
SPRINT: Ranking Search Results by Paths

Christoph Böhm1, Eyk Kny2, Benjamin Emde2, Ziawasch Abedjan1, Felix Naumann1

Hasso-Plattner-Institut, Prof.-Dr.-Helmert-Str. 2-3, D-14482 Potsdam, Germany
1firstname.lastname@hpi.uni-potsdam.de 2firstname.lastname@student.hpi.uni-potsdam.de

ABSTRACT
Graph-structured data abounds and has become the subject of much
attention in the past years, for instance when searching and analy-
zing social network structures. Measures such as the shortest path
or the number of paths between two nodes are used as proxies for
similarity or relevance[1]. These approaches benefit from the fact
that the measures are determined from some context node, e.g.,
“me” in a social network. With SPRINT, we apply these notions to
a new domain, namely ranking web search results using the link-
path-structure among pages.

SPRINT demonstrates the feasibility and effectiveness of Search-
ing by Path Ranks on the INTernet with two use cases: First, we
re-rank intranet search results based on the position of the user’s
homepage on the graph. Second, as a live proof-of-concept we
dynamically re-rank Wikipedia search results based on the cur-
rently viewed page: When viewing the Java software page, a search
for “Sun” ranks Sun Microsystems higher than the star at the center
of our solar system. We evaluate the first use case with a user study.
The second use case is the focus of the demonstration and allows
users to actively test our system with any combination of context
page and search term.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Search and Retrieval

General Terms
Performance, Experimentation

Keywords
Directed Graph, Shortest Path, Ranking

1. INTRODUCTION
The idea of using the link structure within a set of web pages is

not new; Google’s PageRank is a prominent example. However,
such rankings are determined globally, often independent of the
search term, but, more importantly, independent of some context

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2011, March 22–24, 2011, Uppsala, Sweden.
Copyright 2011 ACM 978-1-4503-0528-0/11/0003 ...$10.00

page: A computer science student searching for “dean” is most
likely interested in the dean of the computer science department
and not of the political sciences department. The page of the for-
mer should be ranked higher than that of the latter. This context
could be simulated by extending/refining the search to “dean com-
puter sciences”. If the search engine knew, however, the depart-
mental homepage of the student, this context could be computed
automatically.

As in [3] the underlying hypothesis of this work is that a page in
the web graph can represent such context. As opposed to [3], we
specifically examine the eligibility of path lengths among page as
a sole criterion (independent of textual page content) to represent
query contexts, i.e., the students homepage is simply “closer” to the
page of the dean of computer sciences rather than any other dean.

These ideas have been successfully used in the context of social
networks, where users are interconnected in friendship-graphs [4].
We extend this approach to deal with large directed web graphs
such as intranets or Wikipedia. A main challenge of these ideas
is to efficiently determine these measures: Even in intranets, the
number of nodes and edges is enormous. Therefore, exhaustively
analyzing paths in the extremely short time allowance of online
search is impossible. We tested two techniques to overcome this
difficulty.

A first, and obvious technique is to precalculate closeness scores
for all pairs of context pages and web pages. In the intranet sce-
nario, we can set homepages or department pages as context pages.
The number of such context pages is equal to or less than the num-
ber of users, and thus pre-calculation and updates after new crawls
are feasible. In a scenario where a context page should not be fixed
in advance, as is the case for Wikipedia search or documentation
pages search, precalculation is prohibitively expensive. Thus, we
make use of a second technique, namely using seed nodes through-
out the graph and precalculating distances only to such dedicated
nodes [6].

SPRINT demonstrates the surprisingly effective results of re-rank-
ing Wikipedia search results based on a context page. Search queries
are first sent to the original keyword-based Wikipedia search en-
gine, but its results are intercepted and re-ranked based on their
distance to the page that was viewed by the user when issuing the
query. For instance, when viewing any software or programming
page on Wikipedia and searching for “python”, the page for the
Python scripting language is automatically ranked before any other
Python page, such as the animal, the movie or the British comedy
troupe. Re-ranking is performed online with only very little over-
head. The offline seed selection is based on [5] but is optimized to
reduce seed selection computation time. Thus, SPRINT makes for
a fast (and fun) demonstration:
http://tinyurl.com/wikirank-01

What follows is a brief description of two case studies to un-
derpin the use of path information for ranking: Intranet search is
evaluated with a user study. Then, Wikipedia search, which is sub-
ject of the demonstration, is examined theoretically. We close with
a description of our implementation and the demonstration.

2. CASE STUDIES
Before discussing implementation details, we further motivate

the use of paths for search result ranking. Specifically, we present
results for two studies: The first compares our ranking approach
with Google’s ranking. In particular, we show results for ranking
by shortest paths, the total number of paths as well as the average
path length between two nodes. The second study justifies the use
of web pages as search context and illustrates its influence on the
ranking.

2.1 Intranet Search Ranking
In this scenario, we use path information for personalizing in-

tranet search result rankings, i.e., we address users searching the
intranet of their organization. Entering a query such as “latest pub-
lications” or “patent guidelines”, the hypothesis is that the user is
more interested in results concerning the own working group rather
than in results specific to other groups. We further hypothesize that
these more relevant results lie closer to the user’s context page.
Setup. We asked 16 staff members from our research institute to
fill out a very simple questionnaire (20 questions) stating the fol-
lowing: “Imagine you were using a personalized intranet search
engine. For the given questions/tasks in natural language, please
formulate a keyword query and enter the URL of the desired top
search result.” For each task we ran the keyword query against the
Google search engine (with site:hpi.uni-potsdam.de) and re-ranked
all results by paths using the staff member’s working group main
page as context node. As for shortest path and average path length
a page is ranked high if the respective path length is small. Path
count causes a high ranking if the value is high. We then compared
the ranks of the desired top result given by Google and our person-
alized ranking. For this study we used a crawl of our website and an
implementation that considers all available paths among two nodes
(allowing a comparison of different ranking approaches).
Results. Figure 1 (left) depicts the shortest path ranking compared
to the Google ranking (sorted by Google rankings)1. In most cases,
shortest path ranks desired results among the top ten. There are
only few interesting pages ranked so poorly that a user could not
consider them. Specifically, shortest path ranks those pages better
that Google fails to consider important. Also, the average shortest
path rank for desired top results (4.8) is better than Google’s aver-
age (9.2). Since Google ranks 60% of the desired results very high
it achieves a better Mean Reciprocal Rank of 0.57 (shortest path:
0.46, avg. path length: 0.43, path count: 0.27). The right part of
the figure shows different queries as well as desired top result rank-
ings and thus allows for a distinction of query types: The results of
general queries, such as “colloquium” (for the task “Find out who
gave a talk at the group’s colloquium.”), or “project partner”, are
ranked well by shortest path. In contrast, Google ranks results for
descriptive queries better than any other path-based ranking, e.g.,
“duplicate detection”.

2.2 Context Node Sensitivity
In a second study, we examine the sensitivity of the shortest path

ranking with regard to different context pages. The hypothesis is

1The number of usable query/result pairs amounts to only 100 due
to searches that do not yield desired top results.

Figure 1: Results for the intranet search result ranking (the
lower the better). Left: Shortest path and Google ranking for
(user-defined) interesting pages. Right: Comparison of differ-
ent path rankings for selected queries.

that a context node enables a high ranking of pages from a specific
area of interest, disregarding pages from other areas that also match
a query.
Setup. Figure 2 (left) illustrates the study design. Given an am-
biguous query, such as “worm”, we select two matching pages
p1 and p2 with distinct topics from the Wikipedia disambiguation
page, e.g., p1 = computer worm and p2 = parasitic worm. For
these pages, we determine concepts c1 and c2 as well as the least
common ancestor ca in a concept hierarchy (here Yago [2]). We
then compute path scoresfor p1 and p2 given a context page pc for
each concept c on the concept path c1 → · · · → ca ← · · · ← c2.
Results. Figure 2 (right) depicts score changes (the higher the bet-
ter) for varying context pages, i.e., context pages were chosen ran-
domly for each concept along the concept path, and scores have
been computed. The figure shows that a context page causes a bet-
ter scoring for (conceptually) closer pages than for distant pages.
This demonstrates the discriminative feature of context pages com-
bined with shortest paths. Further, one can see a vanishing scoring
when using context pages close to the common ancestor concept ca
(mostly at 50% of the concept path): At this position paths among
context page pc and p1 as well as p2 have comparable lengths.

c1 c2

ca

C

p2

……

p1

pc
pc
pc

Figure 2: Context node sensitivity in Wikipedia. Left: Study
design; pages p1 and p2 that match a query as well as respective
concept path c1 → · · · → ca ← · · · ← c2. Right: Average
ranking scores (for 50 page pairs p1, p2) using selected context
pages on concept path. Higher scores indicate better ranking.

3. IMPLEMENTATION AND DEMO
Depending on the use case the web graph at hand might be very

large. Table 1 shows sizes of the web graphs we considered for
evaluations. Computing shortest paths among all pairs of nodes
clearly does not scale sufficiently: The Floyd-Warshall algorithm
is in O(|V |3).

Existing approaches often deal with undirected graphs: Friend-
ship relations in social networks are usually undirected, whereas
links in intranets should be considered directed to support topical

Web graph num. of nodes num. of edges avg. degree

CS at Humboldt 9,633 57,480 11.9
CS in Potsdam 51,341 177,371 6.1
HPI in Potsdam 39,424 2,236,432 113.5
Wikipedia 3.2m 175.5m 109.7

Table 1: Typical sizes of graphs under consideration. Graphs
obtained with in-house crawler.

connections. Therefore, our implementation considers directions.
Apart from semantics, it is an elegant way to prune the immense
number of paths among nodes: Considering directed edges de-
creases the number of paths. Table 2 depicts the varying number
of paths from the Java Programming Language node in Wikipedia.
It is 5-10 times as high for undirected paths. Note that all num-
bers and the demo, however, refer to directed paths for semantic
reasons.

FROM node TO node directed undirected

Java (Prog. Lang.) Sun Microsystems 159 557
Java (Prog. Lang.) Oracle Corp. 12 130
Java (Prog. Lang.) Sun (the star) 0 9

Table 2: Number of paths for selected nodes in Wikipedia.

To gain experience with different types of ranking and various
ways of their computation we implemented two approaches: In a
first step we aimed at testing the use of different path measures for
ranking, namely the total number of paths, the average path length,
and the length of the shortest path between two nodes. Since enu-
merating all paths in a large graph is not feasible we implemented
the enumeration in a reduced search space, i.e., a reasonable sub-
graph of a smaller size. Here, reasonable means that the subgraph
contains a given context node and all nodes reachable within dis-
tance r. However, given the average degree of an intranet node
(e.g. > 100), even when choosing r = 4, we found that the sub-
graph is too large for enumerating all paths in user response time.
Nevertheless, we used this approach for generating first evaluation
results for the intranet use case discussed in Sec. 2.1.

As a second approach, we approximate path information. In [6]
one can find a comprehensive overview of techniques for approxi-
mating distances in graphs. In particular, we redefine the one used
in [4] to deal with large directed graphs and enhance it with proper
seed selection [1, 5] as the basis for computing an index – also
introduced in the following.

3.1 Approximation using Seeds
This approach allows for an approximation of shortest paths and

proceeds in three phases: The first step is to select a set of seed
nodes from the graph. This set of nodes serves as navigational
backbone for the index computation. Given the seed nodes, step
two is to compute distances from these nodes to all reachable node.
These distances (pruned efficiently) form the actual index structure
that enables phase three – online search result ranking. For didactic
purposes, we first describe the index computation as well as the
online ranking and then discuss seed selection.
Index Computation. Given z dedicated seed nodes {s1, . . . , sz},
we compute two seed distance vectors (SDVs) −→v n and ←−v n for
each node n in the directed graph. The vectors−→v n and←−v n capture
distances from the seeds to the node and vice versa, respectively.
Let dist(n1, n2) be the minimal distance from n1 to n2. SDVs are

defined as follows:
−→v n = [dist(s1, n), . . . , dist(sz, n)]
←−v n = [dist(n, s1), . . . , dist(n, sz)]

Note that we use only values of dist(n1, n2) ≤ θ where θ is a
pruning threshold. The pruned vectors, on the one hand, allow an
efficient computation as well as storage, because they are relatively
sparse; on the other hand, they limit the approximation result since
they restrict the considered path lengths to 2θ (see next paragraph).
Consider the example in Fig. 3 and Tab. 3: The graph has 13 nodes;
e, i, and m have been selected as seed nodes. The table shows
SDVs in its original and pruned version. Given the size of the graph
and a large number of seeds, we used a modified version of the
map/reduce solution given in [4] to compute all SDVs.

b c d fe=s2 ga

i=s1 j k m=s3h l

Figure 3: Example graph with e, i, and m as seeds. j is a con-
text node and k as well as g shall be ranked.

original pruned
seed distance vectors s1 s2 s3 s1 s2 s3

−→v j 1 2 ∞ 1 2 -←−v j 1 2 5 1 2 -
−→v k 2 1 ∞ 2 1 -←−v k 2 1 4 2 1 -
−→v g 5 2 ∞ - 2 -←−v g ∞ ∞ 1 - - 1

Table 3: Example seed distance vectors for graph in Fig. 3.
Middle part: Original vectors. Right part: Vectors for θ = 2.

Online Search Result Ranking. Given the SDVs, the authors
of [4] propose a ranking function. This function combines lengths
of available paths via seeds and derives a score that is high if there
are many short paths. We redefine the original approach to incor-
porate directed links: Let c be a context node in the graph, let n be
a node to be ranked with respect to c and let←−v c,−→v n,−→v c,←−v n be
SDVs. distx(←−v c,−→v n) indicates the number of seeds whose sum
of distances (here from c to n) is equal to x (x = 0 . . . 2θ). Let
k0 > · · · > k2θ be weighting parameters and let z be the number
of seeds used. The ranking function rc(n) is defined as follows:

rc(n) =

∑
x=0...2θ kx ∗ (distx(

←−v c,−→v n) + distx(
−→v c,←−v n))

z

Consider again Fig. 3 and Tab. 3 as an example where j is the cur-
rent context: Then, k is ranked better than g, because the ranking
scores for k and g with respect to j are the following:

rj(g) = (k0 ∗ 0 + k1 ∗ 0 + k2 ∗ 0 + k3 ∗ 0 + k4 ∗ (1 + 0))/3

rj(k) = (k0 ∗ 0 + k1 ∗ 0 + k2 ∗ 0 + k3 ∗ (2 + 2) + k4 ∗ 0)/3

Depending on the number of seeds we achieve different response
times for ranking a set of nodes. For instance, if we were to rank
1,000 nodes at a time it takes 12s in a pure database-solution. We
therefore propose to perform online ranking computation in a dis-
tributed manner, e.g., a map task (without reduce) can compute the
rc(n) value for a single node n. For the demo, however, we use the
db approach to save map/reduce overhead.

Seed Selection. The given ranking scheme requires a set of seed
nodes as input. Such a set must meet the following criteria: (1) Given
the threshold θ, the seeds plus the nodes within distance θ of any
seed should cover a large portion of the graph’s nodes – at least
p%. This ensures that there is at least one distx(...) > 0 such that
a ranking score can be computed (for p% of the nodes). (2) The
number of seeds required to cover p% of the input graph should be
relatively small because the fewer seeds we consider, the faster is
the online ranking computation [4].

In [5] the authors propose several heuristics for this purpose and
MaxOut is shown to be the best performing approach in terms of
node coverage. MaxOut initially selects the node with the high-
est (out-)degree as a seed; it then removes from the graph the seed
as well as all nodes within distance θ, updates degree values, and
again selects the node with the highest degree as seed. It proceeds
until p% of the nodes have been removed from the graph. Note that
reachable nodes as well as new node degrees have to be determined
in every iteration, causing high runtimes. Therefore, we introduce
the additional requirement that a run (the selection of one or more
seed nodes) must cover at least q% of the remaining nodes. If this
is not the case, the next run considers s′ = d(q/l) ∗ se seed nodes
(with highest out-degrees) at once. Here, l and q are the current
and required coverage, respectively, and s indicates the currently
considered number of seed nodes. This technique considerably re-
duces seed selection runtime, because the time per run grows sub-
linearly with the number of seeds under consideration. The seed
selection flow is depicted in Fig. 4: Given a set of seeds (initially
one), a map/reduce program removes reachable nodes from the
graph. After computing the current coverage, a second map/reduce
programm determines a required number of seed node candidates.
Since different reducers output independent candidate sets, these
need to be merged before starting the next iteration.

For the SPRINT demo on Wikipedia, we have selected 12,000
seeds of the Wikipedia link graph and computed seed distance vec-
tors ←−v n, −→v n for each Wikipedia page n. Table 4 summarizes
runtimes for these phases on the graph that comprises > 3m nodes
and > 175m edges. The graph we use has been extracted from a
Wikipedia dump as of 12/2009, the map/reduce programs ran on a
Hadoop cluster of 8 (old) PCs.

Phase time (h:mm:ss)
Seed selection 1:03:00
Index computation 1:12:11

Table 4: Runtimes for Wikipedia; θ = 2, p = 95%, q = 1%

remove reached nodes

update degrees &
determine next seed candidates

check coverage select seeds
by degree

initial seed

map/reduce

map/reduce

remaining
graph

remaining
graph

#seeds for next run

#nodes reached

seed candidates

selected seeds

Figure 4: The seed selection process.

3.2 The Demo
The demo of SPRINT leverages all discussed techniques and is

straightforward: Users can issue arbitrary queries to Wikipedia as
shown in Fig. 6. Here, the left frame displays our search box and

the re-ranked search results. We place our ranked results in a sep-
arate frame to enable comparisons with Wikipedia’s original rank-
ing. We supply several suggestions for search terms that make our
approach obvious. We also encourage participants to conceive am-
biguous search terms and observe how the expected result page is
ranked depending on the current context. Additionally, we display
respective seeds of shortest paths used for the ranking which facil-
itates an analysis of the ranking.

Figure 5 shows the components involved in the online tool for
ranking Wikipedia search results. Given a user query, we leverage
the Wikipedia API to retrieve a set of search results. Next, we
retrieve two seed distance vectors per result page from our DB.
Then, we optionally use a cluster to compute the new ranking.

Application Server

1. Request 5. Response

DBWikipedia API

3. Query SDVs 4. Ranking2. Searching

Hadoop Cluster

Figure 5: The Architecture of the Ranking Tool.

Figure 6: The Wikipedia Search Result Ranking Tool.

4. REFERENCES
[1] M. Potamias, F. Bonchi, C. Castillo, and A. Gionis. Fast

shortest path distance estimation in large networks. In Proc. of
the Int. CIKM, 2009.

[2] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: A Core
of Semantic Knowledge. In Proc. of the Int. WWW Conf.,
pages 697–706, 2007.

[3] A. Ukkonen, C. Castillo, D. Donato, and A. Gionis. Searching
the Wikipedia with Contextual Information. In Proc. of the
Int. CIKM, 2008.

[4] M. V. Vieira, B. M. Fonseca, R. Damazio, P. B. Golgher,
D. de Castro Reis, and B. Ribeiro-Neto. Efficient search
ranking in social networks. In Proc. of the Int. CIKM, 2007.

[5] S. Zheng, P. Dmitriev, and C. L. Giles. Graph-based seed
selection for web-scale crawlers. In Proc. of the Int. CIKM,
2009.

[6] U. Zwick. Exact and Approximate Distances in Graphs - A
Survey. In Proceedings of the Annual European Symposium
on Algorithms, 2001.

