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▪ Since 09/2022 TU Berlin, Germany
▪ University professor for Big Data Engineering (DAMS)

▪ 2018-2022 TU Graz, Austria
▪ BMK endowed chair for data management + research area manager

▪ Data management for data science (DAMS), SystemDS & DAPHNE

▪ 2012-2018 IBM Research – Almaden, CA, USA
▪ Declarative large-scale machine learning

▪ Optimizer and runtime of Apache SystemML

▪ 2007-2011 PhD TU Dresden, Germany
▪ Cost-based optimization of integration flows

▪ Time series forecasting / in-memory indexing & query processing

About Me

DB group



Matthias Boehm | Lecture Series on Database Research – System Infrastructure for Data-centric ML Pipelines3

Motivation and Terminology

(ML) System Infrastructure for Data-centric ML Pipelines
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Data-centric ML Pipelines

while(!converged) {
  … q = X %*% v …    
}

X

Model Training Model Scoring

85% 
Accuracyy

train() predict()

Hyper-parameter Tuning + CV

Model and Feature Selection

Data Preparation 
(e.g., one-hot, bins)

Data Integration & Data Cleaning

Data Programming & Augmentation

FX

Validation & Debugging

Deployment & Scoring

SliceLine
[SIGMOD’21c]

Top-K Cleaning 
Pipelines

[SIGMOD’24a]

Hierarchical Composition
as Library Functions

on top of ML systems

Key observation: SotA 
data engineering/cleaning based on ML

Parallel Feature 
Transformations

[PVLDB’22]

Alignment of 
Multi-modal Data

I/O for Custom 
Data Formats

[SIGMOD’23c]

Data Engineering
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What is an ML System? (narrow vs broad scope)

Machine 
Learning 

(ML)
Statistics

Data 
Mining

ML Applications 
(entire KDD/DS 

lifecycle)

Classification
Regression

Recommenders
Clustering

Dim Reduction
Neural Networks

ML System

HPC

Prog. 
Language 
Compilers

Compilation 
TechniquesDistributed 

Systems

Operating  
Systems

Data 
Management

Runtime Techniques 
(Execution, Data Access)

HW 
Architecture

Accelerators

Rapidly Evolving
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A Case for 
Optimizing Tensor Computations



Matthias Boehm | Lecture Series on Database Research – System Infrastructure for Data-centric ML Pipelines7

▪ #1 Simplicity
▪ Coarse-grained frame/matrix/tensor 

data structures and operations

▪ Reduced system infrastructure complexity  

(boundary crossing) 

▪ #2 Reuse of Compiler/Runtime Techniques
▪ Focused work and reuse of commonly 

used compiler/runtime techniques

▪ Generality over hand-crafted, 

specialized systems and algorithms

▪ #3 Performance and Scalability
▪ Leverage HW Accelerators and distributed runtime backends 

➔ Increasing specialization and rapid evolution

▪ Homogeneous arrays and simple parallelization strategies

Optimizing Tensor Computations
From Applications to Compilation and Runtime Techniques

Data 
ScienceQuery 

Processing
Simulation
Sampling

Tensor Computations

Optimizing Compiler / Runtime

[SIGMOD’23 Tutorial]

Build Libraries for Tensor Ops 
on HW X once and reuse
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▪ Automatic Generation of Cleaning Pipelines
▪ Library of robust, parameterized data cleaning primitives, 

▪ Enumeration of DAGs of primitives & hyper-parameter optimization (evolutionary, HB)

Data Science Lifecycle: Data Cleaning Pipelines

P1:  gmm  → imputeFD → mergeDup → delML Pn:  outlierBySd→ mice → delDup → voting

LPn

PP1

LP2LP1

PPn PPnPPnPP1

O

PP1

…

…

……

Outlier Detection → MVI → Deduplication → Resolve Mislabels

Debugging

University Country

TU Graz Austria

TU Graz Austria

TU Graz Germany

IIT India

IIT IIT

IIT Pakistan

IIT India

SIBA Pakistan

SIBA null

SIBA null

University Country

TU Graz Austria

TU Graz Austria

TU Graz Austria

IIT India

IIT India

IIT India

IIT India

SIBA Pakistan

SIBA Pakistan

SIBA Pakistan

A B C D

0.77 0.80 1 1

0.96 0.12 1 1

0.66 0.09 null 1

0.23 0.04 17 1

0.91 0.02 17 null

0.21 0.38 17 1

0.31 null 17 1

0.75 0.21 20 1

null null 20 1

0.19 0.61 20 1

0.64 0.31 20 1

A B C D

0.77 0.80 1 1

0.96 0.12 1 1

0.66 0.09 17 1

0.23 0.04 17 1

0.91 0.02 17 1

0.21 0.38 17 1

0.31 0.29 17 1

0.75 0.21 20 1

0.41 0.24 20 1

0.19 0.61 20 1

0.64 0.31 20 1

Dirty Data After imputeFD(0.5) After MICE

Data 
Samples

Target 
App

Dirty Data

Rules/Objectives

Top-k 
Pipelines

Data- and Task-parallel 
ComputationLogical

Physical

[SIGMOD’24a]
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▪ Problem Formulation
▪ Intuitive slice scoring function

▪ Exact top-k slice finding

▪ 𝑆 ≥ 𝜎 ∧ 𝑠𝑐 𝑆 > 0, 𝛼 ∈ (0,1]

▪ Properties & Pruning
▪ Monotonicity of slice sizes, errors 

▪ Upper bound sizes/errors/scores 

→ pruning & termination

▪ Linear-Algebra-based Slice Finding
▪ Recoded/binned matrix X, error vector e

▪ Vectorized implementation in linear algebra (join & eval via sparse-sparse matmult)

▪ Local and distributed task/data-parallel execution

Data Science Lifecycle: SliceLine for Model Debugging
[Credit: sliceline, 

Silicon Valley, HBO]

𝑠𝑐 = 𝛼
ҧ𝑒(𝑆)

ҧ𝑒(𝑋)
− 1 − 1 − 𝛼

𝑋

𝑆
− 1

= 𝛼
𝑋

𝑆
⋅

σ
𝑖=1
|𝑆|

𝑒𝑠𝑖

σ
𝑖=1
|𝑋|

𝑒𝑖

− 1 − 1 − 𝛼
𝑋

𝑆
− 1

slice error slice size

𝑂(2𝑙 − 
𝑗=1

𝑚

2𝑑𝑗 +  𝑙 + 𝑚)

[SIGMOD’21b]
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# initialize state with vertex ids
  c = seq(1,nrow(G));
  diff = Inf; iter = 1;
  # iterative computation of connected components
  while( diff > 0 & (maxi==0 | iter<=maxi) ) {
    u = max(rowMaxs(G * t(c)), c);
    diff = sum(u != c)
  c = u; # update assignment
  iter = iter + 1;
  }

▪ Data Augmentation
▪ Augment training data by synthetic labeled data

▪ #1: Movement/selection (translation, rotation, reflection, cropping)

▪ #2: Distortions (stretching, shearing, lens distortions, color, mixup)

▪ Graph Processing
▪ Graphs are sparse matrices 

▪ Connected components, page rank, shortest path

▪ ML Algorithms
▪ Clustering, dimensionality reduction, matrix factorization and completion

▪ Linear models, tree-based models, deep neural networks

▪ Fairness and Explainability
▪ Group fairness constraints and monotonicity

▪ Locally weighted regression

Data Science Lifecycle: Other Examples

AlexNet

Clean Mappings to 
Linear Algebra Operations
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System Infrastructure
for Data-centric ML Pipelines
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▪ Data Independence
▪ “the independence of application programs 

[…] from growth in data types and changes 

in data representations” 

Need for Data Independence

[E. F. Codd: A Relational Model of Data for Large 
Shared Data Banks. Comm. ACM 13(6), 1970]
[J. Hellerstein: 2005 https://dsf.berkeley.edu/

cs262/SystemR-annotated.pdf]
Δ𝑒𝑛𝑣

Δ𝑡
≫

Δ𝑎𝑝𝑝

Δ𝑡

#1 Data 
Representations

Sparsity Exploitation 
from Algorithms to HW

dense

graph

sparse

compressed

#2 Data 
Placement

Local vs distributed

CPUs/
NUMA

GPUs

FPGAs/
ASICs

#3 Data 
(Value) Types

FP32, FP64, INT8,
INT32, INT64, UINT8, 
BF16, TF32, FlexPoint 

[Credit: NVIDIA 
A100 Whitepaper]

#4 Data 
Modalities

Text, Structured, 
Time Series, 

Image, Speech

[Credit: Uber AI 
Ludwig paper]

https://dsf.berkeley.edu/cs262/SystemR-annotated.pdf
https://dsf.berkeley.edu/cs262/SystemR-annotated.pdf
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#1 Apache SystemDS [https://github.com/apache/systemds] 

[SIGMOD’15,’17,’19,’21abc,’23abc,’24a]
[PVLDB’14,’16ab,’18,’22]
[ICDE’11,’12,’15]
[CIDR’17,’20]
[VLDBJ’18] 
[CIKM’22]
[DEBull’14]
[PPoPP’15] Hadoop or Spark Cluster 

(scale-out)
In-Memory Single Node 

(scale-up)

Runtime

Compiler

Language

DML Scripts

since 2010/11since 2012 since 2015

APIs: Command line, JMLC, Python
Spark MLContext, Spark ML, 

(Scalable Algorithms + Primitives) 

In-Progress:

GPU

since 2014/16

07/2020 Renamed to Apache SystemDS
05/2017 Apache Top-Level Project
11/2015 Apache Incubator Project
08/2015 Open Source Release

Write Once, 
Run Anywhere

Federated 
(LA progs, PS)

since 2019

Others: 
Netezza

Apache Flink

https://github.com/apache/systemds
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▪ Example: 
Stepwise 
Linear 
Regression

Language Abstractions and APIs

X = read(‘features.csv’)
Y = read(‘labels.csv’)
[B,S] = steplm(X, Y,
  icpt=0, reg=0.001)
write(B, ‘model.txt’)

User Script

m_steplm = function(...) {
  while( continue ) {
    parfor( i in 1:n ) {
      if( !fixed[1,i] ) {
        Xi = cbind(Xg, X[,i])
        B[,i] = lm(Xi, y, ...)
   } }
    # add best to Xg 
    # (AIC)
} }

Built-in Functions

m_lm = function(...) {
  if( ncol(X) > 1024 )
    B = lmCG(X, y, ...)
  else
    B = lmDS(X, y, ...)
}

m_lmCG = function(...) {
  while( i<maxi&nr2>tgt ) {
    q = (t(X) %*% (X %*% p))
      + lambda * p
    beta = ... }
}

m_lmDS = function(...) {
  l = matrix(reg,ncol(X),1)
  A = t(X) %*% X + diag(l)
  b = t(X) %*% y
  beta = solve(A, b) ...}

Linear 
Algebra 

Programs

ML 
Algorithms

Feature 
Selection

Facilitates optimization 
across data science 

lifecycle tasks

Data Independence + Impl-Agnostic Ops
➔ “Separation of Concerns” 
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▪ Lineage as Key Enabling Technique
▪ Trace lineage of ops (incl. non-determinism), dedup for loops/funcs

▪ Model versioning, data reuse, incr. maintenance,  autodiff, debugging

▪ Full Reuse of Intermediates
▪ Before executing instruction, probe output lineage in cache 

Map<Lineage, MatrixBlock> 

▪ Cost-based/heuristic caching and eviction decisions 

(compiler-assisted)

▪ Partial Reuse of Intermediates
▪ Problem: Often partial result overlap

▪ Reuse partial results via dedicated rewrites (compensation plans)

▪ Example: steplm

▪ Next Steps: multi-backend, unified mem mgmt 

#2 Multi-level Lineage Tracing & Reuse [CIDR’20, SIGMOD’21a]

for( i in 1:numModels ) 
  R[,i] = lm(X, y, lambda[i,], ...)

m_lmDS = function(...) {
  l = matrix(reg,ncol(X),1)
  A = t(X) %*% X + diag(l)
  b = t(X) %*% y
  beta = solve(A, b) ...}

m_steplm = function(...) {
  while( continue ) {
    parfor( i in 1:n ) {
      if( !fixed[1,i] ) {
        Xi = cbind(Xg, X[,i])
        B[,i] = lm(Xi, y, ...)
    } }
    # add best to Xg (AIC)
} }

X

t(X)

m>>n
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▪ Lossless Matrix Compression
▪ Improved general applicability (adaptive compression time, 

new compression schemes, new kernels, intermediates, workload-aware)

▪ Sparsity → Redundancy exploitation

(data redundancy, structural redundancy)

▪ Workload-aware Compression
▪ Workload summary 

→ compression

▪ Compressed Representation 

→ execution planning

▪ Next Steps 
▪ Frame compression, compressed I/O

▪ Compressed feature transformations

▪ Morphing of compressed data

#3 Compressed Linear Algebra Extended [PVLDB’16a, VLDBJ’18, SIGMOD’23a]
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▪ Federated Backend
▪ Federated data (matrices/frames) as meta data objects

▪ Federated linear algebra, (and federated parameter server)

#4 Federated Learning in SystemDS

X = federated(addresses=list(node1, node2, node3),
  ranges=list(list(0,0), list(40K,70), ..., list(80K,0), list(100K,70)));

Federated Requests: 
READ, PUT, GET, EXEC_INST, 
EXEC_UDF, CLEAR

➔ Design Simplicity: 
(1) reuse instructions 
(2) federation hierarchies

[SIGMOD’21, 
CIKM’22]
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▪ Workloads and Baselines
▪ LM: linear regression, lmCG

▪ L2SVM: l2-regularized SVM

▪ MLogReg: multinomial logreg

▪ K-Means: Lloyd’s alg. w/ K-Means++ init

▪ PCA: principal component analysis 

▪ FFN: fully-connected feed-forward NN

▪ CNN: convolutional NN 

#4 Federated Learning in SystemDS – Experiments Reproducible Results 

Comparisons w/ 
Scikit-learn and 

TensorFlow 
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▪ Design Principles
▪ Towards Integrated Data Analysis Pipelines 

▪ Abstract Frame and Matrix Operations 

▪ Open and Extensible Infrastructure

▪ Vectorized (Tiled) 
Execution Engine

#5 Fine-grained Device Placement in DAPHNE
[CIDR’22, NoDMC’23]

DM + HPC + ML 

Federated Data 
➔ Multi-device 

Data
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What’s Next:
Towards Holistic Redundancy Exploitation 

[rejected ERC consolidator grant proposal 2023]
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▪ Resource Allocation and Elasticity 

▪ Data Sampling and Composition
▪ Sampling, distillation, augmentation-as-a-kernel, factorization

▪ Sparsity Exploitation 
▪ Algorithms, op pipelines, data/weights, kernels, HW

▪ Lossy and Lossless Compression

▪ Weight Pruning and 
Connection Sampling

Redundancy-exploiting Techniques for data-centric ML Pipelines

Isolated Application, 
Exploration, and Tuning;
Trial-and-Error Process

[Credit: Ce Zhang]

[Credit: Chris Jermaine]
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▪ Overall Approach
▪ End-to-end learning of a holistic multiplexing of redundancy-exploiting techniques

▪ Lossy decisions learned at algorithm level (sampling, sparsification, lossy compression),

combined with lossless sparsity exploitation and compression at systems level

▪ Currently Ongoing Sub-projects
▪ #1 Learned sampling 

and data augmentation

▪ #2 Learned sparsification

and lossy quantization 

➔ How to combine these

      learning strategies?

LAURYN: Towards Holistic Redundancy Exploitation

𝑊′ = 𝑎𝑟𝑔 min
𝑊

 𝐸𝐷(𝑊) + 𝜆 ⋅ 𝑅(𝑊) + ⋯ + 𝜆𝑆 ⋅ 𝛴𝑖=1
𝑛 (𝑊𝑖≠ 0) + 𝜆𝐶 ⋅ |𝑊|

#non-zeros #distinct

Sampling 
w/ min |X’| 
s.t. accuracy

v

Data Augment 
w/ max accuracy 

s.t. |X’|

?
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▪ Overall Goal:
Learned Multiplexing

▪ Multi-objective 
Optimization with 
Hierarchical Multiplexing

LAURYN: Towards Holistic Redundancy Exploitation, cont.

while(!convergedOuter) {
  X1 = sample(X, ...)
  while(!convergedInner) {
    X2 = compress(X2, |X|)
    … q = X2 %*% w …    
  }
}

Automatic 
Redundancy Exploitation 

(foundational advancements 
for sparsity/error estimators, 

new sparse/compressed 
data types and kernels, 
workload awareness)

(proxy models 
sufficient?)
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▪ #1 Data-centric ML Pipelines
▪ Increasingly complex, composite ML pipelines 

▪ State-of-the-art data engineering methods based on ML

▪ Partial resource, operational, and data redundancy

▪ #2 Holistic Redundancy Exploitation (LAURYN)
▪ Learned multiplexing of redundancy-exploiting 

techniques (application and parameterization)

▪ Robust ML system integration for end-to-end improvements 

▪ TU Berlin – Big Data Engineering (DAMS Lab)
▪ #1 Integrated Data Analysis Pipelines (specialized for workload & HW)

▪ #2 Automatic Data Reorganization (specialized for data characteristics)

▪ #3 Data Engineering and Model Debugging (specialized for domain)

▪ #4 Data Platforms, Federated and Cloud Infra (specialized deployment)

➔ Needs appropriate Abstractions and inter-disciplinary Collaborations

Conclusions & QA Thanks
Optimizing Compiler and 
Runtime Infrastructure

Learn Lossy Decisions of 
Redundancy Exploitation

https://github.com/apache/systemds 
https://github.com/daphne-eu/daphne

https://github.com/apache/systemds
https://github.com/daphne-eu/daphne
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