
Efficiently applying Fast Succinct Tries in 
OLTP Systems

Rohan Sawahn

ITSE Master Student
Database Research Lecture 2021/22

Hasso Plattner Institute, Potsdam, Germany

E-Mail: rohan.sawahn@student.hpi.de

Fast Succinct Tries (FST)

Architecture Proposal

Multi-User Support

Goal:

Sources

(1) Zhang, Huanchen, et al. "Surf: Practical range query filtering with fast succinct tries." Proceedings 
of the 2018 International Conference on Management of Data. 2018.
FST detail image taken from (1)
(2) Leis, Viktor, et al. "The ART of practical synchronization." Proceedings of the 12th International 
Workshop on Data Management on New Hardware. 2016.

(3) Zhang, Huanchen, et al. "Reducing the storage overhead of main-memory OLTP databases with
hybrid indexes." Proceedings of the 2016 International Conference on Management of Data. 2016.

Approximate Membership Filter

Possible
Limitations

Updates

As the FST requires rebalancing/reorderding depending on newly inserted keys, it has to be investigated
whether such a merge procedure exists or whether applying changes requires a complete reubuild of the FST. 
We then have to evaluate whether the memory - efficiency tradeoff that is introduced by the filter is adaquate
or whether the filter might be ommitted, while still maintaing accaptable performance.

Insert

count(ART ) ≪ count(FST)

ART (dynamic)

...
FST(static)

Queries

Deletions

Frequent Batch 
Merge*

Checks if key is in ART

n Databits | 1 mode-bit

Data in the ART will be used to create a log. An additional bit
classifies the entry as insertion(0) or deletion(1).

delete(key) => key in ART ? 
ART.delete(key) : ART.insert(key, 1)

update(key, val) => key in ART ? 
ART.update(key, val|1) :
ART.insert(key, val|1)

ART

FST

600MB

400MB

200MB

Memory for Indexing 25M Emails

Frequently accessed top layers
optimized for performance. 
(child node search = 1 array
lookup)

Less frequently accessed
bottom layers optimized for
memory reduction.

Goal: Allow concurrent accesses, also during merge.

Solution:
1) ART + Optimisic Lock Coupling (Leis, 2016).
2) Static FST is natively concurrent.
3.1) Apply changes that incoming during the
merge phase to a new ART -> current ART becomes
read-only.
3.2) Apply modifications from old ART to FST. 
Incrementally apply changes *(see limitations).

ART Data

...

*See limitations regarding the merge

Problem:

Online Transaction Processing Systems (OLTP) have high requirements regarding throughput and are
insert and update-intensive. Moreover, they are used by a multitude of users, thus requiring concurrent access. As
main memory still is comparably expensive, data structures that can index data with a memory consumption near the
information theoretic minimum are a hot topic in data structure engineering research. One such recently published data
structure is the Fast Succinct Tree (FST). However, the FST is a static data structure, thus requiring an extension to be
used in OLTP Systems. Therefore, we propose an architecture that applies inserts and deletes to an FST in batches.
With this project, we want to evaluate, whether the proposed architecture is still able to deliver adequate performance,
while at the same time significantly reducing memory consumption for indexing in OLTP Systems.

The FST is a static data structure that
does not support inserts, deletes or updates, making it
unsuitable for OLTP systems.

Abstract

Develop an architecture that benefits from the
minimal memory consumption of the FST, while
supporting the requirements of a OLTP System.

Solution: We apply insert, deletes and updates to
the dynamic Adaptive Radix Tree (ART) that is
optimized for performance. We then regularly apply
batch merges to the FST, thereby selecting an interval
that minimizes the number of merges, while at the
same time keeping the ART significantly smaller than
the FST, in order to keep up the memory savings.

FSTART

Latency for Point Queries

750ms

500ms

250ms


