

IT Systems Engineering | Universität Potsdam

Causal Inference Theory and Applications in Enterprise Computing

Dr. Matthias Uflacker, Johannes Huegle, Christopher Schmidt April 16, 2019

Agenda April 16, 2019

Recap Causal Inference in a Nutshell

Introduction to Structural Causal Models

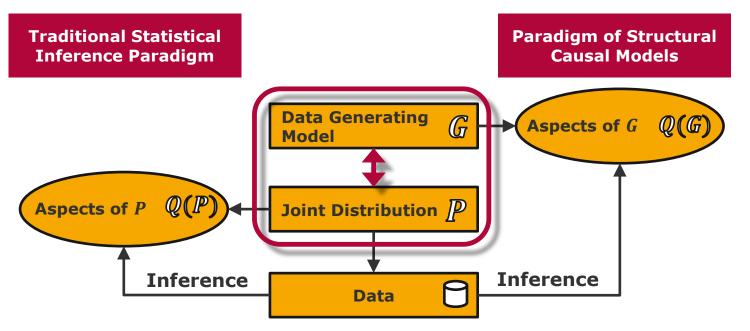
- 1. Preliminaries
- 2. Structural Causal Models
- 3. (Local) Markov Condition
- 4. Factorization
- 5. Global Markov Condition
- 6. Functional Model and Markov Conditions
- 7. Faithfulness
- 8. Constraint-based Causal Inference
- 9. Markov Equivalence Class
- 10. Summary
- 11. Structural Causal Models in Application
- 12. Excursion: Maximal Ancestral Graphs

Causal Inference Theory and Applications in Enterprise Computing

IT Systems Engineering | Universität Potsdam

Causal Inference in a Nutshell

Causal Inference in a Nutshell Recap: The Concept



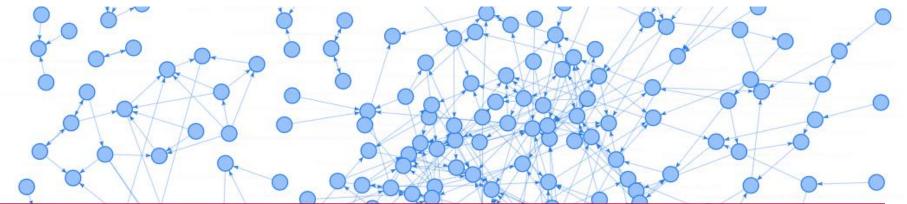
E.g., what is the sailors' probability of recovery when **we see** a treatment with lemons?

Q(P) = P(recovery|lemons)

E.g., what is the sailors' probability of recovery if **we do** treat them with lemons? Q(G) = P(recovery|do(lemons)) **Causal Inference** Theory and Applications in Enterprise Computing

Uflacker, Huegle, Schmidt

IT Systems Engineering | Universität Potsdam



Introduction to Structural Causal Models

Introduction to Causal Graphical Models Content

HPI Hasso Plattner Institut

- 1. Preliminaries
- 2. Structural Causal Models
- 3. (Local) Markov Condition
- 4. Factorization
- 5. Global Markov Condition
- 6. Functional Model and Markov Conditions
- 7. Faithfulness
- 8. Constraint-based Causal Inference
- 9. Markov Equivalence Class
- 10. Summary
- 11. Structural Causal Models in Application
- 12. Excursion: Maximal Ancestral Graphs

Causal Inference Theory and Applications in Enterprise Computing

1. Preliminaries Notation

HPI Hasso Plattner Institut

- A, B events
- X, Y, Z random variables
- x value of random variable
- *Pr* probability measure
- *P_X* probability distribution of *X*
- *p* density
- p(X) density of P_X
- p(x) density of P_X evaluated at the point x
- $X \perp Y$ independence of X and Y
- $X \perp Y \mid Z$ conditional independence of X and Y given Z

Causal Inference Theory and Applications in Enterprise Computing

Uflacker, Huegle, Schmidt

1. Preliminaries Independence of Events

• Two events *A* and *B* are called *independent* if $Pr(A \cap B) = Pr(A) \cdot Pr(B)$,

or - rewritten in conditional probabilities - if

$$Pr(A) = \frac{A \cap B}{B} = Pr(A|B),$$
$$Pr(B) = \frac{A \cap B}{A} = Pr(B|A).$$

• $A_1, ..., A_n$ are called *(mutually) independent* if for every subset $S \subset \{1, ..., n\}$ we have

$$\Pr\left(\bigcap_{i\in S}A_i\right) = \prod_{i\in S}\Pr(A_i).$$

Note:

for $n \ge 3$, pairwise independence $Pr(A_i \cap A_j) = Pr(A_i) \cdot Pr(A_j)$ for all i, j does not imply (mutual) independence.

Causal Inference Theory and Applications in Enterprise Computing

Uflacker, Huegle, Schmidt

1. Preliminaries Independence of Random Variables

Two real-valued random variables X and Y are called *independent*,

```
X \perp Y,
```

if for every $x, y \in \mathbb{R}$, the events $\{X \le x\}$ and $\{Y \le y\}$ are independent,

Or, in terms of densities: for all x, y,

p(x, y) = p(x)p(y).

Note:

If $X \perp Y$, then E[XY] = E[X]E[Y], and cov(X,Y) = E[XY] - E[X]E[Y] = 0. The converse is not true: If cov(X,Y) = 0, then $X \perp Y$.

No correlation does not imply independence

However, we have, for large \mathcal{F} : $(\forall f, g \in \mathcal{F}: cov(f(X), g(Y)) = 0)$, then $X \perp Y$.

Causal Inference Theory and Applications in Enterprise Computing

$$X \perp Y \mid Z$$
 or $(X \perp Y \mid Z)_P$

if

1. Preliminaries

```
p(x, y|z) = p(x|z)p(y|z)
```

```
For all x, y and for all z s.t. p(z) > 0.
```

Note:

It is possible to find X, Y which are conditionally independent given a variable Z but unconditionally dependent, and vice versa.

Causal Inference Theory and Applications in Enterprise Computing

Uflacker, Huegle, Schmidt

This forms the Causal Graphical Model

Cooling House Example: • $V_1 = N(0,1)$ • $V_2 = N(0,1)$ • $V_3 = 3V_2 + N(0,1)$ • $V_4 = 4 V_1 + 5 V_2 + 0.7 V_3 + N(0,1)$ • $V_5 = V_4 + N(0,1)$ $V_6 = 1.2 V_4 + N(0,1)$

2. Structural Causal Models Definition (Pearl)

- Directed Acyclic Graph (DAG) G = (V, E)
 - $\Box \quad Vertices \ V_1, \dots, V_n$
 - □ Directed edges $E = (V_i, V_j)$, i.e., $V_i \rightarrow V_j$,

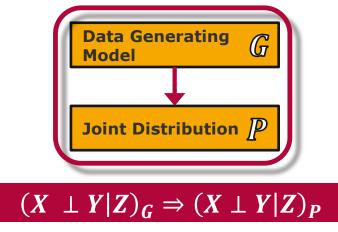
□ No cycles

- Use kinship terminology, e.g., for path $V_i \rightarrow V_j \rightarrow V_k$
 - $\Box V_i = Pa(V_j) \text{ parent of } V_j$
 - $\Box \{V_i, V_j\} = Ang(V_k) \text{ ancestors of } V_k$
 - $\Box \{V_j, V_k\} = Des(V_i) \text{ descendants of } V_i$
- Directed Edges encode *direct causes* via
 - □ $V_j = f_j(Pa(V_j), N_j)$ with independent noise $N_1, ..., N_n$

Causal Inference Theory and Applications in Enterprise Computing

2. Structural Causal Models Connecting *G* and *P*

- Basic Assumption: *Causal Sufficiency*
 - \square All relevant variables are included in the DAG G



- Key Postulate: (Local) Markov Condition
- Essential mathematical concept: *d-separation*

(describes the conditional independences required by a causal DAG)

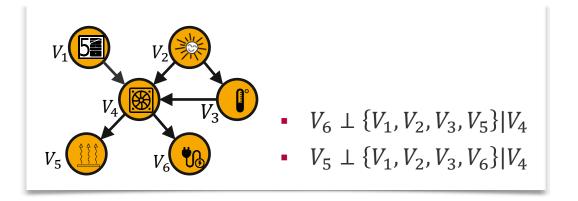
Causal Inference Theory and Applications in Enterprise Computing

Uflacker, Huegle, Schmidt

3. (Local) Markov Condition Theorem

(Local) Markov Condition: V_j independent of nondescendants $ND(V_j)$, given parents $Pa(V_j)$, i.e., $V_j \perp V_{V/(Des(V_j) \cup Pa(V_j))} | Pa(V_j).$

- I.e., every information exchange with its nondescendants involves its parents
- Example:



Causal Inference Theory and Applications in Enterprise Computing

3. (Local) Markov Condition Supplement (Lauritzen 1996)

- Assume V_n has no descendants, then $ND(V_n) = \{V_1, ..., V_{n-1}\}$.
- Thus the local Markov condition implies

 $V_n \perp \{V_1, \dots, V_{n-1}\}/Pa(V_n) \mid Pa(V_n).$

Hence, the general decomposition

 $p(v_1, \dots, v_n) = p(v_n | v_1, \dots, v_{n-1}) p(v_1, \dots, v_{n-1})$

becomes

$$p(v_1, \dots, v_n) = p(v_n | Pa(v_n)) p(\{v_1, \dots, v_{n-1}\} / Pa(v_n)).$$

Induction over n yields to

$$p(v_1, ..., v_n) = \prod_{i=1}^n p(v_i | Pa(v_i)).$$

Causal Inference Theory and Applications in Enterprise Computing

Uflacker, Huegle, Schmidt

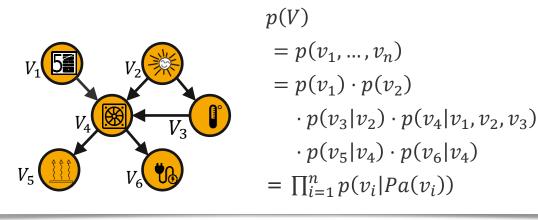
• I.e., the graph shows us how to factor the joint distribution P_V .

4. Factorization Definition

Factorization:

$$p(v_1, ..., v_n) = \prod_{i=1}^n p(v_i | Pa(v_i)).$$

- I.e., conditionals as causal mechanisms generating statistical dependence
- Example:



Causal Inference Theory and Applications in Enterprise Computing

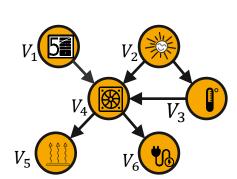
5. Global Markov Condition D-Separation (Pearl 1988)

- *Path* = sequence of pairwise distinct vertices where consecutive ones are adjacent
- A path q is said to be *blocked* by a set S if
 - □ *q* contains a *chain* $V_i \rightarrow V_j \rightarrow V_k$ or a *fork* $V_i \leftarrow V_j \rightarrow V_k$ such that the middle node is in *S*, or
 - □ *q* contains a *collider* $V_i \rightarrow V_j \leftarrow V_k$ such that the middle node is not in *S* and such that no descendant of V_j is in *S*.

D-separation: *S* is said to **d-separate** *X* **and** *Y* in the DAG *G*, i.e., $(X \perp Y|S)_G$, if *S* blocks every path from a vertex in *X* to a vertex in *Y*. **Causal Inference** Theory and Applications in Enterprise Computing

5. Global Markov Condition Examples of d-Separation

Example:



- The path from V_1 to V_6 is blocked by V_4 .
- V_1 and V_6 are d-separated by V_4 .
- The path $V_2 \rightarrow V_3 \rightarrow V_4 \rightarrow V_6$ is blocked by V_3 or V_4 or both.
- But: V₂ and V₆ are d-separated only by V₄ or {V₃, V₄}.
- V_1 and V_2 are not blocked by V_4 .
- V_4 is a fork in $V_5 \leftarrow V_4 \rightarrow V_6$.
- V_5 and V_6 are d-separated by V_4 .

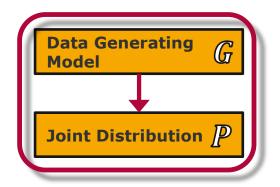
Causal Inference Theory and Applications in Enterprise Computing

5. Global Markov Condition Theorem

Global Markov Condition:

For all disjoint subsets of vertices X, Y and Z we have that X, Y d-separated by $Z \Rightarrow (X \perp Y \mid Z)_p$.

• I.e., we have $(X \perp Y \mid Z)_G \Rightarrow (X \perp Y \mid Z)_P$



Causal Inference Theory and Applications in Enterprise Computing

Uflacker, Huegle, Schmidt

6. Functional Model and Markov Conditions Theorem (Lauritzen 1996, Pearl 2000)

Theorem:

The following are equivalent:

- Existence of a *functional causal model G*;
- Local Causal Markov condition: V_j statistically independent of nondescendants, given parents (i.e.: every information exchange with its nondescendants involves its parents)
- Global Causal Markov condition: d-separation (characterizes the set of independences implied by local Markov condition)
- Factorization: $p(v_1, \dots, v_n) = \prod_{i=1}^n p(v_i | Pa(v_i)).$

(subject to technical conditions)

I.e., $(X \perp Y | Z)_G \Rightarrow (X \perp Y | Z)_P$

Causal Inference Theory and Applications in Enterprise Computing

Hasso Plattner

nstitut

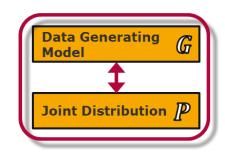
Uflacker, Huegle, Schmidt

7. Causal Faithfulness The key-postulate

Causal Faithfulness:

p is called faithful relative to *G* if only those independencies hold true that are implied by the Markov condition, i.e., $(X \perp Y \mid Z)_G \leftarrow (X \perp Y \mid Z)_P$

- I.e., we assume that any population P produced by this causal graph G has the independence relations obtained by applying d-separation to it
- Seems like a hefty assumption, but it really isn't: It assumes that whatever independencies occur in it arise not from incredible coincidence but rather from structure, i.e., data generating model G.
- Hence:



Causal Inference Theory and Applications in Enterprise Computing

Uflacker, Huegle, Schmidt

8. Constraint-based Causal Inference Concept (Spirtes, Glymor, Scheines and Pearl)

Assumptions:

- Causal Sufficiency
- Global Markov Condition
- Causal Faithfulness

Causal Structure Learning:

 \square Accept only those DAG's *G* as causal hypothesis for which

 $(X \perp Y \mid Z)_G \Leftrightarrow (X \perp Y \mid Z)_P.$

- Defines the basis of constraint-based causal structure learning
- Identifies causal DAG up to Markov equivalence class (DAGs that imply the same conditional independencies)

Causal Inference Theory and Applications in Enterprise Computing

Hasso Plattner

nstitut

Uflacker, Huegle, Schmidt

9. Markov Equivalence Class Theorem (Verma and Pearl)

Theorem:

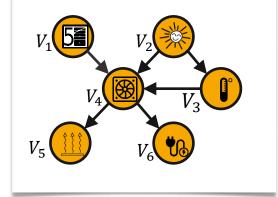
Two DAGs are Markov equivalent if and only if they have the same skeleton and the same *v*-structures

Skeleton:

corresponding undirected graph

v-structure:

substructure $X \rightarrow Y \leftarrow Z$ with no edges between X and Z.



Causal Inference Theory and Applications in Enterprise Computing

Slide 23

Schmidt

$X \perp Z \mid Y$

.

Causal In

Causal Inference Theory and Applications in Enterprise Computing

Uflacker, Huegle,

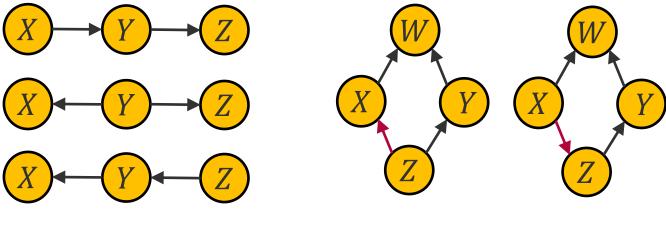
Institut

HPI

Hasso

Plattner

9. Markov Equivalence Class Examples



Same skeleton, no *v*-structure Same skeleton, same *v*-structure at *W*

- Causal Structures formalized by DAG (directed acyclic graph) G with random variables V_1, \dots, V_n as vertices.
- Causal Sufficiency, Causal Faithfulness and Markov Condition imply $(X \perp Y \mid Z)_G \Leftrightarrow (X \perp Y \mid Z)_P.$
- Local Markov Condition states that the density $p(v_1, ..., v_n)$ then factorizes into

 $p(v_1, ..., v_n) = \prod_{i=1}^n p(v_i | Pa(v_i)).$

• Causal conditional $p(v_j | Pa(v_j))$ represent causal mechanisms.

Causal Inference Theory and Applications in Enterprise Computing

Uflacker, Huegle, Schmidt

11. Structural Causal Models in Application Cooling House Example

Causal Inferenc	re in Applica X
+ % 1	
In []:	n <- 19800 coolingData <- rmvDAG(n,coolingDAG) #head(coolingData) plot(denst(pcoolingData[]]), main="Density Plot")
	This introduces the functional mechanisms in our system, which are described by the following equations
	• V ₁ = N(0, 1)
	• $V_2 = N(0, 1)$
	• $V_3 = 3 \cdot V_2 + N(0, 1)$
	• $V_4 = 4 \cdot V_1 + 5 \cdot V_2 + 0.7 \cdot V_3 + N(0, 1)$
	• $V_5 = V_4 + N(0, 1)$
	• $V_6 = 1.2 \cdot V_4 + N(0, 1)$
	In the following, we assume that these functional mechanisms are not known such that the goal remains to derive the causal relationships and the causal effects.
	When looking at the correlationmatrix as a first examination step, we see that all variables are highly correlated:
In []:	round(cor(coolingData), 2)
	In the framework causal graphical models, a directed edge $V_i \rightarrow V_j$ in our DAG represents a direct causal relationship of V_i to V_j .
	3.A. D-Separation
	Causal Sufficiency, Causal Faithfulness and Markov Condition imply that ($\chi \perp \gamma Z \rangle_{P} \Leftrightarrow (\chi \perp Y Z \rangle_{P}$. The essential mathematical concept is to find the d-separating sets S, e.g.
In []:	# Are V2 and V6 are d-separated by an empy set dsep("V2","VE",HULL,coolingDAG)
	# Are V2 and V6 are d-separated by V3 and V47 dsep("V2","V6",c("V3","V4"),ccolingDAG)
	3.B. Conditional Independence
	Then causal faithfulness and the Markov condition imply that two vertices V_i, V_j are conditionally independent given a set $S(V_i, V_j)$ if and only if the vertices V_i and V_i are d-separated by the set $S(V_i, V_j)$. e.g.:
	# Are V2 and V6 are independent?
	$\mathbf{x} \leftarrow 2$ $\mathbf{y} \leftarrow 6$
	y - ∽ S <- c()
	condIndFisherZ(x,y,S,cor(coolingData),n,qnorm(1-0.05/2))

x <= 2

Causal Inference Theory and Applications in Enterprise Computing

Uflacker, Huegle, Schmidt

12. Excursion: Maximal Ancestral Graphs Motivating Example

 Suppose, we are given the following list of conditional independencies among X, Y, Z and W:

• <i>X</i> ⊥ <i>Z</i> ,	• X ∦ Y,
• Y ⊥ W,	• Y ∦ Z,
• X ⊥ W.	• Z ∦ W.

- Which DAG could have generated these, and only these, independencies and dependencies?
- The pattern of dependencies must be:

X - Y - Z - W

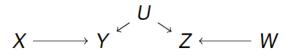
And there must be the following colliders:

 $\begin{array}{c} X \longrightarrow Y \longleftarrow Z \\ Y \longrightarrow Z \longleftarrow W \end{array}$

- **Causal Inference** Theory and Applications in Enterprise Computing
- Uflacker, Huegle, Schmidt
- There is no orientation of Y–Z that is consistent with the independencies. Slide 26

12. Excursion: Maximal Ancestral Graphs DAG Models and Marginalization

• Let's include an additional variable U:



• This DAG model generates a probability distribution $P_{\{X,Y,Z,W,U\}}$ in which:

• <i>X</i> ⊥⊥ <i>Z</i> ,	• X ⊭ Y,
• Y ⊥ W,	• Y ∦ Z,
• X ⊥ W.	• Z ∦ W.

• The marginal distribution $P_{\{X,Y,Z,W\}} = P_{\{X,Y,Z,W,U\}}du$ must adhere the same independencies. But: this marginal distribution cannot be faithfully generated by any DAG.

DAG models are not closed under marginalization!

Causal Inference Theory and Applications in Enterprise Computing

12. Excursion: Maximal Ancestral Graphs Ancestral Graphs (informally)

Ancestral Graph (AG)

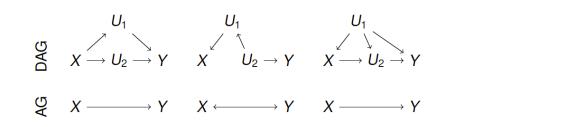
is a graph containing both directed and bi-directed edges, where the bi-directed edges stand for *latent variables, e.g.*,

$$U$$

$$X \leftarrow Y \quad Z \rightarrow W \qquad X \leftarrow Y \quad X \rightarrow W$$

m-Separation

If S m-separates X and Y in an ancestral graph M, then X \perp Y | S in every density p that factorizes according to any DAG G that is represented by the AG M.



Causal Inference Theory and Applications in Enterprise Computing

Hasso Plattne

Uflacker, Huegle, Schmidt

12. Excursion: Maximal Ancestral Graphs DAGs vs. AGs

Advantages of AGs

- AGs can faithfully represent more probability distributions than DAGs.
- □ AG models are closed under marginalization.
- AGs can (implicitly) represent unobserved variables, which exist in many (possibly almost all) applications.

Disadvantages of AGs

- Parameterization is difficult in the general case.
- Markov equivalence is difficult.

Causal Inference Theory and Applications in Enterprise Computing

References

Literature

- Pearl, J. (2009). <u>Causal inference in statistics: An overview</u>. Statistics Surveys, 3:96-146.
- Pearl, J. (2009). <u>Causality: Models, Reasoning, and Inference.</u> Cambridge University Press.
- Spirtes, P., Glymour, C., and Scheines, R. (2000). Causation, Prediction, and Search. The MIT Press.

Causal Inference Theory and Applications in Enterprise Computing

Uflacker, Huegle, Schmidt

IT Systems Engineering | Universität Potsdam

Thank you for your attention!