
Scalable Earth Observation (EO) Image
Indexing and Retrieval

Leon Schiller

B.Sc IT-Systems Engineering Student

Practical Data Engineering, Winter Term 2019/20

Hasso Plattner Institute, Potsdam, Germany

E-Mail: leon.schiller@student.hpi.de

Problem Statement

Hash Indices for Images

System Layout

A common problem of Information Discovery in large archives of EO satellite images is content based image retrieval

where the archive is scanned for images that show semantic similarity to a given query image. E.g. if a satellite records an image of burning forest, how can
other regions in all over the world be found that suffer from burning forest as well? Since EO image archives can contain petabytes of data, scanning the whole
database would be very inefficient and therefore content based image indexing is required to enable efficient querying. This poster presents different techniques
for building such indices.

Multi-Code Hashing describes different primitives in the image with different hash codes. A list of descriptors is
retrieved from each image and then transformed into multiple hashes. This method is better capable of describing
complex image contents than Single-Code Hashing. Therefore, it greatly improves the accuracy while maintaining
high efficiency and scalability, but it comes at the cost of higher space complexity.

Single-Code Hashing

Input Image (Hand Crafted)

Features

Histogram

Scale Invariant Feature Transform

Local Binary Patterns

Region Based Descriptors

Query Image

Feature Extraction

+

Hashing

Data

Archive

Feature Extraction

+

Hashing
Hash Table

𝑋 ℎ 𝑋 = 10110

𝑋1…𝑋𝑡

Lookup

Query Image

Image

Characterization

by description of

primitives

Data

Archive

𝑋

𝑋1…𝑋𝑡
Image

Characterization

by description of

primitives

list of

descriptors

Transform the

descriptors

into multi-

hash codes

Transform the

descriptors

into multi-

hash codes

descriptors

for each

image

Image Retrieval

based on

matching of

multi-hash codes

Multi-Code Hashing

can be used to group images into a number of hash
buckets that can be accessed efficiently. The goal is to assign similar images to the same bucket and
dissimilar images to different buckets such that only one bucket needs to be considered when answering a
query. Hashing can significantly reduce the time needed for processing a query while at the same time
maintaining a high accuracy in comparison to an exhaustive search.

Similarity between images can be described by comparing content based descriptors of the images. The
retrieved images can then be ranked by their similarity to the input.

Conventional Hashing Methods

Locality Sensitive Hashing (LSH)

Deep Hashing

Before applying the
hash function, images
are transformed into a
vector representation
where images with
similar contents are
represented by similar
features. The hash
function is then applied
on these features.

Preprocessing

This unsupervised method randomly creates n hyperplanes in the feature space that separate it
into distinct hash-buckets. Similar images have a high probability to be contained in the same
bucket and dissimilar images have a high probability to be contained in different buckets.

ℎ𝑟 𝑋𝑡 =
1, 𝑖𝑓 𝑣𝑟

𝑇𝑋𝑡 ≥ 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑟 = 1, 2,… 𝑏

𝑣𝑟 is a random vector in feature space

Hash function:

ℎ 𝑋𝑡 = ℎ1 𝑋𝑡 ℎ2 𝑋𝑡 …ℎ𝑟(𝑋𝑡)

query image

Kernel Based LSH (KLSH)

Feature Space with three
hyperplanes. Source: [2]

This method uses a kernel to perform LSH and can therefore deal with data that is nonlinearly
separable. It can be done in an unsupervised or supervised way.

ℎ𝑟 𝑋𝑡 = 𝑠𝑖𝑔𝑛

𝑖=1

𝑚

𝜔𝑟 𝑖 𝐾 𝑋𝑡 , 𝑋𝑖

Unsupervised KLSH

The weights 𝜔𝑟 𝑖 , 𝑖 = 1…𝑚
are calculated based only
on unlabeled images.

Supervised KLSH

The weights 𝜔𝑟 𝑖 , 𝑖 = 1…𝑚
are optimized on annotated
images to make the hash
function more distinctive.

𝐾: Kernel function

𝜔𝑟: Weight function

𝑚: Number of images

Advantages

• Fast, scalable, data-
independent

Disadvantages

• Data might not be linearly
separable  bad accuracy

• Features might not
represent image contents
ideally

Advantages

• Fast, scalable

• Able to deal with
nonlinearly separable data

Disadvantages

• Features might not
represent image contents
ideally

Single Code Hashing uses exactly one hash per image that is used as an index in the hash table.

More recent approaches are aiming at learning a hash directly from an image using deep neural
networks. This method is better capable of representing the contents of images in a hash because
it does not require hand crafted features and instead learns what makes images similar on its own.
The following picture shows the network architecture presented in [1].

The network consists of an Inception Net Module, pretrained
on the ImageNet dataset, and a smaller, fully connected
network at the end that is fine tuned on EO images and
outputs a hash value. One suitable way of training such a
network to group similar images into the same hash bucket is
Triplet Loss. Here, the network is presented triplets of data:
one “anchor” image, one image similar to the “anchor” and
one image dissimilar to the “anchor”. In each step, the
networks weights are updated such that the positive sample
moves closer to the anchor and the negative sample moves
further away.

Advantages

• Fast, scalable

• Very accurate

Disadvantages

• Requires data specific
training and a large
amount of labeled training
data

The concept of Triplet Loss: Every step the
positive sample is moved closer to the
anchor. Source: [1]

Query Results

Query Results

Number of Hash Bits (K)

Method

K=16 K=24 K=32

mAP Time mAP Time mAP Time

Kernel

LSH

0.557 25.3ms 0.594 25.5ms 0.630 25.6

Deep

Hashing

0.875 25.3ms 0.890 25.5ms 0.904 25.6

Comparison to Supervised Kernel LSH
The following experimental results show that Deep Hashing achieves a much higher precision than Kernel LSH
while being equally fast.

(a) Is the query image, (b) are the query
results with Supervised Kernel LSH and (c)
are the query results with Deep Hashing.
The images in (c) are more similar to (a)
than the images in (b). Source: [1]

Comparison of the mean average precision (mAP) and query
execution time for Deep Hashing and Kernel LSH on the UCMD
Data Set for different numbers of hash bits K. Deep hashing
outperforms Kernel LSH while being equally fast. Source: [1]

References

[1] S. Roy, E. Sangineto, B. Demir, N. Sebe, "Metric-Learning based Deep
Hashing Network for Content Based Retrieval of Remote Sensing Images",
IEEE Geoscience and Remote Sensing Letters

[2] H. Li, T. Zhao, N. Li, Q. Cai, J. Du, " Feature Matching of Multi-View 3D

Models based on Hash Binary Encoding", DOI:10.14311/nnw.2017.27.005

Based on the lecure: “Deep Earth Query: Advances in Satellite Image Indexing from Massive Archives” by Prof.Dr. Begüm Demir

multi-hash

codes

multi-hash

codes

