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short-running simple requests
access small portion of the data

fetch several columns of a record
lookup, insert, delete, update

deposit money to a customer’s account,
lookup information about a product,

looking up a tweet, …

long-running complex requests
access lots of data

fetch a few columns of a record
SQL queries, map-reduce jobs, 

machine learning, graph analytics, …

customers who are most likely to get 
mortgages next year,

item sold the most last year in each 
department of a store grouped by months, …
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transaction vs. analytical processing

 primary applications for databases
 required functionality & optimizations differ

OLTP OLAP



evolution of general-purpose CPU
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core core core core

core core core corecore

2005

multicore CPUs multisocket
multicore CPUs

single-core CPUs

faster & more-complex 
cores over time

similar speed & complexity in a core,
more cores over time

… the hardware we run transactions on



types of hardware parallelism
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core

multithreading
threads share

execution cycles
on the same core

instruction & data parallelism
hardware does this automatically

implicit/vertical parallelism

core

why do we need this?



single-core – access latency to storage
core
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MAIN MEMORY (DRAM)

L2

L3 / LLC (last-level cache)

registers

ARCHIVAL STORAGE (tape)

NVMe SSD

hard disk
also

persistent

registers

1 cycle

~4 cycles

~10 cycles
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~100-200 cycles
or 60ns

~10 µsec

~100sec

~5m
s



types of hardware parallelism
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core

multithreading
threads share

execution cycles
on the same core

instruction & data parallelism
hardware does this automatically

implicit/vertical parallelism

core

goal: minimize stall time due to cache/memory accesses
overlapping access latency for one item with other work

why?
we don’t want cores 
to stay idle waiting 
for instruction/data 

accesses!
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single-core – access latency to storage
core

L1-I L1-D

MAIN MEMORY (DRAM)

L2

L3 / LLC (last-level cache)

PERSISTENT STORAGE (hard disk, ssd)

registers~4 cycles

in practice

as if there is no penalty

possible stalls

stalls

stalls = 



types of hardware parallelism
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core core core core

core core core core

single-core
instruction & data parallelism
simultaneous multithreading

why do we have this?

implicit/vertical parallelism explicit/horizontal parallelism

core

multicores
multiple threads run in

parallel on different cores
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“… the observation that the number of 
transistors in a dense integrated circuit

doubles approximately every two years.”

“ … as transistors get smaller their power 
density stays constant, so that the power use 

stays in proportion with area: both voltage and 
current scale (downward) with length.”

wording courtesy of Wikipedia

Moore’s law

Dennard scaling

for Moore’s law to be practical 
you need Dennard scaling!



commodity CPU evolution
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core core core core

core core core corecore

2005

multicore CPUs multisocket
multicore CPUs

single-core CPUs

Dennard scaling doesn’t hold anymore
switching to multicores kept Moore’s Law alive



types of hardware parallelism
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core core core core

core core core core

single-core
instruction & data parallelism
simultaneous multithreading

implicit parallelism  (almost) free lunch

implicit/vertical parallelism explicit/horizontal parallelism

explicit parallelism  must work hard to exploit it

core

multicores
multiple threads run in

parallel on different cores



types of hardware parallelism
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single-core
instruction & data parallelism
simultaneous multithreading

implicit parallelism  (almost) free lunch

implicit/vertical parallelism explicit/horizontal parallelism

explicit parallelism  must work hard to exploit it

multisocket multicores
multiple processors/CPUs

in one machine

core



types of hardware parallelism
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single-core
instruction & data parallelism
simultaneous multithreading

implicit parallelism  (almost) free lunch

implicit/vertical parallelism explicit/horizontal parallelism

explicit parallelism  must work hard to exploit it

distributed systems
running a program over 

multiple machines

core



• types of hardware parallelism
• OLTP & implicit parallelism
• OLTP & explicit parallelism
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agenda
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OLTP & implicit parallelism
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OLTP & implicit parallelism
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memory stalls in data-intensive apps
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data-intensive apps suffer due to memory stalls
not just due to data but also instructions 

[ASPLOS12]

https://cloudsuite.ch/
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doesn’t mean these systems are bad
but we have room to do better 18

what about in-memory OLTP?

in-memorydisk-based

TPC-C, 100GB, Intel Ivy Bridge
[SIGMOD16]
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transactions under microscope

Index Probe

Index Scan
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database 
operations
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Insert Record(Z2)

Delete Record(Y2)many transactions are composed 
of common instructions
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instruction & data overlap

mix new order
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overlapping cache blocks

cold hot

high for instructions, low for data

[PVLDB14]
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utilizing instruction commonality

T1

T2 T1

cores

1
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can be software/hardware managed
up to 2X throughput of conventional on TPC-B/C/E

[MICRO12,
ISCA13,

PVLDB14]chasing instructions



• implicit parallelism isn’t completely free lunch

• > 50% of cycles are stalls for traditional OLTP 
• L1-I misses are significant 

• invest in
• utilizing instruction overlap across transactions 

& aggregate L1-I cache capacity
• simplified code, cache-friendly data/code 

layouts, smarter query compilation …
22

summary: OLTP & implicit parallelism



OLTP instructions have
1. large footprint
2. high overlap
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interlude: SUN SPARC

SPARC M7 & M8
L1-I L1-D
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L1-I L1-D L1-I L1-D L1-I L1-D

L2-D L2-D

L3 (LLC)

L1-I L1-D

L2 (LLC)

16KB 8KB

UltraSPARC T2
(Niagara 2)

L1-I L1-D
16KB 8KB

2007

2017



• types of hardware parallelism
• OLTP & implicit parallelism
• OLTP & explicit parallelism
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agenda



core core core core

core core core core

core core core core

core core core core

scaling-up vs scaling-out
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adding more cores in a single 
server should give proportional 

performance increase

scaling-up

core core core core

core core core core

adding more servers in a data 
center should give proportional 

performance increase

scaling-out

for regular folk!



scaling-up vs scaling-out
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scaling-up

adding more servers in a data 
center should give proportional 

performance increase

scaling-out

for google, amazon …!

adding more data centers 
should give proportional 

performance increase
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scaling-up

th
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ug
hp

ut

number of threads

th
ro

ug
hp

ut

number of threads

optimized

need better metrics to reason about scalability
throughput measurements are not enough

probe one customer, read balance on Shore-MT

next-gen hardware
4-processor server

[PVLDB11, PVLDB12, ICDE14]

1-processor
server = 8 cores

1

2

3 4 = sockets
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critical sections / synchronization
unbounded cooperative fixed

unbounded  fixed / cooperative

[PVLDB11]

shared
data
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critical path of transaction execution

core core core core core core core core

data

system 
state

threads

many unpredictable accesses to shared data
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impact of unpredictable data accesses

data
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probe one customer, update balance on ShoreMTworkers
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physiological partitioning (PLP)
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critical sections as a metric?
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number of threads

unbounded communication will hit you eventually
with NUMA even fixed/cooperative have issues
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NUMA impact

core

L1-I L1-D

MAIN MEMORY

L2

L3

PERSISTENT STORAGE

registers
core

L1-I L1-D

L2

registers
core

L1-I L1-D

MAIN MEMORY

L2

L3

registers
core

L1-I L1-D

L2

registers

CPU

<10 cycles ~50 cycles 500 cycles
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ATraPos: NUMA-aware PLP

core core

system 
state

core core

update 
table A

update 
table B

[ICDE14]

limit unbounded communication within a socket
keep access latencies predictable

system 
state
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summary: OLTP & explicit parallelism

• high throughput != scalable
• lock freedom != scalable
• eliminate any unbounded communication

• or at least bound it within a socket

• keep fixed/cooperative communication among cores 
with similar/predictable access latency
 avoid sharing data across different processors
     (avoid NUMA impact)



main memory
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today: traditional vs. modern OLTP

disk

buffer manager

caches

multicore CPU

traditional main-memory-optimized

• no / minimal disk use
during transactions

• lightweight logging &
replication for recovery

• optimize for PMem & SSDs instead

• no / light buffer manager
• data organized for better cache 

accesses

• non-blocking concurrency control
• query compilation that generates 

more efficient code
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