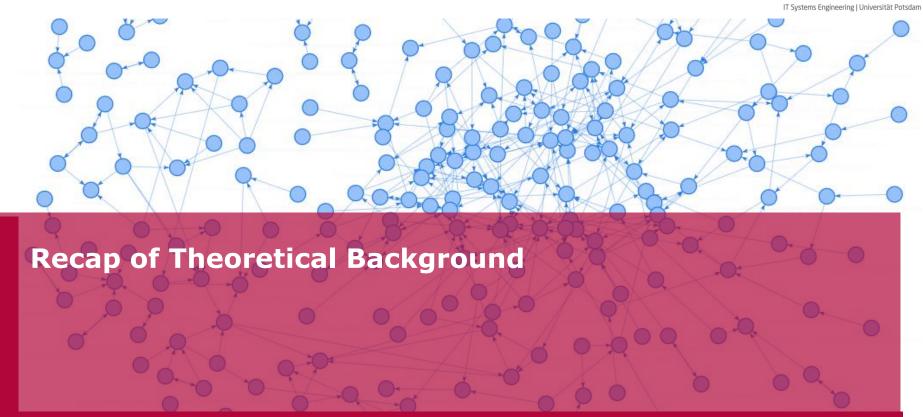


Agenda

April 24, 2019

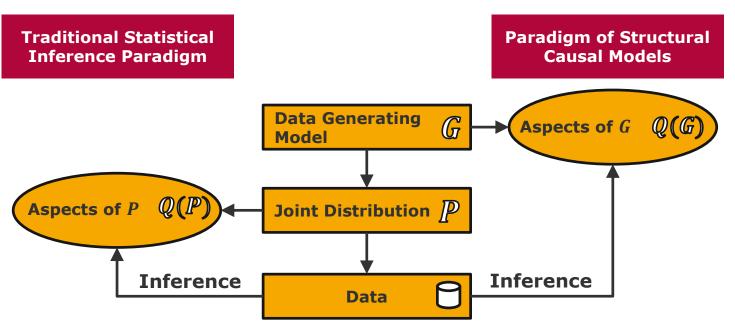
- Recap of Theoretical Background
- Constraint-Based Causal Structure Learning
 - 1. Introduction
 - Constraint-Based Causal Structure Learning
 - 3. PC Algorithm
 - 4. PC Algorithm in the Cooling House Example
 - 5. Extensions of the PC Algorithm
 - 6. Excursion: Other Causal Structure Learning Concepts
 - Causal Inference in Application
 - Outlook: Group Work on Research Topics

Causal Inference Theory and Applications in Enterprise Computing Uflacker, Huegle, Schmidt



Recap of Theoretical Background

Causal Inference in a Nutshell



E.g., what is the sailors' probability of recovery when **we see** a treatment with lemons?

Q(P) = P(recovery|lemons)

E.g., what is the sailors' probability of recovery if **we do** treat them with lemons?

Q(G) = P(recovery|do(lemons))

Causal Inference Theory and Applications in Enterprise Computing Uflacker, Huegle, Schmidt

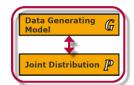
Recap of Theoretical Background

Causal Graphical Models

- Causal Structures formalized by *DAG* (directed acyclic graph) G with random variables $V_1, ..., V_n$ as vertices.
- Causal Sufficiency, Causal Faithfulness and Global Markov Condition imply $(X \perp Y \mid Z)_G \Leftrightarrow (X \perp Y \mid Z)_P$.
- Local Markov Condition states that the density $p(v_1, ..., v_n)$ then factorizes into

$$p(v_1, \dots, v_n) = \prod_{i=1}^n p(v_i | Pa(v_i)).$$

• Causal conditional $p(v_i|Pa(v_i))$ represent causal mechanisms.



Causal Inference Theory and Applications in Enterprise Computing Uflacker, Huegle, Schmidt

Recap of Theoretical Background

- *Null Hypothesis* H_0 is the claim that is initially assumed to be true
- Alternative Hypothesis H_1 is a claim that contradicts the H_0
- How to test a hypothesis?

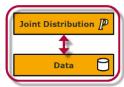
Statistical Inference

- Approximate T under H_0 by a known distribution
- Different distributions yield to different tests, e.g., T-test, χ^2 -test, etc.
- Derive rejection criteria for H_0

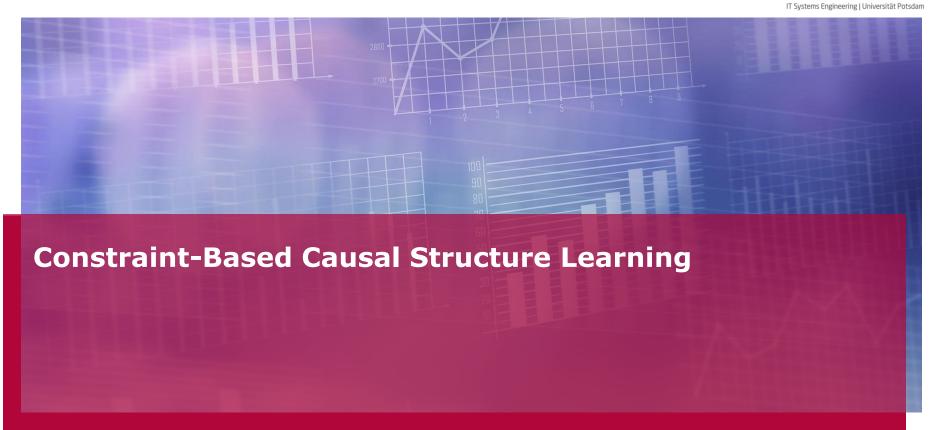
 - c-value: reject H_0 if $T(x_n) > c$ for a $c \in \mathbb{R}$ p-value: reject H_0 if $P_{H_0}(T(X) > T(x)) < \alpha$ are equivalent
- (Conditional) Independence Test

Distribution of $V_1, ..., V_N \Rightarrow$ dependence measures $T(V_i, V_i, S) \Rightarrow$ test $H_0: t = 0$

Allows for constraint-based causal structure learning

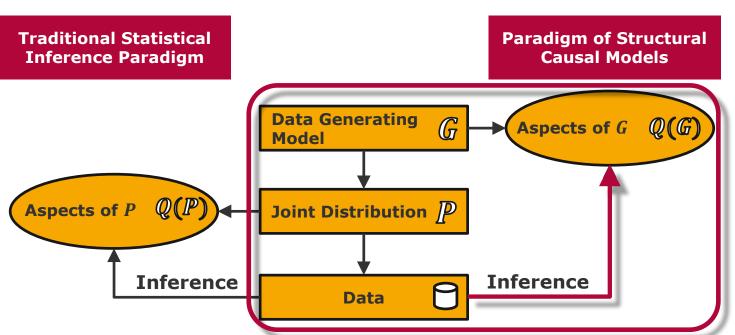


Causal Inference Theory and Applications in Enterprise Computing Uflacker, Huegle, Schmidt



1. Introduction

The Concept



E.g., what is the sailors' probability of recovery when **we see** a treatment with lemons?

Q(P) = P(recovery|lemons)

E.g., what is the sailors' probability of recovery if **we do** treat them with lemons?

Q(G) = P(recovery|do(lemons))

Causal Inference Theory and Applications in Enterprise Computing Uflacker, Huegle, Schmidt

1. Introduction

Recap: Basis of Causal Structure Learning (Pearl et al.)

Assumptions:

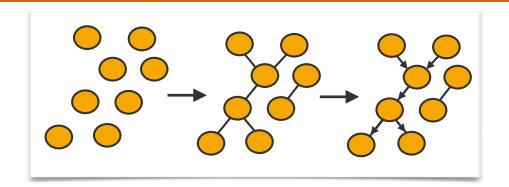
- Causal Sufficiency
- Global Markov Condition
- Causal Faithfulness

Causal Structure Learning:

- Accept only those DAG's G as causal hypothesis for which $(X \perp Y \mid Z)_G \Leftrightarrow (X \perp Y \mid Z)_P$.
- Identifies causal DAG up to Markov equivalence class
 (DAGs that imply the same conditional independencies)
- The Markov equivalence class of a DAG G includes all DAGs G' that have the same $skeleton\ C$ and the same v-structures
- Markov equivalence class of the true DAG G that can be uniquely described by a completed partially directed acyclic graph (CPDAG)

Causal Inference Theory and Applications in Enterprise Computing Uflacker, Huegle, Schmidt

2. Constraint-Based Causal Structure Learning Algorithmic Construction (I/II)



Idea:

- Construct skeleton C
- 2. Find *v*-structures
- 3. Direct further edges that follow from
 - Graph is acyclic
 - \Box All v-structures have been found in 2

Causal Inference Theory and Applications in Enterprise Computing Uflacker, Huegle, Schmidt

Slide 10

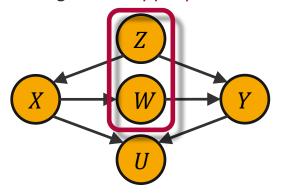
 \rightarrow IC algorithm by Verma and Pearl (1990) to reconstruct CPDAG G from P

2. Constraint-Based Causal Structure Learning Algorithmic Construction (II/II)

Theorem

Assume Markov condition and faithfulness holds. Then X and Y are linked by an edge if and only if there is no set S(X,Y) such that $(X \perp Y | S(X,Y))_{P}$.

 I.e., dependence mediated by other variables can be screened off by conditioning on an appropriate set



- $X \perp Y \mid \{Z, W\}$
- But not:
 - $X \perp Y \mid U$
 - $X \perp Y \mid \{Z, W, U\}$

...but not by conditioning on all other variables!

• S(X,Y) is called separation set of X and Y

Causal Inference Theory and Applications in Enterprise Computing Uflacker, Huegle, Schmidt

The Idea

Question:

How to find the appropriate separation sets $S(V_i, V_i)$ for all variables V_i and V_i ?

- Check $V_i \perp V_j \mid S(V_i, V_j)$ for all possible separation sets $S(V_i, V_j) \subseteq V \setminus \{V_i, V_j\}$
 - Computationally infeasible for large V
- Efficient construction of the skeleton C

Iteration over size of the separation sets *S*:

- **1.** Remove all edges X Y with $X \perp Y$
- 2. Remove all edges X Y for which there is an adjacent $Z \neq Y$ of X with $X \perp Y \mid Z$
- 3. Remove all edges X Y for which there are two adjacent $Z_1, Z_2 \neq Y$ of X with $X \perp Y \mid \{Z_1, Z_2\}$
- 4. ...

Causal Inference Theory and Applications in Enterprise Computing Uflacker, Huegle, Schmidt

Slide 12

 \rightarrow PC algorithm by Spirtes et al. (1993) to reconstruct CPDAG G from P

Skeleton Discovery: Pseudocode

Algorithm 1 The PCpop-algorithm

- 1: INPUT: Vertex Set V, Conditional Independence Information
- 2: **OUTPUT:** Estimated skeleton C, separation sets S (only needed when directing the skeleton afterwards)
- 3: Form the complete undirected graph \tilde{C} on the vertex set V.

```
4: \ell = -1; C = \tilde{C}
```

5: repeat

$$\ell = \ell + 1$$

7: repeat

8: Select a (new) ordered pair of nodes i, j that are adjacent in C such that $|adj(C, i) \setminus \{j\}| \ge \ell$

9: repeat

10: Choose (new) $\mathbf{k} \subseteq adj(C,i) \setminus \{j\}$ with $|\mathbf{k}| = \ell$.

if i and j are conditionally independent given k then

12: Delete edge i, j

13: Denote this new graph by C

14: Save **k** in S(i, j) and S(j, i)

15: end if

16: **until** edge i, j is deleted or all $\mathbf{k} \subseteq adj(C, i) \setminus \{j\}$ with $|\mathbf{k}| = \ell$ have been chosen

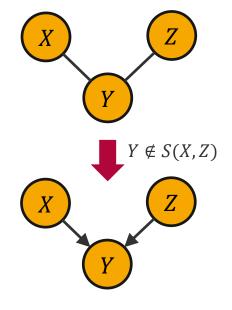
17: **until** all ordered pairs of adjacent variables i and j such that $|adj(C,i) \setminus \{j\}| \ge \ell$ and $k \subseteq adj(C,i) \setminus \{j\}$ with $|\mathbf{k}| = \ell$ have been tested for conditional independence

18: **until** for each ordered pair of adjacent nodes $i, j: |adj(C, i) \setminus \{j\}| < \ell$.

Causal Inference Theory and Applications in Enterprise Computing Uflacker, Huegle, Schmidt

Edge Orientation: *v*-Structures

- Assume the skeleton is given by:
 - □ Given X Y Z with X and Z nonadjacent
 - Given S(X,Z) with $X \perp Z \mid S(X,Z)$
- A priori, there are 4 possible orientations



Causal Inference Theory and Applications in Enterprise Computing Uflacker, Huegle, Schmidt

Slide 14

v-Structures:

If $Y \notin S(X,Z)$ then replace X - Y - Z by $X \to Y \leftarrow Z$.

Edge Orientation: Rule 1

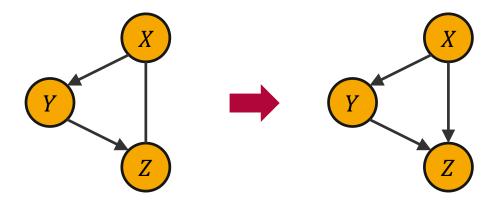
(Otherwise we get a new v-structure)

Rule 1:

Orient Y - Z to $Y \to Z$ whenever there is an arrow $X \to Y$ s.t. X and Z are nonadjacent

Causal Inference Theory and Applications in Enterprise Computing Uflacker, Huegle, Schmidt

Edge Orientation: Rule 2



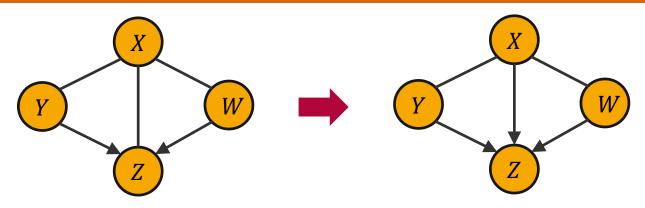
(Otherwise we get a cycle)

Rule 2:

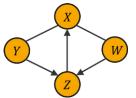
Orient X - Z to $X \to Z$ whenever there is a chain $X \to Y \to Z$

Causal Inference Theory and Applications in Enterprise Computing Uflacker, Huegle, Schmidt

Edge Orientation: Rule 3



(Could not be completed without creating a cycle or a new *v*-structure)

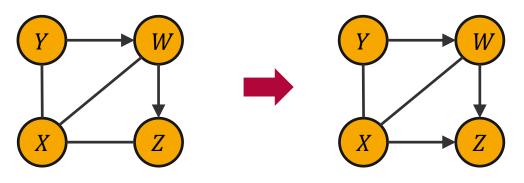


Rule 3:

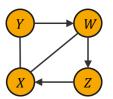
Orient X - Z to $X \to Z$ whenever there are two chains $X - Y \to Z$ and $X - W \to Z$ s.t. Y and W are nonadjacent

Causal Inference Theory and Applications in Enterprise Computing Uflacker, Huegle, Schmidt

Edge Orientation: Rule 4



(Could not be completed without creating a cycle or a new *v*-structure)



Rule 4:

Orient X - Z to $X \to Z$ whenever there are two chains $X - Y \to W$ and $Y \to W \to Z$ s.t. Y and Z are nonadjacent

Causal Inference Theory and Applications in Enterprise Computing Uflacker, Huegle, Schmidt

Edge Orientation: Pseudocode

Algorithm 2 Extending the skeleton to a CPDAG

INPUT: Skeleton G_{skel} , separation sets S

OUTPUT: CPDAG G

for all pairs of nonadjacent variables i, j with common neighbour k do

if $k \notin S(i, j)$ then

Replace i - k - j in G_{skel} by $i \rightarrow k \leftarrow j$

end if

end for

In the resulting PDAG, try to orient as many undirected edges as possible by repeated application of the following three rules:

R1 Orient j - k into $j \to k$ whenever there is an arrow $i \to j$ such that i and k are nonadjacent.

R2 Orient i - j into $i \rightarrow j$ whenever there is a chain $i \rightarrow k \rightarrow j$.

R3 Orient i - j into $i \to j$ whenever there are two chains $i - k \to j$ and $i - l \to j$ such that k and l are nonadjacent.

R4 Orient i - j into $i \to j$ whenever there are two chains $i - k \to l$ and $k \to l \to j$ such that k and j are nonadjacent.

Causal Inference Theory and Applications in Enterprise Computing Uflacker, Huegle, Schmidt

A Review

Advantages

- Testing all sets S(X,Y) containing the adjacencies of X is sufficient
- Many edges can be removed already for small sets
- Depending on sparseness, the algorithm only requires independence tests with small conditioning sets S(X,Y)
- Polynomial complexity for graph of N vertices of bounded degree k, i.e.,

$$\frac{N^2(N-1)^{k-1}}{(k-1)!}$$

Asymptotic consistency (under technical assumptions), i.e.,

$$\Pr(\widehat{G} = G) \to 1 \quad (n \to \infty)$$

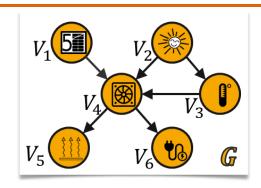
Disadvantages

- In the worst case, complexity exponential to number of vertices N
- Assumes causal sufficiency, faithfulness and Markov conditions

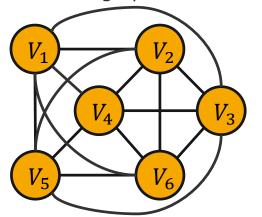
Causal Inference Theory and Applications in Enterprise Computing Uflacker, Huegle, Schmidt

4. PC Algorithm in the Cooling House ExampleCooling House Example (I/V)

Assume the true DAG G is given by:



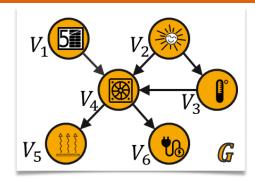
We start with a fully connected undirected graph:



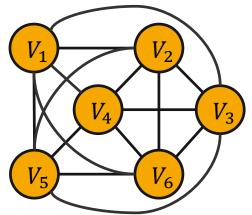
Causal Inference Theory and Applications in Enterprise Computing Uflacker, Huegle, Schmidt

Cooling House Example (II/V)

Assume the true DAG G is given by:



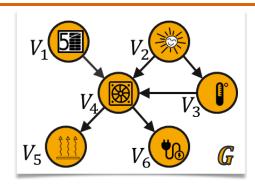
- Remove all edges X Y that are directly independent, i.e., $X \perp Y \mid \emptyset$
 - \circ $V_1 \perp V_2$
 - \circ $V_1 \perp V_3$



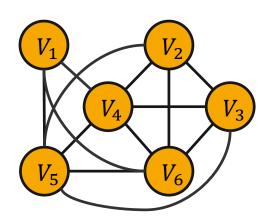
Causal Inference Theory and Applications in Enterprise Computing Uflacker, Huegle, Schmidt

Cooling House Example (III/V)

Assume the true DAG G is given by:



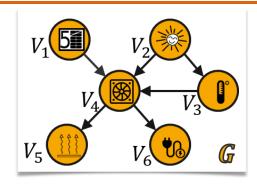
- Remove all edges X Y having separation sets of size 1, i.e., $X \perp Y \mid Z$
 - \circ $V_1 \perp V_5 \mid V_4$
 - \circ $V_1 \perp V_6 \mid V_4$
 - \circ $V_2 \perp V_5 \mid V_4$
 - \circ $V_2 \perp V_6 \mid V_4$
 - \circ $V_3 \perp V_5 \mid V_4$
 - \circ $V_3 \perp V_6 \mid V_4$
 - \circ $V_5 \perp V_6 \mid V_4$



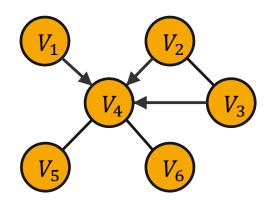
Causal Inference Theory and Applications in Enterprise Computing Uflacker, Huegle, Schmidt

Cooling House Example (IV/V)

Assume the true DAG G is given by:



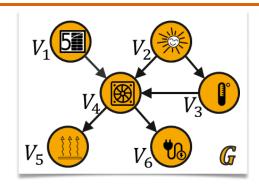
- Find v-structures, i.e., orient X Y Z to $X \to Y \leftarrow Z$ if $Y \notin S(X,Z)$
 - \circ $V_4 \notin S(V_1, V_2)$
 - $\circ V_4 \notin S(V_1, V_3)$



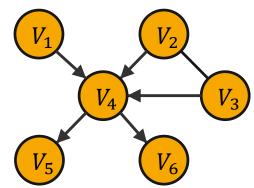
Causal Inference Theory and Applications in Enterprise Computing Uflacker, Huegle, Schmidt

Cooling House Example (V/V)

Assume the true DAG G is given by:



- Orient further edges (such that no further v-structures arise)
 - \circ $V_1 \rightarrow V_4 V_5$ (Rule 1)
 - $\circ \quad V_1 \to V_4 V_6 \text{ (Rule 1)}$



• No further edges can be oriented, i.e., $V_2 - V_3$ remain undirected

Causal Inference
Theory and Applications
in Enterprise Computing
Uflacker, Huegle,
Schmidt

5. Extensions of the PC Algorithm

Order Independence (Colombo et al. 2014)

PC algorithm

Order of $V_1, ..., V_N$ affects estimation of

- 1. Skeleton C
- 2. Separating sets $S(V_i, V_j)$
- 3. Edge orientation

PC-stable algorithm

For each level l

- □ Compute and store the adjacency set $a(V_i)$ of all vertices V_i
- \Box Use $a(V_i)$ for search of separation sets
- Edge deletion longer affects which conditional independencies are checked for other pairs of variables at this level *l*

```
Algorithm 4.1 Step 1 of the PC-stable algorithm (oracle version)
Require: Conditional independence information among all variables in V, and an ordering
    order(V) on the variables
1: Form the complete undirected graph \mathcal{C} on the vertex set \mathbf{V}
 2: Let ℓ = −1:
       for all vertices X_i in C do
         Let a(X_i) = adj(C, X_i)
       end for
          Select a (new) ordered pair of vertices (X_i, X_i) that are adjacent in C and satisfy
          |a(X_i) \setminus \{X_i\}| \ge \ell, using order(V);
         repeat
            Choose a (new) set \mathbf{S} \subseteq a(X_i) \setminus \{X_i\} with |\mathbf{S}| = \ell, using order(V);
11:
            if X_i and X_j are conditionally independent given S then
13:
               Delete edge X_i - X_j from C;
               Let sepset(X_i, X_i) = \text{sepset}(X_i, X_i) = \mathbf{S};
         until X_i and X_j are no longer adjacent in \mathcal{C} or all \mathbf{S} \subseteq a(X_i) \setminus \{X_j\} with |\mathbf{S}| = \ell
          have been considered
     until all ordered pairs of adjacent vertices (X_i, X_i) in \mathcal{C} with |a(X_i) \setminus \{X_i\}| \geq \ell have
18: until all pairs of adjacent vertices (X_i, X_i) in \mathcal{C} satisfy |a(X_i) \setminus \{X_i\}| \leq \ell
19: return C, sepset.
```

Causal Inference
Theory and Applications
in Enterprise Computing
Uflacker, Huegle,
Schmidt

5. Extensions of the PC Algorithm

Parallelization (Le et al. 2016)

PC algorithm

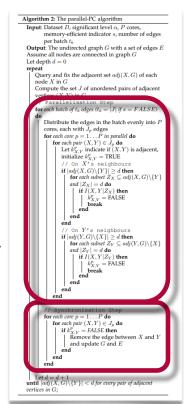
Limitations:

- 1. Order-dependent (→*PC-stable*)
- 2. Sequential execution does not utilize modern hardware
- Long runtime hinders its application on high dimensional datasets

parallelPC algorithm

PC-stable allows for easy parallelization at each level l, i.e.,

- 1. CI tests are distributed evenly among the cores
- 2. Each core performs its own sets of CI tests in parallel with the others
- 3. Synchronize test results into the global skeleton ${\cal C}$
- ⇒ Efficient in high dimensional datasets and consistent with PC-stable algorithm



Causal Inference
Theory and Applications
in Enterprise Computing

Uflacker, Huegle, Schmidt

5. Extensions of the PC Algorithm

Theoretical Extensions (A Selection)

Weaker form of faithfulness

- Learn a Markov equivalence class of DAGs under a weaker-than-standard causal faithfulness assumption
- Assumes Adjacency-Faithfulness to justify the step of recovering adjacencies in constraint-based algorithms
- Conservative PC (CPC) by Ramsey et al. (1995)

Allow for latent and selection variables

- Learn a Markov equivalence class of DAGs with latent and selection variables
- Follows maximal ancestral graph (MAG) models
- ⇒ Fast causal inference (FCI) by Spirtes et al. (1999)

Allow for cycles

- Learn Markov equivalence classes of directed (not necessarily acyclic)
 graphs under the assumption of causal sufficiency.
- ⇒ Cyclic causal discovery (CCD) by Richardson (1996)

Causal Inference Theory and Applications in Enterprise Computing Uflacker, Huegle, Schmidt

6. Excursion:

Other Causal Structure Learning Concepts

Score-based methods

- "search-and-score approach", i.e.,
 - 1. Assume causal structure G and functional restrictions (e.g., linear relations and independent Gaussian noise)
 - 2. Optimize some score (e.g., likelihood or BIC) given these restrictions
 - 3. Change G and compute new optimal score value
 - 4. Repeat this for many G and return G^{opt} with the best (optimized) score
- ⇒ E.g., Greedy-Equivalent-Search (GES) by Chickering (2002)

Hybrid methods

- Combines constraint-based and search-and-score methods, i.e.,
 - Constraint-based search to find skeleton
 - 2. Score-based approach to orient edges
- ⇒ E.g., Max-Min Hill-Climbing (MMHC) by Tsamardinos et al. (2006)

Causal Inference Theory and Applications in Enterprise Computing Uflacker, Huegle, Schmidt

References

Literature

- Pearl, J. (2009). <u>Causal inference in statistics: An overview</u>. Statistics Surveys.
- Pearl, J. (2009). <u>Causality: Models, Reasoning, and Inference</u>. Cambridge University Press.
- Spirtes et al. (2000). Causation, Prediction, and Search. The MIT Press.
- Kalisch et al. (2007). <u>Estimating high-dimensional directed acyclic graphs</u> with the <u>PC-algorithm</u>. Journal of Machine Learning Research.
- Colombo et al. (2014). <u>Order-independent constraint-based causal</u> <u>structure learning</u>. The Journal of Machine Learning Research.
- Le et al. (2016). <u>A fast PC algorithm for high dimensional causal</u> <u>discovery with multi-core PCs</u>. IEEE/ACM transactions on computational biology and bioinformatics.
- Kalisch et al. (2014). <u>Causal structure learning and inference: a selective</u> <u>review</u>. Quality Technology & Quantitative Management

Causal Inference Theory and Applications in Enterprise Computing Uflacker, Huegle, Schmidt

References

Implementations

R

- Kalisch et al. (2017), R Package 'pcalq'.
- Le et al. (2015), <u>R Package 'ParallelPC</u>'.
- Scutari (2007), <u>Learning Bayesian Networks with the bnlearn R Package</u>.

Python

Kobayashi (2015), <u>CPDAG Estimation using PC-Algorithm</u>.
 (Note: Unstable version of the PC Algorithm)

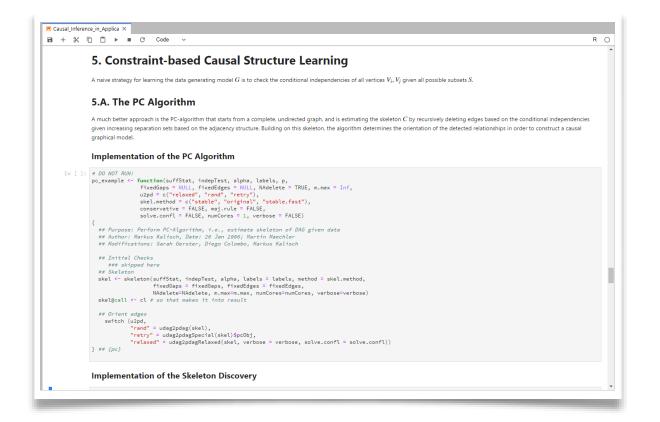
Other

Carneggie Mellon University, <u>The Tetrad Project</u>

Causal Inference Theory and Applications in Enterprise Computing Uflacker, Huegle, Schmidt

Causal Inference in Application

Cooling House Example

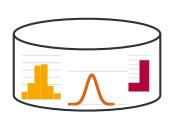


Causal Inference Theory and Applications in Enterprise Computing Uflacker, Huegle, Schmidt

Outlook: Group Work on Research Topics Overview on Topics

Data, Distributions, Independence

Work on topics in the application of learnt techniques beyond the examples given in this lecture (e.g., heterogeneous data distributions)



Causal Structure-Learning

Work on topics in the context of performance improvements of causal structure learning algorithms (e.g., hardware acceleration)

Applications Scenarios

Work on challenges and opportunities in the application of causal inference techniques on real-world data (e.g., industrial manufacturing)

Causal Inference
Theory and Applications
in Enterprise Computing

Uflacker, Huegle, Schmidt

Outlook: Group Work on Research Topics Topic Application

How to work on a topic?

- Understand theoretic basis and your selected topic
- 2. Work on implementation
- 3. Present results
- 4. Write scientific report in a review process

How to apply for a topic?

- Build groups of around three students
- Send prioritized list of top 3 topics to <u>Johannes Huegle</u> until:
 Fri April 26, 11.59 PM
- Topic Assignments: Tue April 30, 9:00 AM

Causal Inference
Theory and Applications
in Enterprise Computing

Uflacker, Huegle, Schmidt

Thank you for your attention!