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Recap of Theoretical Background
Causal Inference in a Nutshell
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Traditional Statistical 
Inference Paradigm

Paradigm of Structural 
Causal Models

Joint Distribution   

Data

Data Generating     
Model

Inference

Aspects of 𝑷

Aspects of 𝑮

Inference

E.g., what is the sailors’ probability of 
recovery when we see a treatment with 
lemons? 

𝑸 𝑷 = 𝑷 𝒓𝒆𝒄𝒐𝒗𝒆𝒓𝒚 𝒍𝒆𝒎𝒐𝒏𝒔

E.g., what is the sailors’ probability of 
recovery if we do treat them with 
lemons? 

𝑸 𝑮 = 𝑷 𝒓𝒆𝒄𝒐𝒗𝒆𝒓𝒚 𝒅𝒐(𝒍𝒆𝒎𝒐𝒏𝒔)
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■ Causal Structures formalized by DAG (directed acyclic graph) 𝐺 with random 
variables 𝑉1, … , 𝑉𝑛 as vertices.

■ Causal Sufficiency, Causal Faithfulness and Global Markov Condition imply

𝑋 ⊥ 𝑌 𝑍 𝐺 ⇔ 𝑋 ⊥ 𝑌 𝑍 𝑃.

■ Local Markov Condition states that the density 𝑝(v1, … , 𝑣𝑛) then factorizes into

𝑝 𝑣1, … , 𝑣𝑛 =ෑ

𝑖=1

𝑛

𝑝 𝑣𝑖 𝑃𝑎 𝑣𝑖 .

■ Causal conditional 𝑝 𝑣𝑗 𝑃𝑎 𝑣𝑗 represent causal mechanisms.
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Recap of Theoretical Background
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Recap of Theoretical Background
Statistical Inference

■ Null Hypothesis 𝐻0 is the claim that is initially assumed to be true 

■ Alternative Hypothesis 𝐻1 is a claim that contradicts the 𝐻0

■ How to test a hypothesis?

□ Approximate 𝑇 under 𝐻0 by a known distribution

□ Different distributions yield to different tests, e.g., 𝑇-test, 𝜒2-test, etc.

□ Derive rejection criteria for 𝐻0
– 𝑐-value: reject 𝐻0 if 𝑇(𝑥𝑛) > c for a 𝑐 ∈ ℝ

– 𝑝-value: reject 𝐻0 if 𝑃𝐻0 𝑇 𝑋 > 𝑇 𝑥 < 𝛼

■ (Conditional) Independence Test

Distribution of 𝑉1, … , 𝑉𝑁 ⇒ dependence measures 𝑇(𝑉𝑖 , 𝑉𝑗 , 𝑺) ⇒ test 𝐻0: 𝑡 = 0

■ Allows for constraint-based causal structure learning

are equivalent
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Theory and Applications 
in Enterprise Computing



Constraint-based causal structure learning

■ Assumptions: Causal sufficiency, Markov condition, causal faithfulness

■ 𝑋 and 𝑌 are linked if and only if there is no 𝑆 𝑋, 𝑌 such that 𝑋 ⊥ 𝑌 𝑆(𝑋, 𝑌) 𝑃.

■ Identifies causal DAG up to Markov equivalence class 

uniquely described by a completed partially directed acyclic graph (CPDAG)

■ PC algorithm provides efficient framework (under sparseness of 𝐺)

□ Concept: 

1. Iterative skeleton discovery

2. Edge orientation with deterministic orientation rules

□ Polynomial complexity (exponential in worst case)

□ Extensions allow for weaker faithfulness, latent variables, cycles, etc.

Other learning methods

■ Score-based methods, i.e., “search-and-score approach”

■ Hybrid methods, i.e., combination of constraint- and score-based approach
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Schmidt
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Recap of Theoretical Background
Causal Structure Learning
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Recap of Theoretical Background
Inference Opportunities

Observational 
Data

Background 
Knowledge

Data 

Functional Systems

𝑓1 𝑥1, 𝑥2 = 𝑒𝛼𝑥1 + 𝛽𝑥2 + 𝛾

𝑓2 𝑥3, 𝑥4 = …

Causal Relationships 

Probabilistic Inference

𝑃 𝑋3| 𝑋1 = 𝑥1, 𝑋2 = 𝑥2

𝑃 𝑋4| 𝑋2 = 𝑥2

Causal Inference

𝑃 𝑋3| 𝑑𝑜(𝑋1 = 𝑥1), 𝑑𝑜(𝑋2 = 𝑥2)

𝑃 𝑋4| 𝑑𝑜(𝑋2 = 𝑥2)

Causal Structure:            
“What are the causal 
relationships in the 
system?”

Association:          
“What is a certain 
probability if we find the 
system how it is?”

Intervention:        
“What is a certain 
probability if we 
manipulate the system?”

Counterfactuals:      
“What if the system would 
have been different?”

“How is lung cancer 
related to smoking 

and genetics?”

“How likely do 
smoking people get 

lung cancer?”

“What if we ban 
cigarettes?

“What if I had not 
been smoking

the past 2 years?”

Causal Structure Learning Opportunities Examples



Introduction to the do-Calculus of Intervention



1. Introduction
Causal Inference in a Nutshell
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Aspects of 𝑮

Inference

E.g., what is the sailors’ probability of 
recovery when we see a treatment with 
lemons? 

𝑸 𝑷 = 𝑷 𝒓𝒆𝒄𝒐𝒗𝒆𝒓𝒚 𝒍𝒆𝒎𝒐𝒏𝒔
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Recap the scurvy experiment:

■ We observed

□ 𝑃 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑙𝑒𝑚𝑜𝑛𝑠, 𝑜𝑙𝑑 > 𝑃 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑛𝑜 𝑙𝑒𝑚𝑜𝑛𝑠, 𝑜𝑙𝑑

□ 𝑃 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑙𝑒𝑚𝑜𝑛𝑠, 𝑦𝑜𝑢𝑛𝑔 > 𝑃 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑛𝑜 𝑙𝑒𝑚𝑜𝑛𝑠, 𝑦𝑜𝑢𝑛𝑔

□ But: 𝑃 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑙𝑒𝑚𝑜𝑛𝑠 < 𝑃 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑛𝑜 𝑙𝑒𝑚𝑜𝑛𝑠

■ This reversal of the association between two variables after 
considering the third variable is called Simpson’s Paradox.

■ Pearl extends probability calculus by introducing a new 
operator for describing interventions, the do-operator.

Uflacker, Huegle, 
Schmidt
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1. Introduction
Recap: Simpson’s Paradox

Observational Regime Interventional Regime

vs. 
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The do-operator

■ 𝑑𝑜(…) marks intervention in the model

□ In an algebraic model: we replace certain functions with a constant 𝑋 = 𝑥

□ In a graph: we remove edges going into the target of intervention, but 
preserve edges going out of the target. 

■ The causal calculus uses

□ Bayesian conditioning, 𝑝(𝑦|𝑥),where 𝑥 is observed variable

□ Causal conditioning, 𝑝(𝑦|𝑑𝑜(𝑥)), where we force a specific value 𝑥

■ Goal: Generate probabilistic formulas for the effect of interventions 
in terms of the observed probabilities.

Resolution of Simpson’s paradox

■ Simpson's paradox is only paradoxical if we misinterpret

𝑃 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑙𝑒𝑚𝑜𝑛𝑠 as 𝑃 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑑𝑜(𝑙𝑒𝑚𝑜𝑛𝑠)

■ We should treat scurvy with lemons if
𝑃 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑑𝑜(𝑙𝑒𝑚𝑜𝑛𝑠) > 𝑃 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑑𝑜(𝑛𝑜 𝑙𝑒𝑚𝑜𝑛𝑠)

Uflacker, Huegle, 
Schmidt
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1. Introduction
Recap: The do-Operator
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■ The treatment does not affect the distribution of the subpopulations, i.e.,

𝑃(𝑜𝑙𝑑|𝑑𝑜 𝑙𝑒𝑚𝑜𝑛𝑠 = 𝑃 𝑜𝑙𝑑 𝑑𝑜 𝑛𝑜 𝑙𝑒𝑚𝑜𝑛𝑠 = 𝑃(𝑜𝑙𝑑)

■ Then, it is impossible that we have, simultaneously,

□ 𝑃 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑑𝑜(𝑙𝑒𝑚𝑜𝑛𝑠), 𝑜𝑙𝑑 > 𝑃 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑑𝑜(𝑛𝑜 𝑙𝑒𝑚𝑜𝑛𝑠), 𝑜𝑙𝑑

□ 𝑃 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑑𝑜(𝑙𝑒𝑚𝑜𝑛𝑠), 𝑦𝑜𝑢𝑛𝑔 > 𝑃 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑑𝑜 𝑛𝑜 𝑙𝑒𝑚𝑜𝑛𝑠 , 𝑦𝑜𝑢𝑛𝑔

□ But:    𝑃 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑑𝑜(𝑙𝑒𝑚𝑜𝑛𝑠) < 𝑃 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑑𝑜(𝑛𝑜 𝑙𝑒𝑚𝑜𝑛𝑠)

■ Proof:

□ 𝑃 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑑𝑜 𝑙𝑒𝑚𝑜𝑛𝑠 = 𝑃 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑑𝑜 𝑙𝑒𝑚𝑜𝑛𝑠 , 𝑜𝑙𝑑 𝑃 𝑜𝑙𝑑 𝑑𝑜 𝑙𝑒𝑚𝑜𝑛𝑠

+ 𝑃 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑑𝑜 𝑙𝑒𝑚𝑜𝑛𝑠 , 𝑦𝑜𝑢𝑛𝑔 𝑃 𝑦𝑜𝑢𝑛𝑔 𝑑𝑜(𝑙𝑒𝑚𝑜𝑛𝑠)

= 𝑃 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑑𝑜 𝑙𝑒𝑚𝑜𝑛𝑠 , 𝑜𝑙𝑑 𝑃 𝑜𝑙𝑑

+ 𝑃 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑑𝑜 𝑙𝑒𝑚𝑜𝑛𝑠 , 𝑦𝑜𝑢𝑛𝑔 𝑃 𝑦𝑜𝑢𝑛𝑔

□ 𝑃 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑑𝑜 𝑛𝑜 𝑙𝑒𝑚𝑜𝑛𝑠 = 𝑃 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑑𝑜 𝑛𝑜 𝑙𝑒𝑚𝑜𝑛𝑠 , 𝑜𝑙𝑑 𝑃 𝑜𝑙𝑑

+ 𝑃 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑑𝑜 𝑛𝑜 𝑙𝑒𝑚𝑜𝑛𝑠 , 𝑦𝑜𝑢𝑛𝑔 𝑃(𝑦𝑜𝑢𝑛𝑔)

□ Hence: 𝑃 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑑𝑜 𝑙𝑒𝑚𝑜𝑛𝑠 > 𝑃(𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦|𝑑𝑜(𝑛𝑜 𝑙𝑒𝑚𝑜𝑛𝑠)

Uflacker, Huegle, 
Schmidt
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1. Introduction
Resolution of Simpson’s Paradox: Proof
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■ 𝐺 Graph

■ U, X, Y, Z disjoint subsets of the variables

■ 𝐺𝑋 perturbed graph in which all edges pointing to 𝑋 have been deleted

■ 𝐺𝑋 perturbed graph in which all edges pointing from 𝑋 have been deleted

■ 𝑍(𝑈) set of nodes in 𝐺 which are not ancestors of 𝑈

Uflacker, Huegle, 
Schmidt
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2. The Calculus of Intervention
Perturbed Graphs

𝑋

𝑈

𝑌𝑍

𝐺 (𝑢𝑛𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑)

𝑋

𝑈

𝑌𝑍

𝐺𝑍 = 𝐺𝑋

𝑋

𝑈

𝑌𝑍

𝐺𝑋 𝑍

𝑋

𝑈

𝑌𝑍

𝐺𝑍

𝑋

𝑈

𝑌𝑍

𝐺𝑋 𝑍
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■ I.e., 𝑃(𝑦|𝑑𝑜 𝑥 ) is identifiable 

if it can be consistently estimated from data involving only observed variables. 

■ Examples:

■ Can you estimate 𝑃(𝑦 | 𝑑𝑜(𝑥)), given 𝑃(𝑥, 𝑦)?

1. Yes, since 𝑃 𝑦 𝑑𝑜 𝑥 = 𝑃(𝑦|𝑥), i.e., 𝑃(𝑦|𝑑𝑜 𝑥 ) is identifiable

2. No (observational regime), since 𝑃 𝑥, 𝑦 = σ𝑢𝑃 𝑥, 𝑦, 𝑢 = σ𝑢𝑃 𝑦|𝑥, 𝑢 𝑃 𝑥 𝑢 𝑃(𝑢)

𝑃 𝑦|𝑑𝑜(𝑥) = σ𝑢𝑃 𝑦|𝑥, 𝑢 𝑃(𝑢)

Uflacker, Huegle, 
Schmidt
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2. The Calculus of Intervention
Identifiability

Definition:

Let 𝑄(𝑀) be any computable quantity of a model 𝑀. We say that 
𝑄 is identifiable in a class 𝑀 of models if, for any pairs of models 
𝑀1 and 𝑀2 from 𝑀, 𝑄(𝑀1) = 𝑄(𝑀2)whenever 𝑃𝑀1

(𝑣) = 𝑃𝑀2
(𝑣).

𝑋 𝑌

𝑋 𝑌

𝑈1. 2.
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■ But: after adjustment for direct causes (intervention)

□ 𝑃 𝑥, 𝑦 = σ𝑢𝑃 𝑥, 𝑦, 𝑢 = σ𝑢𝑃 𝑦|𝑥, 𝑢 𝑃 𝑥 𝑢 𝑃 𝑢 = 𝑃 𝑦|𝑑𝑜(𝑥)

□ Hence, 𝑃(𝑦|𝑑𝑜 𝑥 ) is identifiable

■ Any common ancestor of 𝑋 and 𝑌 is a confounder

■ Confounders originate “back-door” paths that need to be 
blocked by conditioning 

■ This defines a basic criterion for identifiability:

■ Back-door adjustment: 𝑃 𝑣𝑗 𝑑𝑜 𝑣𝑖 = σ𝑧𝑃 𝑣𝑗|𝑣𝑖 , 𝑧 𝑃(𝑧)

Uflacker, Huegle, 
Schmidt
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2. The Calculus of Intervention
Back-Door Criterion

Back-Door Criterion (Pearl 1993):

A set of variables 𝑍 satisfies the back-door criterion relative to
an ordered pair of variables (𝑉𝑖 , 𝑉𝑗) in a DAG 𝐺 if:

1.no node in 𝑍 is a descendant of 𝑉𝑖; and
2. 𝑍 blocks every path between 𝑉𝑖 and 𝑉𝑗 that contains an arrow to 𝑉𝑖.

𝑌

𝑈

𝑋

𝐺𝑋
2.

Causal Inference 
Theory and Applications 
in Enterprise Computing



■ But: If 𝑈 is hidden (unobserved), then there is no data for conditioning

■ Then, 𝑃 𝑦 𝑑𝑜 𝑥 is also identifiable!

𝑃(𝑦|𝑑𝑜 𝑥 ) = σ𝑧𝑃 𝑦 𝑑𝑜 𝑧 𝑃(𝑧|𝑑𝑜(𝑥))

= σ𝑧𝑃 𝑦 𝑑𝑜 𝑧 𝑃(𝑧|𝑥) (direct effect)

= σ𝑥′ 𝑃 𝑦 𝑥′, 𝑧 𝑃(𝑥′)𝑃(𝑧|𝑥) (back-door)

■ This defines a basic criterion for identifiability with unobserved variables:

■ Front-door adjustment: 𝑃 𝑣𝑗 𝑑𝑜 𝑣𝑖 = σ𝑧𝑃 𝑧|𝑣𝑖 σ
𝑣𝑖
′ 𝑃( 𝑣𝑗 𝑣𝑖

′, 𝑧 𝑃(𝑣𝑖
′)

Uflacker, Huegle, 
Schmidt
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2. The Calculus of Intervention
Front-Door Criterion

Front-Door Criterion (Pearl 1993):

A set of variables 𝑍 satisfies the front-door criterion relative to
an ordered pair of variables (𝑉𝑖 , 𝑉𝑗) in a DAG 𝐺 if:

1. 𝑍 intercepts all directed paths from 𝑉𝑖 to 𝑉𝑗 ; and

2. there is no unblocked back-door path from 𝑉𝑖 to 𝑍; and
3. all back-door paths from 𝑍 to 𝑉𝑗 are blocked by 𝑉𝑖

𝑋

𝑈

𝑌𝑍

𝐺 𝑢𝑛𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

𝑋

𝑈

𝑌𝑍

𝐺𝑋
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Notes:

■ Allows a syntactical derivation of claims about interventions
■ The calculus is sound and complete 

□ Sound: If the do-operations can be removed by repeated application of these three 
rules, the causal effect is identifiable. (Galles et al. 1995)

□ Complete: If identifiable, the do-operations can be removed by repeated application of 
these three rules. (Huang et al. 2012)  

□ I.e., “it works on all inputs and always gets the right result”

■ Also allows for identifiability of causal effects in MAGs

Uflacker, Huegle, 
Schmidt
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2. The Calculus of Intervention
The do-Calculus (Pearl 1995)

The do-Calculus:

Let 𝑋, 𝑌, 𝑍, and 𝑊 be arbitrary disjoint sets of nodes in a causal DAG 𝐺.
■ Rule 1: Ignoring observations

𝑝 y 𝑑𝑜 𝑥 , 𝑧, 𝑤 = 𝑝 𝑦 𝑑𝑜 𝑥 ,𝑤 𝑖𝑓 𝑌 ⊥ 𝑍 𝑋,𝑊)𝐺ഥ𝑋
■ Rule 2: Action/Observation exchange (Back-Door) 

𝑝 y 𝑑𝑜 𝑥 , 𝑑𝑜(𝑧),𝑤 = 𝑝 𝑦 𝑑𝑜 𝑥 , 𝑧, 𝑤 𝑖𝑓 𝑌 ⊥ 𝑍 𝑋,𝑊)𝐺
𝑋, 𝑍

■ Rule 3: Ignoring actions/interventions
𝑝 y 𝑑𝑜 𝑥 , 𝑑𝑜(𝑧),𝑤 = 𝑝 𝑦 𝑑𝑜 𝑥 ,𝑤 𝑖𝑓 𝑌 ⊥ 𝑍 𝑋,𝑊)𝐺

𝑋, 𝑍(𝑊)
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3. Estimating Causal Effects
Deriving Causal Effects using the do-Calculus

𝑋

𝑈

𝑌𝑍

𝐺 (𝑢𝑛𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑)

𝑋

𝑈

𝑌𝑍

𝐺𝑍 = 𝐺𝑋

𝑋

𝑈

𝑌𝑍

𝐺𝑋 𝑍

𝑋

𝑈

𝑌𝑍

𝐺𝑍

𝑋

𝑈

𝑌𝑍

𝐺𝑋 𝑍

■ Example: Compute 𝑷 𝒚 𝒅𝒐 𝒛

We have 𝑃 𝑦 𝑑𝑜 𝑧 = σ𝑥𝑃 𝑦 𝑥, 𝑑𝑜(𝑧))𝑃 𝑥 𝑑𝑜(𝑧))

= σ𝑥𝑃 𝑦 𝑥, 𝑑𝑜(𝑧)) 𝑃 𝑥 (Rule 1: (Z ⊥ 𝑋)𝐺ഥ𝑍) 

= σ𝑥 𝑃 𝑦 𝑥, 𝑧) 𝑃 𝑥 (Rule 2: (Z ⊥ 𝑌)𝐺𝑍) 
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■ The Causal Effect of 𝑉𝑖 = 𝑣𝑖 on 𝑉𝑗 is given by 𝑃 Vj 𝑑𝑜 𝑉𝑖 = 𝑣𝑖

□ I.e., the distribution of 𝑉𝑗 given that we force 𝑉𝑖 to be 𝑣𝑖

□ This defines the basis of the examination of causal effects

■ But: Quantifying the causal influence of 𝑉𝑖 on 𝑉𝑗 is a nontrivial question!

■ Many measures of causal strength depending on the causal structures have 
been proposed, e.g.,

□ Average Treatment Effect (ATE): 

𝐸[𝑉𝑗|𝑑𝑜(𝑉𝑖 = 1)] − 𝐸[𝑉𝑗|𝑑𝑜(𝑉𝑖 = 0)] for binary 𝑉𝑖 , 𝑉𝑗

□ Average Causal Effect (ACE):
𝜕

𝜕𝑣𝑖
𝐸 𝑉𝑗 𝑑𝑜 𝑉𝑖 = 𝑣𝑖 for continuous 𝑉𝑖 , 𝑉𝑗

□ Conditional Mutual Information (CI):

σ𝑣𝑖,𝑣𝑗 𝑃 𝑣𝑖 𝑃 𝑣𝑗|𝑑𝑜(𝑉𝑖 = 𝑣𝑖) log
𝑃(𝑣𝑗|𝑑𝑜(𝑉𝑖=𝑣𝑖))

σ𝑣𝑖′
𝑃 𝑉𝑖= 𝑣𝑖

′ 𝑃(𝑣𝑗|𝑑𝑜 𝑉𝑖= 𝑣𝑖
′ )

for categorical 𝑉𝑖 , 𝑉𝑗

□ Relative Entropy, etc.
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3. Estimating Causal Effects
Quantifying Causal Strength
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Recap the cooling house example

■ We are in the multivariate normal case

■ Hence, average causal effects are given by

□ ACE 𝑉4, 𝑉1, 𝑣1 =
𝜕

𝜕𝑣1
𝐸 𝑉4 𝑑𝑜(𝑉1 = 𝑣1)]

= 𝐸[𝑉4 𝑑𝑜 𝑉1 = 𝑣1 + 1 − 𝐸[𝑉4 𝑑𝑜 𝑉1 = 𝑣1 (linear f)
= 𝛽𝑉1→𝑉4 = 4

□ ACE 𝑉6, 𝑉1, 𝑣1 =
𝜕

𝜕𝑣1
𝐸 𝑉6 𝑑𝑜(𝑉1 = 𝑣1)]

= 𝐸[𝑉6 𝑑𝑜 𝑉1 = 𝑣1 + 1 − 𝐸[𝑉6 𝑑𝑜 𝑉1 = 𝑣1
= 𝛽𝑉1→𝑉4 ⋅ 𝛽𝑉4→𝑉6 = 4 ⋅ 1.2 =4.8

□ ACE V4, 𝑉2, 𝑣2 =
𝜕

𝜕𝑣2
𝐸 𝑉4 𝑑𝑜(𝑉2 = 𝑣2)]

= 𝐸[𝑉4 𝑑𝑜 𝑉2 = 𝑣2 + 1 − 𝐸[𝑉4 𝑑𝑜 𝑉2 = 𝑣2
= 𝛽𝑉2→𝑉4 + 𝛽𝑉2→𝑉3 ⋅ 𝛽𝑉3→𝑉4 = 5 + 3 ⋅ 0.7 = 7.1

□ ACE V6, 𝑉5, 𝑣5 = 0
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3. Estimating Causal Effects
Cooling House Example – Quantifying Causal Effects

Cooling House Example:

𝑉1 𝑉2

𝑉4 𝑉3

𝑉5 𝑉6

▪ 𝑉1 = 𝑁 0,1

▪ 𝑉2 = 𝑁 0,1

▪𝑉3 = 3 𝑉2 +𝑁(0,1)

▪ 𝑉4 = 4 𝑉1 + 5 𝑉2 + 0.7 𝑉3 + 𝑁(0,1)

▪ 𝑉5 = 𝑉4 + 𝑁(0,1)

▪ 𝑉6 = 1.2 𝑉4 + 𝑁(0,1)
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4. Causal Inference in Application
Cooling House Example
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■ I.e., the logical second step after the causal discovery

■ The do-operator builds a natural basis of probabilistic learning 
algorithms for estimating the functional system:

□ Active Bayesian learning allows for identification of 
interventions that are optimally informative about 
all of the unknown functions (Algorithm 1)

□ Exploiting factorization properties allows for 
vectorization and simultaneous calculations
in a dynamic programming approach (Algorithm 2)

■ Probabilistic active learning of functions significantly 
improves the estimation compared to unstructured 
base-lines (Observe only, random intervention).
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5. Excursion
Causal Functional System (e.g., Rubenstein 2017)

Idea:

The identification of the underlying causal graph 𝐺 allows to learn the 
functions computing children from parents in the structural causal model.
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■ Goal: Estimate 𝛽𝑉1→𝑉4

■ Recall: True 𝛽𝑉1→𝑉4 = 4

■ Linear Regression Model Approach:

□ Fit linear model 𝑉4 = 𝑙𝑚(𝑉1, 𝑉2, 𝑉3, 𝑉5, 𝑉6)

□ Then መ𝛽𝑉1→𝑉4 = 1.14

□ Underestimated 𝛽𝑉1→𝑉4

■ Causal Structural Approach:

□ From estimated CPDAG ෠𝐺 we know 𝑉1 = 𝑃𝑎 𝑉4

□ Hence, መ𝛽𝑉1→𝑉4 = ෣𝐴𝐶𝐸 V4, 𝑉1, 𝑣1 ∈ {4.09, 4.09}

□ Estimated 𝛽𝑉1→𝑉4 (up to the equivalence class)
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5. Excursion
Causal Functional System (A Naive Example!)

Cooling House Example:

𝑉1 𝑉2

𝑉4 𝑉3

𝑉5 𝑉6

▪ 𝑉1 = 𝑁 0,1

▪ 𝑉2 = 𝑁 0,1

▪𝑉3 = 3 𝑉2 +𝑁(0,1)

▪ 𝑉4 = 4 𝑉1 + 5 𝑉2 + 0.7 𝑉3 + 𝑁(0,1)

▪ 𝑉5 = 𝑉4 + 𝑁(0,1)

▪ 𝑉6 = 1.2 𝑉4 + 𝑁(0,1)
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