

Causal Inference Theory and Applications in Enterprise Computing

Dr. Matthias Uflacker, Johannes Huegle, Christopher Schmidt April 10, 2019 Agenda April 10, 2019

- **1.** Causal Inference in a Nutshell
- **2.** Causal Inference in Application
- **3.** Introduction to Research Topics
- 4. Further Reading

1. Causal Inference in a Nutshell

1. Causal Inference in a Nutshell Recap: Summary

Traditional statistics, machine learning, etc.

- About associations
- Model the distribution of the data
- Predict given observations

Causal Inference

- About causation
- Model the mechanism that generates the data
- Predict results of interventions

Causal Inference Theory and Applications in Enterprise Computing

Uflacker, Huegle, Schmidt

1. Causal Inference in a Nutshell Recap: Concept

lemons?

Causal Inference Theory and Applications in Enterprise Computing

Uflacker, Huegle, Schmidt

Slide 5

E.g., what is the sailors' probability of recovery when **we see** a treatment with lemons?

Q(P) = P(recovery | lemons)

Q(G) = P(recovery|do(lemons))

recovery if **we do** treat them with

1. Causal Inference in a Nutshell Recap: Inference Procedure

Data Causal Structure Learning

Opportunities

Examples

2. Causal Inference in Application

2. Causal Inference in Application Causal Relationships (I/II)

"What are the principal structural properties of genetic control programs of the cell's biological processes?"

Causal Inference $P(X_3 | do(X_1 = x_1), do(X_2 = x_2))$ $P(X_4 | do(X_2 = x_2))$

Functional Systems $f_1(x_1, x_2) = e^{\alpha x_1} + \beta x_2 + \gamma$ $f_2(x_3, x_4) = \dots$

Causal Inference Theory and Applications in Enterprise Computing

Uflacker, Huegle, Schmidt

2. Causal Inference in Application Causal Relationships (II/II)

Produktionsmonitor

BVUG

LHRL

LHRL

"What are causes or effects of errors in a complex automotive production process?"

STHR

 $P(X_4 | do(X_2 = x_2))$

Functional Systems

 $f_1(x_1, x_2) = e^{\alpha x_1} + \beta x_2 + \gamma$

8///5 STIR STIL BHTS FKFI Order PIN: 3020161031438 Standard Engin No Catalita Dadio Variant ID: 10000017 Predictions FTLR All Groups Underbody 2 Body Assembly 1 Body Assembly 2 Body Assembly 3 Attachments Einish Alarm Probability Fin InlineMeasurement 29% RVRE RVLI Calculation Running Discharge after Attachments 18% Att 7081Base Position Not 6% RVLR 33 Att3 Schranktemperatur 3% Fin Movement active 1% Previous 1 2 Next 7:29 7:24 AM 7:25 AM 7:26 AM 7:27 AM 7:28 AM Fri 22 January uit Data incomplete At 1 Lesevorsans fahio 10% Bolting not Okay At 1_Lesovorgang fahipea 1% Att Technique Discharge > ARD 3 Fault in Lift aming Grease R04 Att Quality Measurement Faulty R01

Fr. 22.01.16 - 07:27:00

Ø

Platz 0502 111 -

F1A1 Status 700

35

2

Causal Inference Theory and Applications in Enterprise Computing

Uflacker, Huegle, Schmidt

2. Causal Inference in Application Probabilistic Inference (I/II)

"Given current error occurring in an automotive production process, what effect is likely?"

Causal Inference Theory and Applications in Enterprise Computing

Uflacker, Huegle, Schmidt

2. Causal Inference in Application Probabilistic Inference (II/II)

ΗP

Hasso Plattner

Institut

2. Causal Inference in Application Causal Inference

"What is the causal effect behind the complex causal structures in a production process?"

Functional Systems $f_1(x_1, x_2) = e^{\alpha x_1} + \beta x_2 + \gamma$

Causal Inference Theory and Applications in Enterprise Computing

Uflacker, Huegle, Schmidt

Slide 12

4

No. 0 30°S

Causal Inference Theory and Applications in Enterprise Computing

Uflacker, Huegle, Schmidt

Slide 13

Runge et. al. (2015). Identifying causal gateways and mediators in complex spatio-temporal systems.

2. Causal Inference in Application **Functional Systems**

"What are the time lags within climate processes that generate local air pressures ?"

Probabilistic Inference $P(X_3 | X_1 = x_1, X_2 = x_2)$ $P(X_4 | X_2 = x_2)$

2. Causal Inference in Application Lecture Example

Scope

- Mathematical concepts determine a conceptual causal inference procedure
- A simple example accompanies our lecture
 - o will be extended when needed
 - o you are invited to work in a personal notebook

Scenario: The causal relationships in a cooling house

Content

- 1. Introduction to R
- 2. Use Case
- 3. Causal Graphical Models
- 4. Conditional Independence Testing
- 5. Constraint-based Causal Structure Learning
- 6. Causal Inference on Causal Graphs
- 7. Further Opportunities of Causal Structures

Causal Inference Theory and Applications in Enterprise Computing

Uflacker, Huegle, Schmidt

2. Causal Inference in Application Jupyter Notebook

Causal Inference - Theory and Applications

In our lecture Causal Inference - Theory and Applications, we look at the mathematical concepts that build the basis of causal inference.

Causal Inference in Application

We now look how these concepts are applied on observational data to derive causal relationships and how to use the do-operator to receive an estimation of the causal effect. In order to give you an overview on therelated procedure, this notebook gives a step by step approach in the context of a simple cooling house example.

Table of Contents

Introduction to R

 A. Getting Started
 B. Some Examples

 Use Case

 A. Description

Causal Inference Theory and Applications in Enterprise Computing

Uflacker, Huegle, Schmidt

2. Causal Inference in Application Access Information

http://vm-k8s-ctrl.eaalab.hpi.uni-potsdam.de:31157/

Procedure

- 1. Login via LDAP (standard HPI credentials)
- 2. Send email to christopher.schmidt@hpi.de
- 3. We copy you the Master Notebook into your user space for you to work with
- 4. Adapt and work in your own notebooks
- 5. Let us know if you require new packages or if anything does not work, as intended

Hasso Plattner

Institut

Uflacker, Huegle, Schmidt

3. Introduction to Research Topics

3. Introduction to Research Topics Overview on Topics

Data, Distributions, Independence

Work on topics in the application of learnt techniques beyond the examples given in this lecture (e.g., heterogeneous data distributions)

Causal Structure-Learning

Work on topics in the context of performance improvements of causal structure learning algorithms (e.g., hardware acceleration)

Applications Scenarios

Work on challenges and opportunities in the application of causal inference techniques on real-world data (e.g., industrial manufacturing)

Causal Inference Theory and Applications in Enterprise Computing

Uflacker, Huegle, Schmidt

3. Introduction to Research Topics Topic Application

How to work on a topic?

- 1. Understand theoretic basis and your selected topic
- 2. Work on implementation
- 3. Present results
- 4. Write scientific report in a review process

How to apply for a topic?

- Build groups of around three students
- □ Send prioritized list of top 3 topics to <u>Johannes Huegle</u> until: *Fri April 26, 11.59 PM*
- □ Topic Assignments: Tue April 30, 9:00 AM

Schmidt

Causal Inference Theory and Applications

in Enterprise Computing Uflacker, Huegle,

RStudio			×
File Edit Code View Project Workspace Plots Tools Help			
💽 📲 🗲 🔚 🔒 🗁 Go to file/function			🖄 Project: (None) 👻
diamondPricing.R* × formatPlot.R × diamonds ×	Workspace	History	
🗇 🗇 🔒 🗐 Source on Save 🛛 💁 🏄 Source 🔹 🗐	🕣 Load 🕶	🕞 Save 🕶 📑 Import Dataset 👻 🎻 Clear All	G
1 library(ggplot2)	Data		
2 source("plots/formatPlot.R")	diamonds	53940 obs. of 10 variables	
4 view(diamonds)	Values		
5 summary(diamonds)	aveSize	0.7979	
o 7 summary(diamonds\$price)	clarity	character[8]	
4 Eurther Reading scarat), 4)	р	ggplot[8]	
10 11 p <- qplot(carat, price,			
		ot(plot, size)	
12 data=diamonds, color=clarity, 13 xlab="carat" ylab="Price"			
14 main="Diamond Pricing")			
15		a Packages Help	
		🖕 🐟 🗶 Zoom 🔚 Export 🗸 🍳 🞻 Clear All	
		Diamond Pricing	

3. Further Reading Programming

R

- Torfs et. al. (2014), <u>A (very) short introduction to R.</u>
- Venables et. al. (2018), <u>An Introduction to R- Notes on R: A Programming</u> <u>Environment for Data Analysis and Graphics</u>.
- Kalisch et. al. (2017), <u>Package `pcalg'</u>.
- Kalisch et. al. (2017), <u>Causal Inference using Graphical Models with the</u> <u>Package pcalg</u>, Journal of Statistical Software.
- Scutari (2007), Learning Bayesian Networks with the bnlearn R Package.

Causal Inference Theory and Applications in Enterprise Computing

Uflacker, Huegle, Schmidt

Thank you for your attention!