

Agenda

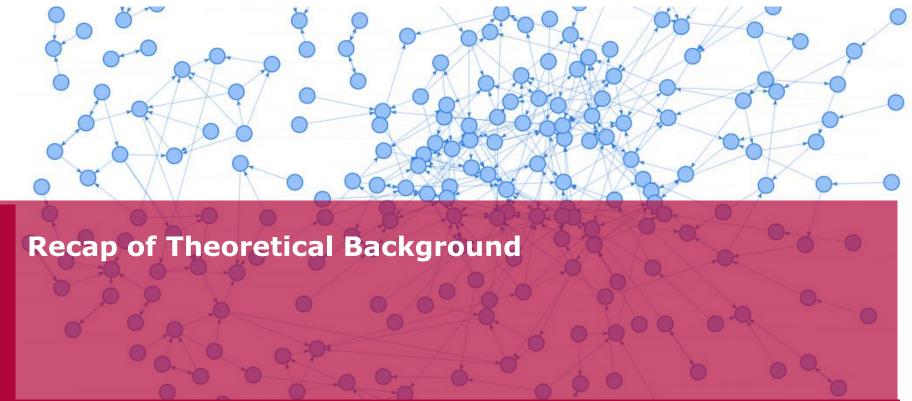
June 04, 2019

- Recap of Theoretical Background
- Introduction to the do-Calculus of Intervention
 - 1. Introduction
 - The Calculus of Intervention
 - 3. Estimating Causal Effects
 - 4. Causal Inference in Application
 - 5. Excursion Causal Functional System

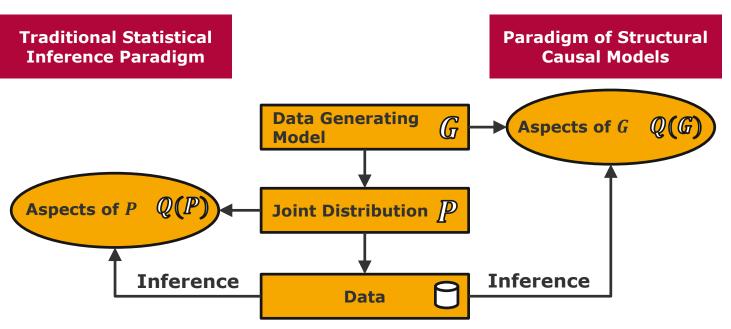
Causal Inference Theory and Applications in Enterprise Computing

Uflacker, Huegle, Schmidt

IT Systems Engineering | Universität Potsdam



Causal Inference in a Nutshell



E.g., what is the sailors' probability of recovery when **we see** a treatment with lemons?

Q(P) = P(recovery|lemons)

E.g., what is the sailors' probability of recovery if **we do** treat them with lemons?

Q(G) = P(recovery|do(lemons))

Causal Inference Theory and Applications in Enterprise Computing Uflacker, Huegle,

Slide 4

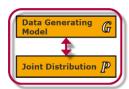
Schmidt

Causal Graphical Models

- Causal Structures formalized by *DAG* (directed acyclic graph) G with random variables $V_1, ..., V_n$ as vertices.
- Causal Sufficiency, Causal Faithfulness and Global Markov Condition imply $(X \perp Y \mid Z)_G \Leftrightarrow (X \perp Y \mid Z)_P$.
- Local Markov Condition states that the density $p(v_1, ..., v_n)$ then factorizes into

$$p(v_1, \dots, v_n) = \prod_{i=1}^n p(v_i | Pa(v_i)).$$

• Causal conditional $p(v_i|Pa(v_i))$ represent causal mechanisms.



Causal Inference
Theory and Applications
in Enterprise Computing

Uflacker, Huegle, Schmidt

- Null Hypothesis H_0 is the claim that is initially assumed to be true
- Alternative Hypothesis H_1 is a claim that contradicts the H_0
- How to test a hypothesis?

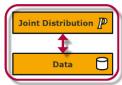
Statistical Inference

- \square Approximate T under H_0 by a known distribution
- \Box Different distributions yield to different tests, e.g., *T*-test, χ^2 -test, etc.
- \Box Derive rejection criteria for H_0
 - *c-value:* reject H_0 if $T(x_n) > c$ for a $c \in \mathbb{R}$ *p-value:* reject H_0 if $P_{H_0}(T(X) > T(x)) < \alpha$ are equivalent

(Conditional) Independence Test

Distribution of $V_1, ..., V_N \Rightarrow$ dependence measures $T(V_i, V_i, S) \Rightarrow$ test $H_0: t = 0$

Allows for constraint-based causal structure learning



Causal Inference Theory and Applications in Enterprise Computing Uflacker, Huegle,

Slide 6

Schmidt

Recap of Theoretical Background Causal Structure Learning

Constraint-based causal structure learning

- Assumptions: Causal sufficiency, Markov condition, causal faithfulness
- X and Y are linked if and only if there is no S(X,Y) such that $(X \perp Y \mid S(X,Y))_P$
- Identifies causal DAG up to Markov equivalence class
 uniquely described by a completed partially directed acyclic graph (CPDAG)
- PC algorithm provides efficient framework (under sparseness of G)
 - Concept:
 - 1. Iterative skeleton discovery
 - 2. Edge orientation with deterministic orientation rules
 - Polynomial complexity (exponential in worst case)
 - Extensions allow for weaker faithfulness, latent variables, cycles, etc.

Other learning methods

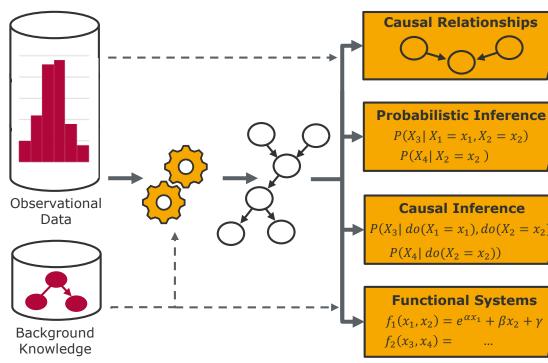
- Score-based methods, i.e., "search-and-score approach"
- *Hybrid methods*, i.e., combination of constraint- and score-based approach

Causal Inference Theory and Applications in Enterprise Computing Uflacker, Huegle,

Slide 7

Schmidt

Inference Opportunities



Causal Relationships

 $P(X_3|X_1=x_1,X_2=x_2)$ $P(X_4 | X_2 = x_2)$

Causal Inference

 $P(X_3 | do(X_1 = x_1), do(X_2 = x_2))$ $P(X_4|do(X_2=x_2))$

Functional Systems

 $f_1(x_1, x_2) = e^{\alpha x_1} + \beta x_2 + \gamma$ $f_2(x_3, x_4) =$

Causal Structure:

"What are the causal relationships in the system?"

Association:

"What is a certain probability if we find the system how it is?"

Intervention:

"What is a certain probability if we manipulate the system?"

Counterfactuals:

"What if the system would have been different?"

"How is lung cancer related to smoking and genetics?"

"How likely do smoking people get lung cancer?"

> "What if we han cigarettes?

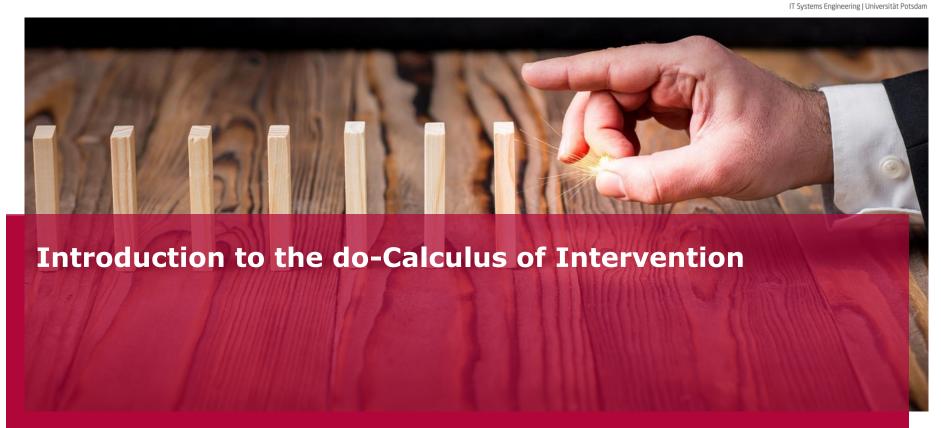
"What if I had not been smoking the past 2 years?"

Data

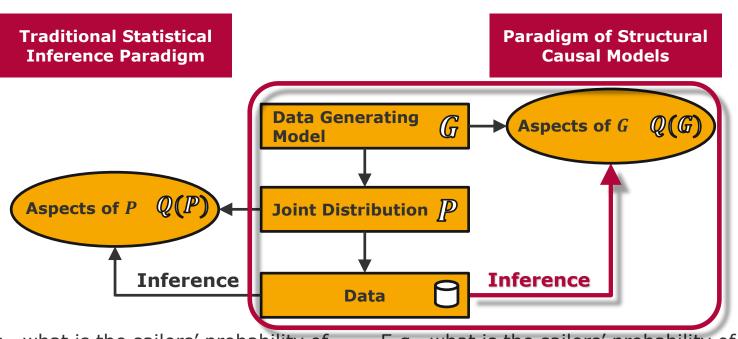
Causal Structure Learning

Opportunities

Examples



Causal Inference in a Nutshell



E.g., what is the sailors' probability of recovery when **we see** a treatment with lemons?

Q(P) = P(recovery|lemons)

E.g., what is the sailors' probability of recovery if **we do** treat them with lemons?

Q(G) = P(recovery|do(lemons))

Causal Inference Theory and Applications in Enterprise Computing Uflacker, Huegle,

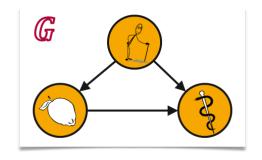
Slide 10

Schmidt

Recap: Simpson's Paradox

Recap the scurvy experiment:

- We observed
 - P(recovery|lemons, old) > P(recovery|no|lemons, old)
 - \Box P(recovery|lemons, young) > P(recovery|no lemons, young)
 - □ But: P(recovery|lemons) < P(recovery|no|lemons)
- This reversal of the association between two variables after considering the third variable is called **Simpson's Paradox**.





VS.

 Pearl extends probability calculus by introducing a new operator for describing interventions, the do-operator. Causal Inference
Theory and Applications
in Enterprise Computing

Uflacker, Huegle, Schmidt

Recap: The do-Operator

The do-operator

- *do*(...) marks intervention in the model
 - \Box In an algebraic model: we replace certain functions with a constant X=x
 - In a graph: we remove edges going into the target of intervention, but preserve edges going out of the target.
- The causal calculus uses
 - \square Bayesian conditioning, p(y|x), where x is observed variable
 - \Box Causal conditioning, p(y|do(x)), where we force a specific value x
- → *Goal:* Generate probabilistic formulas for the effect of interventions in terms of the observed probabilities.

Resolution of Simpson's paradox

- Simpson's paradox is only paradoxical if we misinterpret P(recovery|lemons) as P(recovery|do(lemons))
- We should treat scurvy with lemons if $P(recovery|do(lemons)) > P(recovery|do(no\ lemons))$

Causal Inference Theory and Applications in Enterprise Computing

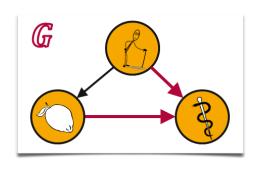
Uflacker, Huegle, Schmidt

Resolution of Simpson's Paradox: Proof

■ The treatment does not affect the distribution of the subpopulations, i.e.,

$$P(old|do(lemons) = P(old|do(no\ lemons)) = P(old)$$

- Then, it is impossible that we have, simultaneously,
 - P(recovery|do(lemons), old) > P(recovery|do(no lemons), old)
 - P(recovery|do(lemons), young) > P(recovery|do(no lemons), young)
 - □ But: P(recovery|do(lemons)) < P(recovery|do(no lemons))



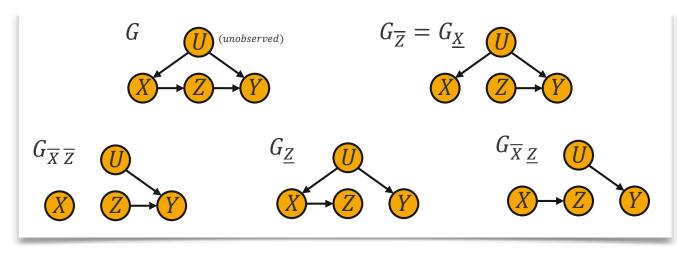
Proof:

- $P(recovery|do(lemons)) = P(recovery|do(lemons), old) \ P(old|do(lemons))$
 - + P(recovery|do(lemons), young) P(young|do(lemons))
 - = P(recovery|do(lemons), old) P(old)
 - + P(recovery|do(lemons), young) P(young)
- \Box $P(recovery|do(no\ lemons)) = P(recovery|do(no\ lemons), old)\ P(old)$
 - $+ P(recovery|do(no\ lemons), young)\ P(young)$
- □ Hence: P(recovery|do(lemons)) > P(recovery|do(no lemons))

Causal Inference
Theory and Applications
in Enterprise Computing

Uflacker, Huegle, Schmidt

Perturbed Graphs



- *G* Graph
- U, X, Y, Z disjoint subsets of the variables
- $G_{\overline{X}}$ perturbed graph in which all edges *pointing to X* have been deleted
- $G_{\underline{X}}$ perturbed graph in which all edges *pointing from* X have been deleted
- \blacksquare Z(U) set of nodes in G which are not ancestors of U

Causal Inference
Theory and Applications
in Enterprise Computing

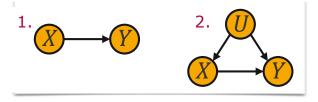
Uflacker, Huegle, Schmidt

Identifiability

Definition:

Let Q(M) be any computable quantity of a model M. We say that Q is identifiable in a class M of models if, for any pairs of models M_1 and M_2 from M, $Q(M_1) = Q(M_2)$ whenever $P_{M_1}(v) = P_{M_2}(v)$.

- I.e., P(y|do(x)) is identifiable if it can be consistently estimated from data involving only observed variables.
- Examples:



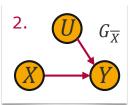
- Can you estimate $P(y \mid do(x))$, given P(x,y)?
 - 1. Yes, since P(y|do(x)) = P(y|x), i.e., P(y|do(x)) is identifiable
 - 2. No (observational regime), since $P(x,y) = \sum_u P(x,y,u) = \sum_u P(y|x,u)P(x|u)P(u)$ Slide **15** $P(y|do(x)) = \sum_u P(y|x,u)P(u)$

Causal Inference
Theory and Applications
in Enterprise Computing

Uflacker, Huegle, Schmidt

Back-Door Criterion

- But: after adjustment for direct causes (intervention)
 - $P(x,y) = \sum_{u} P(x,y,u) = \sum_{u} P(y|x,u) \frac{P(x|u)}{P(x|u)} P(u) = P(y|do(x))$
 - \Box Hence, P(y|do(x)) is identifiable
- Any common ancestor of X and Y is a confounder
- Confounders originate "back-door" paths that need to be blocked by conditioning
- This defines a basic criterion for identifiability:



Back-Door Criterion (Pearl 1993):

A set of variables Z satisfies the *back-door criterion* relative to an ordered pair of variables (V_i, V_j) in a DAG G if:

- 1.no node in Z is a descendant of V_i ; and
- 2. Z blocks every path between V_i and V_j that contains an arrow to V_i .

ightharpoonup Back-door adjustment: $P(v_j | do(v_i)) = \sum_z P(v_j | v_i, z) P(z)$

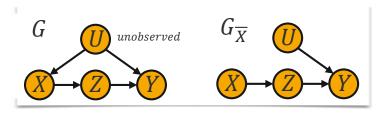
Causal Inference Theory and Applications in Enterprise Computing

Uflacker, Huegle, Schmidt

Front-Door Criterion

- But: If *U* is hidden (unobserved), then there is no data for conditioning
- Then, P(y|do(x)) is also identifiable!

$$\begin{split} P(y|do(x)) &= \sum_{z} P(y|do(z)) P(z|do(x)) \\ &= \sum_{z} P(y|do(z)) P(z|x) \quad \text{(direct effect)} \\ &= \sum_{x'} P(y|x',z) P(x') P(z|x) \quad \text{(back-door)} \end{split}$$



This defines a basic criterion for identifiability with unobserved variables:

Front-Door Criterion (Pearl 1993):

A set of variables Z satisfies the *front-door criterion* relative to an ordered pair of variables (V_i, V_i) in a DAG G if:

- 1. Z intercepts all directed paths from V_i to V_i ; and
- 2. there is no unblocked back-door path from V_i to Z; and
- 3. all back-door paths from Z to V_j are blocked by V_i

ightharpoonup Front-door adjustment: $P(v_j|do(v_i)) = \sum_z P(z|v_i) \sum_{v_i'} P(v_j|v_i',z) P(v_i')$

Causal Inference

Theory and Applications in Enterprise Computing

Uflacker, Huegle, Schmidt

The do-Calculus (Pearl 1995)

The do-Calculus:

Let X,Y,Z, and W be arbitrary disjoint sets of nodes in a causal DAG G.

Rule 1: Ignoring observations

 $p(y|do(x), z, w) = p(y|do(x), w) \quad if \ (Y \perp Z \mid X, W)_{G_{\overline{X}}}$

Rule 2: Action/Observation exchange (Back-Door)

 $p(y|do(x), do(z), w) = p(y|do(x), z, w) \quad if \ (Y \perp Z \mid X, W)_{G_{\overline{X}, \underline{Z}}}$

Rule 3: Ignoring actions/interventions

 $p(y|do(x),do(z),w) = p(y|do(x),w) \quad if (Y \perp Z \mid X,W)_{G_{\overline{X},\overline{Z(W)}}}$

Notes:

- Allows a syntactical derivation of claims about interventions
- The calculus is sound and complete
 - Sound: If the do-operations can be removed by repeated application of these three rules, the causal effect is identifiable. (Galles et al. 1995)
 - Complete: If identifiable, the do-operations can be removed by repeated application of these three rules. (Huang et al. 2012)
 - I.e., "it works on all inputs and always gets the right result"
- Also allows for identifiability of causal effects in MAGs

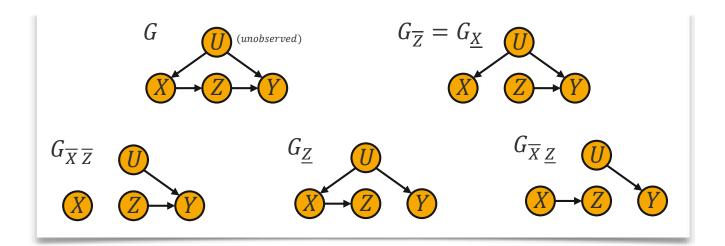
Causal Inference
Theory and Applications

in Enterprise Computing

Uflacker, Huegle, Schmidt

3. Estimating Causal Effects

Deriving Causal Effects using the do-Calculus



Example: Compute P(y|do(z))

We have
$$P(y|do(z)) = \sum_{x} P(y|x, do(z)) P(x|do(z))$$

$$= \sum_{x} P(y|x, do(z)) P(x) \text{ (Rule 1: } (Z \perp X)_{G_{\overline{Z}}})$$

$$= \sum_{x} P(y|x, z) P(x) \text{ (Rule 2: } (Z \perp Y)_{G_{\underline{Z}}})$$

Causal Inference
Theory and Applications
in Enterprise Computing

Uflacker, Huegle, Schmidt

3. Estimating Causal Effects

Quantifying Causal Strength

- The Causal Effect of $V_i = v_i$ on V_i is given by $P(V_i | do(V_i = v_i))$
 - \square I.e., the distribution of V_i given that we force V_i to be v_i
 - This defines the basis of the examination of causal effects
- **But:** Quantifying the causal influence of V_i on V_i is a nontrivial question!
- Many measures of causal strength depending on the causal structures have been proposed, e.g.,
 - Average Treatment Effect (ATE):

$$E[V_j|do(V_i=1)] - E[V_j|do(V_i=0)]$$
 for binary V_i, V_j

□ Average Causal Effect (ACE):

$$\frac{\partial}{\partial v_i} E[V_j | do(V_i = v_i)]$$
 for continuous V_i, V_j

Conditional Mutual Information (CI):

$$\sum_{v_i,v_j} P(v_i) P(v_i) do(V_i = v_i) \Big) \log \frac{P(v_j|do(V_i = v_i))}{\sum_{v_i'} P(v_i = v_i') P(v_j|do(V_i = v_i'))} \text{ for categorical } V_i, V_j$$

Relative Entropy, etc.

Causal Inference
Theory and Applications
in Enterprise Computing

Uflacker, Huegle, Schmidt

3. Estimating Causal Effects

Cooling House Example – Quantifying Causal Effects

Recap the cooling house example

- We are in the multivariate normal case
- Hence, average causal effects are given by

$$ACE(V_4, V_1, v_1) = \frac{\partial}{\partial v_1} E[V_4 | do(V_1 = v_1)]$$

$$= E[V_4 | do(V_1 = v_1 + 1)] - E[V_4 | do(V_1 = v_1)]$$
 (linear f)
$$= \beta_{V_1 \to V_4} = 4$$

$$ACE(V_6, V_1, v_1) = \frac{\partial}{\partial v_1} E[V_6 | do(V_1 = v_1)]$$

$$= E[V_6 | do(V_1 = v_1 + 1)] - E[V_6 | do(V_1 = v_1)]$$

$$= \beta_{V_1 \to V_4} \cdot \beta_{V_4 \to V_6} = 4 \cdot 1.2 = 4.8$$

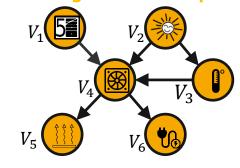
$$ACE(V_4, V_2, v_2) = \frac{\partial}{\partial v_2} E[V_4 | do(V_2 = v_2)]$$

$$= E[V_4 | do(V_2 = v_2 + 1)] - E[V_4 | do(V_2 = v_2)]$$

$$= \beta_{V_2 \to V_4} + \beta_{V_2 \to V_3} \cdot \beta_{V_3 \to V_4} = 5 + 3 \cdot 0.7 = 7.1$$

$$\square$$
 ACE(V₆, V₅, v₅) = 0

Cooling House Example:



- $V_1 = N(0,1)$
- $V_2 = N(0,1)$
- $V_3 = 3V_2 + N(0,1)$
- $V_4 = 4 V_1 + 5 V_2 + 0.7 V_3 + N(0,1)$
- $V_5 = V_4 + N(0,1)$
- $V_6 = 1.2 V_4 + N(0,1)$

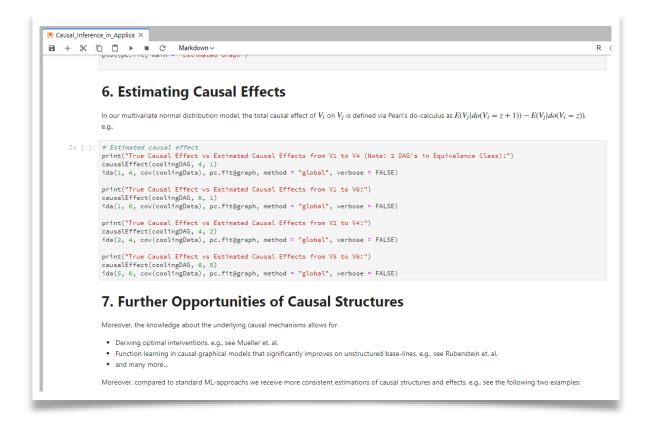
Causal Inference

Theory and Applications in Enterprise Computing

Uflacker, Huegle, Schmidt

4. Causal Inference in Application

Cooling House Example



Causal Inference
Theory and Applications
in Enterprise Computing

Uflacker, Huegle, Schmidt

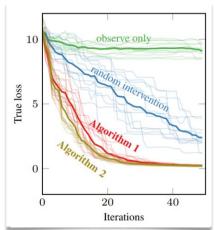
5. Excursion

Causal Functional System (e.g., Rubenstein 2017)

Idea:

The identification of the underlying causal graph G allows to learn the functions computing children from parents in the structural causal model.

- I.e., the logical second step after the causal discovery
- The do-operator builds a natural basis of probabilistic learning algorithms for estimating the functional system:
 - Active Bayesian learning allows for identification of interventions that are optimally informative about all of the unknown functions (Algorithm 1)
 - Exploiting factorization properties allows for vectorization and simultaneous calculations in a dynamic programming approach (Algorithm 2)
- Probabilistic active learning of functions significantly improves the estimation compared to unstructured base-lines (Observe only, random intervention).



Causal Inference
Theory and Applications
in Enterprise Computing

Uflacker, Huegle, Schmidt

5. Excursion

Causal Functional System (A Naive Example!)

■ **Goal:** Estimate $\beta_{V_1 \to V_4}$

■ **Recall**: True $\beta_{V_1 \to V_4} = 4$

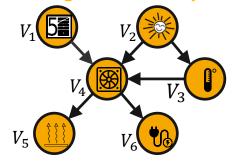
Linear Regression Model Approach:

- \Box Fit linear model $V_4 = lm(V_1, V_2, V_3, V_5, V_6)$
- \Box Then $\hat{\beta}_{V_1 \to V_4} = 1.14$
- \Rightarrow Underestimated $\beta_{V_1 \rightarrow V_4}$

Causal Structural Approach:

- \Box From estimated CPDAG \widehat{G} we know $V_1 = Pa(V_4)$
- □ Hence, $\hat{\beta}_{V_1 \to V_4} = \widehat{ACE}(V_4, V_1, v_1) \in \{4.09, 4.09\}$
- \Rightarrow Estimated $\beta_{V_1 \to V_4}$ (up to the equivalence class)

Cooling House Example:



- $V_1 = N(0,1)$
- $V_2 = N(0,1)$
- $V_3 = 3V_2 + N(0,1)$
- $V_4 = 4V_1 + 5V_2 + 0.7V_3 + N(0,1)$
- $V_5 = V_4 + N(0,1)$
- $V_6 = 1.2 V_4 + N(0,1)$

Causal Inference Theory and Applications in Enterprise Computing

Uflacker, Huegle, Schmidt

References

Literature

- Pearl, J. (2009). <u>Causal inference in statistics: An overview</u>. Statistics Surveys.
- Pearl, J. (2009). *Causality: Models, Reasoning, and Inference*. Cambridge University Press.
- Spirtes et al. (2000). Causation, Prediction, and Search. The MIT Press.
- Pearl, J. (1995). <u>Causal diagrams for empirical research</u>. Biometrika.
- Maathuis et al. (2013). <u>A generalized backdoor criterion</u>. arXiv.
- Galles et al. (1995). <u>Testing identifiability of causal effects</u>. In Proceedings of UAI-95.
- Huang et al. (2012). *Pearl's Calculus of Intervention Is Complete*. arXiv.
- Pearl, J (2012). *The Do-Calculus Revisited*. arXiv.
- Janzing et al. (2013) *Quantifying causal influences*. The Annals of Statistics.
- Rubenstein et al. (2017). <u>Probabilistic Active Learning of Functions in Structural Causal Models</u>. arXiv.

Causal Inference
Theory and Applications
in Enterprise Computing

Uflacker, Huegle, Schmidt