Data-Driven Demand Learning and
 Dynamic Pricing Strategies in Competitive Markets

Pricing Strategies \& Dynamic Programming

Rainer Schlosser, Martin Boissier, Matthias Uflacker

Hasso Plattner Institute (EPIC)
April 30, 2018

Outline

- Questions/Support: Market Simulation (Exercise)
- Today: Pricing Strategies \& Duopoly Games

Learn about Dynamic Programming

- $\quad 1^{\text {st }}$ Exercise: \quad Simulated Markets \& Price Reactions

Recall: Rule-Based Price Reaction Strategies

- Idea: (1) Observe competitor prices $\vec{p}+(2)$ Adjust price a
- Examples: $a(\vec{s})=a^{(1)}(\vec{p}):=\max \left(c, \min _{k=1, \ldots, K} p_{k}-\varepsilon\right)$

$$
\begin{aligned}
& a(\vec{s})=a^{(n)}(\vec{p}):=\max _{a \in A \cdot \operatorname{rank}(a, \vec{p})=n} a \\
& a(\vec{s})=a^{(\text {random })}(\vec{p}):=\text { if } U(0,1)<0.5 \text { then } a^{(1)}(\vec{p}) \text { else } a^{(2)}(\vec{p})
\end{aligned}
$$

$$
a(\vec{s})=a^{(2 \text { bound })}(\vec{p}):=\left\{\begin{array}{cc}
a^{(1)}(\vec{p}) & , p^{\min } \leq \min _{k=1,, K} p_{k} \leq p^{\max } \\
p^{\max } & , \text { else }
\end{array}\right.
$$

Duopoly Example

- Assume $K=2$ sellers. Assume only one feature: price
- Define different price reaction strategies $a(p)$, i.e., if the competitor's current price is p, we adjust our price to $a(p)$ Admissible prices are $a(p) \in\{1,2, \ldots, 100\}$
- Let the competitor's response strategy be given by: $p(a):=\max (a-1,1)$
- We adjust our prices a at times $t=1,2,3, \ldots$

The competitor adjusts his prices p at times $t=0.5,1.5,2.5, \ldots$

Sequence of Events (Duopoly Example)

- In every interval $(t, t+0.5), t=0,0.5,1.0, \ldots$, a sale occurs with probability $1-\min \left(a_{t}, p_{t}\right) / 100$. With probability $\min \left(a_{t}, p_{t}\right) / 100$ no sale takes place

Duopoly Example

- In every interval $(t, t+0.5), t=0,0.5,1.0, \ldots$, a sale occurs with probability $1-\min \left(a_{t}, p_{t}\right) / 100$. With probability $\min \left(a_{t}, p_{t}\right) / 100$ no sale takes place
- If a sale takes place the customer chooses either our offer $(k=1)$ or the competitor's offer ($k=2$) with probability $P(k, \vec{p})$ according to Approach I, where $\vec{p}=\left(p^{(1)}, p^{(2)}\right)=(a, p)$, i.e., $p^{(1)}=a$ (we) and $p^{(2)}=p$ (competitor)
- Simulate until time $T=1000$. Start with $a_{0}=p_{0}=20$ at time $t=0$
- Which strategy $a(p)$ performs best, i.e., maximizes expected revenues?

Goals for Today

- We want to optimally solve the duopoly example
- We have a dynamic optimization problem
- What are dynamic optimization problems?
- How to apply dynamic programming techniques?

What are Dynamic Optimization Problems?

- How to control a dynamic system over time?
- Instead of a single decision we have a sequence of decisions
- The system evolves over time according to a certain dynamic
- The decisions are supposed to be chosen such that a certain objective/quantity/criteria is optimized
- Find the right balance between short and long-term effects

Examples Please!

Examples

- Inventory Replenishment
- Reservoir Dam
- Drinking at a Party
- Exam Preparation
- Brand Advertising
- Used Cars
- Eating Cake

Task: Describe \& Classify

- Goal/Objective
- State of the System
- Actions
- Dynamic of the System
- Revenues/Costs
- Finite/Infinite Horizon
- Stochastic Components

Classification

Example	Objective	State	Action	Dynamic	Payments
Inventory Mgmt.	min costs	\#items	\#order	entry-sales	order/holding
Reservoir Dam	provide power	\#water	\#production	rain-outflow none	
Drinking at Party*	max fun	$\%$	\#beer	impact-rehab fun/money	
Exam Preparation* max mark/effort	\#learned	\#learn	learn-forget	effort, mark	
Advertising	max profits	image	\#advertise	effect-forget campaigns	
Used Cars	min costs	age	replace(y/n)	aging/faults	buy/repair costs
Eating Cake*	max utility	\%cake	\#eat	outflow	utility
* Finite horizon					

General Problem Description

- What do you want to minimize or maximize
(Objective)
- Define the state of your system
(State)
- Define the set of possible actions (state dependent)
- Quantify event probabilities (state+action dependent)
(Dynamics) (!!)
- Define payments (state+action+event dependent) (Payments)
- What happens at the end of the time horizon?
(Final Payment)

Dynamic Pricing Scenario (Duopoly Example)

- We want to sell items in a duopoly setting with finite horizon
- We can observe the competitor's prices and adjust our prices (for free)
- We can anticipate the competitor's price reaction
- We know sales probabilities for various situations
- We want to maximize total expected profits

Problem Description (Duopoly Example)

- Framework: $t=0,1,2, \ldots, T$ Discrete time periods
- State:

$$
s=p
$$

Competitor's price

- Actions: $a \in A=\{1, \ldots, 100\}$ Offer prices (for one period of time)
- Dynamic: $P(i, a, s)$
- Payments: $R(i, a, s)=i \cdot a \quad$ Realized profit
- New State: $p \xrightarrow{((1, a, s)} F(a)$

State transition / price reaction F

- Initial State: $s_{0}=p_{0}=20 \quad$ Competitor's prices in $t=0$

Problem Formulation

- Find a dynamic pricing strategy that
maximizes total expected (discounted) profits:

- What are admissible policies?
- How to solve such problems?

Answer: Feedback Strategies
Answer: Dynamic Programming

Solution Approach (Dynamic Programming)

- What is the best expected value of having the chance to sell . . .

$$
\text { "items from time t on starting in market situation } s \text { "? }
$$

- Answer: That's easy $V_{t}(s)$! ?????
- We have renamed the problem. Awesome. But - that's a solution approach!
- We don't know the "Value Function V ", but V has to satisfy the relation Value (state today) = Best expected (profit today + Value (state tomorrow))

Solution Approach (Dynamic Programming)

- Value (state today) $=$ Best expected (profit today + Value (state tomorrow))
- Idea: Consider the transition dynamics within one period

What can happen during one time interval?
state today \#sales profit state tomorrow probability with (a, p) vs.

	0	0	$F(a)$	$P(0, a, s)$
$s=p$	1	a	$F(a)$	$P(1, a, s)$
	2	$2 a$	$F(a)$	$P(2, a, s)$

- What does that mean for the value of state $s=p$, i.e., $V_{t}(s)=V_{t}(p)$?

Bellman Equation

state today \#sales profit state tomorrow probability with (a, p) vs.

$$
\begin{array}{rlrr}
& 0 & 0 & F(a)
\end{array} \quad P(0, a, s) \quad(a, F(a))
$$

Optimal Solution

- We finally obtain the Bellman Equation:

$$
V_{t}(p)=\max _{a \geq 0}\{\sum_{i \geq 0} \underbrace{P(i, a, p)}_{\text {probability }} \cdot(\underbrace{i \cdot a}_{\text {today's profit }}+\underbrace{i \cdot a}_{\text {best disc. exp. future profits of new state }} \underbrace{\delta \cdot V_{v}(F(a))}_{t+1})\}
$$

- Ok, but why is that interesting?
- Answer: Because $a_{t}^{*}(p)=\underset{a \in A}{\arg \max }\{\ldots\}$ is the optimal policy
- Ok! Now, we just need to compute the Value Function!

How to solve the Bellman Equation?

- Using the terminal condition $V_{T}(p):=0$ for time horizon T (e.g., 1000) We can compute the value function recursively $\forall t, p$:

$$
V_{t}(p)=\max _{a \geq 0}\{\sum_{i \geq 0} \underbrace{P(i, a, p)}_{\text {probability }} \cdot(\underbrace{i \cdot a}_{\text {today's profit }}+\underbrace{\delta \cdot V_{t+1}(F(a))}_{\text {best disc. exp. future p profits of new state }})\}
$$

- The optimal strategy $a_{t}^{*}(p), t=1, \ldots, T, p=1, \ldots, 100$, is determined by the arg max of the value function

How to solve the Bellman Equation?

- Using the terminal condition $V_{T}(p):=0$ for time horizon T (e.g., 1000) We can compute the value function recursively $\forall t, p$:

$$
V_{t}(p)=\max _{a \geq 0}\{\sum_{i \geq 0} \underbrace{P(i, a, p)}_{\text {probability }} \cdot(\underbrace{i \cdot a}_{\text {today's profit }}+\underbrace{\delta \cdot V_{t+1}(F(a))}_{\text {best disc. exp. future profits of new state }})\}
$$

- The optimal strategy $a_{t}^{*}(p), t=1, \ldots, T, p=1, \ldots, 100$, is determined by the arg max of the value function
- In Pseudo-Code:

```
param V{t in O..T,p in A}:= if t<T then max {a in A}
sum{i in I} P[i,a,p] * ( i*a + delta * V[t+1,F[a]] );
```


Optimal Pricing Strategy of the Duopoly Example

Best expected profit
Optimal pricing strategy

Infinite Horizon Problem

- Will the value function be time-dependent?
- Will the optimal price reaction strategy be time-dependent?
- How does the Bellman equation look like?

Solution of the Infinite Horizon Problem

- Approximate solution: Finite horizon approach (value iteration)
- For "large" T the values $V_{0}(p)$ converge to the exact values $V^{*}(p)$
- The optimal policy $a^{*}(p), p=1, \ldots, 100$, is determined by the \arg max of the last iteration step, i.e., $a_{0}(p)$

Exact Solution of the Infinite Horizon Problem

- We have to solve a system of nonlinear equations
- Solvers can be applied, e.g, MINOS (see NEOS Solver)
- In Pseudo-Code:
subject to $N B\{P$ in $A\}: V[p]=\max \{a$ in $A\}$
sum\{i in $I\} P[i, a, p]$ * ($i * a+d e l t a ~ * ~ V[F[a]]) ; ~ s o l v e ; ~$

Questions?

- State
- Action
- Events
- Dynamics \& State Transitions
- Recursive Solution Principle
- General concept applicable to other problems

$1^{\text {st }}$ Exercise - Simulated Markets \& Price Reactions

- Study our market simulation notebook
- Modify the arrival stream of interested customers
- Modify the customer behaviour (scoring weights)
- Modify the competitors' reaction strategies
- Bonus (Dynamic Programming): Solve duopoly example with finite horizon

Overview

2	April 24	Customer Behavior
3	April 30	Pricing Strategies, 1
st	Homework (market simulation)	
4	May 8	Demand Estimation, 2 ${ }^{\text {nd }}$ Homework (demand learning)
5	May 15	Introduction Price Wars Platform
6	May 22	Warm up Platform Exercise (in Groups)
7	May 29	Dynamic Pricing Challenge / Projects
8	June 5	no Meeting
9	June 12	Workshop / Group Meetings
10	June 19	Presentations (First Results)
11	June 26	Workshop / Group Meetings
12	July 3	Workshop / Group Meetings
13	July 10	no Meeting
$\mathbf{1 4}$	July 17	Presentations (Final Results), Feedlback, Documentation (Aug/Sep)

