
hardware parallelism &
transaction processing systems

Pınar Tözün
Associate Professor,
IT University of Copenhagen
pito@itu.dk, www.pinartozun.com, @pinartozun

HPI – Lecture Series on DB Research
October 24, 2023

www.itu.dk www.dasya.dk
 @dasyaITU

RAD
https://rad.itu.dk

mailto:pito@itu.dk
http://www.pinartozun.com/
https://twitter.com/pinartozun
http://www.itu.dk/
http://www.dasya.dk/
https://twitter.com/dasyaITU/
https://rad.itu.dk/

short-running simple requests
access small portion of the data

fetch several columns of a record
lookup, insert, delete, update

deposit money to a customer’s account,
lookup information about a product,

looking up a tweet, …

long-running complex requests
access lots of data

fetch a few columns of a record
SQL queries, map-reduce jobs,

machine learning, graph analytics, …

customers who are most likely to get
mortgages next year,

item sold the most last year in each
department of a store grouped by months, …

2

transaction vs. analytical processing

 primary applications for databases
 required functionality & optimizations differ

OLTP OLAP

evolution of general-purpose CPU

3

core core core core

core core core corecore

2005

multicore CPUs multisocket
multicore CPUs

single-core CPUs

faster & more-complex
cores over time

similar speed & complexity in a core,
more cores over time

… the hardware we run transactions on

types of hardware parallelism

4

core

multithreading
threads share

execution cycles
on the same core

instruction & data parallelism
hardware does this automatically

implicit/vertical parallelism

core

why do we need this?

single-core – access latency to storage
core

L1-I L1-D

MAIN MEMORY (DRAM)

L2

L3 / LLC (last-level cache)

registers

ARCHIVAL STORAGE (tape)

NVMe SSD

hard disk
also

persistent

registers

1 cycle

~4 cycles

~10 cycles

~30-60 cycles

~100-200 cycles
or 60ns

~10 µsec

~100sec

~5m
s

types of hardware parallelism

6

core

multithreading
threads share

execution cycles
on the same core

instruction & data parallelism
hardware does this automatically

implicit/vertical parallelism

core

goal: minimize stall time due to cache/memory accesses
overlapping access latency for one item with other work

why?
we don’t want cores
to stay idle waiting
for instruction/data

accesses!

7

single-core – access latency to storage
core

L1-I L1-D

MAIN MEMORY (DRAM)

L2

L3 / LLC (last-level cache)

PERSISTENT STORAGE (hard disk, ssd)

registers~4 cycles

in practice

as if there is no penalty

possible stalls

stalls

stalls =

types of hardware parallelism

8

core core core core

core core core core

single-core
instruction & data parallelism
simultaneous multithreading

why do we have this?

implicit/vertical parallelism explicit/horizontal parallelism

core

multicores
multiple threads run in

parallel on different cores

9

“… the observation that the number of
transistors in a dense integrated circuit

doubles approximately every two years.”

“ … as transistors get smaller their power
density stays constant, so that the power use

stays in proportion with area: both voltage and
current scale (downward) with length.”

wording courtesy of Wikipedia

Moore’s law

Dennard scaling

for Moore’s law to be practical
you need Dennard scaling!

commodity CPU evolution

10

core core core core

core core core corecore

2005

multicore CPUs multisocket
multicore CPUs

single-core CPUs

Dennard scaling doesn’t hold anymore
switching to multicores kept Moore’s Law alive

types of hardware parallelism

11

core core core core

core core core core

single-core
instruction & data parallelism
simultaneous multithreading

implicit parallelism  (almost) free lunch

implicit/vertical parallelism explicit/horizontal parallelism

explicit parallelism  must work hard to exploit it

core

multicores
multiple threads run in

parallel on different cores

types of hardware parallelism

12

single-core
instruction & data parallelism
simultaneous multithreading

implicit parallelism  (almost) free lunch

implicit/vertical parallelism explicit/horizontal parallelism

explicit parallelism  must work hard to exploit it

multisocket multicores
multiple processors/CPUs

in one machine

core

types of hardware parallelism

13

single-core
instruction & data parallelism
simultaneous multithreading

implicit parallelism  (almost) free lunch

implicit/vertical parallelism explicit/horizontal parallelism

explicit parallelism  must work hard to exploit it

distributed systems
running a program over

multiple machines

core

• types of hardware parallelism
• OLTP & implicit parallelism
• OLTP & explicit parallelism

14

agenda

15

OLTP & implicit parallelism

0

1

2

3

4

TPC-C TPC-E

in
st

ru
ct

io
ns

 p
er

 c
yc

le
at peak throughput on Shore-MT,
Intel Xeon X5660 (4-way issue)

maximum

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

TPC-C TPC-E
ex

ec
ut

io
n

cy
cl

es
 b

re
ak

do
w

n

Stalled Busy

wholesale supplier brokerage house

no instr finished >= 1 instr finished

[EDBT13]

16

OLTP & implicit parallelism

0

1

2

3

4

TPC-C TPC-E

in
st

ru
ct

io
ns

 p
er

 c
yc

le
at peak throughput on Shore-MT,
Intel Xeon X5660 (4-way issue)

maximum

wholesale supplier brokerage house [EDBT13, DaMoN13]

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

TPC-C TPC-E
st

al
l c

yc
le

s b
re

ak
do

w
n

L3D
L3I
L2D
L2I
L1D
L1I

17

memory stalls in data-intensive apps

0%

25%

50%

75%

100%

0

1

2

3

4

To
ta

l E
xe

cu
tio

n
C

yc
le

s

A
pp

lic
at

io
n

IP
C

Application IPC Memory Cycles

CloudSuite on
Intel Xeon X5670

data-intensive apps suffer due to memory stalls
not just due to data but also instructions

[ASPLOS12]

https://cloudsuite.ch/

0%

20%

40%

60%

80%

100%

Shore-MT DBMS D VoltDB HyPer DBMS M

ex
ec

ut
io

n
cy

cl
es

 b
re

ak
do

w
n

Stalled Busy

doesn’t mean these systems are bad
but we have room to do better 18

what about in-memory OLTP?

in-memorydisk-based

TPC-C, 100GB, Intel Ivy Bridge
[SIGMOD16]

19

transactions under microscope

Index Probe

Index Scan

Update Record

Delete Record

Insert Record

T1

T2

instances

Index Probe (X1)

Update Record (X1)

Index Probe (Y1)

Delete Record(Y1)

database
operations

Index Probe (X)

Update Record (X)

Index Probe (Y)

Insert Record (Z)

Delete Record (Y)

co
nd

iti
on

al

transaction

Index Probe (X2)

Update Record (X2)

Index Probe (Y2)

Insert Record(Z2)

Delete Record(Y2)many transactions are composed
of common instructions

20

instruction & data overlap

mix new order

da
ta

in
st

ru
ct

io
ns

payment

TPC-C (100GB data) on Shore-MT
overlapping cache blocks

cold hot

high for instructions, low for data

[PVLDB14]

21

utilizing instruction commonality

T1

T2 T1

cores

1
T1

T1 T2

cores
conventional

L1I

3

5

7

1

2

3

4

T2

instances

tim
e

#cache
fills

#cache
fills

T1

T1 T2

T1 T2 T2 T1

T2 T1

can be software/hardware managed
up to 2X throughput of conventional on TPC-B/C/E

[MICRO12,
ISCA13,

PVLDB14]chasing instructions

• implicit parallelism isn’t completely free lunch

• > 50% of cycles are stalls for traditional OLTP
• L1-I misses are significant

• invest in
• utilizing instruction overlap across transactions

& aggregate L1-I cache capacity
• simplified code, cache-friendly data/code

layouts, smarter query compilation …
22

summary: OLTP & implicit parallelism

OLTP instructions have
1. large footprint
2. high overlap

23

interlude: SUN SPARC

SPARC M7 & M8
L1-I L1-D

L2-I

L1-I L1-D L1-I L1-D L1-I L1-D

L2-D L2-D

L3 (LLC)

L1-I L1-D

L2 (LLC)

16KB 8KB

UltraSPARC T2
(Niagara 2)

L1-I L1-D
16KB 8KB

2007

2017

• types of hardware parallelism
• OLTP & implicit parallelism
• OLTP & explicit parallelism

24

agenda

core core core core

core core core core

core core core core

core core core core

scaling-up vs scaling-out

25

adding more cores in a single
server should give proportional

performance increase

scaling-up

core core core core

core core core core

adding more servers in a data
center should give proportional

performance increase

scaling-out

for regular folk!

scaling-up vs scaling-out

26

scaling-up

adding more servers in a data
center should give proportional

performance increase

scaling-out

for google, amazon …!

adding more data centers
should give proportional

performance increase

27

scaling-up

th
ro

ug
hp

ut

number of threads

th
ro

ug
hp

ut

number of threads

optimized

need better metrics to reason about scalability
throughput measurements are not enough

probe one customer, read balance on Shore-MT

next-gen hardware
4-processor server

[PVLDB11, PVLDB12, ICDE14]

1-processor
server = 8 cores

1

2

3 4 = sockets

28

critical sections / synchronization
unbounded cooperative fixed

unbounded  fixed / cooperative

[PVLDB11]

shared
data

29

critical path of transaction execution

core core core core core core core core

data

system
state

threads

many unpredictable accesses to shared data

30

impact of unpredictable data accesses

data

index

probe one customer, update balance on ShoreMTworkers

0

10

20

30

40

50

60

70

cr
iti

ca
l s

ec
tio

ns
 p

er
 tr

an
sa

ct
io

n fixed

cooperative

unscalableunbounded

75% of critical sections are unbounded

31

physiological partitioning (PLP)

0

10

20

30

40

50

60

70

Conventional PLP
cr

iti
ca

l s
ec

tio
ns

 p
er

 tr
an

sa
ct

io
n fixed

cooperative

unscalable

range workers

R1: A – M

R2: N – Z

index R1 R2

data

probe one customer, update balance

unbounded

PLP eliminates 70% of critical sections

[PVLDB11]

32

critical sections as a metric?
th

ro
ug

hp
ut

number of threads

unbounded communication will hit you eventually
with NUMA even fixed/cooperative have issues

0

10

20

30

40

50

60

70

cr
iti

ca
l s

ec
tio

ns

fixed
cooperative
unbounded

conventional

remaining unbounded
is based on lock-free
or atomic mechanisms
instead of locks or mutexes

plp = optimized

plp = optimized

4-processor server

1

2

3 4

33

NUMA impact

core

L1-I L1-D

MAIN MEMORY

L2

L3

PERSISTENT STORAGE

registers
core

L1-I L1-D

L2

registers
core

L1-I L1-D

MAIN MEMORY

L2

L3

registers
core

L1-I L1-D

L2

registers

CPU

<10 cycles ~50 cycles 500 cycles

34

ATraPos: NUMA-aware PLP

core core

system
state

core core

update
table A

update
table B

[ICDE14]

limit unbounded communication within a socket
keep access latencies predictable

system
state

35

summary: OLTP & explicit parallelism

• high throughput != scalable
• lock freedom != scalable
• eliminate any unbounded communication

• or at least bound it within a socket

• keep fixed/cooperative communication among cores
with similar/predictable access latency
 avoid sharing data across different processors
 (avoid NUMA impact)

main memory

36

today: traditional vs. modern OLTP

disk

buffer manager

caches

multicore CPU

traditional main-memory-optimized

• no / minimal disk use
during transactions

• lightweight logging &
replication for recovery

• optimize for PMem & SSDs instead

• no / light buffer manager
• data organized for better cache

accesses

• non-blocking concurrency control
• query compilation that generates

more efficient code

37

references / credits for the slides
slide 30 & 34-35 are Danica Porobic’s slides from her ICDE14 talk

[ASPLOS12] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic, C. Kaynak, A. D.
Popescu, A. Ailamaki, B. Falsafi. Clearing the Clouds: A Study of Emerging Scale-out Workloads on
Modern Hardware.
[DaMoN13] P. Tözün, B. Gold, and A. Ailamaki: OLTP in Wonderland -- Where do cache misses come
from in major OLTP components?
[EDBT13] P. Tözün, I. Pandis, C. Kaynak, D. Jevdjic, A. Ailamaki. From A to E: Analyzing TPC’s OLTP
Benchmarks – The obsolete, the ubiquitous, the unexplored.
[ICDE14] D. Porobic, E. Liarou, P. Tözün, A. Ailamaki. ATraPos: Adaptive Transaction Processing on
Hardware Islands.
[ICDE15] A. Ailamaki, E. Liarou, P. Tözün, D. Porobic, I. Psaroudakis. How to Stop Underutilization and
Love Multicores.
[ISCA13] I. Atta, P. Tözün, X. Tong, A. Ailamaki, A. Moshovos. STREX: Boosting Instruction Cache Reuse in
OLTP Workloads through Stratified Transaction Execution.

38

references / credits for the slides
[PVLDB14] P. Tözün, I. Atta, A. Ailamaki, A. Moshovos. ADDICT: Advanced Instruction Chasing for
Transactions.
[SIGMOD16] U. Sirin, P. Tözün, D. Porobic, A. Ailamaki. Micro-architectural Analysis of In-memory OLTP.
[MICRO12] I. Atta, P. Tözün, A. Ailamaki, A. Moshovos. SLICC: Self-Assembly of Instruction Cache
Collectives for OLTP Workloads.
[PVLDB11] I. Pandis, P. Tözün, R. Johnson, A. Ailamaki. PLP: page latch-free shared-everything OLTP.
[PVLDB12] D. Porobic, I. Pandis, M. Branco, P. Tözün, A Ailamaki. OLTP on Hardware Islands.

39

other references for the interested
[CIDR15] M. Karpathiotakis, I. Alagiannis, T. Heinis, M. Branco, A. Ailamaki. Just-in-time data
virtualization: Lightweight data management with ViDa.
[DEBull14] T. Neumann, V. Leis. Compiling Database Queries into Machine Code.
[DEBull19] P. Tözün, H. Kotthaus. Scheduling Data-Intensive Tasks on Heterogeneous Many Cores.
[Eurosys12] Y. Mao, E. Kohler, and R. Morris: Cache Craftiness for Fast Multicore Key-Value Storage.
[ICDE10] K. Krikellas, S. D. Viglas, M. Cintra: Generating code for holistic query evaluation.
[ICDE14a] H. Han, S. Park, H. Jung, A. Fekete, U. Roehm, and H. Yeom : Scalable Serializable Snapshot
Isolation for Multicore Systems.
[ICDE14b] N. Malviya, A. Weisberg, S. Madden, and M. Stonebraker: Rethinking Main Memory OLTP
Recovery.
[ISCA01] A. Ramirez, L. A. Barroso, K. Gharachorloo, R. Cohn, J. Larriba-Pey, P. G. Lowney, and M.
Valero: Code Layout Optimizations for Transaction Processing Workloads.
[MICRO13] C. Kaynak, B. Grot, and B. Falsafi: SHIFT: Shared History Instruction Fetch for Lean-Core
Server Processors.
[PCS13] B. Vikranth, R. Wankar, and C. Rao: Topology Aware Task Stealing for On-chip NUMA Multi-core
Processors.
[PVLDB10] R. Johnson, I. Pandis, R. Stoica, M. Athanassoulis, and A. Ailamaki: Aether: A Scalable
Approach to Logging.

40

other references for the interested
[PVLDB11] T. Neumann: Efficiently compiling efficient query plans for modern hardware.
[PVLDB12] P. Larson, S. Blanas, C. Diaconu, C. Freedman, J. M. Patel, and M. Zwilling: High-performance
concurrency control mechanisms for main-memory databases.
[PVLDB13] K. Ren, A. Thomson, and D. J. Abadi: Lightweight locking for main memory database systems.
[PVLDB14] Y. Klonatos, C. Koch, T. Rompf, and H. Chafi: Building Efficient Query Engines in a High-Level
Language.
[PVLDB15] X. Yu, G. Bezerra, A. Pavlo, S. Devadas, and M. Stonebraker: Staring into the Abyss: An
Evaluation of Concurrency Control with One Thousand Cores.
[SIGMOD10] E. P. Jones, D. J. Abadi, and S. Madden: Low overhead concurrency control for partitioned
main memory databases.
[SIGMOD13] C. Diaconu, C. Freedman, E. Ismert, P. Larson, P. Mittal, R. Stonecipher, N. Verma, and M.
Zwilling: Hekaton: SQL Server’s memory-optimized OLTP engine.
[SOSP13] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden: Speedy transactions in multicore in-
memory databases.
[VLDB07] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem, and P. Helland: The end
of an architectural era: (it’s time for a complete rewrite).
[VLDBJ] T Bang, N May, I Petrov, C Binnig. The full story of 1000 cores: An examination of concurrency
control on real (ly) large multi-socket hardware.

	hardware parallelism &�transaction processing systems
	transaction vs. analytical processing
	evolution of general-purpose CPU
	types of hardware parallelism
	single-core – access latency to storage
	types of hardware parallelism
	single-core – access latency to storage
	types of hardware parallelism
	Slide Number 9
	commodity CPU evolution
	types of hardware parallelism
	types of hardware parallelism
	types of hardware parallelism
	agenda
	OLTP & implicit parallelism
	OLTP & implicit parallelism
	memory stalls in data-intensive apps
	what about in-memory OLTP?
	transactions under microscope
	instruction & data overlap
	utilizing instruction commonality
	summary: OLTP & implicit parallelism
	interlude: SUN SPARC
	agenda
	scaling-up vs scaling-out
	scaling-up vs scaling-out
	scaling-up
	critical sections / synchronization
	critical path of transaction execution
	impact of unpredictable data accesses
	physiological partitioning (PLP)
	critical sections as a metric?
	NUMA impact
	ATraPos: NUMA-aware PLP
	summary: OLTP & explicit parallelism
	today: traditional vs. modern OLTP
	references / credits for the slides
	references / credits for the slides
	other references for the interested
	other references for the interested

