc-
tured data includes [6], [3], and [8]. In [6], the schema
for semi-structured data is in the form of a monadic
Datalog program with each intensional predicate defin-
ing a separate type. The authors show that a schema
has to allow a certain degree of freedom, because a per-
fect schema’s size (which easily gets as big as the data
itself) is of no practical use in databases (e.g., for query
optimization). Further, the authors present heuristics
to efficiently treat the problem of reducing the num-
ber of types, which in general is NP-hard. However,
their main focus is the quality of the result, and not—
as ours—time and memory performance. In [3], the
author proposes a schema extraction method based
on the powerful model of extended context-free gram-
mars that supports “new XML schema languages” pro-
posed to replace DTD. This approach is the first step
towards extracting schemas conforming to the XML
Schema standard. But again, efficiency is not an is-
sue. The authors of [8] propose extracting an approx-
imate graph schema based on an incremental cluster-
ing method that clusters vertices with similar incoming
and outgoing edge patterns. All these approaches have
in common that they consider schema extraction for
semi-structured data before XML (in the case of [6])
or XML Schema became standards. Hence, they do
not consider XML Schema specific issues, such as ex-
tracting datatypes and attributes.

3 The XStruct Algorithm

Within the following sections we distinguish two dif-
ferent views of an XML element. On the one hand we
speak of elements, which normally denote a tag in an
XML file with a special name, e.g., “book”. Thereby
we refer to the abstract element with its type. On
the other hand we speak of occurrences of an element.
That is a concrete instance of the element in the XML
data. Specifically, one element may have many occur-
rences in XML data.

XStruct consists of five modules that each fulfill a
special task. A high-level overview of the architecture
of XStruct is shown in Figure 1.

A collection of XML documents serves as the input
for a SAX parser, which processes them consecutively.
The decision to use a SAX parser is a key point for
XStruct’s ability to scale to large and multiple docu-
ments with respect to time and memory consumption.
In order to apply the algorithms presented in [5], it
was necessary to find a possibility to store the data re-
trieved during parsing, as the authors of [5] use a DOM
parser in the sample implementation of their ideas,
which makes access to the data much easier. More-

2

Figure 1. Architecture overview of XStruct

over the format in which the data is stored is another
key point regarding XStruct’s scalability and therefore
we describe our data structures separately in Section 4.

While reading the XML documents the SAX parser
passes the data to three modules of XStruct: the model
extraction module, the attribute extraction module
and the datatype recognition module. The model ex-
traction module afterwards passes its output to the fac-
toring module. We describe each of these modules in
the following subsections. Finally the schema printer
module takes the output of the factoring, the datatype
recognition, and the attribute extraction module and
constructs the final XML Schema file.

One advantage of this technique is the ability to ex-
tend XStruct to extract a schema iteratively, i.e., it
would be possible to parse a number of XML docu-
ments, determining their schema and later on pars-
ing some further XML documents, adapting the pre-
extracted schema to also suite the newly parsed docu-
ments. This feature is not implemented yet, but to add
it, it solely would be necessary to store the generated
element content models generated in the first session
and add the new ones parsed in the second. After each
parsing the compliant schema could be output.

3.1 Finding Element Content Models

XML schema specification languages, such as DTD
and XML Schema, use an approach for describing the

structure of documents by describing the possible child
elements of one element. DTDs use a form of regular
expressions to do this, XML Schema offers a differ-
ent syntax, that not only allows to use Kleene-Stars
and the “?” for the repetition of elements, but also
to specify how often exactly one element may appear
with min and max values. So in order to describe an
XML document’s structure, we need to describe each
element’s possible children. Since their children are
also described in that way, one is able to specify the
entire document structure.

The algorithm of [5] calls the information about one
element’s children the element content model. The au-
thors formally define an element content model in the
following way:

E := (T1 . . . Tk)<min,max>

where each Tn is a term. A term is defined as a set of
symbols, either as a sequence or as a choice:

Tn := (sopt
n1 . . . sopt

nj)<min,max> sequence term
or

Tn := (sopt
n1 | . . . |sopt

nj)<min,max> choice term

where min ∈ {0, 1} , max ≥ 1, and opt ∈ {true, false}.
A symbol slm is an identifier for an XML element,

e.g., the element’s name. Thus, a term describes a list
of XML elements, that may appear consecutively or al-
ternatively between min and max times. Each symbol
is denoted by opt, specifying whether it must appear
in the term (opt = false), or not (opt = true). An ele-
ment content model as a list of such terms on the other
hand specifies in which order those terms must appear
and how often the list may be repeated. Thus, an el-
ement content model is the representation of a regular
expression extended by min and max values and de-
scribes the pattern of possible children of an element.
This clearly is a limitation of regular expressions as
already Min et al. stated, since for example the regu-
lar expression (ab(c|d∗)) cannot be represented in an
element content model: The choice (c|d) is only ex-
pressible by a term, which in turn does not support
the specification of the number of repetitions for single
symbols, as would be necessary for (c|d∗). To express
such patterns, an element content model can be con-
structed that is slightly generalized: E = (T1T2) with
T1 = (ab) and T2 = (c|d)<1,∞>.

Min et al. proposed an algorithm that constructs
an element content model for every appearance of an
XML element. A special constraint of DTD and XML

3

Schema that has to be taken care of when doing this, is
the 1-unambiguity constraint. In general, every regular
expression defines a regular language. Simply speak-
ing, the 1-unambiguity constraint requires that for a
given word of a given language there may exist only
one possible derivation by which the word could have
been constructed from the regular grammar. For exam-
ple, for the grammar defined by the regular expression
a ∗ b?a∗ it is not clear whether the word a, which is a
word of the grammar, was derived by the first or the
second a∗ of the regular expression. Therefore, a∗b?a∗
is not an 1-unambiguous grammar. The ISO standard
for the Standard Generalized Markup Language SGML
enforces that every SGML language description must
be 1-unambiguous. Since XML is a subset of SGML
it is indispensable that every schema for XML data is
also 1-unambiguous. In general, whether a regular ex-
pression is 1-unambiguous or not can be determined
by creating a Glushkov automaton for that regular ex-
pression. If and only if that automaton is determinis-
tic, the regular expression is 1-unambiguous as proven
in [2]. Instead, the authors of [5] chose a different ap-
proach, which makes use of the fact, that a regular ex-
pression that contains every symbol only once, is obvi-
ously always 1-unambiguous. Their algorithm consists
of nine heuristics plus an additional rule that create
an element content model for the children of an XML
element. This element content model contains every
symbol only once and therefore is 1-unambiguous.

XStruct extends the ideas of [5] in a quite natural
way. While [5] originally extracts a schema for only one
XML document, the method can be modified to sup-
port multiple XML documents as follows: Since the al-
gorithm collects the child elements of every occurrence
of an element and creates an element content model for
each, which are later factored to one common element
content model for that element, one can let the parser
scan another XML document as well before the fac-
torization step, so that the number of element content
models for each element is increased by the number of
occurrences of that element in the second document
when ignoring XStruct’s ability to omit already found
element content models for an element. After parsing
the second document, all those element content mod-
els for all elements found during parsing can still be
factored to one common element content model.

If the second document does not contain some of
the first document’s elements, this is no problem, since
then the resulting element content model is identical
to that which would have been constructed when pars-
ing only the first document. It seems intuitive not to
change an element content model if the specific XML
element does not occur again afterwards. If, on the

other hand, the second XML document contains ele-
ments that were not present in the first one, then they
are added to the list of elements and the element con-
tent models is constructed as usual. This decision is
also appropriate, because the new element undoubtedly
has to be represented in a schema for both documents.

A key point is the handling of each document’s root
element. Generally, one could treat it like an ordinary
element as it is done in the case of a single document.
Furthermore, XML Schema also offers the possibility
to have different root elements in different documents
that comply with the same schema. The reason for
this counterintuitive ability is that XML Schema does
not specify a root element at all. Every datatype in an
XML Schema that is defined on top-level in the schema
file can be the root element of an XML document of
this schema. This means, that if a schema contains de-
scriptions of several user defined complex types on the
top-level each one can serve as a root element and it is
impossible to single out one of them as a root. Since
we consider it poor modeling practice to use ambiguous
root elements, XStruct extracts schemas for only such
collections of documents where each document contains
the same root element. As a side note, this flexibility
of XML Schema is unnecessary, because in the unlikely
case that there is good reason to use different root ele-
ments, this case could easily be accomplished by intro-
ducing an artificial root element that may contain the
others. However, because the root element is treated
similar to other elements, the only speciality XStruct
has to take care of when analyzing multiple documents
is to check whether they contain the same root element.
From there on, the root of each document is treated like
all the other elements. Therefore XStruct infers an ele-
ment content model that is appropriate for each single
XML document as well as the entire collection of them.

The algorithm of [5] and ours cannot detect the
ability of XML Schema to have two elements of the
same name that have different types, i.e., different reg-
ular expressions for their children, when their type can
be determined by where the element is located in the
document. This is quite complex though, since one
needs much information about the document’s struc-
ture - more than what is stored in XStruct’s structure
model as described in Section 4. Again, we believe that
it is not good modeling style to have elements of dif-
ferent types with the same name. Note anyhow that
if documents that contain elements of the same name
but with different types are used as input for XStruct,
it treats them as of one type and therefore probably
over-generalize the element content model.

4

3.2 Factoring

After the parsing of XML documents, XStruct has
created a list of element content models for each el-
ement. So after constructing the model the task of
integrating all the models of one element into one re-
mains. Formally, all those models could be connected
by logical ORs, because every given occurrence of this
element conforms to at least one of the models. Unfor-
tunately, we may expect to have many element content
models that are similar but not identical. In order to
avoid creating long lists of alternatives, which would
harm a schemas conciseness and readability, we inte-
grate these models by factoring common prefixes and
suffixes.

The algorithm we employ is based on ideas of
XTRACT [4], but is adapted to our needs, because
XStruct uses different models as input to the factoring
module. The theoretical background is from the field of
factoring Boolean expressions. As one can treat choices
similar to logical ORs and sequences similar to logical
ANDs, the element content models are quite similar to
Boolean expressions. However, there are some impor-
tant differences regarding commutativity and min and
max numbers that had to be considered when adapting
the algorithm.

Intuitively common prefixes and suffixes get fac-
tored, while the remaining parts of a model are ex-
pressed as alternatives. Thereby the min and max
values have to be considered. To create valid factoring
results, the new min and max numbers have to be the
minimum of all factored min numbers and the maxi-
mum of all factored max numbers, respectively. For ex-
ample, the models (1, 2, 3, 4)<2,4> and (1, 2, 5, 4)<1,3>

when factored result in the following expression in reg-
ular expression-like notation: (1, 2)(3|5)(4)<1,4>.

3.3 Extracting datatypes

Extraction of primitive datatypes can be a tedious
task when considering all 44 built-in primitive and de-
rived datatypes from the XML Schema specification1.
Therefore, we restrict ourselves to the most commonly
used primitive datatypes, that is String, Boolean, Dec-
imal, Integer, Double, Date, and Time. We consider
String as the most general type. A definition of the
lexical space defining each type can be found in the
XML Schema specification. We believe that our choice
of datatypes recognized by XStruct covers most real life
requirements and note that it can be extended easily.

XStruct’s datatype recognition module gleans some
extra information for learning datatypes from the con-

1http://www.w3.org/TR/xmlschema-2/

tent of objects, i.e., of XML elements as well as of at-
tributes. For every object there is a list of user defin-
able capacity that saves all previously saved different
contents for that object. At every parsed content of
an object, the datatype recognition module is given
the information of the previously determined datatype
of that object, the list with former contents, and the
newly read content. The datatype recognition module
returns a new datatype for the object by evaluating this
data as follows: Firstly, XStruct determines whether
the new content is of the same datatype as the object’s
previously determined one.

• If the new content is of the type that was deter-
mined before, the datatype reported for this object
remains the same as before.

• If this is not the case, XStruct tries to find the
next suitable type according to the graph shown
in Figure 2. This figure is different from the one
presented in the XML Schema definition for two
reasons: Firstly, XStruct extracts only a subset of
the possible datatypes. Secondly, this figure shows
the hierarchy of the datatypes’ lexical space. Fi-
nally, the dotted line in the figure stands for a re-
lation between datatypes, that is not strictly hier-
archical, but loose. XStruct considers an object’s
datatype always as strict as possible, i.e., if one
object always seems to be a Decimal, XStruct will
treat it as such. If then the object appears with
a content that is of type Double, it will be treated
as Double, since every Decimal is lexically also a
legal Double without exponent. The dotted line
shows a relation that is based mainly on lexical
familiarity. Every Boolean value may be encoded
as one of {true, false, 1, 0}. Therefore it is pos-
sible to have an object always having 1 or 0 as
content, making it appear as Boolean for XStruct.
When afterwards, a content of 10 is read, accord-
ing to hierarchy the type had to be considered as
String, but XStruct uses the list of formerly read
contents to detect that the Boolean value always
was encoded as 1 or 0 and not as true or false,
effectively enabling XStruct to discard Boolean as
the datatype and decide to choose Integer as the
new datatype when reading the content of 10.

Furthermore, XStruct uses the list of formerly read
different contents of an object in the schema printer
that may, according to a user defined threshold, decide
to treat an object with only few different values as an
enumeration instead of a primitive type. The list of
different contents is moreover used to determine fixed
value objects.

5

Figure 2. Overview of XStruct’s recognized
datatypes. Solid lines describe strictly hier-
archical relations, the dotted line a loose re-
lation.

Since that list may consume much memory during
scanning time, the user is allowed to control the max-
imal capacity by an option of XStruct. If XStruct
scanned more different contents than the maximal ca-
pacity of the list, all data in the list is discarded and
the object is marked as no longer having a list of former
contents in order to prevent erroneous datatype recog-
nition: If, for instance, those values are discarded that
prevent a Boolean from being turned into an Integer,
an incorrect datatype might be chosen.

We believe that our choice of datatypes recognized
by XStruct covers most real life requirements but can
be extended easily.

3.4 Extracting Attributes

Extracting an element’s set of attributes is a
rather straightforward task. According to XML well-
formedness requirements, an element may contain an
attribute only once, and attributes can be optional or
mandatory. The latter can be determined by checking
whether this attribute is present in every element of
the specific type. During parsing XStruct creates a list
of attributes that occurred for every element. If one
attribute occurred in all former occurrences of this ele-
ment, it is considered mandatory. If it is missing in one
occurrence, it is regarded as optional. XML Schema’s
attribute groups are not detected, but this extension
is trivial. What XStruct does perform is the detection
of fixed value attributes. These are attributes that, if
they are present, have to have a predefined value. De-
tection of default values is not yet implemented and
may be part of future work.

To determine the datatype of the recognized at-
tributes, the attribute extraction module uses methods

offered by the datatype recognition module. To be able
to detect enumeration types, the data structure used
to store the attribute information also allows to store a
list of values so that the datatype recognition module
can be provided with this information as well, which is
also necessary to determine fixed values.

4 Data Structures

As mentioned earlier, the employment of a SAX
parser makes it necessary to have an efficient data
structure that stores data retrieved during scanning.
Although it is possible to do the step of creating the
element content model of one occurrence of one XML
element “on the fly” while parsing, it is impossible to
do the factoring immediately, since all occurrences of
one element must have been seen before being able to
factor one common regular expression for that element.
Furthermore it is necessary to store information about
the attributes and about the datatypes of both ele-
ments and attributes.

To not reinvent a DOM tree, which stores the entire
tree representation of XML documents (and effectively
destroy XStruct’s scalability advantages), XStruct uses
a data structure called structure model, which contains
only the information necessary for the factorization, at-
tribute extraction, and datatype recognition modules.
The structure model contains a hash table that stores
one entry for every abstract XML element, i.e., not
for every occurrence of one element. This entry maps
the element’s name to an index that gives the posi-
tion of this element in the second part of the structure
model—a list of XMLElements, a further data struc-
ture.

An XMLElement stores for every type of element in
the documents its name, its attributes, its datatype
and—most importantly—a list of element content
models for that element. An element content model
by itself consists of a list of terms and meta data as
mentioned earlier.

The structure model is populated as follows: When-
ever the parser encounters the opening tag of an el-
ement, it adds the element to the element’s parent’s
queue of children, which can be determined since
XStruct maintains a stack of currently open parent el-
ements. Additionally the attributes and the datatype
are processed and the result is stored in the structure
model. When an element’s occurrence is closed, the
parser activates the model extraction module to trans-
form the queue of child elements into an element con-
tent model for that occurrence.

So after the parsing run, the structure model con-
sists of a list of all XML element types that were found

6

in the documents, each of them containing a list of
element content models. XStruct creates the element
content model for every occurrence of an element, but
it stores only those, that have not already been saved
for that element. As one can imagine, if documents are
regular, many occurrences of an element are evaluated
to the same element content model and therefore this
ability of XStruct reduces memory consumption. For
an illustrative figure that exemplifies XStruct storing
an XML documents structure in its data structure, see
Figure 3. All in all, the advantages a structure model

Figure 3. Example of XStruct storing an XML
document’s structure in its data structures

offers compared to a DOM tree are that it is much
more compact in its size: On the one hand information
about the exact order and parent-child relationship of
elements can be and is indeed ignored, because it is
not needed by the factoring module that processes this

data. On the other hand only the already compacted
element content models are stored (the generalized reg-
ular expressions) and furthermore a concrete element
content model is stored only once for an element. When
scanning large documents with repeating, but struc-
tural identical elements, such as thousands of book el-
ements, each of them containing exactly one title and
one author, this element content model is represented
only once and not a thousand times. For typical ap-
plications of XStruct this property is indeed the case
and then memory consumption of the algorithm is truly
small.

Note that it depends on the structure of the XML
file how much memory is needed. If there are many el-
ements whose element content model is equal, XStruct
could require only a very small fraction of the mem-
ory a DOM would need. If the data is highly irregular
and contains very few elements with the same element
content model the memory consumption could grow to
around the size of the XML data itself (which still is
much less than the DOM tree of common DOM im-
plementations requires). Further note that to have the
same element content model, two occurrences of one
element need not to have exactly the same child ele-
ments since the element content model is already a gen-
eralized regular expression and slightly different child
elements could potentially lead to the same element
content model.

5 Experiments

In this section we present results of testing XStruct,
evaluating three main aspects: (i) time-scalability with
respect to the input document’s size (ii) memory con-
sumption with respect to the input document’s size,
and (iii) differences when parsing many documents ver-
sus scanning one document. We do not study the
quality of the generated schemas since the utilized al-
gorithms from [5] and [4] were not significantly mod-
ified with respect to the output generated by them.
As shown in [5] the generated schemata are concise,
correct, and complete. We successfully verified that
the datatypes and attributes extracted by XStruct are
correct, but do not present results here. The XStruct
tool and the experimental data are available at http:
//www.informatik.hu-berlin.de/mac/xstruct/.

5.1 Data sets

For stress-testing XStruct’s scalability we used XML
data from the data generator xmlgen of the XMark2

2http://monetdb.cwi.nl/xml/

7

project—a benchmark for XML database systems and
query processors. The data generator produces data
similar to real-life e-commerce data. It models the
business data of an online auction platform with an
XML document of diverse structure. The generated
data also includes text content for the elements taken
from Shakespeare’s plays. xmlgen permits the creation
of XML documents of user-defined size while preserv-
ing the documents inherent structural complexity.

5.2 Scalability

To verify XStruct’s scalability we performed tests
with documents of the following sizes: 10 MB, 20 MB,
50 MB, 100 MB, 200 MB, 500 MB, 1 GB (the xmlgen
size parameters were approx. set to 0.1, 0.2, 0.5, 1, 2,
5, and 10, respectively). Note that for this series of
tests we only used a single XML document as input to
XStruct. For results regarding the schema extraction
of multiple documents, see Section 5.3.

To measure the amount of memory occupied by
XStruct, we used the tool Process Explorer from Sys-
internals3. Note that the measured values comprise all
memory allocated by the process, and therefore also
contain memory overhead by the Java virtual machine
itself and general program overhead. The time required
for extracting the schema is measured by XStruct it-
self. All experiments were performed on a Pentium 4 M
processor at 1.9 GHz with 768 MB main memory on
Windows XP and JDK 1.5.

The results confirm that XStruct’s data structures
impressively minimizes the amount of necessary main
memory to extract the schema. See Table 1 and Fig-
ure 4 for the detailed results.

Input size Time required Memory allocated
11 MB 15 s 24 MB
23 MB 43 s 32 MB
56 MB 109 s 41 MB

113 MB 199 s 51 MB
227 MB 328 s 60 MB
568 MB 559 s 74 MB

1,137 MB 861 s 103 MB

Table 1. Results of the scalability experi-
ments.

Even without loading data, XStruct’s memory con-
sumption starts at around 20 MB. This overhead is a
result of our measurement: Process Explorer reports

3www.sysinternals.com

Figure 4. Graph of XStruct scaling to docu-
ment size regarding time and memory con-
sumption.

all memory occupied by one process and therefore the
memory of the virtual machine, too.

However, the key point of the results presented here
is the slope of the graph falling with increasing input
size for both memory consumption and time require-
ment. This is clearly an effect of XStruct’s behavior
to store already generalized element content models
efficiently and not to store duplicate element content
models. More impressively, we observed that the pro-
cess of finding and saving the element content models
requires even less memory than the factoring algorithm
executed afterwards. This is the case due to many re-
cursive calls and additional data structures used during
factoring.

5.3 Handling many XML documents as
input

We further compared XStruct’s behavior when pro-
cessing many small XML documents vs. processing a
single large document. We compare input to XStruct
of same size, but different structure. In one case we ran
XStruct with a single document of the specified size as
input, in the other with 10 documents each one-tenth
the size of the single document. In general we expected
to see few differences in XStruct’s runtime behavior in
these two scenarios. However, the results are somewhat
surprising, as can be found in Table 2 and Figure 5.

Note that figure 2 compares input to XStruct of
same size, but different structure. In the one docu-
ment case, we ran XStruct with one document of the
specified size as input, in the other with 10 documents

8

Input size Time required Memory allocated
10 x 1 MB 3 s 20 MB
1 x 10 MB 16 s 24 MB
10 x 5 MB 19 s 22 MB
1 x 50 MB 110 s 40 MB

10 x 10 MB 37 s 24 MB
1 x 100 MB 197 s 50 MB
10 x 50 MB 227 s 40 MB
1 x 500 MB 578 s 74 MB

Table 2. Results of the experiments compar-
ing XStruct’s runtime behavior with input of a
single document and many small documents.

Figure 5. Graph of XStruct scaling to input
size of one or many files.

each of one tenth the size of the single one.
For schemata extracted by XStruct it makes no

practical difference whether many XML documents are
used as input or whether they are all put together into
one single document. The different results for different
inputs of same size seem surprising at first, but can
be explained, when taking into account xmlgen’s data
generation method. Effectively, the generated ten doc-
uments with a small size are identical. XStruct handles
this situation as follows: when the first document was
scanned, all element content models have been created.
When scanning the following files, XStruct firstly con-
structs the element content models for each element’s
occurrence, but does not store them afterwards since
they have already been stored when scanning the first
document. As a result, there are also less element con-
tent models to factor for each element than when scan-

ning the single large file, since here we have more ele-
ment content models for one element, as xmlgen varies
the generated data according to a probability distri-
bution. This explains the even better runtime char-
acteristics of XStruct when parsing many small doc-
uments compared to parsing one large. This is due
to the structure of the generated data and in general
XStruct performs quite similarly for input of similar
sizes, regardless of whether it is distributed over many
documents or condensed in one.

All in all, XStruct is shown to also be able to extract
the schema of many XML documents efficiently.

6 Conclusions and Outlook

In this paper we introduced XStruct, an automatic
technique for learning the structure of a collection
of XML documents by using known algorithms and
adapting them to this special problem.

We described what is necessary to extend the ideas
of [5] to handle not only single XML documents, but
also a collection of XML documents. We furthermore
introduced ideas for implementing the algorithms effi-
ciently with respect to time and memory constraints.
This comprises data structures that are especially im-
portant for ensuring XStruct’s scalability, as well as of
algorithmic modifications. We further modified the al-
gorithm shown in [4] and so were able to adapt it to suit
our needs. Finally, we introduced techniques for deter-
mining datatypes of XML elements and attributes and
for recognizing attributes. We experimentally showed
our ideas to be practical and fulfilling the requirements
of scalability in time and memory consumption.

There are several possibilities that could bear poten-
tial to improving the algorithms output and are subject
to future work:

• Regarding the detection of datatypes, there is
much potential for advancing the proposed sim-
ple algorithm in many directions. For example
one could try to recognize patterns in the data to
extract them, too. Or a more advanced version
of the method to determine datatypes could be
used, that uses sets of possible datatypes for data
instead of only giving one type.

• One thing that appears not to be overly convinc-
ing is the complexity inherent to the factoring al-
gorithm. Although it is shown in [4] that even this
general approach is much faster and simpler than
other known algorithms that not only approximate
but find the optimal solution for boolean expres-
sions, it remains a complex part of XStruct. We
plan to align the yet different data structures of

9

model extraction module and the factoring to fur-
ther improve memory consumption.

• If a factoring algorithm would be employed that
offers the ability to factor each new model when
read during parsing of one occurrence of an ele-
ment (“on the fly factoring”) this could reduce the
memory consumption even further since the ele-
ment content models would not have to be stored
any longer than until factoring is finished.

• As mentioned in this paper, an extension of
XStruct to fulfill iterative schema extraction re-
quirements could be readily implemented, in con-
junction with the preceding issue even more easily
and elegantly.

References

[1] C. Batini, M. Lenzerini, and S. B. Navathe. A com-
parative analysis of methodologies for database schema
integration. ACM Computing Surveys, 18(4):323–364,
1986.

[2] A. Brüggemann-Klein and D. Wood. One-unambiguous
regular languages. Inf. Comput., 142(2):182–206, 1998.

[3] B. Chidlovskii. Schema extraction from xml: A gram-
matical inference approach. In Proceedings of the Inter-
national Workshop on Knowledge Represenation Meets
Databases (KRDB), 2001.

[4] M. N. Garofalakis, A. Gionis, R. Rastogi, S. Seshadri,
and K. Shim. XTRACT: Learning document type de-
scriptors from xml document collections. Data Mining
and Knowledge Discovery, 7(1):23–56, 2003.

[5] J.-K. Min, J.-Y. Ahn, and C.-W. Chung. Efficient ex-
traction of schemas for XML documents. Information
Processing Letters, 85:7–12, 2003.

[6] S. Nestorov, S. Abiteboul, and R. Motwani. Extracting
schema from semistructured data. In Proceedings of
the ACM International Conference on Management of
Data (SIGMOD), pages 295–306, Seattle, WA, 1998.

[7] C. Romberg. Untersuchungen zur automatischen XML-
Schema-Ableitung. Master’s thesis, Universität Ros-
tock, 2001.

[8] Q. Y. Wang, J. X. Yu, and K.-F. Wong. Approximate
graph schema extraction for semi-structured data. In
Proceedings of the International Conference on Extend-
ing Database Technology (EDBT), pages 302–316, 2000.

10

