Using Data-Driven and Zero-5Shot Learning

to learn DBMS Components

Abstract

Workload-driven learning is a technique to replace a DBMS component with a machine learning model

expensive to train.
Solution: Use data-driven and transfer learning
generalizable to unseen databases

Issue: For each new database or component, a new model must be trained. This makes it very inflexible and

approaches to reduce training effort and make the model

Data-Driven Learning

Zero-Shot Learning for Databases

Idea: Model learns data characteristics like the data’s
distribution and correlation across complex relational
databases

* No training workload needed as the model relies on data only
Retraining the model only takes a few minutes

* Support for tasks that do not consider workload (cardinality
estimation, AQP, indexing)

Idea: Inline to other zero-shot approached (e.g. GPT-3),
train a model that can generalize to unseen databases
out-of-the-box.

* No queries on database are required for training

Broader applicability to different tasks (physical cost estimation,
knob tuning, physical design tuning)

Goal: Construct Relational Sum-Product Network (RSPN) from Concept
Training a Zero-Shot Cost Model Inference on Unseen Database
database (one-time-effort) (for every new database)
+ Workload; |:> Runtimes B -.
@ c-age c-region @ Split independent rows into row +Workioad, = > Runtimes ,_Trgining:(> ‘ +Workload, = > = > Runtimes
80 EU clusters (e.g. using KMeans) = ata
70 EU + Workload,, l:{> Runtimes Features Zero-Shot Cost Model Predictions
60 ASIA —30% Features Labels Zero-Shot Cost Model
20 EU @
B Use sum no_de and add weights _ Pre-training across multiple DBs Reuse model on unseen DB
corresponding to the row cluster sizes
20 ASIA to the edges
25 EU ~70%
30 ASIA Key Challenges
70 ASIA
l « In each row cluster, split independent 1. Challenge: Query encoding that
columns into column clusters (product generalizes across databases
. Zero-Shot Encoding
@ P(Creglons Cage) node) _ (Transferable Representation) Probl . Can't tati £
0 3 0 7 * If nOt a” COIUmnS are Independent, Graph Encoding + gggnls:eferabfe Featugzation W;(:klcgg-drl?/gn Lrﬁoedreelzraessiﬂeay Idogn?t allow
. . i i i Encode Physical Plan Operators, Predicates e Featurization generalizes
start again W|tl_‘1 the first step, Sl Bls Sl S transfer across DBS
otherwise continune e _— -
! ! Operator (One-Hot) Cardinality e Solution:
l (Aggregate | L o o + 4 ] o Capture query plans as graph
©), P(Cregion: Cage) MIN.) /i,ﬂmmom] L b 0 1 mx 1 ) encoding
s i i A% i ' i
03 0.7 @, Use RSPN to compute probabilities 5 Pl o wx 4 ) © 'C-)ezfr‘a?i%"lfl’ g;(paegsa'g’aesgtcigrta'”
: : on arbitrary attributes of the table S g . .
. E v N —— : [ﬂ“*'“a;e F""Zm'( = il ---] o Encode information (e.g. data type,
Xampie. () D Oty tuple width) of data where operations
Customer C WHERE c_ieglon=’ EU’ : [1 0 0 4 ] are executed on
AND c_age<30 yields 5% 1 = Empamesﬁ Ee— o MRS Crens o (e
= s intermediate sizes they are executed
I o ) O on (— informed by data-driven

EUASIA 20 100 EUASIA 20 100

models)

Estimated value can be used to select

optimal quer lan Generalization
0.7 bq 10M pq 10M é 1.75 @ |
20, / \ \M M TR : « Goal: Find out when model is sufficiently trained
b4 5M — / \op,ize>lo$ ‘2’ 1.50 @ i « Idea: Estimate using holdout databases. If
™~ © i i
150/0 1OOA) 200/0 Treg{‘;'EU' Tchannel:‘ONLlNE' Tregion:'EU' Tchannel:'ONLlNE' 8 \._-l eStImated performance IS acceptable or
Customers Orders Orderlines Customers Orders Orderlines = 125 ._.-_'*== Stagnates, Stop
—] _— 5 10 15 . Assumpi_:i_on: Every DB and workload is
EUASIA 20 100 EUASIA 20 100 NUTBEr o (el iling CErescis sampled i.i.d.
Evaluation

Generalizability to larger joins
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