

IT Systems Engineering | Universität Potsdam

Causal Inference Theory and Applications in Enterprise Computing

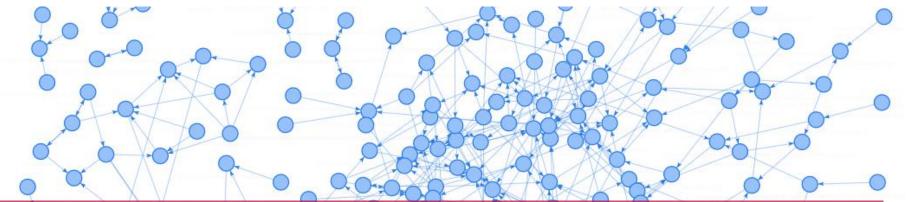
Dr. Matthias Uflacker, Johannes Huegle, Christopher Schmidt April 17, 2019

Agenda April 17, 2019

- Recap of Causal Graphical Models
- Introduction to Conditional Independence (CI) Testing
 - 1. Peliminaries
 - Statistical Inference
 - Central Limit Theorem
 - Confidence Level
 - 2. Statistical Hypothesis Testing
 - Hypothesis Types and Errors
 - Critical Values, P-Values
 - Supplement: Z-Test
 - 3. (Conditional) Independence Testing
 - Concept
 - Multivariate Normal Data
 - Overview
 - 4. CI Testing in Application

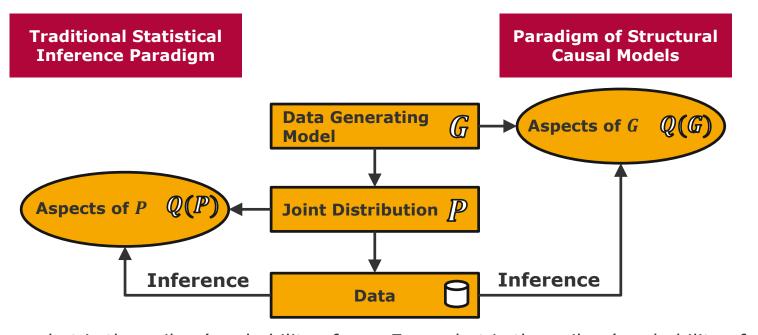
Causal Inference Theory and Applications in Enterprise Computing

IT Systems Engineering | Universität Potsdam



Recap of Causal Graphical Models

Recap of Causal Graphical Models The Concept of Causal Inference



Causal Inference Theory and Applications in Enterprise Computing

Uflacker, Huegle, Schmidt

E.g., what is the sailors' probability of recovery when we see a treatment with lemons?

Q(P) = P(recovery | lemons)

E.g., what is the sailors' probability of recovery if **we do** treat them with lemons? Q(G) = P(recovery|do(lemons))

Recap of Causal Graphical Models Summary (I/II)

- Causal Structures formalized by DAG (directed acyclic graph) G with random variables V₁,..., V_n as vertices.
- Causal Sufficiency, Causal Faithfulness and Global Markov Condition imply $(X \perp Y \mid Z)_G \Leftrightarrow (X \perp Y \mid Z)_P.$
- Local Markov Condition states that the density p(v₁,..., v_n) then factorizes into

 $p(v_1, \dots, v_n) = \prod_{i=1}^n p(v_i | Pa(v_i)).$

• Causal conditional $p(v_j | Pa(v_j))$ represent causal mechanisms.

Causal Inference Theory and Applications in Enterprise Computing

Recap of Causal Graphical Models Summary (II/II)

Assumptions:

- Causal Sufficiency
- Global Markov Condition
- Causal Faithfulness

Causal Structure Learning:

□ Accept only those DAG's *G* as causal hypothesis for which

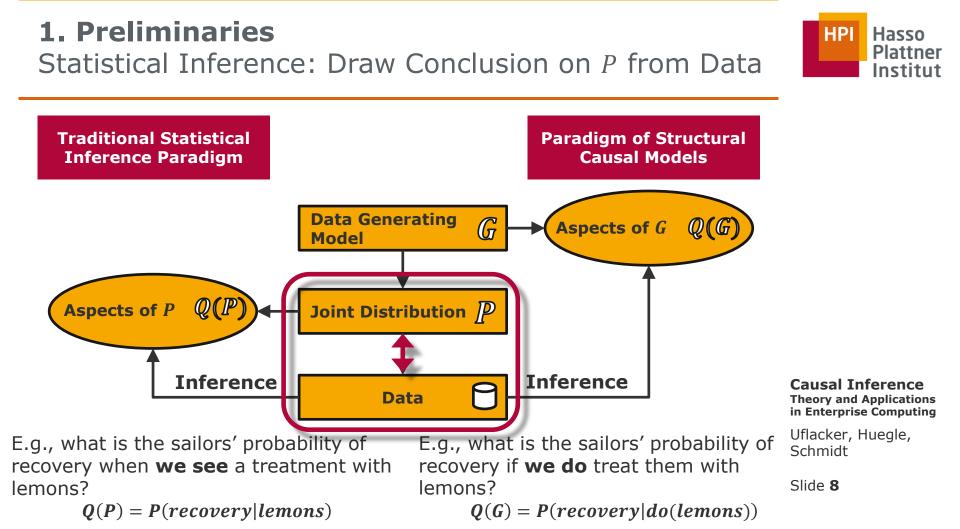
 $(X \perp Y \mid Z)_G \Leftrightarrow (X \perp Y \mid Z)_P.$

- Defines the basis of *constraint-based causal structure learning*, i.e., use statistical hypothesis testing theory to derive $(X \perp Y \mid Z)_P$.
- Identifies causal DAG up to *Markov equivalence class* (DAGs that imply the same conditional independencies in *P*.)

Causal Inference Theory and Applications in Enterprise Computing

IT Systems Engineering | Universität Potsdam

Introduction to Statistical Hypothesis Testing



1. Preliminaries Statistical Inference

Statistical Inference:

Deduce properties of a population's probability distribution P on the basis of random sampling \bigcirc .

Random samples X₁, ..., X_n

independent and identically distributed (i.i.d.) random variables $X_1, ..., X_n$

- Statistic T
 - □ function $g(X_1, ..., X_n)$ of the observations in a random sample $X_1, ..., X_n$
 - is a random variable with probability distribution (sampling distribution)

Point estimator ô

Statistic to estimate a population parameter Θ

```
Examples:
Sample mean \overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i with value \overline{x}_n is an estimator of the population mean \mu
```

Causal Inference Theory and Applications in Enterprise Computing

```
Uflacker, Huegle,
Schmidt
```

```
Slide 9
```

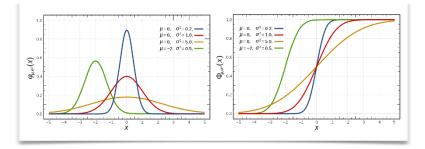
1. Preliminaries Normal Distribution

Normal Distribution:

We say a random variable *X* has a normal distribution with mean μ and standard deviation σ if its density function *f* is given

 $f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}, \qquad x \in \mathbb{R}.$

- We write $X \sim N(\mu, \sigma^2)$
- $\Phi_{\mu\sigma^2}(x) = F_X(x) = Pr(X \le x)$ is the *cumulative distribution function*
- $X \sim N(0,1)$ with $f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2}$ is called *standard normal distributed*
- If $X \sim N(\mu, \sigma^2)$, then
 - $\square \quad \frac{X-\mu}{\sigma} \sim N(0,1) \text{ (Standardization)}$
 - $\Box \quad X = \mu + \sigma Z \text{ with } Z \sim N(0,1)$



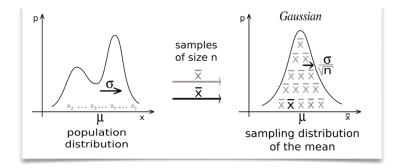
Causal Inference Theory and Applications in Enterprise Computing

Uflacker, Huegle, Schmidt

1. Preliminaries Central Limit Theorem

For a random sample $X_1, ..., X_n$ of size n from a population with mean μ and finite variance σ^2 then, for $n \to \infty$,

$$Z = \sqrt{n} \ \frac{\bar{X}_n - \mu}{\sigma} \to N(0, 1).$$



Causal Inference Theory and Applications in Enterprise Computing

Uflacker, Huegle, Schmidt

- Therefore, \overline{X}_n is approximately normal distributed with mean μ and standard deviation σ/\sqrt{n} , i.e., $\overline{X}_n \sim N(\mu, \sigma^2/n)$
- Hence, for the sum $S_n = \sum_{i=1}^n X_i$ we have $S_n \sim N(n\mu, n\sigma^2)$

1. Preliminaries Confidence Intervals (I/II)

Confidence Interval: A confidence interval estimate for the mean μ is an interval of the form $l \le \mu \le u$, With endpoints l and u computed from $X_1, ..., X_n$.

- Suppose that $Pr(L \le \mu \le U) = 1 \alpha$, $\alpha \in (0,1)$. Then for $l \le \mu \le u$:
 - □ *l* and *u* are called *lower* and *upper-confidence bounds*
 - \Box 1 α is called the *confidence level*
- Recall that $\overline{X}_n \sim N(\mu, \sigma^2/n)$. For some positive scalar value $z_{1-\alpha/2}$ we have

$$\Pr\left(\overline{X}_n \le \mu + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}\right) = \Pr\left(\frac{\overline{X}_n - \mu}{\frac{\sigma}{\sqrt{n}}} \le z_{1-\alpha/2}\right) = \Phi_{0,1}(z_{1-\alpha/2})$$

 $\square \operatorname{Pr}\left(\overline{X}_n \le \mu - z_{1-\alpha/2}\frac{\sigma}{\sqrt{n}}\right) = 1 - \Phi_{0,1}(z_{1-\alpha/2})$

1. Preliminaries Confidence Intervals (II/II)

Therefore

$$\Pr\left(\mu - z_{1-\frac{\alpha}{2}}\frac{\sigma}{\sqrt{n}} \le \overline{X}_n \le \mu + z_{1-\frac{\alpha}{2}}\frac{\sigma}{\sqrt{n}}\right) = 2\Phi_{0,1}(-z_{1-\alpha/2})$$

Recall, we want

$$\Pr\left(\mu - z_{1-\alpha/2}\frac{\sigma}{\sqrt{n}} \le \overline{X}_n \le \mu + z_{1-\alpha/2}\frac{\sigma}{\sqrt{n}}\right) = 1 - \alpha$$

• With $\alpha = 2\Phi_{0,1}(z_{1-\alpha/2})$ the $100(1-\alpha)\%$ confidence interval on μ is given by

$$\overline{X}_n - z_{1-\alpha/2} \frac{\partial}{\sqrt{n}} \le \mu \le \overline{X}_n + z_{1-\alpha/2} \frac{\partial}{\sqrt{n}}$$

• Since $\alpha = 2\Phi_{0,1}(-z_{1-\alpha/2})$, we can choose $z_{1-\alpha/2}$ as follows:

- $\square \quad 99\% \ \Rightarrow \alpha = 0.01 \ \Rightarrow \Phi_{0,1}(-z_{1-\alpha/2}) = \ 0.005 \ \Rightarrow \ z_{1-\alpha/2} \ = \ 2.57$
- $95\% \Rightarrow \alpha = 0.05 \Rightarrow \Phi_{0,1}(-z_{1-\alpha/2}) = 0.025 \Rightarrow z_{1-\alpha/2} = 2.32$

Causal Inference Theory and Applications in Enterprise Computing

```
Uflacker, Huegle,
Schmidt
```


2. Statistical Hypothesis Testing Introduction

Knowing the sampling distribution is the key of statistical inference:

Confidence intervals

Framework to derive error bounds on point estimates of the population distribution based on the sampling distribution

Hypothesis testing

Methodology for making conclusions about estimates of the population distribution based on the sampling distribution

Statistical Hypothesis:

Statement about parameters of one or more populations

- *Null Hypothesis H*⁰ is the claim that is initially assumed to be true
- Alternative Hypothesis H_1 is a claim that contradicts the H_0

A *hypothesis test* is a decision rule that is a function of the test statistic. E.g., reject H_0 if the test statistic is below a threshold, otherwise don't. **Causal Inference** Theory and Applications in Enterprise Computing

Uflacker, Huegle, Schmidt

2. Statistical Hypothesis Testing Hypothesis Types and Errors

For some arbitrary value μ_0

• one-sided hypothesis test: $H_0: \mu \ge \mu_0 \ vs \ H_1: \mu < \mu_0$ $H_0: \mu \le \mu_0 \ vs \ H_1: \mu > \mu_0$ • two-sided hypothesis test: $H_0: \mu = \mu_0 \ vs \ H_1: \mu \neq \mu_0$

	H ₀ is true	H_0 is false (H_1 is true)	
Retain H ₀	ОК	Type II error	
Reject H ₀	Type I error	OK	

Significance level of the statistical test

 $\alpha = \Pr(\text{type I error}) = \Pr(\text{reject } H_0 | H_0 \text{ is true})$

- Power of the statistical test
 - $\beta = \Pr(\text{type II error}) = \Pr(\text{retain } H_0 | H_1 \text{ is true})$

• Hypothesis testing Desire: α is low and the power $(1 - \beta)$ as high as can be

Causal Inference Theory and Applications in Enterprise Computing

Uflacker, Huegle, Schmidt

2. Statistical Hypothesis Testing Critical Value

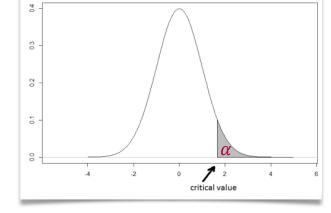
- Suppose $X_1, ..., X_n \sim N(\mu, \sigma^2)$ (σ is known)
- We would like to test $H_0: \mu = \mu_0 \ vs \ H_1: \mu > \mu_0$

Goal: Decision rule, i.e., reject $H_0: \mu = \mu_0$ if $\bar{x}_n > c$ for a $c \in \mathbb{R}$

- Choose test statistic *T* to be \overline{X}_n
- Under H_0 , we have $T \sim N(\mu_0, \sigma^2/n)$

$$\alpha = P_{\mu_0}\left(\overline{X}_n > c\right) = P_{\mu_0}\left(\frac{\sqrt{n}(\overline{X}_n - \mu_0)}{\sigma} > \frac{\sqrt{n}(c - \mu_0)}{\sigma}\right)$$
$$= P_{\mu_0}\left(Z > \frac{\sqrt{n}(c - \mu_0)}{\sigma}\right) = 1 - \Phi_{0,1}\left(\frac{\sqrt{n}(c - \mu_0)}{\sigma}\right)$$

• Therefore, $c = \mu_0 + \Phi_{0,1}^{-1}(1-\alpha) \frac{\sigma}{\sqrt{n}}$



Causal Inference Theory and Applications in Enterprise Computing

Uflacker, Huegle, Schmidt

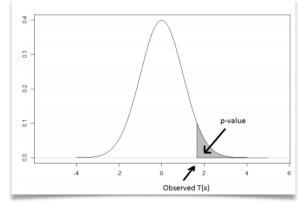
2. Statistical Hypothesis Testing P-Value

The p-value is the probability that under the null hypothesis, the random test statistic takes a value as extreme as or more extreme than the one observed.

- Rule of thumb: p-value low \Rightarrow H_0 must go
- We would like to test $H_0: \mu = \mu_0 vs H_1: \mu > \mu_0$
- Here, the p-value is $P_{H_0}(\overline{X}_n > \overline{x}_n) = \cdots$

 $= P_{H_0}\left(Z > \frac{(\overline{X}_n - \mu_0)}{\sigma/\sqrt{n}}\right) = 1 - \Phi_{0,1}\left(\frac{\overline{X}_n - \mu_0}{\sigma/\sqrt{n}}\right)$

- ➡ If $P_{H_0}(\overline{X}_n > \overline{x}_n) < \alpha$ we reject $H_0: \mu = \mu_0$
- Absolutely identical to the usage of the critical value



Causal Inference Theory and Applications in Enterprise Computing

2. Statistical Hypothesis Testing Supplement: Z-Test

- If the distribution of the test statistic *T* under *H*₀ can be approximated by a normal distribution the corresponding statistical test is called *z*-test
- Overview for *Z*-tests with known σ:

Testing Hypothe Model:	eses on the Mean, Variance $X_i \overset{i.i.d.}{\sim} N(\mu, \sigma^2)$	Known (Z-Tests) with μ unknown but σ^2 known.
Null hypothesis:	$H_0: \mu = \mu_0.$	
Test statistic:	$z = \frac{\overline{x} - \mu_0}{\sigma/\sqrt{n}}, \qquad Z = \frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}}.$	
Alternative Hypotheses	P-value	Rejection Criterion for Fixed-Level Tests
$H_1: \mu \neq \mu_0$	$P = 2 \big[1 - \Phi \big(z \big) \big]$	$z > z_{1-lpha/2}$ or $z < z_{lpha/2}$
$H_1: \mu > \mu_0$	$P = 1 - \Phi(z)$	$z > z_{1-\alpha}$
$H_1: \mu < \mu_0$	$P = \Phi(z)$	$z < z_{\alpha}$

Causal Inference Theory and Applications in Enterprise Computing

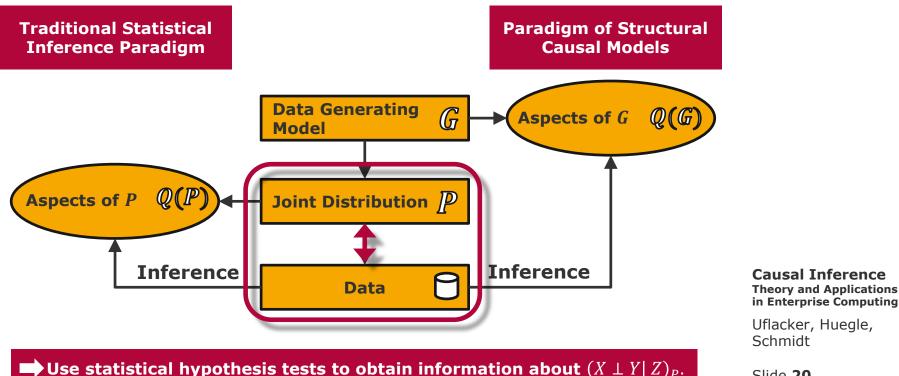
2. Statistical Hypothesis Testing Summary

- Hypothesis
 - Null Hypothesis H_0 is the claim that is initially assumed to be true П
 - Alternative Hypothesis H_1 is a claim that contradicts H_0 П
- *Hypothesis test* is a decision rule that is a function of the test statistic T
- How to test a hypothesis?
 - Relation test and confidence interval
 - Approximate T under H_0 by a known distribution П
 - Different distributions yield to different tests, e.g., *T*-test, χ^2 -test, etc.
 - Derive rejection criteria for H_0 П
 - *c*-value: reject H₀ if T(x_n) > c for a c ∈ ℝ
 p-value: reject H₀ if P_{H0}(T(X) > T(x)) < α

are equivalent

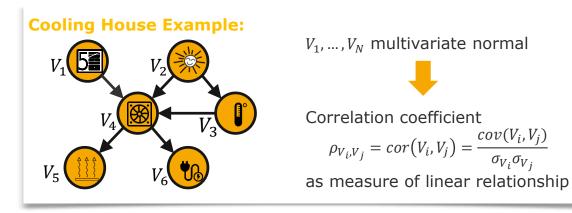
Causal Inference Theory and Applications in Enterprise Computing

3. (Conditional) Independence Testing Concept (I/II)



3. (Conditional) Independence Testing Concept (II/II)

Basic idea: Find a measure *T* of (conditional) dependence within the random samples $X_1, ..., X_N$ and apply statistical hypothesis tests whether $T(X_1, ..., X_N)$ is zero or not, i.e., $H_0: t = 0 \ vs \ H_1: t \neq 0$



Causal Inference Theory and Applications in Enterprise Computing

Uflacker, Huegle, Schmidt

3. (Conditional) Independence Testing Multivariate Normal Data (I/II)

Theorem:

Two variables bi-variate normal distributed variables V_i and V_j are *independent* if and only if the correlation coefficient $\rho_{V_iV_i}$ is zero.

• Hence, we test whether the correlation coefficient ρ_{V_i,V_i} ,

$$\rho_{V_i,V_j} = \frac{E\left[\left(V_i - \mu_{V_i}\right)\left(V_j - \mu_{V_j}\right)\right]}{\sigma_{V_i}\sigma_{V_j}},$$

is equal to zero or not, i.e., $H_0: \rho_{V_i,V_j} = 0$ vs $H_1: \rho_{V_i,V_j} \neq 0$

• For i.i.d. normal distributed V_i, V_j , applying Fisher's z-transformation ρ_{V_i, V_j} ,

$$Z\left(\rho_{V_{i},V_{j}}\right) = \frac{1}{2}\log\left(\frac{1+\rho_{V_{i},V_{j}}}{1-\rho_{V_{i},V_{j}}}\right)$$

yields to
$$Z\left(\rho_{V_{i},V_{j}}\right) \sim N\left(\frac{1}{2}\ln\left(\frac{1+\rho_{V_{i},V_{j}}}{1-\rho_{V_{i},V_{j}}}\right),\frac{1}{\sqrt{n-3}}\right).$$

Causal Inference Theory and Applications in Enterprise Computing

Uflacker, Huegle, Schmidt

3. (Conditional) Independence Testing Multivariate Normal Data (II/II)

- Thus, we can apply standard statistical hypothesis tests, i.e.,
 - Derive *p*-value

$$p(V_i, V_j) = 2\left(1 - \Phi_{0,1}\left(\sqrt{n-3} \left|Z\left(\rho_{V_i, V_j}\right)\right|\right)\right)$$

- Given significance level α , we reject the null-hypothesis $H_0: \rho_{V_i,V_j} = 0$ against $H_0: \rho_{V_i,V_j} \neq 0$ if for the corresponding estimated *p*-value it holds that $\hat{p}(V_i, V_j) \leq \alpha$
- This can be easily extended for conditional independence:

Theorem:

For multivariate normal distributed variables $V = \{V_1, ..., V_N\}$ we have that two variables V_i and V_j are conditionally independent given the separation set $S \subset V/\{V_i, V_j\}$ if and only if the partial correlation $\rho(V_i, V_j | S)$ between V_i and V_j given S is equal to zero.

 I.e., we can apply the same procedure to receive information about conditional independencies **Causal Inference** Theory and Applications in Enterprise Computing

Uflacker, Huegle, Schmidt

3. (Conditional) Independence Testing Overview

HPI Hasso Plattner Institut

- Statistical hypothesis testing theory allows to obtain $(X \perp Y \mid Z)_P$ from data
- Distribution of $V_1, ..., V_N \Rightarrow$ dependence measures $T(V_i, V_j, S) \Rightarrow$ hypothesis test $H_0: t = 0$

Examples

Multivariate normal data:
 Categorical data:

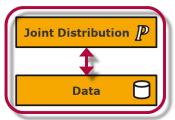
$$Z(v_i, v_j | \mathbf{s}) = \frac{1}{2} \ln \left(\frac{1 + \hat{\rho}_{v_i, v | \mathbf{s}}}{1 + \hat{\rho}_{v_i, v_j | \mathbf{s}}} \right)$$

with sample (partial) correlation coefficient $\hat{\rho}_{v_i,v_j|s}$

$$\chi^{2}(v_{i}, v_{j} | \mathbf{s}) = \sum_{v_{i} v_{j} s} \frac{\left(N_{v_{i} v_{j} s} - E_{v_{i} v_{j} s}\right)^{2}}{E_{v_{i} v_{j} s}} \text{ and } G^{2}(V_{i}, V_{j} | \mathbf{s}) = 2 \sum_{v_{i} v_{j} s} N_{v_{i} v_{j} s} \ln\left(\frac{N_{v_{i} v_{j} s}}{E_{v_{i} v_{j} s}}\right)$$

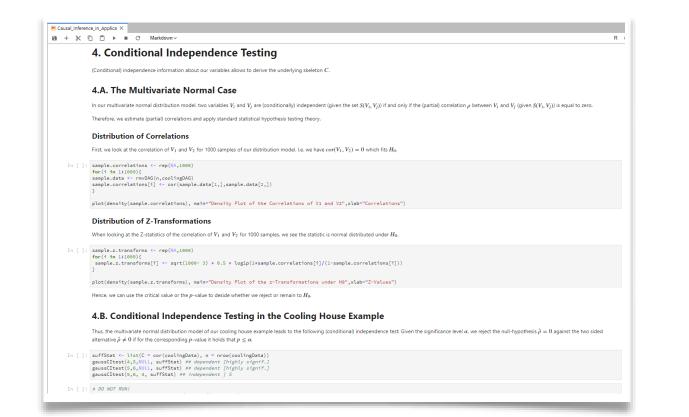
with $E_{v_{i} v_{j} s} = \frac{N_{v_{i} + s} N_{+ v_{j} s}}{N_{++s}}$ where $N_{v_{i} +} = \sum_{v_{j}} N_{v_{i} v_{j}}, N_{v_{i} +} = \sum_{v_{j}} N_{v_{i} v_{j}},$
 $N_{+v_{j}} = \sum_{v_{i}} N_{v_{i} v_{j}} \text{ and } N_{++} = \sum_{v_{i} v_{j}} N_{v_{i} v_{j}} \text{ are calculated for every realization of } \mathbf{s}$

This defines the basis of constraint-based causal structure learning



Causal Inference Theory and Applications in Enterprise Computing

4. Independence Testing in Application Cooling House Example



Causal Inference Theory and Applications in Enterprise Computing

Uflacker, Huegle, Schmidt

References

Literature

- Lehmann et. al. (2006). *Testing statistical hypotheses*. Springer Science & Business Media.
- Montgomery et. al. (2010). Applied statistics and probability for engineers. John Wiley & Sons.
- Dempster et. al. (1969). *Elements of Continuous Multivariate Analysis*. Addison-Wesley Publ. Co., Reading, Mass. 1969.
- Joe Whittaker. (2009). Graphical Models in Applied Multivariate Statistics.
 Wiley Publishing.

Causal Inference Theory and Applications in Enterprise Computing

Uflacker, Huegle, Schmidt

IT Systems Engineering | Universität Potsdam

Thank you for your attention!