
Advanced Topics On 
In-Memory Database Servers

Martin Boissier, Carsten Meyer
Martin Faust, David Schwalb

October 2014

“The Free Lunch Is Over”

– Number of
transistors per CPU
increases

– Clock frequency
stalls

2
[Source: http://www.gotw.ca/publications/concurrency-ddj.htm]

Capacity vs. Speed (latency)
• Memory hierarchy:

– Capacity restricted by price/performance
– SRAM vs. DRAM (refreshing needed every 64ms)
– SRAM is very fast but very expensive

	 Memory is organized in hierarchies

• Fast but small memory on the top
• Slow but lots of memory at the bottom

CPU

L1	 Cache

L2	 Cache

Main	 Memory

SRAM

SRAM

DRAM

~	 1	 ns

<	 10	 ns

<	 1	 ns

100	 ns

SRAM

latencytechnology

KB

MB

bytes

GB

size

Magnetic	 Disk TB~	 10	 000	 000	 ns
(10	 ms)

Data Processing
• In DBMS, on disk as well as in memory, data processing is

often:

• Not CPU bound
• But bandwidth bound
• “I/O Bottleneck”

• CPU could process data faster

4

• Memory Access:

• Not truly random (in the sense of constant latency)
• Data is read in blocks/cache lines
• Even if only parts of a block are requested

• Potential waste of bandwidth V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

Cache	 Line	 1 Cache	 Line	 2

Memory Hierarchy
■ Cache 

Small but fast memory, which keeps data from  
main memory for fast access.

	Cache performance is crucial

■ Similar to disk cache (e.g. buffer pool)

But: Caches are controlled by hardware.

■ Cache hit 
Data was found in the cache.  
Fastest data access since no lower level is involved.

■ Cache miss 
Data was not found in the cache. CPU has to load data from
main memory into cache (miss penalty).

CPU

Cache

Main	 Memory

5

Locality is King!
• To improve cache behavior

– Increase cache capacity
– Exploit locality

• Spatial: related data is close (nearby references are likely)
• Temporal: Re-use of data (repeat reference is likely)

• To improve locality
– Non random access (e.g. scan, index traversal):

• Leverage sequential access patterns
• Clustering data to a cache lines
• Partition to avoid cache line pollution  

(e.g. vertical decomposition)
• Squeeze more operations/information into a cache line

– Random access (hash join):
• Partition to fit in cache (cache-sized hash tables)

6

Motivation
– Hardware has changed

• TB of main memory are available
• Cache sizes increased
• Multi-core CPU’s are present
• Memory bottleneck increased
• NUMA (and NUMA on a NUMA?)

– Data/Workload
• Tables are wide and sparse
• Lots of set processing

– Traditional databases
• Optimized for write-intensive workloads
• Show bad L2 cache behavior

7

Problem Statement

– DBMS architecture has not changed over decades
– Redesign needed to handle the changes in:

• Hardware trends (CPU/cache/memory)
• Changed workload requirements
• Data characteristics
• Data amount

8

Buffer	 pool

Query	 engine

Traditional	 DBMS	 Architecture

Row- or Column-oriented Storage

9

Column StoreRow Store

SELECT *

FROM Sales Orders

WHERE Document Number = ‘95779216’

SELECT SUM(Order Value)

FROM Sales Orders

WHERE Document Date > 2009-01-20

Question & Answer
•

10

■ Exploit sequential access, leverage locality
-> Column store

■ Reduce I/O
■ Compression

■ Direct value access
-> Fixed-length (compression schemes)

■ Late Materialization
■ Parallelize

How to optimize an IMDB?

Seminar Organization

11

Objective of the Seminar
• Work on advanced database topics in the context of in-

memory databases (IMDB) with regards to enterprise data
management
• Get to know characteristics of IMDBs
• Understand the value of IMDBs for enterprise computing

• Learn how to work scientifically
• Fully understand your topic and define the objectives of your work
• Propose a contribution in the area of your topic
• Quantitatively demonstrate the superiority of your solution
• Compare your work to existing related work
• Write down your contribution so that others can understand and

reproduce your results

12

Seminar schedule
• Today (14.10.): Overview of topics, general introduction
• Thursday (16.10.): In-memory DB Basics and Topics Q&A (if you’re

interested)

• 21.10.: Send your priorities for topics to lecturers  
(martin.boissier@hpi.de)

• Planned Schedule

– 09./11.12.2014: Mid-term presentation
– 10./12.02.2015: Final presentation (tbc)
– 20.02.2015: Peer Reviewing (tbc)
– 06.03.2015: Paper hand-in (tbc)

• Throughout the seminar: individual coaching by teaching staff
• Meetings (Room V-2.16)

13

Final Presentation
–Why a final presentation?
• Show your ideas and their relevance to others
• Explain your starting point and how you evolved your

idea /implementation
• Present your implementation, explain your

implementations properties
• Sell your contribution! Why does your work qualify as

rocket science?

14

Peer Reviewing
– Each student will be assigned a colleague’s paper

version (~2 weeks before paper hand-in)
• Review will be graded
• Annotate PDF for easy fixes as typos
• Short summary (2-3 pages in Word) about the paper’s

content and notes to the author how to further improve
his paper

– Expected to be done in the week from Feb 16 to
Feb 20

15

Final Documentation
• 6-8 pages, IEEE format [1]
• Suggested Content: Abstract, Introduction into the

topic, Related work, Implementation, Experiment/
Results, Interpretation, Future Work

• Important!
• Related work needs to be cited
• Quantify your ideas / solutions with measurements
• All experiments need to be reproducible (code, input

data) and the raw data to the experiment results must
be provided

16
[1] http://www.ieee.org/conferences_events/conferences/publishing/templates.html

Grading
• 6 ECTS
• Grading:
• 30% Presentations (Mid-term 10% / Final 20%)
• 30% Results
• 30% Written documentation (Paper)
• 10% Peer Review

17

Topic Assignment		
• Each participant sends list of top three topics

in order of preference to lecturers by 21.10.
• Topics are assigned based on preferences

and skills by 24.10.

18

HYRISE
• Open source IMDB
• Hosted at https://github.com/hyrise
• C++ 11
• Query Interface: Query plan or stored

procedures

19

Recommended Papers for Intro
• Plattner, VLDB 2014: The Impact of Columnar In-

Memory Databases on Enterprise Systems
• Grund et al. VLDB 2010: HYRISE—A Main Memory

Hybrid Storage Engine
• Krueger et al. VLDB 2012: Fast Updates on Read-

Optimized Databases Using Multi-Core CPUs

20

Topics

21

TPC-(E|C) Workload Analysis
• Project:

• Are synthetical standardized benchmarks really that far off the
the truth?

• [2] examined an enterprise system and found that TPC-C does
not reflect the properties very well

• TPC-E is a successor of TPC-C and appears to be more
realistic

• In parallel, we have an SQL workload trace of a large productive
enterprise system (7 TB of data, 50 Million queries)

• How do both TPC-* suites and their SQL workload traces
compare to a real SQL workload trace of an enterprise system?

22[2] Plattner, The Impact of Columnar In-Memory Databases on Enterprise Systems, VLDB 2014

TPC-(E|C) Workload Analysis
• This project is not a Hyrise project, it’s more an analytical

challenge to quantify the impacts of certain workloads on IMDBs
• Tasks:

• Create TPC-C and TPC-E SQL workload traces
• Find main characteristics (e.g., characteristics used related

work)
• Analyze each workload thoroughly and compare with the

others
• Goal:

• Thorough comparison of a productive enterprise system with
synthetical enterprise benchmarks

23

Simplified Data Eviction 
for Hyrise

• Project:

• Workload analyses have revealed that large parts of a database are

rarely or never accessed
• The idea: while retaining the performance superiority of IMDBs, find

columns that are never scanned and only accessed for point-accesses
• These “cold” columns are swapped/evicted to disk
• Implement a data eviction strategy with minimal implementation effort

and minimal performance impact (i.e., a “simplified data eviction”)

24
accessed in

query evaluation
accessed only for

tuple reconstruction

majority
tuple accesses

Exemplary visualization of a table using
an simplified eviction approach.

Scanned columns are kept in memory,
while other columns are evicted and

only partially cached for point accesses.

Simplified Data Eviction 
for Hyrise

• Tasks:

• Adapt Hyrise in order to use EMT’s malloc() to allocate data on disk
• EMT provides an automated swapping and caching of files (“mmap

done right”) for their malloc() implementation
• The disk will probably be a prototypical PCIe-connected Phase-

Change Memory (PCM) device with 6 microseconds access times
(16x faster than PCIe NAND SSD flash)

• Goal:

• Evaluate a simplified data eviction strategy and its applicability using a

recent prototype of a PCM device
• Further evaluate how much data can be evicted while e.g. retaining

90% of the original performance

25

Integrating Uncompressed
Attributes in Hyrise

• Project:

• Dictionary-Encoding has many advantages for scanning, range

queries, and more
• But one major shortcoming is the materialization of tuples

• for each attribute to materialize two accesses have to be performed:
• 1.) access to the attribute vector to get the valueID
• 2.) lookup of the valueID in the dictionary

• This overhead can be acceptable using main memory but is a
major performance bottleneck for columns allocated on disk

• If we do not compress non-scanned columns, how much
performance can we gain for materializations (and what is the
compression loss)?

26

Integrating Uncompressed
Attributes in Hyrise

• Tasks:

• Build on the already existing (but unfinished) implementation

of uncompressed columns in Hyrise
• Implement missing interfaces & fix current issues when using

uncompressed columns
• Measure performance impact

• Goal:

• Evaluate performance of point-accesses (e.g., materialization)

using dictionary-encoded data vs. uncompressed data for
columns that are point-accessed

• Quantification of losses in compression rate

27

Shared Domain Dictionary for Hyrise

• Order-preserving dictionaries (e.g. Hyrise, SAP HANA)
– inefficient mapping structures for cross table operations (e.g. JOIN)
– costly data re-encoding during merge

• Findings
– Join operations always between columns of the same domain
– Value-ranges of PK columns are typically incremental (but not FK)

• Idea
– A shared dictionary (encoding) for PK and FK of the same domain
– Direct join on (compressed) valueIDs
– No re-encoding during merge for PK/ FK columns.

• Task
– Implement a shared domain dictionary (SDD) as well as an adapted

merge and join operation
– Evaluate performance using HYRISE

28

The Tiering Run in Hyrise
• Build on an implemented prototype in Hyrise:

• Using given statistics about relevant data, tables are partitioned
according to the data’s relevance (i.e., the tiering run)

• Relevant data is allocated with malloc()
• Less relevant data is allocated on disk
• (paper available with more details)

• Tiering Run:

• Capture workload statistics and analyze
• Create views that define relevant data
• Use views to partition data and re-allocate

• Goal:

• Implement or improve necessary steps for the tiering run,

enable re-heating while providing existing database properties
as transactionality et cetera

29

Memory Mapped File Checkpointing

• A checkpoint is a consistent snapshot of the database
to speed up recovery

• In-memory databases with main/delta concept need to
write complete delta to storage for checkpoint

• Task: Implement checkpoint algorithm in Hyrise, by
allocating delta data structures on Memory Mapped files
on a Fusion ioDrive and perform a msync() of the file
for the checkpoint
– Working with newest FusionIO drive
– Measure performance implications
– Compare with ‘normal’ serialization of delta to storage

30

Transparent Allocator Mechanism 
for Hyrise

• Currently, custom allocator for non-volatile
memory exists, but needs integration

• Implement transparent allocator principle for
Hyrise, allowing to switch allocation strategies
transparently

31

Read-Only Replication
• Basic read-only replication functionality exists

in Hyrise, allowing for single master multiple
slave replication

• Implement k-safety replication mechanisms
and correct failover handling mechanisms

• Measure replication performance and
replication delay and quantify robustness of
replication mechanism

32Video: https://dl.dropboxusercontent.com/u/2529895/hyrise_hotstandby.mp4

Hyrise Frontend / Cluster
Manager

• Browser based JavaScript frontend
• Managing database settings and cluster
• Displaying live performance data
• Develop an HTML5 application that visualizes

heartbeats from Hyrise during the execution of
a TPC-C workload

• Showing multiple live charts visualizing query
performance and database statistics

• Take inspiration from: memSQL
33Video: https://dl.dropboxusercontent.com/u/2529895/mp-screencast%201080p.mov

http://www.memsql.com/ops

Hyrise SQL
• Implement basic SQL functionality for Hyrise,

including:
• Parsing end execution of (simple) SQL

queries
• Database connection handling to alleviate

current usage of evLoop and ODBC interface
building on top of open source unixOBDC

• Frontend integration allowing to formulate SQL
queries in browser based frontend

34

Hyrise Clustered Index
• Improve an existing implementation of a

“sorting merge” algorithm and integrate into
Hyrise Master Branch

• Performance Evaluation with real-world table
data

• Implications on select performance,
secondary index vs. clustered index,
aggregations by cluster attribute

35

HANA Primary Key Index
• Measure Insert & Select performance of

different primary-key implementations in SAP
HANA

• Evaluate memory footprint based on real-
world key columns

• Evaluate multiple datatypes

36

Support Enterprise Simulations
with IMDBs

• Enterprise simulations define changes on multidimensional hierarchical
data.

• How to support hypothetical queries?
• How to optimize hypothetical queries with groupings on various

granularity level?

37

Marginal Income

Net Sales Variable Costs

Sales VolumePrice per Unit Cost per Unit

**

-

Customer, Location, Product, Time(day) Customer, Location, Product, Time(day)

Customer, Location, Product, Time(day)Customer, Location, Product, Time(day) Product, Time(day)

Customer, Location, Product, Time(day)

Expenses

Operating Profit

-

Cost center, Time(month)

Time(month)

Thank you.

38

