
Towards a Diamond SOA Operational Model

Mohammed AbuJarour, Felix Naumann
Hasso-Plattner-Institut

University of Potsdam, Germany
{firstname.lastname}@hpi.uni-potsdam.de

Abstract—The triangular operational model with the three
roles of service-registry, -provider, and -consumer has been
the traditional operational model in Service-oriented Architec-
tures (SOA). The central component in this model, the service
registry, plays a passive role. This passive role is due to the
lack of adequate information resources. For example, service
descriptions provided by service providers are in general
not rich enough for service selection. More elaborate service
descriptions are vital in several aspects in Service-oriented
Computing (SOC), such as service quality assessment, service
discovery and selection, etc.

To increase the usability of Web Services with poor descrip-
tions, we propose a novel approach to extend the traditional
SOA operational model by introducing a new role: the Service
Invocation Proxy (SIP). The main goal of this role is to enable
service brokers (registries) to play an active role, e.g., to enrich
service descriptions with metadata about invocation statistics,
service quality measures, and service usage contexts. A SIP
plays its role during service invocation where it mediates
between consumers and providers at runtime. We have im-
plemented a proof-of-concept of this approach and show the
details in the paper.

Keywords-Service Description, Web Service, Operational
Model, Proxy

I. THE TRIANGULAR SOA OPERATIONAL MODEL

The triangular SOA operational model, depicted in Fig. 1,
has been the traditional operational model in Service-
oriented Computing (SOC) [1]. Service providers publish
their services to one or more service registries. Service
consumers discover the required services that meet their
(business) requirements among the already published ser-
vices in the registry. A service consumer can invoke a
particular service by issuing a request to the corresponding
endpoint’s URI.

In this traditional model, the service registry acts as a
passive participant; it only reacts to requests, but does not
behave actively. It reacts to publish requests from service
providers by adding the intended service to its service collec-
tion. It reacts to discovery requests from service consumers
by finding the best matching services among its service
collection, with respect to the submitted query. Although
its role is vital, we believe that a service registry can do
more, especially in enterprise applications .

The limited role of service brokers (registries) is due to the
limited information resources that service providers release
about their services. Such service descriptions are not rich

Service
Registry

Service
Consumer

Service
Provider

➋
 Di
sco
ve
r ➊

 Publish

➌ Bind

Figure 1: Traditional, triangular SOA operational model

enough, because they are usually created by programmers
who tend to focus on the functional (implementation) as-
pects. Moreover, several tools and frameworks that automate
the process of generating Web Services from existing appli-
cations, e.g., the Web Tools Platform (WTP)1, exacerbate
the problem due to the limited descriptions they generate.

Because of the increasing complexity of Web Services [2]
and their driving business needs, we believe that the tradi-
tional SOA operational model is not sufficient for enterprise
needs. We propose an extended SOA operational model,
where a service broker can play an active role and help meet
the increasing complexity of business needs in enterprise
applications. The main challenges involved in this work
include:

• Dynamic SOA and business environments: In today’s
market places, change has been the rule rather than
the exception. IT systems should adapt to changes
quickly. Nevertheless, such rapid IT responses require
Business-IT alignment, which is difficult to achieve [3].
On the other hand, organizations would like to utilize
each available IT technique to perform their business
efficiently: Available IT solutions should be described
in an understandable way for non-technical persons.

• Increasing complexity: Business needs are becoming
more and more complex. This increasing complexity in
business needs is reflected in increasing complexity in
serving IT systems, as well as tools and frameworks
used to implement such complex systems. Most of
such tools focus on the functional aspects of the im-
plemented systems and ignore service descriptions that
can be used by service consumers to decide whether

1http://www.eclipse.org/webtools



and when to use a specific service.
• Heterogeneity: Different techniques and formats are

used to describe and provide services. Different parties
in SOA environments may have different notions of the
same concept, e.g., reputation, document, message, etc.
Furthermore, different scales could be used to describe
the same notion, e.g., trust level.

• Inadequate descriptions for service discovery and
selection: Full-text search is usually used by service
registries as a means of service lookup, but the quality
of the result list depends on the information used
to lookup a service. Richer service descriptions lead
to greater system automation and thus more business
agility [4].

• Obtaining values for non-functional properties: In
Service-oriented Computing, non-functional properties
(NFP) of Web Services are the key to differentiate
between Web Services with the same functionality, e.g.,
weather forecasting. NFP’s are usually referred to as the
Quality of Web Services, which represents an essential
measure in SOC, but, obtaining values for these non-
functional properties is not trivial.

The main contribution of this work is an extended SOA
operational model, which adds a fourth role (Service Invoca-
tion Proxy) to the triangular operational model, i.e., service
provider, registry, and consumer. A Service Invocation Proxy
has the role of mediating service calls between service
consumers and service providers. The main benefit of this
added role is invocation analysis, which can be used to
enrich service descriptions to enhance service discovery and
selection, evaluating non-functional properties, etc.

The remainder of this paper is structured as follows. In
Section II, we explore the related literature. In Section III,
we introduce our proposed approach and a use-case. Fur-
ther implementation details are introduced in Section IV.
Alternative settings are introduced in Section V. Section VI
concludes this paper and draws our future roadmap.

II. RELATED WORK

The limitations of the current, traditional SOA operational
model have been highlighted by several researchers in the
community. In [5] the authors show that the triangular model
is not used widely in practice because of the limited role of
service registries. Removing the role of the service registry
(breaking the triangle) violates the basic principles of SOC,
namely loose coupling and dynamic binding. To restore this
broken triangle, the authors proposed a software engineering
approach that enables dynamic binding and invocations of
Web Services. Our approach emphasizes the limitations
in the triangular model and extends it to enable service
registries to behave actively.

Another approach to achieve active Web Service registries
was introduced in [6]. The authors use RSS feeds to an-
nounce any changes in the registered services to interested

service consumers. The information provided by such feeds
is generated by service providers, which tend to focus on
the technical part of their services rather than providing
documentation or descriptions.

The main reason behind the highlighted limitations of the
triangular model in the aforementioned work is the lack of
rich service descriptions [7]. Therefore, researchers have
proposed several approaches to gather information about
services to handle the problem of poor service descriptions:

In their early work Singh, and Maximilien proposed to
extend the clients used by service consumers to gather
required information to evaluate reputation in SOC [8].
However, extending running systems is not desirable for
service consumers, because modifying a running system
is expensive and error-prone. Another approach proposed
in [9] is to ask service providers to provide the required or
missing information. Evaluating quality attributes using this
information needs trust; service consumers need to believe
the information provided by service providers. An alternative
option is to obtain this information from the community,
i.e., from other service consumers. This approach is popular
in multi-agent environments [10]. In this recent approach,
trust is also an issue, because the community includes
competitors. New services and services that have not been
used by the community remain unexplored and unrated.

The Adaptive Service Grid project targeted similar prob-
lems in SOC [7]. To tackle the lack of rich service speci-
fications in SOC, this project builds a registry of ontology
descriptions of all Web Services. These ontologies are cre-
ated manually by domain experts, and one cannot always
assume that these ontologies exist in practice. An extension
to UDDI registries was proposed in [11] by introducing
the Web Service QoS Certifier. Its task is to verify that
the claimed QoS values announced by service providers are
correct before registering a service in the UDDI registry.
That work is limited to UDDI registries and its target is
also limited to QoS values.

Producing metadata about Web Services has been a pop-
ular approach especially to assess the quality of a service.
In [9], the authors propose a formal approach to propa-
gate reputation in composite services. They show that their
proposed approach ensures fair distribution of reputation.
However, much information is required to evaluate the
proposed equations. They assume that they have access
to this information, and if it is not available, then, past
consumers or a community can be asked to provide it. But,
again, this assumes a trust among the consumers.

Most existing service registries and repositories are based
on UDDI, ebXML, or a mix of both: Centrasite is a
UDDI service registry that is limited to the Web Services
inside a single organization [12]. FreebXML is an ebXML
service registry [13]. Sun’s service registry is based on
ebXML 3.0 with added support for UDDI 3.0 [14]. IBM’s
WebSphere Registry and repository mainly manages ser-



vices’ metadata that is gathered from all available resources,
such as UDDI registries [15]. Most of these registries have
service providers as a single source of information about the
considered services.

III. A DIAMOND SOA OPERATIONAL MODEL

To expand the traditional, passive role of service brokers
(registries), we extend the traditional SOA operational model
(depicted in Fig. 1) by adding a fourth role: the Service
Invocation Proxy, as shown in Fig. 2. Introducing this
functionality as a separate role has the advantage of low
impact on running systems. It is also appropriate to the
situation where service consumers do not have the authority
to change the registries they use to force them to add this
functionality.

Service
Registry

Service
Consumer

Service
Provider

➋ Disc
over

➊
 Publish

Service
Invocation
Proxy

➌
 Request

➍
 In

vo
ke

Figure 2: Extended Diamond SOA Operational Model

We call the extended operational model the Diamond
SOA Operational Model. The main goal of the Service
Invocation Proxy (SIP) in the diamond model is to enrich
service descriptions, which are essential in several aspects
in SOC, e.g., service discovery and selection, assessing
service quality, etc. The SIP accepts SOAP requests from
service consumers and passes them to the corresponding
service providers. SOAP responses are then returned to the
corresponding service consumers by the SIP. This model
allows the SIP to analyze service invocations. Analyzing
service invocations helps getting further information about
each service, how it is being used, in which context and in
conjunction with which other services it is being invoked.

Rich service descriptions can be used to enhance service
discovery and selection as the involved parties know more
about the considered services. With rich service descriptions,
more non-functional properties (NFP) can be assessed. In
our model, NFP values become more trustworthy, because
they are neither claimed by services providers, nor supplied
by service consumers, but are evaluated on real service
invocations made by multiple service consumers.

We assume for now that the SIP has write-privileges
on the considered service registry. If this not the case, an
alternative architecture is introduced in Section V, where

the generated and gathered metadata is stored in a separate
Invocation Registry. In our approach, SIPs are implemented
as “Universal Web Services” as we show in this section.
Before introducing further details about SIPs, we introduce
first a use-case where using a SIP reduces cost and resource
consumption.

A. Use-case: Health Insurance Company

A health insurance company typically has several branch
offices in different cities. A set of common daily tasks
are identified as services and provided by its IT depart-
ment in the form of Web Services. This set of Web Ser-
vices is managed by a centralized internal service reg-
istry that is used by all branch offices. Furthermore, some
tasks are usually out-sourced to external service providers,
such as address validation and normalization, e.g., the
GlobalAddressVerfication Web Service of Strike-
Iron http://ws.strikeiron.com/GlobalAddressVerification5?WSDL.
An external service registry is used to find those external
Web Services.

This setup is shown in Fig. 3. The left side shows the
internal environment of the company with several branch
offices, e.g., Berlin, Cottbus, etc., and one (or more) internal
service registries SR1. The right side represents the external
environment with several service providers SP1 – SP3 and
one (or more) service registries SR2.

Among the enormous number of daily tasks (business
process instances) conducted in such a company – e.g.,
creating a new health insurance contract for a new customer
– several sub-tasks (typically service calls) are repetitive and
identical. A SIP can identify such repetitive service calls and
return their cached results (from previous similar service
calls) to the corresponding requesters (without invoking the
services). This caching can help reduce internal network
traffic and load on the internal servers and thus reduce
resources consumption and increase response-time.

Out-sourcing some tasks to external service providers is
not cheap. Controlling the number of external service calls
is the key to choose the most suitable price model (payment
strategy) for the company. Choosing subscription, usage-
based, or a mixed payment strategy [16] depends on the total
number of service calls that includes repetitive (identical)
service calls. Identifying those repetitive service calls can
impact the total price and payment strategy as only unique
service calls count. Again, a cache at the SIP can help.

Health insurance companies try to keep their records
up to date, especially, their records of diseases and recent
methodologies to handle them. Such updates can be pro-
vided by several service providers. In the traditional SOA
operational model, each branch office in the company issues
separate requests to the corresponding service providers. In
our example, this would amount to twelve service calls [4
(branch offices) × 3 (service providers)]. Using our diamond
model reduces this number, because analyzing the first few



HIC

SR1

Berlin

SR2

SP1

SP2

SP3

Cottbus

Frankfurt

Potsdam

SR1: Internal Service Registry
SR2: External Service Registry
SP: Service Provider

Internal Services and Registries External Services and Registries

Figure 3: A health insurance company with four branch offices, an internal service registry (SR1), an external service
registry (SR2), and providers (SP1 – SP3)

service calls can enable us to identify similar future requests.
In our example, only three service calls are forwarded
to their corresponding service providers and their cached
results are provided directly to other service consumers for
further similar requests.

In today’s marketplaces, there are several Web Services
provided by different providers to achieve the same func-
tionality. In our example, S1 and S3 provide the same
functionality. S1 can have a higher priority over S3 because
of a business collaboration between S1 and HIC. However,
if S1 takes much time to respond to HIC requests, then, such
requests can be forwarded automatically to S3 that achieves
the same task. Detecting this equivalence or similarity be-
tween the functionalities of these services can be achieved
by SIPs. Moreover, analyzing the responses that a SIP gets
from two Web Services for the same request can help it
measure some non-functional properties of these services,
such as completeness of results.

In this use-case no privacy issues are involved, because all
branch offices belong to the same organization – the health
insurance company.

B. Service Invocation Proxy (SIP)

A Service Invocation Proxy is a role in the extended SOA
operational model and works as a mediator between service
consumers and service providers. It can be implemented in
different ways, e.g., as an agent, as a Web Service, etc.
In this paper, we propose a Universal Web Service (UWS)
to implement SIPs. A Universal Web Service is a Web
Service that accepts any SOAP/HTTP request to invoke a

Web Service, in turn invokes that Web Service, and returns
the output to the original service consumer. A Universal
Web Service acts as a proxy between service consumers and
service providers.

SIPs play their basic role whenever a service consumer
issues a request to invoke a Web Service. Traditionally,
this request is passed directly to the corresponding service
provider and the result is passed directly back to the service
consumer. Using our diamond model, this request is sent to
the SIP, which in turn calls the service and returns the result
to the service consumer. Having both service call requests
and responses, SIPs can analyze them and learn more about
the service, e.g., the semantics of its inputs, the service
provider, e.g., reputation, and the service consumer, e.g.,
peak periods.

This knowledge can be used by SIPs to predict future
behavior of the involved parties. For instance, if a concrete
business pattern has been identified that involves calling
a set of services in a specific order, the SIP can pre-call
some of these services as soon as the pattern is recognized.
This functionality can help meet the increasing complexity
challenge explained in Sec I.

Enrich service descriptions: One of the main challenges
– highlighted in Sec. I – is the lack of adequate descriptions
to enable service discovery and selection. To handle this
obstacle, we propose using SIPs to enrich service descrip-
tions by analyzing service invocations. Several things can
be extracted from such analysis: identifying categories of
service consumers, tagging Web Services, and resolving
ambiguity in terms used to describe services.



Categorize service consumers: Another application is
the classification of service consumers, who use a specific
Web Service. For instance, a car rental Web Service that is
used mainly by business people (quality first) vs. another
one used mainly by families (cost first). Such categorization
can be used to provide personalized ranking of result lists
during service discovery based on the category of the service
consumer. Common terms used during the communication
with a service, e.g., inputs, outputs, etc., can be attached to
that service as tags.

Disambiguate fuzzy terms: Resolving ambiguity in
terms used to describe services requires context knowledge.
However, typically, a brief (or no) description is released
by service provider about each service. This limited context
information cannot help resolve ambiguity in any ambiguous
term used in a service description. For example, a term
bank can refer to the financial institution or to river’s side.
SIPs can help resolve this ambiguity by analyzing service
invocations, e.g., the term bank describing a Web Service
that is used usually with another credit card service refers
most probably to the financial institution not to the side of
a river.

Measure the similarity between service calls: Analyzing
service calls can also help SIPs identify similar service
calls. Identifying similar service calls enables the caching of
results and providing them in future similar cases without
re-invoking the service. Caching reduces response-time and
network traffic. A cached copy of the result is provided
directly by SIPs without making an actual service call.
Reducing the total number of service calls also reduces
resource consumption and the total cost of calling these
services, as shown in Section III-A.

C. SIP: Architectural View

We mentioned earlier that we implement the SIP through
a Universal Web Service (UWS). Figure 4 illustrates the
role of the UWS. A UWS accepts any SOAP request (to
call a Web Service), and applies a set of if-then-else rules to
handle the received request. The set of rules checks whether
the request is new or is similar to a previous known and
valid (according to its timestamp) SOAP request. New SOAP
requests are forwarded quickly to their corresponding service
providers. Otherwise a cached response might be returned
to the service consumer. Figure 4 shows three requests to
invoke Service A, and two requests to call Service B. Only
two A requests were forwarded to the Service A because the
remaining request is similar to a previous one. B requests
are also similar, therefore, only one request is forwarded to
Service B.

Figure 5 shows how SIPs fit into the SOA operational
model. A service consumer issues a SOAP request (Req1)
to call a Web Service provided by a service consumer.
Req1 is passed through the UWS, which sends Req2 to
the intended service provider. Res1 is then provided by

UWSA

B
A
A
B

A

B

A

SOAP Requests Service Calls

Figure 4: A Universal Web Service as a Service Invocation
Proxy

the service provider to the UWS, which sends Res2 to the
service consumer. Alternatively, SOAP responses can be sent
directly to the service consumer. The figure presents several
architectural decisions:

• Should Req1 and Req2 be the same or should Req1 be
a nested version of Req2?

• Should Res always be passed through the UWS or
should this be optional, due to privacy and confiden-
tiality issues, for example?

SOAP Res2

Service
Registry

Service
Consumer

Service
Provider

➋ Dis
cov
er ➊ Publish

UWS
SOAP Req2SOAP Req1

SOAP Res1

SOAP Res

Figure 5: An architectural view of a SIP

In our implementation, we decided to let Req1 and Req2

be the same without nesting SOAP requests. By nesting
SOAP requests, we mean submitting Req2 as a parameter
or an attachment in Req1. Nesting SOAP requests results
in much redundancy and increases network traffic. Passing
SOAP responses through the SIP is optional to give service
consumers more flexibility. That is, the SIP can be avoided if
need be through configuration of the corresponding software
infrastructure.

IV. IMPLEMENTATION ARCHITECTURE

Java has been a popular framework to develop and run
standard and enterprise applications. In this paper we assume
a Java-based architecture. Enterprise applications run inside
an application or web server, such as Apache Tomcat.
Additional libraries or frameworks are required to run Web
Service applications, such as Axis2 [17]. Axis2 has been
a popular SOAP engine and framework for constructing
SOAP processors, such as clients, servers, and gateways, etc.
Furthermore, to smooth the process of creating, deploying,



and consuming Web Services, several tools and libraries
have been developed, such as JAX-WS. JAX-WS 2.0 is a
popular programming model that simplifies the development
of Web Service applications and clients[18]. JAX-WS has
become a core part of J2SE 6.

We have tested this implementation architecture for sev-
eral public Web Services. Thorough evaluation of this ap-
proach are part of our next steps. Our implementation of
a SIP comprises two libraries: JAX-WSD and Axis2D 2.
JAX-WSD is our extension of JAX-WS and is used on the
consumer’s side. On the other hand, UWS uses our extension
of Apache Axis2, coined Axis2D. The next subsections give
further details about both libraries.

A. From JAX-WS to JAX-WSD

The implementation of the consumer’s part of SIPs should
satisfy three basic design requirements:

• Low impact: Employing a SIP in a running system
should not introduce changes in its implementation, i.e.,
there is no need to rewrite code.

• Opt-out: It should be easily possible to use the tradi-
tional triangular SOA operational model by disabling
the SIP according to corporate policies.

• Configurations: Fine-grained configuration options
should be provided, that enable global settings and
application-specific settings.

To achieve our proposed approach, each SOAP request
is marked as SIP-enabled and passed to the SIP instead
of its intended service endpoint’s URL. Service consumers
are not required to re-write their existing applications to
use a SIP; they can simply replace the JAX-WS API by
our JAX-WSD, which provides the same functionality of
JAX-WS and additionally supports the SIP architecture. To
enable/disable SIP-usage and tune its features, the associated
configuration files can be edited accordingly.

To employ our approach in a running system, only the
JAX-WSD library is required. No further changes in the
system are required. Service providers do not notice SIP
interaction. A Service Invocation Proxy is viewed as a
service consumer, from the provider’s side. This satisfies the
first design requirement: low impact. Enabling and disabling
the SIP (triangular or diamond model) is easily configurable
at three levels of configurations, satisfying the second design
requirement: opt-out. Further settings can also be tuned
at these levels of configurations, as we explain next. This
satisfies the third design requirement: configurations.

B. JAX-WS or JAX-WSD

The deployment of our SIP is easily configurable using
configuration files or through API means, where all required
parameters are set. Service consumers can choose to turn the
entire extension off and retain the traditional functionality of

2D refers to Diamond in both libraries.

SIP-
Config?

SIP-
App

Config?

SIP-
API?JAX-WS

JAX-WSD

Service
Call

Else

No

Else

No

No

Else

Figure 6: JAX-WS or JAX-WSD control flow

JAX-WS. Enabling the SIP feature requires setting further
parameters, such as the UWS URL, the sensitivity of input
and output parameters, the interaction mode (request-only,
request-response), etc. At runtime, the application can decide
which library to use depending on the settings provided in
the configuration files or API, as shown in the control flow
diagram in Fig. 6.

Three levels of configurations are provided: environment-
wide, application-specific, and API-level. Disabling the SIP
does not require changing the implementation (i.e., code);
simply setting its corresponding parameter to false in the
environment-wide configuration file (SIP-config in Fig. 6)
switches to the traditional operational model.

If the configuration at the environment-wide level does
not explicitly set required settings, e.g., disable the SIP, next
levels of configurations are then used to determine these
settings. The next level of configuration is the application-
specific (or project-specific) configuration file (SIP App
Config). This level of configuration gives the flexibility to
enable the SIP on one project and disable it on others. The
last configuration level is the API means (SIP-API), which
gives application developers the flexibility to enable/disable
the SIP for specific service calls.

C. From Axis2 to Axis2D

From the consumer’s point of view, the SIP is a service
provider. Therefore, a SOAP engine is required on the
SIP side, such as Apache Axis2 [17]. Axis2 dispatches all
incoming service requests and delivers each service request
to its target Web Service managed by Axis2. This behavior
does not satisfy our requirements, because the SIP offers a
single Universal Web Service that is used by all consumers
to call their various Web Services, e.g., weather forecast,
news, stock quote Web Services. Hence, we developed
extended version of Axis2, coined Axis2D.

Axis2D performs the traditional role of Axis2 and mon-
itors SOAP requests to call the UWS, which are marked
as SIP-enabled requests. Whenever such a SOAP request is
received, it is forwarded directly to the UWS. Then, UWS
applies a set of if-then-else rules to determine how to handle
the received request. If the request is classified as new, then



its original Web Service is called and the result is cached and
returned to its service consumer. Otherwise, i.e., the request
is duplicate, then a cached response is returned directly to
the service consumer. Cached copies of SOAP responses are
time-stamped to control their validity. In addition, UWS can
also capture and store any metadata pertinent to the request,
such as requester, timestamp, etc.

V. AN ADVANCED SIP SETTING

The diamond model introduced in Section III assumes
that the organization owns the service registry. Owning the
service registry enables the SIP to write the metadata it
generates back into the registry and therefore enrich service
descriptions. In the health insurer use-case, this is true for the
internal service registry (SR1) in Fig. 3. However, this is not
the case with external service registries that are not owned
by the organization. For example, the health insurance
company cannot write the metadata generated by its SIP
in the external service registry (SR2) in Fig. 3. To handle
this case, an internal alternative registry is introduced to
hold the generated metadata. This internal registry is called
Invocation Registry. The role of the Invocation Registry is
illustrated in Fig. 7.

Service Registries

1

Service
Consumer

Service
Provider

➋
 Disc

ov
er ➊

 Publish

UWS
➌ Request

➍ Invoke

2
n

Invocation
Registry

Figure 7: An advanced setting for using a SIP without
owning the service registry

In large enterprises, the number of outgoing service calls
is enormous. To handle this enormous number of service
calls, several Universal Web Services (UWS) can play the
role of Service Invocation Proxy instead of using only
one UWS. This setting is also depicted in Fig. 7. Service
requests can be partitioned by the geographic location of
service consumers, service providers, or both. In the health
insurer use-case, the SIP can use a UWS to handle all
service requests from branch office Berlin, and another
UWS to handle requests from branch office Frankfurt, etc.
Alternatively, the SIP can use a UWS to handle all service
requests to call services provided by German providers, and

another UWS to handle other requests to call services of
providers from USA, etc.

VI. SUMMARY AND OUTLOOK

Several limitations have been identified in the traditional
triangular SOA operational model. One of these limitations
is the passive role of the service registry. To enable service
registries to play an active role, further information about
the considered Web Services is required. Several approaches
have been proposed to gather this required information,
e.g., extending service consumers’ clients, asking service
providers to give required information, or ask other ser-
vice consumers to provide this information. However, these
proposed approaches either require changing consumer’s
running systems or involve trust issues.

In this paper, we introduce an automatic way of gathering
this information by extending the triangular SOA operational
model with a fourth role, the Service Invocation Proxy (SIP).
A SIP works as a mediator between service consumers
and service providers. It invokes the required services by
service consumers and returns the result. Using SIPs helps
enrich service descriptions with metadata generated from
analyzing services invocations, such as invocation statistics
or service quality measures. Additional benefits of SIPs
include caching, which is reflected in reduced response time
and cost (especially when usage-based pricing strategies are
used).

A SIP can be implemented in various ways, e.g., as an
agent, a Web Service, etc. In our approach we implement
the SIP through a Universal Web Service (UWS). A proof-
of-concept of SIPs has been implemented which has two
sets of libraries: JAX-WSD and Axis2D. JAX-WSD is
used on the consumer’s side and Axis2D is used by the
UWS. This prototype has been tested on different types of
Web Services; internal and external ones, parameterized and
non-parameterized ones. Our future work includes further
thorough evaluation of SIPs to measure the effect of caching,
introduced delay, saved cost, etc.

A health insurance company use-case highlighted the
potential usefulness of our approach, where all information
is kept inside the boundaries of a single organization. Ex-
tending this approach to multiple organizations environments
require concrete privacy and information security policies
and mechanisms. Such policies are part of our future work as
well. The case of multiple organizations environments raises
several interesting research opportunities, such as identifying
business patterns and learning which Web Services are used
in conjunction with which others and when. Finally, we cur-
rently considered only XML-based Web Services (SOAP).
One of our main extensions is to apply this approach to
REST-ful Web Services.



REFERENCES

[1] L. Zhang, J. Zhang, and H. Cai, Services Computing.
Springer, 2007.

[2] Sun Microsystems, Inc., “Effective SOA De-
ployment Using an SOA Registry Repository,”
http://www.sun.com/products/soa/registry/soa registry wp.pdf,
2005, white paper.

[3] A. Silvius, B. de Waal, and J. Smit, “Business and IT
Alignment; Answers and Remaining Questions,” in PACIS
2009 Proceedings, 2009.

[4] P. Rajasekaran, J. A. Miller, K. Verma, and A. P. Sheth, “En-
hancing Web Services Description and Discovery to Facilitate
Composition,” in SWSWPC, 2004, pp. 55–68.

[5] A. Michlmayr, F. Rosenberg, C. Platzer, M. Treiber, and
S. Dustdar, “Towards recovering the broken SOA triangle: a
software engineering perspective,” IW-SOSWE ’07: 2nd inter-
national workshop on Service oriented software engineering,
2007.

[6] M. Treiber and S. Dustdar, “Active Web Service Registries,”
IEEE Internet Computing, 2007.

[7] D. Kuropka, P. Tröger, and S. Staab, Semantic Service Pro-
visioning. Springer, 2008.

[8] E. Maximilien and M. Singh, “Conceptual model of web
service reputation,” SIGMOD Record, vol. 31, no. 4, Dec
2002.

[9] S. Nepal, Z. Malik, and A. Bouguettaya, “Reputation Propa-
gation in Composite Services,” Proceedings of the 2009 IEEE
International Conference on Web Services, 2009.

[10] A. A. F. Brandão, L. Vercouter, S. Casare, and J. Sichman,
“Exchanging reputation values among heterogeneous agent
reputation models: an experience on ART testbed,” in AAMAS
’07: Proceedings of the 6th international joint conference on
Autonomous agents and multiagent systems. New York, NY,
USA: ACM, 2007, pp. 1–3.

[11] S. Ran, “A model for web services discovery with QoS,”
SIGecom Exch., vol. 4, no. 1, pp. 1–10, 2003.

[12] “Centrasite Community,” http://www.centrasite.org.

[13] “ebXML Registry-Repository,”
http://ebxmlrr.sourceforge.net.

[14] SUN, “SUN’s Service Registry,”
http://www.sun.com/products/soa/registry.

[15] IBM, “WebSphere Service Registry and Repository,”
www.ibm.com/software/integration/wsrr.

[16] O. Guenther, G. Tamm, and F. Leymann, “Pricing Web Ser-
vices,” International Journal of Business Process Integration
and Management, 2007.

[17] Apache, “Axis User’s Guide,” 2007.

[18] A. Gupta and D. Kohlert, “The Java API for XML-Based
Web Services (JAX-WS) 2.1 ,” 2007.


