
Processing Speed in 
Not-So-Big-Data Engineering Systems

Felix Rindt
5. Semester BA-ITSE
based on Tiark Rompf’s talk on “A Programming Language and Compiler 
View on Data Management and Machine Learning Systems”, 14.01.2020

Ringvorlesung Practical Data Engineering
Winter Term 2019/2020
Hasso Plattner Institute, Potsdam, Germany

Bottlenecks

When building data engineering systems speed often is one of the key goals, especially for interactive systems. This
poster presents various aspects of processing speed considerations for these kinds of systems and introduces Flare, an
Apache Spark engine replacement made to improve Spark’s processing time to those of classical relational database
systems while keeping most of it’s flexibility.

TPC Benchmarks

A bottleneck occurs when a single system component is
limiting the overall system performance. There are different
bottleneck categories:

• Compute-bound: all CPU capacity exhausted

• I/O-bound: system is mostly waiting for data transfer
from/to main memory, secondary storage or the network

• Memory-bound: a too small amount of main memory is
limiting processing speed

Over the past decades, CPU-speed has been increasing
faster then bandwidth, such that many classical approaches
were memory-bound, leading to methodologies that bring
computation closer to the data, like map-reduce and the
development of algorithms for distributed systems.

Modern data engineering systems like Apache Spark
don't only provide classic ACID guarantees like typical
RDBS do, they also scale out to support parallel shared-
nothing architectures and cope with node failures.
Spark also supports domain specific languages and user
defined functions that are especially useful for non-
relational workloads as seen in Machine Learning
applications.

All this variety adds to a lot of abstraction and
indirection, which creates a big overhead when
processing big amounts of data. Spark is optimized to
scale out, but "[m]any times, big data is not that big,
and often computation is the bottleneck“[1] when
running on a single machine while still utilizing Spark's
querying flexibility.

Abstraction

Flare

The Transaction Processing Performance Council (TPC)
is a non-profit consortium founded in 1988 consisting
of various businesses in the IT sector. The TPC
develops benchmark for transaction processing and
database systems in the area of trading (C), banking
(E), web (App) and decision-support (H) with the goal to
improve comparability between solutions.[2]

Running time for the 22 Queries of the TPC-H Benchmark[1]

TPC®

[1] Essertel, Grégory & Tahboub, 
Ruby & Decker, James & Brown, 
Kevin & Olukotun, Kunle & Rompf, 
Tiark. (2017). Flare: Native 
Compilation for Heterogeneous
Workloads in Apache Spark. 
(https://arxiv.org/pdf/1703.08219.pdf)

[2] TPC Homepage 
(http://www.tpc.org)

Flare is an Apache Spark backend meant to bring
processing speeds for certain workloads up to par with
best-of-breed query engines. The white paper presents
3 levels and concludes with a comparison based on
TPC-H and heterogonous machine learning workloads.

Level 1 replaces Spark‘s Java
Execution Environment with
native C-code generation.

Level 2 drops support Sparks
support for cluster execution,
but is able to compile whole
queries at once, reducing a
big amount of overhead.

Level 3 uses Lightweight
Modular Staging to generate
Code from User Defined
Functions.
(think ML kernel
computations)

A key assumption with Flare is that many workloads are in fact
not Google-scale and thus can be reasonably run on a single
sufficiently scaled up machine. [1]

C

https://arxiv.org/pdf/1703.08219.pdf
http://www.tpc.org/

	Processing Speed in �Not-So-Big-Data Engineering Systems

