Advanced Topics On
In-Memory Database Servers

Martin Boissier, Carsten Meyer
Martin Faust, David Schwalb

October 2014

“The Free Lunch Is Over”

10,000,000
Dual-Core Itanium 2 2 /
1,000,000 -
Intel CPU Trends A
(sources: Intel, Wikipedia, K. Olukotun)
20,000 - - - - -

)

8 Trassaton (00
O Choxh Spwec W)
AP Wy

® PedtfOock U9

1970 1975 1980 1985 19%0 1995 2000 2005 010

[Source: http://www.gotw.ca/publications/concurrency-ddj.htm)]

— Number of
transistors per CPU
Ncreases

— Clock freguency
stalls

Capacity vs. Speed (latency)

* Memory hierarchy:

— Capacity restricted by price/performance
- SRAM VS, DRAM (refreshing needed every 64ms)

— SRAM is very fast but very expensive

=> Memory is organized in hierarchies
 Fast but small memory on the top
» Slow but lots of memory at the bottom

technology latency
SRAM <1lns
SRAM ~1ns
SRAM <10ns
DRAM 100 ns
~ 10 000 000 ns

(10 ms)

size
bytes
KB

MB

GB

B

Data Processing

- In DBMS, on disk as well as in memory, data processing is
often:

* Not CPU bound
e But bandwidth bound
* /O Bottleneck”

= CPU could process data faster

* Memory Access:
e Not truly random (in the sense of constant latency)
e Data is read in blocks/cache lines
e bven if only parts of a block are requested

:>P0tentia| waste of bandwidth vi | v2 VaﬁVS v6 | vz | v8 [vo |vio

Cache Line 1 Cache Line 2

Memory Hierarchy

m Cache
Small but fast memory, which keeps data from
main memory for fast access. PU

=) Cache performance is crucial
m Similar to disk cache (e.g. buffer pool)

But: Caches are controlled by hardware.

m Cache hit
Data was found in the cache.
Fastest data access since no lower level is involved.

m Cache miss
Data was not found in the cache. CPU has to load data from
main memory into cache (miss penalty).

Locality is King!

* O Improve cache behavior
— Increase cache capacity
— EXploit locality

« Spatial: related data is close (nearby references are likely)
« [emporal: Re-use of data (repeat reference is likely)

* [0 Improve locality

— Non random access (e.g. scan, index traversal):
* |everage sequential access patterns
» Clustering data to a cache lines

* Partition to avoid cache line pollution
(e.g. vertical decomposition)

* Sgueeze more operations/information into a cache line
— Random access (hash join):
* Partition to fit in cache (cache-sized hash tables)

Motivation

— Hardware has changed
* B of main memory are available
» Cache sizes increased
* Multi-core CPU’s are present
* Memory bottleneck increased
* NUMA (and NUMA on a NUMA")
— Data/Workload
* [ables are wide and sparse
* |ots of set processing
— [raditional databases
* Optimized for write-intensive workloads
« Show bad L2 cache behavior

Problem Statement

— DBMS architecture has not changed over decades

— Redesign needed to handle the changes in:

* Hardware trends (CPU/cache/memory)

» Changed workload reguirements
* Data characteristics
e Data amount

Query engine

Buffer pool

| s S I R s—

—] —] —]
['I- [|r |_l|—' [— —

Traditional DBMS Architecture

Row- or Column-oriented Storage

SELECT *
FROM Sales Orders
WHERE Document Number = ‘95779216’

SELECT SUM(Order Value)
FROM Sales Orders
WHERE Document Date > 2009-01-20

Row Store

Column Store

-3

it Bl

Num Date To

Status Or
[)

Row Doc Doc Sold- Value Sales
1 Num Date To Status Org
- ==
Row =
2 A
> | |
3
Row
4
. Doc Doc Sold- Value Sales
| * ;

Question & Answer

* How to optimize an IMDB®

m Exploit sequential access, leverage locality
-> Column store
m Reduce I/O
m Compression
m Direct value access
-> Fixed-length (compression schemes)
m | ate Materialization

m Parallelize

10

Seminar Organization

Objective of the Seminar

* \Work on advanced database topics in the context of in-
memory databases (IMDB) with regards to enterprise data
management

Get to know characteristics of IMDBs
Understand the value of IMDBs for enterprise computing

* Learn how to work scientifically

Fully understand your topic and define the objectives of your work
Propose a contribution in the area of your topic

Quantitatively demonstrate the superiority of your solution
Compare your work to existing related work

Write down your contribution so that others can understand and
reproduce your results

Seminar schedule

Today (14.10.): Overview of topics, general introduction

Thursday (16.10.): In-memory DB Basics and Topics Q&A (if you're
interested)

21.10.: Send your priorities for topics to lecturers
(martin.boissier@hpi.de)

Planned Schedule

— 09./11.12.2014: Mid-term presentation
— 10./12.02.2015: Final presentation (tbc)
— 20.02.2015: Peer Reviewing (tbc)

— 06.03.2015: Paper hand-in (tbc)

Throughout the seminar: individual coaching by teaching staff
Meetings (Room V-2.16)

Final Presentation

—\Why a final presentation”
« Show your ideas and their relevance to others

* Explain your starting point and how you evolved your
idea /implementation

* Present your implementation, explain your
Implementations properties

« Sell your contribution! Why does your work gualify as
rocket science”

Peer Reviewing

— Each student will be assigned a colleague’s paper
version (~2 weeks before paper hand-in)
* Review will be graded
» Annotate PDF for easy fixes as typos

« Short summary (2-3 pages in \Word) about the paper’s
content and notes to the author how to further improve
nis paper

— Expected to be done in the week from Feb 16 to
~eb 20

Final Documentation

* 6-8 pages, I[EEE format [1]

* Suggested Content: Abstract, Introduction into the
topic, Related work, Implementation, Experiment/
Results, Interpretation, Future VWork

* Important!

* Related work needs to be cited
« Quantify your ideas / solutions with measurements

« All experiments need to be reproducible (code, input

data) and the raw data to the experiment results must
e provided

[1] http://www.ieee.org/conferences_events/conferences/publishing/templates.htmi

Grading

e O ECTS

* Grading:
* 30% Presentations (Mid-term 10% / Final 20%)
* 30% Results

* 30% Written documentation (Paper)
* 10% Peer Review

Topic Assignment

* Each participant sends list of top three topics
N order of preference to lecturers by 21.10.

* Jopics are assigned based on preferences
and skills by 24.10.

HYRISE

Open source IMDB
Hosted at https://github.com/hyrise
C++ 11

Query Interface: Query plan or stored
orocedures

Recommended Papers for Intro

* Plattner, VLDB 2014: The Impact of Columnar In-
Memory Databases on Enterprise Systems

* Grund et al. VLDB 2010: HYRISE—A Main Memory
Hybrid Storage Engine

* Krueger et al. VLDB 2012: Fast Updates on Read-
Optimized Databases Using Multi-Core CPUSs

Topics

TPC-(E|C) Workload Analysis

* Project:

* Are synthetical stanaardized benchmarks really that far off the
the truth?

* |2] examined an enterprise system and found that TPC-C does
not reflect the properties very well

» TPC-E is a successor of TPC-C and appears to be more
realistic

* In parallel, we have an SQL workload trace of a large productive
enterprise system (7 TB of data, 50 Million queries)

* How do both TPC-* suites and their SQL workload traces
compare to a real SQL workload trace of an enterprise system??

[2] Plattner, The Impact of Columnar In-Memory Databases on Enterprise Systems, VLDB 2014

TPC-(E|C) Workload Analysis

* This project is not a Hyrise project, it's more an analytical
challenge to quantify the impacts of certain workloads on IMDBs

 Tasks:

o Create TPC-C and TPC-E SQL workload traces

* Find main characteristics (e.g., characteristics used related
WOrK)

* Analyze each workload thoroughly and compare with the
others

 Goal:

* Thorough comparison of a productive enterprise system with
synthetical enterprise benchmarks

Simplified Data Eviction
for Hyrise

* Project:
* Workload analyses have revealed that large parts of a database are
rarely or never accessed
* The idea: while retaining the performance superiority of IMDBS, find
columns that are never scanned and only accessed for point-accesses
* These “cold” columns are swapped/evicted to disk

* Implement a data eviction strateqy with minimal implementation effort
and minimal performance impact (i.e., a “simplified data eviction’)

majority I
tuple accesses

Exemplary visualization of a table using
an simplified eviction approach.
Scanned columns are kept in memary,
whie other columns are evicted and
only partially cached for point accesses.

1 11
accessed in accessed only for
qguery evaluation tuple reconstruction

Simplified Data Eviction
for Hyrise

* Tasks:
» Adapt Hyrise in order to use EMT's malloc () to allocate data on disk

« EMT provides an automated swapping and caching of files (“mmap
done right”) for their malloc () implementation

* The disk will probably be a prototypical PCle-connected Phase-
Change Memory (PCM) device with 6 microseconds access times
(16x faster than PCle NAND SSD flash)

* Goal:

* Evaluate a simplified data eviction strategy and its applicability using a
recent prototype of a PCM device

* Further evaluate how much data can be evicted while e.q. retaining
90% of the original performance

Integrating Uncompressed
Attributes in Hyrise

* Project:

* Dictionary-Encoding has many advantages for scanning, range
gueries, and more

* But one major shortcoming is the materialization of tuples
* for each attribute to materialize two accesses have to be performed:
* 1.) access 1o the attribute vector to get the valuelD
» 2.) lookup of the valuelD in the dictionary

* This overnead can be acceptable using main memory but is a
major performance bottleneck for columns allocated on disk

* [f we do not compress non-scanned columns, how much
performance can we gain for materializations (and what is the
compression 1oss)?

Integrating Uncompressed
Attributes in Hyrise

 Tasks:

* Build on the already existing (but unfinished) implementation
of uncompressed columns in Hyrise

* Implement missing interfaces & fix current issues when using
uncompressed columns

* Measure performance impact
* Goal:

* Evaluate performance of point-accesses (e.q., materialization)
using dictionary-encoded data vs. uncompressed aata for
columns that are point-accessed

» Quantification of losses in compression rate

Shared Domain Dictionary for Hyrise

Order-preserving dictionaries (e.g. Hyrise, SAP HANA)
— Inefficient mapping structures for cross table operations (e.g. JOIN)
— costly data re-encoding during merge
FINdings
— Join operations always between columns of the same domain
— Value-ranges of PK columns are typically incremental (but not FK)

ldea
— A shared dictionary (encoding) for PK and FK of the same domain
— Direct join on (compressed) valuelDs
— No re-encoding during merge for PK/ FK columns.

e Jask

— Implement a shared domain dictionary (SDD) as well as an adapted
merge and join operation

— Evaluate performance using HYRISE

The Tiering Run in Hyrise

* Build on an implemented prototype in Hyrise:

* Using given statistics about relevant data, tables are partitioned
according to the data’s relevance (i.e., the tiering run)

* Relevant data is allocated with malloc()

* Less relevant data is allocated on disk

* (paper available with more detalils)
* Tiering Run:

« Capture workload statistics and analyze

* Create views that define relevant data

* Use views to partition data and re-allocate
 Goal:

* Implement or improve necessary steps for the tiering run,
enable re-heating while providing existing database properties
as transactionality et cetera

Memory Mapped File Checkpointing

* A checkpoint is a consistent snapshot of the datalbase
to speed up recovery

* [n-memory databases with main/delta concept need to
write complete delta to storage for checkpoint

* Jask: Implement checkpoint algorithm in Hyrise, by
allocating delta data structures on Memory Mapped files
on a Fusion ioDrive and perform a msync () of the file

for the checkpoint
— Working with newest FusionlO drive
— Measure performance implications
— Compare with ‘'normal’ serialization of delta to storage

Transparent Allocator Mechanism

for Hyrise
« Currently, custom allocator for non-volatile

memory exists,
* Implement trans
—yrise, allowing
transparently

out Needs integration

parent allocator principle for
to switch allocation strategies

Read-Only Replication

* Basic read-only replication functionality exists
N Hyrise, allowing for single master multiple
slave replication

* Implement k-safety replication mechanisms
and correct failover handling mechanisms

* Measure replication performance and
replication delay and guantity robustness of
replication mechanism

Video: https://dl.dropboxusercontent.com/u/2529895/hyrise_hotstandby.mp4

Hyrise Frontend / Cluster
Manager

* Browser based Javascript frontend
* Managing datalbase settings and cluster
* Displaying live performance data

* Develop an HIMLS application that visualizes
heartbeats from Hyrise during the execution of
a 1PC-C workloao

« Showing multiple live charts visualizing query
oerformance and datalbase statistics

* Take inspiration from: memsQL

Video: https://dl.dropboxusercontent.com/u/2529895/mp-screencast%201080p.mov

http://www.memsql.com/ops

Hyrise SQL

* Implement basic SQL functionality for Hyrise,
iNcluding:
* Parsing end execution of (simple) SQL
gueries

* Database connection handling to alleviate
current usage of evi.oop and ODBC interface
building on top of open source unixOBDC

» Frontend integration allowing to formulate SQL
gueries in browser based frontend

Hyrise Clustered Index

* Improve an existing iImplementation of a
‘sorting merge” algorithm and integrate into
Hyrise Master Branch

e Performance Evaluation with real-world table
data

* Implications on select performance,
secondary index vs. clustered index,
aggregations by cluster attribute

HANA Primary Key Index

* Measure Insert & Select performance of

different primary-key implementations in SAP
HANA

* Bvaluate memory footprint based on real-
world key columns

* bBvaluate multiple datatypes

Support Enterprise Simulations
with IMDBs

* Enterprise simulations define changes on multidimensional hierarchical
data. | Operating Profit |

| Marginal Income | Expenses

Customer, Location, Product, Time(day)

Cost center, Time(month)

Net Sales Variable Costs
Customer, Location, Product, Time(day) Customer, Location, Product, Time(day)
Price per Unit Sales Volume Cost per Unit
Customer, Location, Product, Time(day) Customer, Location, Product, Time(day) Product, Time(day)

* How to support hypothetical queries”?

* How to optimize hypothetical queries with groupings on various
granularity level?

Thank you.

