
Inspired by the lecture held by Tiark
Rompf: “A PL & Compiler View on Data Managem-
ent and ML Systems” and his presented paper [1],
we will try to write Cypher to C query compiler
for Neo4j data storage. In Neo4j, entities are
stored on disk by leveraging linking [2] as shown
on the graph on the right. Since entities there have
fixed, maximum size, we can achieve similar
performance boost as in [1] by utilizing pointers in
C language and directly reference entities through-
out memory or file. Below, two diagrams present
Cypher Neo4j processor behaviour (left) and how
we could interpret Cypher and generate C queries
to get the same result, but faster (right).

is a declarative graph query language that allows for expressive and efficient data querying in a
property graph. The language was designed with the power and capability of SQL in mind, but based on
the components and needs of a graph database.

is a database that uses graph structures for semantic queries with nodes, edges
(i.e. relationships), and properties to represent and store data. The relationships allow data in the store to
be linked together directly and, in many cases, retrieved with one operation.

A low-level approach for graph database 
query processor

Marcin Zieliński

Master student

Hasso Plattner Institute, Potsdam, Germany

E-Mail: marcin.zielinsky@guest.hpi.de

Graph database

Cypher

Cypher Neo4j processor

MATCH (n: Person)-[:KNOWS]->(m: Person)

WHERE n.name = 'Alice'

References

[1] Tiark Rompf, Nada Amin, “Functional Pearl: 
A SQL to C Compiler in 500 Lines of Code”

[2] ”Understanding Neo4j’s data on disk”: 
https://neo4j.com/developer/kb/understanding
-data-on-disk/

MATCH (n: Person)-[:KNOWS]->(m: Person)

WHERE n.name = 'Alice'

Scala Cypher 

Interpreter

def stm: Parser[Operator] =
matchClause ~ whereClause ~ returnClause ...

def matchClause: Parser[Operator=>Operator =
"MATCH" ~> ...

def whereClause: Parser[Operator=>Operator =
opt("WHERE" ~> ...

def returnClause: Parser[Operator=>Operator =
"RETURN" ~> ...

C language 

generator

Sample code snippet how 

Cypher interpreter may look like

Execute CExecute Plan

Cypher queries in C

def execOp(o: Operator)(yld: Record => Unit):
Unit = o match {

case Match(node1, relationship, node2) => ...
case Filter(condition) => ...
case Project(fieldList) => ...

}

Sample code snippet how C generator 

may look like (also written in Scala)

Problem Goal

Solution

Graph DBMS can run many kinds of
queries, possibly in parallel, and sometimes with
transaction isolation. Therefore it may be slower
than specialized, one-time query written in C.

Since graph data can be stored manifoldly,
goal of this project is to boost Cypher queries
performance assuming data storage as in one of
the most popular graph database—Neo4j.

Alice (aged 24) knows
Bob and Clay, Bob
does not know anyone
and Clay knows Alice.

Legend:

https://neo4j.com/developer/kb/understanding-data-on-disk/

