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EPIC Teaching Activities

Scalable Software Engineering Foundations of Business Software
(Lecture, 5t semester, revised SWT II) (Lecture, 4t semester)
Bachelor .
Bachelor’s Project
(5t and 6t semester)
Trends and Concepts in the Software Industry II Trends and Concepts in the Software Industry I
(Seminar with Prof. Plattner and customers) (Lecture with Prof. Plattner and industry partners)
Trends and Concepts in the Software Industry III
(Optional project seminar)
Data-driven Decision Support Causal Inference
Master (Lecture and Project) (Lecture and Project)

Research and Implementation of Database Concepts
(Research Seminar)

Develop Your Own Database
(Lecture and Project)

Master Project
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What to expect?

e Better understand how database systems work

Same as in the
* Learn how to familiarize yourself with a larger code base = Develop your own Database
* Work in small teams on a larger project (DYOD) lecture and project

e Gain experience in systems development _
Less of a focus than in DYOD

* Improve your C++ skills

* Research experience

* Study related work, conduct experiments, New in this research seminar
visualize results, communicate findings
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How does this relate to Develop your own Database?

 We found that thesis students often have little experience in communicating their results

* This seminar is supposed to be a ,thesis light”, including literature research,
implementation, designing and executing experiments, and presenting the results in
speech and writing

It is both suitable for those students who have taken DYOD and for those who have not

BUT: No weekly meetings with the entire group, thus no DBMS/C++ introduction

* Previous experience, e.g, from Trends and Concepts or the DBS lectures is helpful

* DYOD slides and sprint documents are available if you want to read up on details

More research-oriented, i.e., the projects are proposals, not full specifications
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https://hpi.de/plattner/teaching/archive/summer-term-2021/develop-your-own-database.html
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Hyrise

An In-Memory Storage Engine for
Hybrid Transactional and Analytical
Processing

HYRISE is a research database for the
systematic evaluation of new
concepts for hybrid transactional and
analytical data processing on modern
hardware

Developed with and by HPI students

Open Source (https://git.io/hyrise)

System paper published at EDBT’19

Hasso
Plattner
Institut

Modern, documented C++20 code
base, 93% test coverage

SQL interface, PostgreSQL network
protocol

Easy to extend via plug-in interface

Supported benchmarks: TPC-
(C|H|DS), JCC-H, Join-Order

Runs on Intel, AMD, IBM Mainframe,
ARM, Apple M1, Raspberry PI


https://git.io/hyrise
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and benchmarking of new concepts within a DBMS requires a
simple setup process, well-documented code, and the possibil-
ity to execute both standard and custom benchmarks without
tedious preparation. Fulfilling these requirements also makes it
easy to reproduce the results later on.

The relational open-source database Hyrise (VLDB, 2010) was
presented to make the case for hybrid row- and column-format
data storage. Since then, it has evolved from being a single-
purpose research DBMS towards becoming a platform for various
projects, including research in the areas of indexing, data parti-
tioning, and non-volatile memory. With a growing diversity of
topics, we have found that the original code base grew to a point
where new experimentation became unnecessarily difficult. Over
the last two years, we have re-written Hyrise from scratch and

built an extensible multi-purpose research DBMS that can serve
as an easy-to-extend platform for a variety of experiments and
prototyping in database research.

In this paper, we discuss how our learnings from the previous
version of Hyrise have influenced our re-write. We describe the
new architecture of Hyrise and highlight the main components.
Afterwards, we show how our extensible plugin architecture
facilitates research on diverse DBMS-related aspects without
compromising the architectural tidiness of the code. In a first
performance evaluation, we show that the execution time of most
TPC-H queries is competitive to that of other research databases.

1 INTRODUCTION

Hyrise was first presented in 2010 [19] to introduce the concept
of hybrid row- and column-based data layouts for in-memory
databases. Since then, several other research efforts have used
Hyrise as a basis for orthogonal research topics. This includes
work on data tiering [7], secondary indexes [16], multi-version
concurrency control [42], different replication schemes [43], and
non-volatile memories for instant database recovery [44].

Over the years, the uncontrolled growth of code and function-
ality has become an impediment for future experiments. We have
identified four maior factors leadine to this situation:

For these reasons, we have completely re-written Hyrise and
incorporated the lessons learned. We redesigned the architecture
to provide a stable and easy to use basis for holistic evaluations of
new data management concepts. Hyrise now allows researchers
to embed new concepts in a proper DBMS and evaluate perfor-
mance end to end, instead of implementing and benchmarking
them in isolation. At the same time, we allow most components to
be selectively enabled or disabled. This way, researchers can ex-
clude unrelated components and perform isolated measurements.

For example, when developing a new join implementation, they
can bypass the network layer or disable concurrency control.

In this paper, we describe the new architecture of Hyrise and
how our prior learnings have led to a maintainable and com-
prehensible database for researching concepts in relational in-
memory data management (Section 2). Furthermore, we present a
plugin concept that allows testing different optimizations without
having to modify the core DBMS (Section 3). We compare Hyrise
to other database engines, show which approaches are similar,
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Skyrise
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* A serverless query processor for interactive in-situ analytics on cold data
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* Serverless: Built on function as a service platforms and object storage g
* (SQL) query processor: Relational query execution and optimization

* Interactive: Aims at query latencies in seconds

* In-situ: Processes data without upfront load/align/sort/compress/index/..(ing)

Cold data: Infrequently accessed TB/PB-scale historical, lIoT and Web data

5 i .
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* Initiated in fall 2019 to explore modern cloud infrastructure for databases
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Institut



Comparison

Target workload HTAP on hot to warm data Interactive OLAP on cold data
Dataset size sweetspot  Gigabytes Gigabytes to (tens of) Terabytes
Architecture Scale-up within large bare metal machines Independent scale-out of decoupled

FaaS-based compute and cloud object storage

Pricing model Pay upfront for machine and provisioning, Cloud object storage is $23/TB/month,
pay as you go for maintenance and energy pay as you go per query, as an example
TPC-H Q1 @ SF1000 is currently $0.16
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Research Topics

1.

2.

Dynamic Data and Data Dependency-based Optimization
Efficient and Accurate Histograms

Interactive Database Index Selection and Evaluation
Serverless Data Shuffle with Long-standing Resources
Understanding Serverless Query Execution

Extending Serverless Query Execution with Custom Code

Hasso
Plattner
Institut



Dynamic Data and Data Dependency-based Optimization

Motivation

* Interrelations in data, especially so-called data dependencies, can be used to
optimize queries

* Expensive operations, e.g., joins and aggregates, can be simplified and Table a
performance increases

Inner Join
A.a = B.b

'\

Table Scan
B.c = “x°

A

Table B

-

 However, data dependencies can be invalidated by updated or inserted data, Table Scan
leading to incorrect query results Sﬁgze;y* _____________________________
A i
Current Situation in Hyrise Proi -
rojection
B.b
* Hyrise supports three data dependency-based query rewrite techniques and B':?;]B; T
unique:
efficient automated discovery of UCCs [1] Table Scan
B.c = "x°
A
e Currently, there is no mechanism for re-validating data dependencies when data
changes Table » Table B
ﬂ II;IIaaﬁger [1] Kossmann et al. 2022. Workload-driven, Lazy Discovery of Data Dependencies for Query Optimization. CIDR.

Institut
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Dynamic Data and Data Dependency-based Optimization

Goal Evaluation

* Enable automated re-validation of data dependencies

e Evaluation on synthetic (TPC-H) and real-world
when data changes

(IMDB movie data) data sets

* Ensure correct query results regardless at any time e Isincremental validation beneficial faster

than the current validation strategies?

* What is the overhead of re-validation
given different update frequencies?

Implementation Expected Results

* Mechanism for recognizing invalidated UCCs * Thorough implementation and evaluation of an

* Implementation of an incremental validation approach incremental UCC validation algorithm

exploiting Hyrise’s append-only data layout (cf. [2])  Means to recognize that a UCCs is not valid anymore
(e.g., using transaction IDs) that can ideally be

* Driver to decide on when to perform incremental/full _ o
merged into Hyrise’s master branch

data dependency re-validation

Plattner
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Efficient and Accurate Histograms

Motivation

* Histograms are database statistics that allow the query optimizer to find
efficient and fast query plans

* Improving the accuracy of histograms can have a large positive impact as
inefficient query plans are often recognized and avoided

 However, creating and maintaining histograms can be expensive
Current Situation in Hyrise

* Hyrise builds histograms for the entire column

* Building histograms for a +1TB data set can take hours, even with 240 cores

* The currently used histograms can be inaccurate when data is heavily skewed
(often the case in the real world)
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Efficient and Accurate Histograms

Goal Evaluation

* Enable Hyrise to efficiently create histograms for large + Evaluation on synthetic (TPC-H) and real-world

data sets (IMDB movie data) data sets

* Improve cardinality estimations by using skew-aware

. * What is the accuracy of the evaluated
histogram types

histograms?

e How efficient is their creation?

Implementation Expected Results
* Implementation of text book histograms (e.g., equi- * Thorough implementation and evaluation of
width) and max-diff histogram [Hist96] different histograms types
* Creation of histograms using stable sampling e For the histogram type that performs best: efficient
and scalable implementation that can ideally find its
* Efficient implementation for data sets > 1TB on large way to the Hyrise main branch

server (240 cores and 8 sockets)

mg'tttltnL?{ Improved Histograms for Selectivity Estimation of Range Predicates. SIGMOD 1996: 294-305 14

ﬂ Hasso [Hist96] Viswanath Poosala, Yannis E. loannidis, Peter J. Haas, Eugene J. Shekita:



Interactive Database Index Selection and Evaluation

Motivation

* Index selection is an essential database optimization problem

* Various approaches find different solutions [1], which are difficult to compare, because of index sizes, index
applicability to different queries, index interaction

* Current evaluations focus on overall (i.e., aggregated) results and effects of changes to an existing selection are unclear

£ 1001 c 6] :

g :L}_1 o 6 Algorithm (|S|)

o el =

8 | E Bl AutoAdmin (3) mam Drop (5)

3 90 £ 4 mmm DB2Advis (16) mem Extend (7)

X . a = DTA (10) Relaxation (10)

2 801 "L 8 2. M Dexter (6) w/o Indexes (0)

2 > i -

2 3 | 2 B ‘n = i
0 2 4 6 8 10 @0 4 5 8 9 11 12 19

Index Storage Consumption (GB)

Query ID
Goal

* Build on existing index evaluation platform [2] (9 algorithms; PostgreSQL+HypoPG; TPC-H, TPC-DS, JOB)
 Compare and evaluate index selection results of different algorithms on a per index and query level

* Enable interactive exploration of index selections

Hasso [1] Jan Kossmann, Stefan Halfpap, Marcel Jankrift, Rainer Schlosser: Magic mirror in my hand, which is the best in the land? An Experimental Evaluation of Index Selection
Plattner Algorithms. Proc. VLDB Endow. 13(11): 2382-2395 (2020) 15

Institut [2] https://github.com/hyrise/index_selection_evaluation



Serverless Data Shuffle with Long-Standing Resources

* Problem
» Serverless query processors (SQP) shuffle data on auto-scaling storage (e.g., Amazon S3) to enable distributed processing
* These storage services are pay-per-use and elastic but have high request costs, high latency, and strict request rate limits
* Using these services makes data shuffles slow and expensive

* Approach
* Integrate our in-house SQP Skyrise with Jiffy, an elastic key-value store for self-hosting
* Examine the potential for a system with serverless compute but self-hosted (serverful) ephemeral storage

* Leading Questions

* How does data shuffling on self-hosted, in-memory KV stores compare to serverless, auto-scaling storage price- and
performance-wise?

e For which workloads is it viable to start Jiffy clusters on-demand?
* What are the inherent trade-offs on deciding whether to shuffle data on serverless or self-hosted storage?

Elaaﬁger Justen, Cost-efficiency and Performance Robustness in Serverless Data Exchange, SIGMOD 2022 SRC. ch
Institut  Khandelwal. Jiffy: Elastic Far-Memory for Stateful Serverless Analytics. EuroSys 2022. -



Understanding Serverless Query Execution

* Skyrise executes queries distributed across cloud functions e
* Cloud functions run pipelines of query operators sy
e Concurrency to several thousand function invocations e —
* Skyrise inherits properties of Faa$ platform, i.e., elastic scalability, ;

N
o
1<}
o

reliability, performance and security isolation across/within queries

query worker ID
=
G
o
o

=
o
o
o

e Skyrise also inherits the observability issue, difficult debugging and profiling

v
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00,;30'90 00,_00*0‘) 00.90'-\’0 00,_00‘\6 ‘ 4'00'-7'0 00,90'7'6 00'-30
. . . . Physical Operator Activity
e Skyrise monitoring subsystem traces and analyzes queries
ZggregateHashOperator

» Straggling query workers, fatal failures, function concurrency issues | e
* Many involved scenarios are not covered and need attention N

el
» Storage leaks across the storage hierarchy, service deadlocks, ..

@'90,90 ‘90,95 00.90,.\,0 00‘90,'\,6 00‘90,‘»‘0 00.90,16

wall clock time

ﬂ II;IIaaﬁger F. Engel. Straggler Mitigation in Distributed Query Execution on Cloud Functions. Master’s Thesis 2021.
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Extending Serverless Query Execution with Custom Code

* Database systems offer their users ways to run application logic close to the data

* This often happens in the form of so-called user-defined functions or aggregates

(UDFs/UDAs)

* You will explore how to integrate UDFs into Skyrise:

* What should be the language, API/ABI?

 What should be the wrapping primitive
(query, pipeline, operator, ..)?

 How should deployment work?

Plattner
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ﬂ Hasso Bodner, Elastic Query Processing on Function as a Service Platforms, VLDB 2020 PhD Workshop.

Institut Dean et al., MapReduce: Simplified data processing on large clusters. OSDI 2004.
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Timeline

Weekly meetings with advisors
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Administration

e Specialization areas:

* |T-Systems Engineering MA: BPET; OSIS

e Data Engineering MA: SCAL (PO 2018); DASY (PO 2022)
* Digital Health MA: SCAD

* Software Systems Engineering MA: SSE-D; SSYS; DSYS

e Official deadline to register is 31 October 22

e Grading

* 50% project result and presentation
* 40% scientific report (4-8 pages ACM format, depending on group size)

e 10% personal engagement
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Bringing groups and topics together

* You are welcome to hang out in this Zoom call after the introduction to figure out groups

* If you have found a topic (and a group), please email Thomas.Bodner@hpi.de

* Include names of group members

* Include three prioritized topic preferences

* If you have any questions or are still looking for a group partner, please mail us, too

mgﬁ?ﬁ{ https://en.wikipedia.org/wiki/Gale%E2%80%93Shapley algorithm

ﬂ Hasso Background reading: https://en.wikipedia.org/wiki/Strategyproofness
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