
A programming language & compiler view on
Data Management and Machine Learning systems

Mino Böckmann
BA IT-Systems Engineering

Hasso Plattner Institute, Potsdam, Germany

E-Mail: mino.boeckmann@student.hpi.de

Lightweight Modular Staging Futamura Projection

An Improved Query Compiler

Applications in Machine Learning

 is a
multi-stage programming approach to facilitate
dynamic code generation. The goal is to create
efficient low-level code from high-level code. This
is achieved, among other things, by replacing
certain data types with wrapper types which
instead of executing operations just emit source
code for these operations. The resulting code is
just the actual execution plan without the
overhead of the abstractions of the original code.

Continuations

 is a special case of
partial evaluation. Partial evaluation describes the
process where the input data a of program known
at compile time gets baked into the program to
create a new program that can process the input
unknown at compile time faster. An interpreter can
be seen as a program that takes a source program
and the input and calculates the result. The first
Futamura projection is the specialisation of the
interpreter for any given source code. The result is
a compiled version of that source code.

Using the ideas described above a significant speedup for query execution can be achieved. Normally a
query gets transformed to a logical and then physical execution plan. This gets executed by an
interpreter. By using Lightweight Modular Staging the interpreter only generates source code which will
execute the query. This is the first Futamura Projection. The resulting program is a compiled version of
the original query without the overhead of the interpreter architecture and higher order data structures
used. This overhead can take up more than 80% of the execution time allowing for significant speed ups.
Other approaches to compile the database queries based on the llvm interface provide comparable
speedups but require specialised code to be written for that purpose instead of the drop-in oriented
design of Lightweight Modular Staging.

PostgreSql, Spark - interpreter based
implementations

HyPer - llvm based implementation
Flare - LMS based variant of Spark

Speedups of up to two orders of magnitude
are possible in a single core environment.

When continuations are combined with LMS it is possible to
generate code both for the forward and backward
propagation passes. The value gets updated before the
continuation is called. This constitutes the forward pass.
Then after the forward pass is done the code after the
continuations is called. Since this gets called in reverse
order the back propagation algorithm can be used to
calculate the derivative step by step for the entire formula.
This approach has the benefit of enabling any form of
function to be learned using backpropagation. Limiting
oneself to rigid forms like layered matrix multiplication isn’t
necessary. Generating code this way requires again only
minimal specialised code as only the methods of the
wrapper classes need to implement their own derivative
calculations. When continuations can be passed implicitly
only the forward pass needs to be written explicitly.

Continuations encapsulate the ability to
resume the program at a given point in
the execution process. They can be
implicitly or explicitly passed to a
function which can then resume them
whenever necessary. This enables,
among other things, passing the 'rest' of
a program as an implicit parameter. The
called function can then execute their
code before and after the continuation
gets executed. Since continuations
preserve the stack but not the values of
the variables on the stack the called
function can access the potentially
changed values after the continuation has
been executed.

