
Lecture Series on

Database Research
Winter Semester 2023 / 2024
Introduction & Hardware Efficient Stream Processing

Prof. Dr. Tilmann Rabl, Prof. Dr. Felix Naumann
Data Engineering Systems

Hasso-Plattner-Institut

This lecture is recorded and will be available in Tele-Task.

We do not record the videos in online sessions, feel free to enable video sharing.

You are not allowed to record the lecture or take screenshots or pictures.

Attention!

1. Motivation
■ DB Research
■ This lecture
■ Speakers

2. Course Organization
■ Exercises
■ Grading
■ Registration

3. Stream Processing
■ Basics & Code Generation
■ Portable SIMD Code

This Lecture

■ Tilmann Rabl
■ Chair for Data Engineering

Systems

■ At Hasso Plattner Institute

■ Department of U Potsdam

■ In the vicinity of Berlin

Chart 4

Who am I?

Why I chose to do DBS research:
■ Database systems are examples of large complex software systems

□ Like OS, compilers, computer games
□ Building a DBS touches all topics of computer science

■ Database systems are at the core of all major businesses
□ Safe and efficient processing is relevant everywhere
□ Significance of data processing is only increasing

Why I got stuck in DBS research
■ Fun research and ongoing challenges
■ Great community

Why Database Research – my personal view

Chart 5

■ Germany has an active and productive DB research community
■ Best DB conferences always with good German participation

□ E.g., VLDB, SIGMOD

■ However, there is little awareness and exchange on student level

■ We want to make you aware of excellent German database research
□ Foster exchange
□ Show opportunities

Why this course

Chart 6

Presentations by distinguished researchers from
the German database research community (and
friends and family).

■ Some universities also offer the course locally

Chart 7

Contents

● Hannover

● Darmstadt

● Potsdam
● Berlin

● Passau

● Dresden

● Tübingen

● Amsterdam

● Kopenhagen

Presenters I

Chart 8

Pinar Tözün
ITU Copenhagen
Hardware Parallelism &
Transaction Processing Systems

Matthias Böhm
TU Berlin
System Infrastructure for
Data-centric ML Pipelines

24.10. 7.11.

Presenters II

Chart 9

Hannes Mühleisen
CWI & Uni Nijmegen
In-Process OLAP

21.11.

Torsten Grust
Uni Tübingen
A Fix for the Fixation on Fixpoints
(Rethinking Iteration in SQL)

14.11.

Presenters III

Chart 10

Stefanie Scherzinger
Uni Passau
Challenges with JSON Schema Data
Modeling

28.11.

Viktor Leis
TUM
Commoditizing Data Analytics
in the Cloud

05.12.

Presenters IV

Chart 11

Wolfgang Lehner
TU Dresden
Flexible Vector Processing for
Data Science Engines

12.12.

Zsolt István
TU Darmstadt
Software-Defined Data Protection:
Low Overhead Policy Compliance at
the Storage Layer is Within Reach!

19.12.

Presenters V

Chart 12

Matthias Weidlich
HU Berlin
Pushing Computation to the
Sources: On Distribution in
Complex Event Processing

Ziawasch Abedjan
Leibniz Uni Hannover
Data Cleaning

09.01. 25.01.

Presenters VI

Chart 13

Felix Naumann
HPI
Data Profiling

Carsten Binnig
TU Darmstadt
Towards Learned
Database Systems

23.01. 30.01.

Presenters VII

Chart 14

Jana Giceva
TUM
TBD

06.02. 09.02.

Poster Session
HPI
Event Space L

Course Logistics
at HPI

Lecture
■ Tuesdays, 17-18:30, L.E-03
■ Bachelor & Master, 3 ECTS

Contact (at HPI)
Prof. Dr. Tilmann Rabl, Prof. Dr. Felix Naumann
■ e-mail: tilmann.rabl@hpi.de, felix.naumann@hpi.de

Logistics

Chart 16

Lecture Summary
■ Summarize one presentation
■ In group or individually
■ Contents

□ Introduction of speaker
□ Engaging overview of talk

– Goal, problem, solution
– Background
– Main ideas, methodology, approach
– Main results
– Summary

■ Will be added to the course website
(should be 10-15 min reading time)
□ Cf. Morning Paper -

https://blog.acolyer.org/
■ We will ask the presenter to review the

summary
■ Plain HTML formatting
■ Deadline 2 weeks after presentation
■ 50% of the final grade

Chart 17

Deliverables I

■ Poster project
□ A1 poster
□ Plenary presentation at Feb 9

■ Bachelor Students
□ Based on one of the lectures
□ Related work overview, lecture summary,
□ As detailed as possible

■ Master Students
□ Research project proposal
□ Extend the technology or methodology of one more lectures
□ Goal, problem, solution & connection to the lecture

Chart 18

Deliverables II

■ Organization through HPI Moodle
□ https://moodle.hpi.de/course/view.php?id=630
□ Sign up now!

■ Groups
□ Will be assigned randomly
□ TBD…

Chart 19

Registration

https://moodle.hpi.de/course/view.php?id=229

■ Lecture Summary
□ Team project
□ 50% of total points

■ Poster
□ Individual project
□ 50% of total points

■ Graded by the teachers

Chart 20

Grading in a Nutshell

■ Asking questions is greatly encouraged
□ Discuss questions with each other (except exams)

■ The limits of collaboration
□ Plagiarism, copying, or other forms of dishonesty will result in failing the course

■ Communication

□ Write professional and polite emails
□ Use netiquette in forum, email, chats, etc.

■ Generally
□ Treat everyone with respect and consideration -> especially important for online settings

□ This course and the university in general should be safe spaces for everyone

Chart 21

Code of Conduct

Stream Processing
End-to-end Hardware-conscious Data Processing

Challenge
■ Potentially unlimited data set
■ Many different queries
■ Low latency, continuous results

Typical Systems

Stream Processing

Stream
Processor

Data Stream Result Stream

Querie
s

ML
System

Stream
Processor

23

Operators

Records

Control events

State

Stream Processor Research

Research topic examples
□ Application (e.g., incremental instead of batch)
□ Operator-level (e.g., aggregation, join)
□ Semantics (e.g., window types, watermarks)
□ Execution strategy (e.g., multi-query processing, compilation)
□ Hardware optimizations (e.g, PMem, RDMA)

Data Stream Source

Data Stream Source

Filter

Aggregation

Join Sink Result Stream

Dataflow

24

Why Hardware Research?

Alibaba Post:
https://www.alibabacloud.com/blog/four-billion-records-per-second-stream-batch-integration-
implementation-of-alibaba-cloud-realtime-compute-for-apache-flink-during-double-11_596962

1.5 million CPUs

16-core instance @ $1/h

93750 VMs @ $2.25 million/day

~42k events/s per server
> 100 million

events/s per server

40 VMs @ $5760/day
52-core instance @ $6/hscale-out

system

scale-up
system

not possible!

25

Stream Processing – Iterator Model

§ Many virtual method calls :(
§ Bad cache locality :(

Data Stream

Data Stream

Select/
Project

Select/
Project

Join Aggregate Result Stream

SinkOpJoinOpFilterOpSourceOp

getNext()getNext()getNext()

26

Streaming Processing – Query Compilation Model

§ Few/no virtual method calls :)
§ Good cache locality :)

GCC df.o

SinkOpJoinOpFilterOpSourceOp

writeToSink()doJoin()if filter

void pipeline() {

 for (Record rec : Source) {

 if (rec == 10) {

 doJoin(rec);

 writeToSink(joinResult);

} } }

Zeuch et al. “Analyzing Efficient Stream Processing on Modern Hardware” PVLDB’19
Grulich et al. “Grizzly: Efficient Stream Processing Through Adaptive Query Compilation” SIGMOD’20

Benson et al. “Darwin: Scale-In Stream Processing” CIDR’22
27

What code to generate? Let’s take a closer look…

Modern computer architecture with PCIe Bus
Memory, PCIe, core and socket connection through internal bus (ring or mesh)

CPU Core

L1
D

L1
I

Core

L1
D

L1
I

L2 L2

L3

CPU

D
R
A
M

P
M
EM

PCIe

GPU Network Disk FPGA
N
U
M
A

28

CPU Die – Intel i7 (from 2011)

Intel Core i7-3960X
The die is 21 by 21 mm and has 2.27 billion

transistors
29

CPU Die II – M1 (2020)

Performance Cores
L1 Instruction Cache 192 KB
L1 Data Cache 128KB
Shared L2 Cache 12 MB

Efficiency Cores
L1 Instruction Cache 128 KB
L1 Data Cache 64KB
Shared L2 Cache 4 MB

System Level Cache
Shared with GPU: 16MB

Perf Core

Perf L2

Eff Core

Eff L2

System
Cache

DRAM
Channel

30

M1 Firestorm Core

192KB L1I$
8-wide decoder
■ 8 instructions per cycle
630 size reorder buffer
7 integer ports (plus ld/st,fp)
8 𝜇-ops per cycle

31

SIMD Compiler Intrinsics
Lawrence Benson, Richard Ebeling, Tilmann Rabl

ADMS 2023

SIMD in a Nutshell

Single Instruction Multiple Data (= SIMD)

Most common instruction sets
■ x86: SSE, AVX, AVX2, AVX512 (> 6k instructions)
■ ARM: Neon (> 4k instructions), SVE
■ PowerPC AltiVec, RISC-V V

Arithmetic, Logical, Shuffle, Shift, Load, Store, …

Focus on x86 and Neon
■ x86: 128 – 512 Bit registers
■ Neon: 128 Bit registers

10 20 30 40
1 2 3 4

11 22 33 44

4 additions in 1 instruction

+

in:

out:

mask:

SHUFFLE
in:

out:

10 20 30 40

1 0 3 2

20 10 40 30

33

SIMD in Databases

Used to speed up, e.g.,
■ Table scans
■ Hash tables
■ Sorting

SIMD code is …
■ … hard to develop
■ … hard to test
■ … hard to benchmark

Non-x86 CPUs on the rise
■ How to translate x86 SIMD code?

Don't have AVX512?
→ Can't compile

Don't have NEON?
→ Can't compile

What do these functions do?
_mm_add_epi32()
_mm512_srl_epi64()
vaddq_s32()

34

Abstractions on top of Abstractions

Add two 128-bit registers of 4x 32-bit integers

10 20 30 40
1 2 3 4

11 22 33 44

+ B
A

C:

Application code
vec C = A + B;

SIMD library
struct vec {
vec operator+(vec, vec);

}

SIMD intrinsics
_mm_add_epi32

vaddq_s32

Compiler representation
__attribute__((
vector_size(N)));

35

Cut the Middle Man: GCC Vector Extensions

Compilers map platform-specific types and operations to canonical internal representation
anyway
■ Decouples from external specifications
■ Allows reusing analysis and optimization steps

à We could directly target this canonical representation with our code
■ Let the compiler do platform-specific instruction selection

GCC-API allows natural code using arithmetic (*, +, -, /) and comparison (>, >=, ==, <,
<=) operators

36

https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html

GCC Vector Extensions (2)

#include <immintrin.h>

void add(__m128i* X, __m128i* Y, __m128i* Z, int MAX) {
for (int i = 0; i < MAX/4; i++) {

*Z++ = _mm_add_epi32(*X++, *Y++);
}

}

#include <arm_neon.h>

void add(int32x4_t* X, int32x4_t* Y, int32x4_t* Z, int MAX) {
 for (int i = 0; i < MAX/4; i++) {
 *Z++ = vaddq_s32(*X++, *Y++);
 }

}

#include <cstdint>
using VecT __attribute__((vector_size(16))) = int32_t;

void add(VecT* X, VecT* Y, VecT* Z, int MAX) {
for (int i = 0; i < MAX/4; i++) {

*Z++ = *X++ + *Y++;
}

}

Produces identical code to platform-specific intrinsics (ARM, x86)

37

https://godbolt.org/z/cMhTYWEWz
https://godbolt.org/z/Mjxbhfxvz

Benchmarks

M1: Apple Macbook Pro 14" M1 2021
x86 Icelake: Intel Xeon Platinum 8352Y

All experiments with:
■ Clang 15 (x86) and trunk Clang ~17 (ARM)
■ -O3, -march/-mtune=native

Single-threaded
Show relative speedup over scalar version

Also other x86/ARM CPUs → see paper

38

Bit-Packed Integer Decompression

Based on VLDB '09 SIMD-Scan paper
Unpack packed 9-Bit integers to 32 bits → shuffling + shifting
Compiler vec >= hand-written SIMD
Neon: vec-128 generates better code than translated x86 intrinsics
■ Implementation artifact on NEON

na
ive

au
tov

ec

ve
c-1

28

ve
c-2

56

ve
c-5

12

sse
4-1

28

av
x2

-25
6

sse
4-p

de
p

av
x5

12
0

5

10

15

S
pe

ed
up

14
5
µs

a) x86 Icelake

na
ive

au
tov

ec

ve
c-1

28

ve
c-2

56

ve
c-5

12
ne

on
0

5

10

15

86
 µ

s

b) M1

SIMD-Scan: Ultra Fast in-Memory Table Scan using on-Chip Vector Processing Units
Thomas Willhalm et al. @ VLDB 200939

http://www.vldb.org/pvldb/vol2/vldb09-327.pdf

Compiler-Intrinsics in Velox

Velox: Meta's new unified query engine

Removed xSIMD dependency
Use only compiler-intrinsics

End-to-end TPC-H SF1
x86 → 0.1% diff
NEON → 0.13% diff

Removed:
■ 54 platform-specific functions
■ Hundreds of lines of SIMD code

1 3 5 6 7 8 9 10 12 13 14 15 16 17 18 19 20 220

100

200

300

R
un

ti
m

e
[m

s] a) x86 Icelake

1 3 5 6 7 8 9 10 12 13 14 15 16 17 18 19 20 22
Supported TPC-H Queries

0

100

200

300

R
un

ti
m

e
[m

s] b) M1

vec xsimd

Supported TPC-H Queries

40

Outlook

The Larger Picture

Efficiency is needed more than ever
■ 1xChatGPT ~ 1000xGoogle1

Efficiency does not mean newer bigger faster
■ The cloud won’t solve this
■ There is little economic incentive in being most

efficient

Need to make best use of what you have

42

https://www.tagesschau.de/multimedia/bilder/blickpunkte-8196.html

1https://ai.stackexchange.com/questions/38970/how-much-energy-consumption-is-involved-in-chat-gpt-responses-being-generated

Measuring Carbon Footprint

https://climateboard-bptr1.hpi.de

43

https://climateboard-bptr1.hpi.de/

■ Course Motivation and Contents
■ Course Logistics
■ Stream Processing

■ Next session: Pinar Tözün – 24.10.

Thank you for your attention!

Pinar Tözün
ITU Copenhagen
Hardware Parallelism &
Transaction Processing Systems

24.10.

