
Research and Implementation of Database Concepts
Kickoff
Martin Boissier, Thomas Bodner, Stefan Halfpap, Jan Koßmann, Dr. Michael Perscheid,
Dr. Daniel Ritter, Marcel Weisgut
Enterprise Platform and Integration Concepts

EPIC Teaching Activities

3

Winter Term Summer Term

Bachelor

Scalable Software Engineering
(Lecture, 5th term, revised SWT II)

Foundation of Business Software
(Lecture, 4th term)

Bachelor’s Project (5th and 6th term)
Online Marketplace Simulation: A Testbed for Self-Learning Agents

Master

Trends and Concepts in the Software Industry II
(Seminar with Prof. Plattner and target-actual comparison of enterprise

software at customers)

Trends and Concepts in the Software Industry I
(Lecture with Prof. Plattner and industry partners)

Trends and Concepts in the Software Industry III
(Optional Project Seminar)

Data-driven Decision Support
(Lecture and Project)

Causal Inference
(Lecture and Project)

Research and Implementation of Database Concepts
(Research Seminar)

Build Your Own Database
(Lecture and Project)

Master Projects

Data-driven Decision Support Autonomous Data Management

What to expect?
• Better understand how database systems work

• Learn how to familiarize yourself with a larger code base

• Work in small teams on a larger project

• Gain experience in systems development

• Improve your C++(20) skills

• Research experience

• Related work, Conduct experiments,
visualize results, communicate findings

4

Same as in the
Develop your own Database
(DYOD) seminar

Less of a focus than in DYOD

New in this seminar

How does this relate to Develop your own Database?
• We found that thesis students often have little experience in communicating their results

• This seminar is supposed to be a „thesis light“, including literature research,
implementation, designing and executing experiments, and presenting the results in
speech and writing

• It is both suitable for those students who have taken DYOD and for those who have not

• BUT: No weekly meetings with the entire group, thus no DBMS/C++ introduction

• Previous experience, e.g, from Trends and Concepts or the DBS lectures is helpful

• DYOD slides and sprint documents are available if you want to read up on details

• More research-oriented, i.e., the projects are proposals, not full specifications

5

https://hpi.de/plattner/teaching/archive/summer-term-2021/develop-your-own-database.html

Who are we?

6

Cloud Data Management

Thomas Bodner

Compression

Martin Boissier

In-Memory, Cloud DB &
Next Gen. Hardware

Daniel Ritter

Data Management on
Modern Storage Technol.

Marcel Weisgut

Unsupervised DB
Optimization

Jan Kossmann

Query-Driven
Data Allocation

Stefan Halfpap

Hyrise
• An In-Memory Storage Engine for

Hybrid Transactional and Analytical
Processing

• HYRISE is a research database for the
systematic evaluation of new
concepts for hybrid transactional and
analytical data processing on modern
hardware

• Developed with and by HPI students

• Open Source (https://git.io/hyrise)

• System paper published at EDBT’19

7

• Modern, documented C++20 code
base, 93% test coverage

• SQL interface, PostgreSQL network
protocol

• Easy to extend via plug-in interface

• Supported benchmarks: TPC-
(C|H|DS), JCC-H, Join-Order

• Runs on Intel, AMD, IBM Mainframe,
ARM, Apple M1, Raspberry PI

https://git.io/hyrise

Hyrise in three* pictures

8

Skyrise
• A serverless query processor for interactive in-situ analytics on cold data

• Serverless: Built on function as a service platforms and object storage

• (SQL) query processor: Relational query execution and optimization

• Interactive: Aims at query latencies in seconds

• In-situ: Processes data without upfront load/align/sort/compress/index/..(ing)

• Cold data: Infrequently accessed TB/PB-scale historical, IoT and Web data

• Initiated in fall 2019 to explore modern cloud infrastructure for databases

• Exploits scalability, elasticity and reliability of the cloud, deals with its challenges

• Modern C++ (17), documented, tested (> 90% coverage) codebase

• Just starting out, plenty of research ahead!

• Vision paper published at VLDB ’20

• 3x Master’s theses, 2x seminar papers

9T. Bodner. Elastic Query Processing on Function as a Service Platforms. VLDB 2020 PhD Workshop.

Catalog Service

(Glue)

Storage Service

(S3)

Serverless Compute Service

(Lambda)

Conventional Compute Service

(EC2)

Coordinator

Scheduler

Worker

Operators

Compiler

Plans

Base Tables

Intermediates

Pricing Service

(Price List)

Prices

Monitoring Services

(CloudWatch, X-Ray, SQS)

Logs

R ▼

R ▶

R ▶

R ▶

R ▼

Metadata

Scheduler

Final Results

Comparison

10

Hyrise Skyrise

Target workload HTAP on hot to warm data Interactive OLAP on cold data

Dataset size sweetspot Gigabytes to a few Terabytes Gigabytes to (hundreds of) Terabytes

Architecture Scale-up within large bare metal machines Independent scale-out of decoupled
FaaS-based compute and cloud object storage

Pricing model Pay upfront for machine and provisioning,
pay as you go for maintenance and energy

Cloud object storage is $23/TB/month,
pay as you go per query, as an example
TPC-H Q1 @ SF1000 is currently $0.16

Research Topics
1. In-Memory Pipelined Query Execution

2. Analyzing Traces of Serverless Query Execution

3. Incorporating Distributed Plans into Query Optimization

4. Learned Indexes on Dynamic Data

5. Efficient and Accurate Histograms

6. Database Node Placement in the Cloud

7. Partial Indexes

8. Dynamic Data Placement Algorithms

11

s3://skyrise-lineitem/sf10000
 {23,479 objects}

ImportOperatorProxy

FilterOperatorProxy

ProjectionOperatorProxy

AggregateOperatorProxy

s3://skyrise-results/final/
 tpch_q1.csv

ExportOperatorProxy

23,479 objects

Partial Merge

DataExchangeOperatorProxy

AggregateOperatorProxy

Partial Merge

DataExchangeOperatorProxy

Full Merge

DataExchangeOperatorProxy

AggregateOperatorProxy

ProjectionOperatorProxy

SortOperatorProxy

AliasOperatorProxy

AggregateOperatorProxy

841 objects

29 objects

1 object

1 object

• Initially, Skyrise adopted Hyrise‘s materialized execution model
• Each operator consumes its input all at once and then produces its output all at once

• Easy to reason about and only option for cross-worker processing

• Intermediate query execution results may exihibit large footprint

• No opportunity for parallelism along query pipelines of operators

• We study a hybrid materialized/pipelined execution model

• Workers have little memory capacity and run single query pipeline each

• Intermediates are materialized across and pipelined within workers

• Extend operator set (import, filter, projection, ..) to work on „chunks“

• Analyze worker main memory usage and query pipeline runtimes

• Prior experience with cloud services beneficial

In-Memory Pipelined Query Execution

13P. A. Boncz, M. Zukowski, N. Nes. MonetDB/X100: Hyper-Pipelining Query Execution. CIDR 2005.
M. Perron, R. C. Fernandez, D. DeWitt, S. Madden. Starling: A Scalable Query Engine on Cloud Function. SIGMOD 2020.

J. Menzler. Master’s Thesis
2021.

Analyzing Traces of Serverless Query Execution

• Skyrise executes queries in parallel across cloud functions
• Cloud functions run pipelines of query operators

• Concurrency to several thousand function invocations

• Skyrise inherits properties of FaaS platform, i.e.,
elastic scalability, reliability, performance and security
isolation across/within queries

• Skyrise also inherits the observability issue,
rendering debugging and profiling cumbersome

• Skyrise collects a multitude of runtime data

• Operator and operator step transitions, timings, throughput, costs, ..

• Aggregate data and make it consumable for debugging or profiling

• Prior experience with cloud (function) services benefitial

14F. Engel. Straggler Mitigation in Distributed Query Execution on Cloud Functions. Master’s Thesis 2021.
https://www.monetdb.org/Documentation/MonetDBInternals/MALProfiler

https://www.monetdb.org/Documentation/MonetDBInternals/MALProfiler

Partial Aggregation
Rule

50 objects

.

.

.

COUNT(*)

AggregateOperatorProxy

50 objects

.

.

.

COUNT(*)
(Partial Aggregation)

AggregateOperatorProxy

SUM(*)

AggregateOperatorProxy

50 objects

50 objects

.

.

.

COUNT(*)
(Partial Aggregation)

AggregateOperatorProxy

Full Merge

DataExchangeOperatorProxy

50 objects

SUM(*)

AggregateOperatorProxy

1 object

Pipeline Preparation
Rule

Incorporating Distributed Plans into Query Optimization

• FaaS Platforms offer massive parallelism (>10,000s of workers)

• To exploit underlying parallelism, Skyrise optimizer must be
aware of data partitioning, distribution, and shuffling

• Extend rule sets for both logical and physical query plans,
for now based on heuristics

• Systematically evaluate individual effects and interplay

• Prior experience with cloud services benefitial

15J. Menzler. Query Compilation for Distributed Execution with Cloud Functions. Master’s Thesis 2021.
J. Zhou. P. Larson, R. Chaiken. Incorporating Partitioning and Parallel Plans into the SCOPE Optimizer. ICDE 2010.

.

.

.

GroupBy: a, b
AVG(c)

AggregateNode

Average Rewrite
Rule

a, b, SUM(c) / COUNT(c)

ProjectionNode

a, b, AVG(c)

AliasNode

.

.

.

GroupBy: a, b
SUM(c), COUNT(c)

AggregateNode

Learned Indexes on Dynamic Data
• Learned indexes (LIs) with better performance

than common tree indexes

• LIs supporting dynamic data: PGM, ALEX, LIPP
• Datasets (from ALEX paper + new String data)

• Assessment criteria: index lookup times,
throughput, size; construction time + memory

• Tasks:
• Understand + run dynamic, open source LIs
• Reproduce results on Integers (compare btree)
• Extend for further data types (e.g. Strings à

INT)
• Select / generate data type-specific datasets
• Benchmark on String datasets
• (Stretch: integrate LIs into Hyrise + benchmark)

• Learning potentials:
• ML-techniques in databases
• Indexing data
• Benchmarking
• (Hyrise index integration)

16Wu, J., Zhang, Y., Chen, S., Wang, J., Chen, Y., & Xing, C. Updatable Learned Index with Precise Positions. PVLDB 14(8): 1276-1288 (2021)
Crotty A. Hist-Tree: Those Who Ignore It Are Doomed to Learn. CIDR (2021)

Efficient and Accurate Histograms
Motivation

• Histograms are database statistics that allow the query optimizer to find
efficient and fast query plans

• Improving the accuracy of histograms can have a large positive impact as
inefficient query plans are often recognized and avoided

• However, creating and maintaining histograms can be expensive

Current Situation in Hyrise

• Hyrise builds histograms for the entire column

• Building histograms for a +1TB data set can take hours, even with 240 cores

• The currently used histograms can be inaccurate when data is heavily skewed
(often the case in the real world)

17

Efficient and Accurate Histograms

Implementation

• Implementation of text book histograms (e.g., equi-
width) and max-diff histogram [Hist96]

• Creation of histograms using stable sampling

• Efficient implementation for data sets > 1TB on large
server (240 cores and 8 sockets)

18
[Hist96] Viswanath Poosala, Yannis E. Ioannidis, Peter J. Haas, Eugene J. Shekita:
Improved Histograms for Selectivity Estimation of Range Predicates. SIGMOD 1996: 294-305

Evaluation

• Evaluation on synthetic (TPC-H) and real-world
(IMDB movie data) data sets

• What is the accuracy of the evaluated
histograms?

• How efficient is their creation?

Expected Results

• Thorough implementation and evaluation of
different histograms types

• For the histogram type that performs best: efficient
and scalable implementation that can ideally find its
way to the Hyrise main branch

Goal

• Enable Hyrise to efficiently create histograms for large
data sets

• Improve cardinality estimations by using skew-aware
histogram types

Database Node Placement in the Cloud

19

■ Motivation: Database systems are increasingly deployed in the cloud

■ Problem: Optimize the assignment of (database system) VMs to physical resources under constraints

□ Problem size: hundreds of servers and thousands of VMs

□ Exemplary VM settings:
#cores & speed, RAM, storage affinity & anti-affinity rules

□ Exemplary server settings:
#cores & speed, RAM, connectivity

■ Task: Implement and evaluate allocation algorithms (greedy vs. linear programming based)

■ Learning goals (specific to this topic):

□ Approaches for solving optimization problems, in particular, linear programming

□ Characteristics of the architecture of cloud data centers

data center N
data center 1

server 1

server S1
● ●

sw
itch

storage

Partial Indexes

20

Memory Consumption Issue

Indexing all tuples of a table

results in a high memory

footprint.

Partial Indexes

21

Memory Consumption Issue

Indexing all tuples of a table

results in a high memory

footprint.

Scalability Issue

The number of lookup

operations grows linearly with

the number of existing partitions.

Partial Indexes

22

Memory Consumption Issue

Indexing all tuples of a table

results in a high memory

footprint.

Partial Indexing

• Store index entries of multiple partitions

in one global data structure.

• Only a subset of the partitions is indexed.

Scalability Issue

The number of lookup

operations grows linearly with

the number of existing partitions.

Partial Indexes
Implementation

• (Partial hash index) – majority implemented in DYOD 21

• Partial B-Tree index

• Index scan operator (currently not compatible with PI)

• Index join operator: fallback join for non-indexed partitions

• Micro benchmarks

• Optimizer rules to use index scans/joins

23

Evaluation

• Latencies of index lookup operations

• Latencies of index maintenance operations

• Index memory consumption

• Using various benchmarks (micro, TPC-H, JCC-H)

• Performance effects of implemented/modified optimizer rules

Expected Results

• Index implementations (hash and B-Tree)

• Partial index compatible index scan implementation

• Partial index compatible index join implementation

• Optimizer rules to use index scans/joins

• Experimental performance evaluation of partial indexes in
comparison to global indexes (used in scans and joins)

• Experimental performance evaluation of Hyrise using the new
optimizer rules (using TPC-H and JCC-H)

Dynamic Data Placement Algorithms
Motivation

• Storing data in DRAM allows significantly lower access latencies compared to other data tiers, such as SSDs or HDDs

• DRAM in main-memory databases is limited:
“[…] the amount of data to be processed keeps growing while DRAM capacity does not” [1]

• To tackle this issue, data can be placed on different data tiers, such as SSDs.

Guiding Questions

• Which data (structures) should be placed on the slower data tier?

• Given a DRAM budget and a workload, what is an optimal data placement?

24[1] Korolija et al. 2021. Farview: Disaggregated Memory with Operator Off-loading for Database Engines. CoRR

Dynamic Data Placement Algorithms

25

TiersHyrise automatic
tiering

Segment a Segment b

Chunk #1

Segment a

Chunk #N

Segment b

… …

Column T.a Column T.b

Hyrise table T

DRAM

SSD

ChN–T.a

Ch1–T.a

Ch1–T.b

ChN–T.b

tie
rin

g
pl

ug
in

SAC: 100

SAC: 3

SAC: 50

SAC: 49

<<
sw

ap
>>

<<
??

>>Segment access counter (SAC)
heatmap (low to high)

placement costs?

<tier>-CAP: X GB,
<tier>-COST: Y USD

Dynamic Data Placement Algorithms
Implementation

• Algorithms that determine the optimum data placement for a
given workload, having DRAM or SSD as the data tiers
(as a Hyrise plugin).

• Micro benchmarks for manual data placement experiments.

26

Evaluation

• Manual data placements with different shares of
segments stored on DRAM/SSD

• TPC-H performance with (a) all segments are stored in
main memory, (b) all segments stored on SSD, and (c)
segments stored on both DRAM and SSD, according to the
developed algorithms

• Metrics: query latencies, memory consumption

• Compare the developed algorithms with a provided
reference algorithm

Expected Results

• Different data placement algorithm implementations

• Experimental performance evaluation with segments manually

placed on DRAM/SSD

• Experimental performance eval. of the data placement

algorithms compared to a reference algorithm

Timeline

27

W
ee

kl
y

m
ee

tin
gs

 w
ith

 a
dv

iso
rs

25 Oct 2021
Kickoff

Between 1 and 5 Nov 2021
First meeting with your supervisor(s) based on individual arrangement

31 Oct 2021 by end of day
Submit (your group and) topic preferences

1 Nov 2021
Announcement of topic assignments

28 Feb 2022
Final presentations – 20 min + 10 min Q&A

20 Mar 2022
Submission of written report (4 to 8 pages)

Administration
• Specialization areas:

• ITSE: BPET, OSIS, ITSE-Analyse, ITSE-Maintenance

• DATA: SCAL

• Official deadline to register was 22 October

• Grading

• 50% project result and presentation

• 40% scientific report (4-8 pages ACM format, depending on group size)

• 10% personal engagement

29

Bringing groups and topics together
• You are welcome to hang out in this Zoom call after the introduction to figure out groups

• If you have found a topic (and a group), please mail Jan.Kossmann@hpi.de and
Daniel.Ritter@guest.hpi.de

• Include three (or more) topic preferences

• The assignment algorithm is strategy-proof ;)

• If you have any questions or are still looking for a group partner, please mail us, too

30Background reading: https://en.wikipedia.org/wiki/Strategyproofness
https://en.wikipedia.org/wiki/Gale%E2%80%93Shapley_algorithm

mailto:Jan.Kossmann@hpi.de
mailto:Daniel.Ritter@guest.hpi.de
https://en.wikipedia.org/wiki/Strategyproofness
https://en.wikipedia.org/wiki/Gale%E2%80%93Shapley_algorithm

