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1. Motivation
■ DB Research
■ This lecture
■ Speakers

2. Course Organization
■ Exercises
■ Grading
■ Registration

3. Stream Processing
■ Basics & Code Generation
■ Portable SIMD Code

This Lecture



■ Tilmann Rabl
■ Chair for Data Engineering 

Systems

■ At Hasso Plattner Institute

■ Department of U Potsdam

■ In the vicinity of Berlin
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Who am I?



Why I chose to do DBS research:
■ Database systems are examples of large complex software systems

□ Like OS, compilers, computer games
□ Building a DBS touches all topics of computer science

■ Database systems are at the core of all major businesses 
□ Safe and efficient processing is relevant everywhere
□ Significance of data processing is only increasing

Why I got stuck in DBS research
■ Fun research and ongoing challenges
■ Great community

Why Database Research – my personal view
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■ Germany has an active and productive DB research community
■ Best DB conferences always with good German participation

□ E.g., VLDB, SIGMOD

■ However, there is little awareness and exchange on student level

■ We want to make you aware of excellent German database research
□ Foster exchange
□ Show opportunities

Why this course
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Presentations by distinguished researchers from 
the German database research community (and 
friends and family).

■ Some universities also offer the course locally
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Contents

● Hannover

● Darmstadt

● Potsdam
● Berlin

● Passau

● Dresden

● Tübingen

● Amsterdam

● Kopenhagen



Presenters I
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Pinar Tözün
ITU Copenhagen
Hardware Parallelism & 
Transaction Processing Systems

Matthias Böhm
TU Berlin
System Infrastructure for 
Data-centric ML Pipelines

24.10. 7.11.



Presenters II
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Hannes Mühleisen
CWI & Uni Nijmegen
In-Process OLAP

21.11.

Torsten Grust
Uni Tübingen
A Fix for the Fixation on Fixpoints 
(Rethinking Iteration in SQL)

14.11.



Presenters III
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Stefanie Scherzinger
Uni Passau
Challenges with JSON Schema Data 
Modeling

28.11.

Viktor Leis
TUM
Commoditizing Data Analytics 
in the Cloud

05.12.



Presenters IV
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Wolfgang Lehner 
TU Dresden
Flexible Vector Processing for 
Data Science Engines

12.12.

Zsolt István
TU Darmstadt
Software-Defined Data Protection: 
Low Overhead Policy Compliance at 
the Storage Layer is Within Reach!

19.12.



Presenters V
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Matthias Weidlich
HU Berlin
Pushing Computation to the 
Sources: On Distribution in 
Complex Event Processing

Ziawasch Abedjan
Leibniz Uni Hannover
Data Cleaning

09.01. 25.01.



Presenters VI
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Felix Naumann
HPI
Data Profiling

Carsten Binnig
TU Darmstadt 
Towards Learned 
Database Systems

23.01. 30.01.



Presenters VII

Chart 14

Jana Giceva
TUM
TBD

06.02. 09.02.

Poster Session
HPI
Event Space L



Course Logistics
at HPI



Lecture
■ Tuesdays,  17-18:30, L.E-03
■ Bachelor & Master, 3 ECTS

Contact (at HPI)
Prof. Dr. Tilmann Rabl, Prof. Dr. Felix Naumann
■ e-mail: tilmann.rabl@hpi.de, felix.naumann@hpi.de

Logistics
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Lecture Summary
■ Summarize one presentation
■ In group or individually
■ Contents

□ Introduction of speaker
□ Engaging overview of talk

– Goal, problem, solution
– Background
– Main ideas, methodology, approach
– Main results
– Summary 

■ Will be added to the course website 
(should be 10-15 min reading time)
□ Cf. Morning Paper - 

https://blog.acolyer.org/
■ We will ask the presenter to review the 

summary
■ Plain HTML formatting
■ Deadline 2 weeks after presentation
■ 50% of the final grade
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Deliverables I



■ Poster project
□ A1 poster
□ Plenary presentation at Feb 9

■ Bachelor Students
□ Based on one of the lectures
□ Related work overview, lecture summary, 
□ As detailed as possible

■ Master Students
□ Research project proposal
□ Extend the technology or methodology of one more lectures
□ Goal, problem, solution & connection to the lecture

Chart 18

Deliverables II



■ Organization through HPI Moodle
□ https://moodle.hpi.de/course/view.php?id=630
□ Sign up now!

■ Groups
□ Will be assigned randomly
□ TBD…
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Registration

https://moodle.hpi.de/course/view.php?id=229


■ Lecture Summary
□ Team project
□ 50% of total points

■ Poster
□ Individual project
□ 50% of total points

■ Graded by the teachers
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Grading in a Nutshell



■ Asking questions is greatly encouraged
□ Discuss questions with each other (except exams)

■ The limits of collaboration
□ Plagiarism, copying, or other forms of dishonesty will result in failing the course

■ Communication

□ Write professional and polite emails
□ Use netiquette in forum, email, chats, etc.

■ Generally
□ Treat everyone with respect and consideration -> especially important for online settings

□ This course and the university in general should be safe spaces for everyone
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Code of Conduct



Stream Processing
End-to-end Hardware-conscious Data Processing



Challenge 
■ Potentially unlimited data set
■ Many different queries
■ Low latency, continuous results

Typical Systems

Stream Processing

Stream 
Processor

Data Stream Result Stream

Querie
s

ML 
System

Stream 
Processor
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Operators

Records

Control events

State

Stream Processor Research

Research topic examples
□ Application (e.g., incremental instead of batch)
□ Operator-level (e.g., aggregation, join)
□ Semantics (e.g., window types, watermarks)
□ Execution strategy (e.g., multi-query processing, compilation)
□ Hardware optimizations (e.g, PMem, RDMA)

Data Stream Source

Data Stream Source

Filter

Aggregation

Join Sink Result Stream

Dataflow
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Why Hardware Research?

Alibaba Post:
https://www.alibabacloud.com/blog/four-billion-records-per-second-stream-batch-integration-
implementation-of-alibaba-cloud-realtime-compute-for-apache-flink-during-double-11_596962

1.5 million CPUs

16-core instance @ $1/h

93750 VMs @ $2.25 million/day

~42k events/s per server
> 100 million 

events/s per server

40 VMs @ $5760/day
52-core instance @ $6/hscale-out

system

scale-up
system

not possible!
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Stream Processing – Iterator Model

§ Many virtual method calls :(
§ Bad cache locality :(

Data Stream

Data Stream

Select/
Project

Select/
Project

Join Aggregate Result Stream

SinkOpJoinOpFilterOpSourceOp

getNext()getNext()getNext()
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Streaming Processing – Query Compilation Model

§ Few/no virtual method calls :)
§ Good cache locality :)

GCC df.o

SinkOpJoinOpFilterOpSourceOp

writeToSink()doJoin()if filter

void pipeline() {

  for (Record rec : Source) {

    if (rec == 10) {

      doJoin(rec);

      writeToSink(joinResult);

} } }

Zeuch et al. “Analyzing Efficient Stream Processing on Modern Hardware” PVLDB’19
Grulich et al. “Grizzly: Efficient Stream Processing Through Adaptive Query Compilation” SIGMOD’20

Benson et al. “Darwin: Scale-In Stream Processing” CIDR’22
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What code to generate? Let’s take a closer look…

Modern computer architecture with PCIe Bus
Memory, PCIe, core and socket connection through internal bus (ring or mesh)

CPU Core

L1
D

L1
I

Core

L1
D

L1
I

L2 L2

L3

CPU

D
R
A
M

P
M
EM

PCIe

GPU Network Disk FPGA
N
U
M
A
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CPU Die – Intel i7 (from 2011)

Intel Core i7-3960X 
The die is 21 by 21 mm and has 2.27 billion

transistors
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CPU Die II – M1 (2020)

Performance Cores
L1 Instruction Cache 192 KB
L1 Data Cache 128KB
Shared L2 Cache 12 MB

Efficiency Cores
L1 Instruction Cache 128 KB
L1 Data Cache 64KB
Shared L2 Cache 4 MB

System Level Cache 
Shared with GPU: 16MB

Perf Core 

Perf L2 

Eff Core 

Eff L2 

System 
Cache

DRAM 
Channel
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M1 Firestorm Core

192KB L1I$
8-wide decoder
■ 8 instructions per cycle
630 size reorder buffer
7 integer ports (plus ld/st,fp)
8 𝜇-ops per cycle
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SIMD Compiler Intrinsics
Lawrence Benson, Richard Ebeling, Tilmann Rabl

ADMS 2023



SIMD in a Nutshell

Single Instruction Multiple Data (= SIMD)

Most common instruction sets
■ x86: SSE, AVX, AVX2, AVX512 (> 6k instructions)
■ ARM: Neon (> 4k instructions), SVE
■ PowerPC AltiVec, RISC-V V

Arithmetic, Logical, Shuffle, Shift, Load, Store, …

Focus on x86 and Neon
■ x86: 128 – 512 Bit registers
■ Neon: 128 Bit registers

10 20 30 40
1 2 3 4

11 22 33 44

4 additions in 1 instruction

+

in:

out:

mask:

SHUFFLE
in:

out:

10 20 30 40

1 0 3 2

20 10 40 30
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SIMD in Databases

Used to speed up, e.g.,
■ Table scans
■ Hash tables
■ Sorting

SIMD code is …
■ … hard to develop
■ … hard to test
■ … hard to benchmark

Non-x86 CPUs on the rise
■ How to translate x86 SIMD code?

Don't have AVX512?
→ Can't compile

Don't have NEON?
→ Can't compile

What do these functions do?
_mm_add_epi32()
_mm512_srl_epi64()
vaddq_s32()
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Abstractions on top of Abstractions

Add two 128-bit registers of 4x 32-bit integers

10 20 30 40
1 2 3 4

11 22 33 44

+ B
A

C:

Application code
vec C = A + B;

SIMD library
struct vec {
vec operator+(vec, vec);

}

SIMD intrinsics
_mm_add_epi32

vaddq_s32

Compiler representation
__attribute__((
vector_size(N)));
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Cut the Middle Man: GCC Vector Extensions

Compilers map platform-specific types and operations to canonical internal representation 
anyway
■ Decouples from external specifications
■ Allows reusing analysis and optimization steps

à We could directly target this canonical representation with our code
■ Let the compiler do platform-specific instruction selection

GCC-API allows natural code using arithmetic (*, +, -, /) and comparison (>, >=, ==, <, 
<=) operators

36

https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html


GCC Vector Extensions (2)

#include <immintrin.h>

void add(__m128i* X, __m128i* Y, __m128i* Z, int MAX) {
for (int i = 0; i < MAX/4; i++) {

*Z++ = _mm_add_epi32(*X++, *Y++);
}

}

#include <arm_neon.h>

void add(int32x4_t* X, int32x4_t* Y, int32x4_t* Z, int MAX) {
  for (int i = 0; i < MAX/4; i++) {
    *Z++ = vaddq_s32(*X++, *Y++);
  }

}

#include <cstdint>
using VecT __attribute__((vector_size(16))) = int32_t;

void add(VecT* X, VecT* Y, VecT* Z, int MAX) {
for (int i = 0; i < MAX/4; i++) {

*Z++ = *X++ + *Y++;
}

}

Produces identical code to platform-specific intrinsics (ARM, x86)
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https://godbolt.org/z/cMhTYWEWz
https://godbolt.org/z/Mjxbhfxvz


Benchmarks

M1: Apple Macbook Pro 14" M1 2021
x86 Icelake: Intel Xeon Platinum 8352Y

All experiments with:
■ Clang 15 (x86) and trunk Clang ~17 (ARM)
■ -O3, -march/-mtune=native

Single-threaded
Show relative speedup over scalar version

Also other x86/ARM CPUs → see paper
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Bit-Packed Integer Decompression

Based on VLDB '09 SIMD-Scan paper
Unpack packed 9-Bit integers to 32 bits → shuffling + shifting
Compiler vec >= hand-written SIMD
Neon: vec-128 generates better code than translated x86 intrinsics
■ Implementation artifact on NEON
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SIMD-Scan: Ultra Fast in-Memory Table Scan using on-Chip Vector Processing Units
Thomas Willhalm et al. @ VLDB 200939

http://www.vldb.org/pvldb/vol2/vldb09-327.pdf


Compiler-Intrinsics in Velox

Velox: Meta's new unified query engine 

Removed xSIMD dependency
Use only compiler-intrinsics

End-to-end TPC-H SF1
x86 → 0.1% diff
NEON → 0.13% diff

Removed:
■ 54 platform-specific functions
■ Hundreds of lines of SIMD code
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Outlook



The Larger Picture

Efficiency is needed more than ever
■ 1xChatGPT ~ 1000xGoogle1

Efficiency does not mean newer bigger faster
■ The cloud won’t solve this
■ There is little economic incentive in being most 

efficient

Need to make best use of what you have
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https://www.tagesschau.de/multimedia/bilder/blickpunkte-8196.html

1https://ai.stackexchange.com/questions/38970/how-much-energy-consumption-is-involved-in-chat-gpt-responses-being-generated



Measuring Carbon Footprint

https://climateboard-bptr1.hpi.de 
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https://climateboard-bptr1.hpi.de/


■ Course Motivation and Contents
■ Course Logistics
■ Stream Processing

■ Next session: Pinar Tözün – 24.10.

Thank you for your attention!

Pinar Tözün
ITU Copenhagen
Hardware Parallelism & 
Transaction Processing Systems

24.10.


