
Research and Implementation of Database Concepts
Introduction for Winter Term 2022/23
Thomas Bodner, David Justen, Daniel Lindner, Martin Boissier, Stefan Halfpap, Dr. Michael Perscheid
Enterprise Platform and Integration Concepts Group

EPIC Teaching Activities

2

Winter Term Summer Term

Bachelor

Scalable Software Engineering
(Lecture, 5th semester, revised SWT II)

Foundations of Business Software
(Lecture, 4th semester)

Bachelor’s Project
(5th and 6th semester)

Master

Trends and Concepts in the Software Industry II
(Seminar with Prof. Plattner and customers)

Trends and Concepts in the Software Industry I
(Lecture with Prof. Plattner and industry partners)

Trends and Concepts in the Software Industry III
(Optional project seminar)

Data-driven Decision Support
(Lecture and Project)

Causal Inference
(Lecture and Project)

Research and Implementation of Database Concepts
(Research Seminar)

Develop Your Own Database
(Lecture and Project)

Master Project

What to expect?
• Better understand how database systems work

• Learn how to familiarize yourself with a larger code base

• Work in small teams on a larger project

• Gain experience in systems development

• Improve your C++ skills

• Research experience

• Study related work, conduct experiments,
visualize results, communicate findings

3

Same as in the
Develop your own Database
(DYOD) lecture and project

Less of a focus than in DYOD

New in this research seminar

How does this relate to Develop your own Database?
• We found that thesis students often have little experience in communicating their results

• This seminar is supposed to be a „thesis light“, including literature research,
implementation, designing and executing experiments, and presenting the results in
speech and writing

• It is both suitable for those students who have taken DYOD and for those who have not

• BUT: No weekly meetings with the entire group, thus no DBMS/C++ introduction

• Previous experience, e.g, from Trends and Concepts or the DBS lectures is helpful

• DYOD slides and sprint documents are available if you want to read up on details

• More research-oriented, i.e., the projects are proposals, not full specifications

4

https://hpi.de/plattner/teaching/archive/summer-term-2021/develop-your-own-database.html

Who are we?

5

Elastic
Query Processing

Thomas Bodner

Footprint Reduction

Martin Boissier

Cost Models
for Database Tuning

Daniel Lindner

Workload Distribution

Stefan Halfpap

Robust
Query Processing

David Justen

Hyrise
• An In-Memory Storage Engine for

Hybrid Transactional and Analytical
Processing

• HYRISE is a research database for the
systematic evaluation of new
concepts for hybrid transactional and
analytical data processing on modern
hardware

• Developed with and by HPI students

• Open Source (https://git.io/hyrise)

• System paper published at EDBT’19

6

• Modern, documented C++20 code
base, 93% test coverage

• SQL interface, PostgreSQL network
protocol

• Easy to extend via plug-in interface

• Supported benchmarks: TPC-
(C|H|DS), JCC-H, Join-Order

• Runs on Intel, AMD, IBM Mainframe,
ARM, Apple M1, Raspberry PI

https://git.io/hyrise

Hyrise in three* pictures

7

Skyrise
• A serverless query processor for interactive in-situ analytics on cold data

• Serverless: Built on function as a service platforms and object storage

• (SQL) query processor: Relational query execution and optimization

• Interactive: Aims at query latencies in seconds

• In-situ: Processes data without upfront load/align/sort/compress/index/..(ing)

• Cold data: Infrequently accessed TB/PB-scale historical, IoT and Web data

• Initiated in fall 2019 to explore modern cloud infrastructure for databases

• Exploits scalability, elasticity and reliability of the cloud, deals with its challenges

• Modern C++ (17), documented, tested (> 90% coverage) codebase

• Just starting out, plenty of research ahead!

• Vision paper published at VLDB ’20

• 3x Master’s theses, 2x seminar papers

8T. Bodner. Elastic Query Processing on Function as a Service Platforms. VLDB 2020 PhD Workshop.

Catalog Service

(Glue)

Storage Service

(S3)

Serverless Compute Service

(Lambda)

Conventional Compute Service

(EC2)

Coordinator

Scheduler

Worker

Operators

Compiler

Plans

Base Tables

Intermediates

Pricing Service

(Price List)

Prices

Monitoring Services

(CloudWatch, X-Ray, SQS)

Logs

R ▼

R ▶

R ▶

R ▶

R ▼

Metadata

Scheduler

Final Results

Comparison

9

Hyrise Skyrise

Target workload HTAP on hot to warm data Interactive OLAP on cold data

Dataset size sweetspot Gigabytes Gigabytes to (tens of) Terabytes

Architecture Scale-up within large bare metal machines Independent scale-out of decoupled
FaaS-based compute and cloud object storage

Pricing model Pay upfront for machine and provisioning,
pay as you go for maintenance and energy

Cloud object storage is $23/TB/month,
pay as you go per query, as an example
TPC-H Q1 @ SF1000 is currently $0.16

Research Topics
1. Dynamic Data and Data Dependency-based Optimization

2. Efficient and Accurate Histograms

3. Interactive Database Index Selection and Evaluation

4. Serverless Data Shuffle with Long-standing Resources

5. Understanding Serverless Query Execution

6. Extending Serverless Query Execution with Custom Code

10

Dynamic Data and Data Dependency-based Optimization

Motivation

• Interrelations in data, especially so-called data dependencies, can be used to
optimize queries

• Expensive operations, e.g., joins and aggregates, can be simplified and
performance increases

• However, data dependencies can be invalidated by updated or inserted data,
leading to incorrect query results

Current Situation in Hyrise

• Hyrise supports three data dependency-based query rewrite techniques and
efficient automated discovery of UCCs [1]

• Currently, there is no mechanism for re-validating data dependencies when data
changes

11[1] Kossmann et al. 2022. Workload-driven, Lazy Discovery of Data Dependencies for Query Optimization. CIDR.

Table Scan
B.c = `x`

Table A

Table Scan
B.c = `x`

Projection
B.b

Table Scan
A.a =

subqery

Table B

Inner Join
A.a = B.b

Table A Table B

B.b, B.c
unique!

Dynamic Data and Data Dependency-based Optimization

Implementation

• Mechanism for recognizing invalidated UCCs

• Implementation of an incremental validation approach
exploiting Hyrise’s append-only data layout (cf. [2])

• Driver to decide on when to perform incremental/full
data dependency re-validation

12[2] Abedjan et al. 2014. Detecting Unique Column Combinations on Dynamic Data. ICDE, pp. 1036–1047.

Evaluation

• Evaluation on synthetic (TPC-H) and real-world
(IMDB movie data) data sets

• Is incremental validation beneficial faster
than the current validation strategies?

• What is the overhead of re-validation
given different update frequencies?

Expected Results

• Thorough implementation and evaluation of an
incremental UCC validation algorithm

• Means to recognize that a UCCs is not valid anymore
(e.g., using transaction IDs) that can ideally be
merged into Hyrise’s master branch

Goal

• Enable automated re-validation of data dependencies
when data changes

• Ensure correct query results regardless at any time

Efficient and Accurate Histograms

Motivation

• Histograms are database statistics that allow the query optimizer to find
efficient and fast query plans

• Improving the accuracy of histograms can have a large positive impact as
inefficient query plans are often recognized and avoided

• However, creating and maintaining histograms can be expensive

Current Situation in Hyrise

• Hyrise builds histograms for the entire column

• Building histograms for a +1TB data set can take hours, even with 240 cores

• The currently used histograms can be inaccurate when data is heavily skewed
(often the case in the real world)

13

Efficient and Accurate Histograms

Implementation

• Implementation of text book histograms (e.g., equi-
width) and max-diff histogram [Hist96]

• Creation of histograms using stable sampling

• Efficient implementation for data sets > 1TB on large
server (240 cores and 8 sockets)

14
[Hist96] Viswanath Poosala, Yannis E. Ioannidis, Peter J. Haas, Eugene J. Shekita:
Improved Histograms for Selectivity Estimation of Range Predicates. SIGMOD 1996: 294-305

Evaluation

• Evaluation on synthetic (TPC-H) and real-world
(IMDB movie data) data sets

• What is the accuracy of the evaluated
histograms?

• How efficient is their creation?

Expected Results

• Thorough implementation and evaluation of
different histograms types

• For the histogram type that performs best: efficient
and scalable implementation that can ideally find its
way to the Hyrise main branch

Goal

• Enable Hyrise to efficiently create histograms for large
data sets

• Improve cardinality estimations by using skew-aware
histogram types

Interactive Database Index Selection and Evaluation

Motivation

• Index selection is an essential database optimization problem

• Various approaches find different solutions [1], which are difficult to compare, because of index sizes, index
applicability to different queries, index interaction

• Current evaluations focus on overall (i.e., aggregated) results and effects of changes to an existing selection are unclear

Goal

• Build on existing index evaluation platform [2] (9 algorithms; PostgreSQL+HypoPG; TPC-H, TPC-DS, JOB)

• Compare and evaluate index selection results of different algorithms on a per index and query level

• Enable interactive exploration of index selections

15
[1] Jan Kossmann, Stefan Halfpap, Marcel Jankrift, Rainer Schlosser: Magic mirror in my hand, which is the best in the land? An Experimental Evaluation of Index Selection
Algorithms. Proc. VLDB Endow. 13(11): 2382-2395 (2020)

[2] https://github.com/hyrise/index_selection_evaluation

• Problem
• Serverless query processors (SQP) shuffle data on auto-scaling storage (e.g., Amazon S3) to enable distributed processing
• These storage services are pay-per-use and elastic but have high request costs, high latency, and strict request rate limits
• Using these services makes data shuffles slow and expensive

• Approach
• Integrate our in-house SQP Skyrise with Jiffy, an elastic key-value store for self-hosting
• Examine the potential for a system with serverless compute but self-hosted (serverful) ephemeral storage

• Leading Questions
• How does data shuffling on self-hosted, in-memory KV stores compare to serverless, auto-scaling storage price- and

performance-wise?
• For which workloads is it viable to start Jiffy clusters on-demand?
• What are the inherent trade-offs on deciding whether to shuffle data on serverless or self-hosted storage?

Serverless Data Shuffle with Long-Standing Resources

Ch
art
16

Justen, Cost-efficiency and Performance Robustness in Serverless Data Exchange, SIGMOD 2022 SRC.
Khandelwal. Jiffy: Elastic Far-Memory for Stateful Serverless Analytics. EuroSys 2022.

Understanding Serverless Query Execution

• Skyrise executes queries distributed across cloud functions
• Cloud functions run pipelines of query operators

• Concurrency to several thousand function invocations

• Skyrise inherits properties of FaaS platform, i.e., elastic scalability,
reliability, performance and security isolation across/within queries

• Skyrise also inherits the observability issue, difficult debugging and profiling

• Skyrise monitoring subsystem traces and analyzes queries

• Straggling query workers, fatal failures, function concurrency issues

• Many involved scenarios are not covered and need attention

• Storage leaks across the storage hierarchy, service deadlocks, ..

17F. Engel. Straggler Mitigation in Distributed Query Execution on Cloud Functions. Master’s Thesis 2021.
Bodner et al., Doppler: Understanding Serverless Query Execution, SIGMOD 2022 BiDEDE Workshop.

Extending Serverless Query Execution with Custom Code

• Database systems offer their users ways to run application logic close to the data

• This often happens in the form of so-called user-defined functions or aggregates
(UDFs/UDAs)

• You will explore how to integrate UDFs into Skyrise:

• What should be the language, API/ABI?

• What should be the wrapping primitive
(query, pipeline, operator, ..)?

• How should deployment work?

18Bodner, Elastic Query Processing on Function as a Service Platforms, VLDB 2020 PhD Workshop.
Dean et al., MapReduce: Simplified data processing on large clusters. OSDI 2004.

Coordinator

Scheduler

Stage n

Object

Storage

Query Compiler

Worker

Scheduler

Intermediates

Base Tables

PPPs

Final Results

λ

Stage 2

λ

Stage 1

λλ λ

λ

Import

Operator Operator

Operator

Export

Timeline

19

W
ee

kl
y

m
ee

tin
gs

 w
ith

 a
dv

iso
rs

17 Oct 2022
Introduction

Between 24 Oct and 7 Nov 2022
First meeting with your supervisor(s) based on individual arrangement

23 Oct 2022 by end of day
Submit (your group and) topic preferences

24 Oct 2022
Announcement of topic assignments

6 Mar 2022
Final presentations – 20 min + 10 min Q&A

17 Mar 2022
Submission of written report (4 to 8 pages)

Administration

• Specialization areas:

• IT-Systems Engineering MA: BPET; OSIS
• Data Engineering MA: SCAL (PO 2018); DASY (PO 2022)
• Digital Health MA: SCAD
• Software Systems Engineering MA: SSE-D; SSYS; DSYS

• Official deadline to register is 31 October 22

• Grading

• 50% project result and presentation
• 40% scientific report (4-8 pages ACM format, depending on group size)
• 10% personal engagement

20

Bringing groups and topics together

• You are welcome to hang out in this Zoom call after the introduction to figure out groups

• If you have found a topic (and a group), please email Thomas.Bodner@hpi.de

• Include names of group members

• Include three prioritized topic preferences

• If you have any questions or are still looking for a group partner, please mail us, too

21Background reading: https://en.wikipedia.org/wiki/Strategyproofness
https://en.wikipedia.org/wiki/Gale%E2%80%93Shapley_algorithm

mailto:Thomas.Bodner@hpi.de
https://en.wikipedia.org/wiki/Strategyproofness
https://en.wikipedia.org/wiki/Gale%E2%80%93Shapley_algorithm

