
System Infrastructure
for Data-centric ML Pipelines

Prof. Dr. Matthias Boehm
Technische Universität Berlin
Berlin Institute for the Foundations of Learning and Data
Big Data Engineering (DAMS Lab)

HPI Lecture Series
on Database Research

WiSe 2023/24

Matthias Boehm | Lecture Series on Database Research – System Infrastructure for Data-centric ML Pipelines2

▪ Since 09/2022 TU Berlin, Germany
▪ University professor for Big Data Engineering (DAMS)

▪ 2018-2022 TU Graz, Austria
▪ BMK endowed chair for data management + research area manager

▪ Data management for data science (DAMS), SystemDS & DAPHNE

▪ 2012-2018 IBM Research – Almaden, CA, USA
▪ Declarative large-scale machine learning

▪ Optimizer and runtime of Apache SystemML

▪ 2007-2011 PhD TU Dresden, Germany
▪ Cost-based optimization of integration flows

▪ Time series forecasting / in-memory indexing & query processing

About Me

DB group

Matthias Boehm | Lecture Series on Database Research – System Infrastructure for Data-centric ML Pipelines3

Motivation and Terminology

(ML) System Infrastructure for Data-centric ML Pipelines

Matthias Boehm | Lecture Series on Database Research – System Infrastructure for Data-centric ML Pipelines4

Data-centric ML Pipelines

while(!converged) {
 … q = X %*% v …
}

X

Model Training Model Scoring

85%
Accuracyy

train() predict()

Hyper-parameter Tuning + CV

Model and Feature Selection

Data Preparation
(e.g., one-hot, bins)

Data Integration & Data Cleaning

Data Programming & Augmentation

FX

Validation & Debugging

Deployment & Scoring

SliceLine
[SIGMOD’21c]

Top-K Cleaning
Pipelines

[SIGMOD’24a]

Hierarchical Composition
as Library Functions

on top of ML systems

Key observation: SotA
data engineering/cleaning based on ML

Parallel Feature
Transformations

[PVLDB’22]

Alignment of
Multi-modal Data

I/O for Custom
Data Formats

[SIGMOD’23c]

Data Engineering

Matthias Boehm | Lecture Series on Database Research – System Infrastructure for Data-centric ML Pipelines5

What is an ML System? (narrow vs broad scope)

Machine
Learning

(ML)
Statistics

Data
Mining

ML Applications
(entire KDD/DS

lifecycle)

Classification
Regression

Recommenders
Clustering

Dim Reduction
Neural Networks

ML System

HPC

Prog.
Language
Compilers

Compilation
TechniquesDistributed

Systems

Operating
Systems

Data
Management

Runtime Techniques
(Execution, Data Access)

HW
Architecture

Accelerators

Rapidly Evolving

Matthias Boehm | Lecture Series on Database Research – System Infrastructure for Data-centric ML Pipelines6

A Case for
Optimizing Tensor Computations

Matthias Boehm | Lecture Series on Database Research – System Infrastructure for Data-centric ML Pipelines7

▪ #1 Simplicity
▪ Coarse-grained frame/matrix/tensor

data structures and operations

▪ Reduced system infrastructure complexity

(boundary crossing)

▪ #2 Reuse of Compiler/Runtime Techniques
▪ Focused work and reuse of commonly

used compiler/runtime techniques

▪ Generality over hand-crafted,

specialized systems and algorithms

▪ #3 Performance and Scalability
▪ Leverage HW Accelerators and distributed runtime backends

➔ Increasing specialization and rapid evolution

▪ Homogeneous arrays and simple parallelization strategies

Optimizing Tensor Computations
From Applications to Compilation and Runtime Techniques

Data
ScienceQuery

Processing
Simulation
Sampling

Tensor Computations

Optimizing Compiler / Runtime

[SIGMOD’23 Tutorial]

Build Libraries for Tensor Ops
on HW X once and reuse

Matthias Boehm | Lecture Series on Database Research – System Infrastructure for Data-centric ML Pipelines8

▪ Automatic Generation of Cleaning Pipelines
▪ Library of robust, parameterized data cleaning primitives,

▪ Enumeration of DAGs of primitives & hyper-parameter optimization (evolutionary, HB)

Data Science Lifecycle: Data Cleaning Pipelines

P1: gmm → imputeFD → mergeDup → delML Pn: outlierBySd→ mice → delDup → voting

LPn

PP1

LP2LP1

PPn PPnPPnPP1

O

PP1

…

…

……

Outlier Detection → MVI → Deduplication → Resolve Mislabels

Debugging

University Country

TU Graz Austria

TU Graz Austria

TU Graz Germany

IIT India

IIT IIT

IIT Pakistan

IIT India

SIBA Pakistan

SIBA null

SIBA null

University Country

TU Graz Austria

TU Graz Austria

TU Graz Austria

IIT India

IIT India

IIT India

IIT India

SIBA Pakistan

SIBA Pakistan

SIBA Pakistan

A B C D

0.77 0.80 1 1

0.96 0.12 1 1

0.66 0.09 null 1

0.23 0.04 17 1

0.91 0.02 17 null

0.21 0.38 17 1

0.31 null 17 1

0.75 0.21 20 1

null null 20 1

0.19 0.61 20 1

0.64 0.31 20 1

A B C D

0.77 0.80 1 1

0.96 0.12 1 1

0.66 0.09 17 1

0.23 0.04 17 1

0.91 0.02 17 1

0.21 0.38 17 1

0.31 0.29 17 1

0.75 0.21 20 1

0.41 0.24 20 1

0.19 0.61 20 1

0.64 0.31 20 1

Dirty Data After imputeFD(0.5) After MICE

Data
Samples

Target
App

Dirty Data

Rules/Objectives

Top-k
Pipelines

Data- and Task-parallel
ComputationLogical

Physical

[SIGMOD’24a]

Matthias Boehm | Lecture Series on Database Research – System Infrastructure for Data-centric ML Pipelines9

▪ Problem Formulation
▪ Intuitive slice scoring function

▪ Exact top-k slice finding

▪ 𝑆 ≥ 𝜎 ∧ 𝑠𝑐 𝑆 > 0, 𝛼 ∈ (0,1]

▪ Properties & Pruning
▪ Monotonicity of slice sizes, errors

▪ Upper bound sizes/errors/scores

→ pruning & termination

▪ Linear-Algebra-based Slice Finding
▪ Recoded/binned matrix X, error vector e

▪ Vectorized implementation in linear algebra (join & eval via sparse-sparse matmult)

▪ Local and distributed task/data-parallel execution

Data Science Lifecycle: SliceLine for Model Debugging
[Credit: sliceline,

Silicon Valley, HBO]

𝑠𝑐 = 𝛼
ҧ𝑒(𝑆)

ҧ𝑒(𝑋)
− 1 − 1 − 𝛼

𝑋

𝑆
− 1

= 𝛼
𝑋

𝑆
⋅

σ
𝑖=1
|𝑆|

𝑒𝑠𝑖

σ
𝑖=1
|𝑋|

𝑒𝑖

− 1 − 1 − 𝛼
𝑋

𝑆
− 1

slice error slice size

𝑂(2𝑙 −
𝑗=1

𝑚

2𝑑𝑗 + 𝑙 + 𝑚)

[SIGMOD’21b]

Matthias Boehm | Lecture Series on Database Research – System Infrastructure for Data-centric ML Pipelines10

initialize state with vertex ids
 c = seq(1,nrow(G));
 diff = Inf; iter = 1;
 # iterative computation of connected components
 while(diff > 0 & (maxi==0 | iter<=maxi)) {
 u = max(rowMaxs(G * t(c)), c);
 diff = sum(u != c)
 c = u; # update assignment
 iter = iter + 1;
 }

▪ Data Augmentation
▪ Augment training data by synthetic labeled data

▪ #1: Movement/selection (translation, rotation, reflection, cropping)

▪ #2: Distortions (stretching, shearing, lens distortions, color, mixup)

▪ Graph Processing
▪ Graphs are sparse matrices

▪ Connected components, page rank, shortest path

▪ ML Algorithms
▪ Clustering, dimensionality reduction, matrix factorization and completion

▪ Linear models, tree-based models, deep neural networks

▪ Fairness and Explainability
▪ Group fairness constraints and monotonicity

▪ Locally weighted regression

Data Science Lifecycle: Other Examples

AlexNet

Clean Mappings to
Linear Algebra Operations

Matthias Boehm | Lecture Series on Database Research – System Infrastructure for Data-centric ML Pipelines11

System Infrastructure
for Data-centric ML Pipelines

Matthias Boehm | Lecture Series on Database Research – System Infrastructure for Data-centric ML Pipelines12

▪ Data Independence
▪ “the independence of application programs

[…] from growth in data types and changes

in data representations”

Need for Data Independence

[E. F. Codd: A Relational Model of Data for Large
Shared Data Banks. Comm. ACM 13(6), 1970]
[J. Hellerstein: 2005 https://dsf.berkeley.edu/

cs262/SystemR-annotated.pdf]
Δ𝑒𝑛𝑣

Δ𝑡
≫

Δ𝑎𝑝𝑝

Δ𝑡

#1 Data
Representations

Sparsity Exploitation
from Algorithms to HW

dense

graph

sparse

compressed

#2 Data
Placement

Local vs distributed

CPUs/
NUMA

GPUs

FPGAs/
ASICs

#3 Data
(Value) Types

FP32, FP64, INT8,
INT32, INT64, UINT8,
BF16, TF32, FlexPoint

[Credit: NVIDIA
A100 Whitepaper]

#4 Data
Modalities

Text, Structured,
Time Series,

Image, Speech

[Credit: Uber AI
Ludwig paper]

https://dsf.berkeley.edu/cs262/SystemR-annotated.pdf
https://dsf.berkeley.edu/cs262/SystemR-annotated.pdf

Matthias Boehm | Lecture Series on Database Research – System Infrastructure for Data-centric ML Pipelines13

#1 Apache SystemDS [https://github.com/apache/systemds]

[SIGMOD’15,’17,’19,’21abc,’23abc,’24a]
[PVLDB’14,’16ab,’18,’22]
[ICDE’11,’12,’15]
[CIDR’17,’20]
[VLDBJ’18]
[CIKM’22]
[DEBull’14]
[PPoPP’15] Hadoop or Spark Cluster

(scale-out)
In-Memory Single Node

(scale-up)

Runtime

Compiler

Language

DML Scripts

since 2010/11since 2012 since 2015

APIs: Command line, JMLC, Python
Spark MLContext, Spark ML,

(Scalable Algorithms + Primitives)

In-Progress:

GPU

since 2014/16

07/2020 Renamed to Apache SystemDS
05/2017 Apache Top-Level Project
11/2015 Apache Incubator Project
08/2015 Open Source Release

Write Once,
Run Anywhere

Federated
(LA progs, PS)

since 2019

Others:
Netezza

Apache Flink

https://github.com/apache/systemds

Matthias Boehm | Lecture Series on Database Research – System Infrastructure for Data-centric ML Pipelines14

▪ Example:
Stepwise
Linear
Regression

Language Abstractions and APIs

X = read(‘features.csv’)
Y = read(‘labels.csv’)
[B,S] = steplm(X, Y,
 icpt=0, reg=0.001)
write(B, ‘model.txt’)

User Script

m_steplm = function(...) {
 while(continue) {
 parfor(i in 1:n) {
 if(!fixed[1,i]) {
 Xi = cbind(Xg, X[,i])
 B[,i] = lm(Xi, y, ...)
 } }
 # add best to Xg
 # (AIC)
} }

Built-in Functions

m_lm = function(...) {
 if(ncol(X) > 1024)
 B = lmCG(X, y, ...)
 else
 B = lmDS(X, y, ...)
}

m_lmCG = function(...) {
 while(i<maxi&nr2>tgt) {
 q = (t(X) %*% (X %*% p))
 + lambda * p
 beta = ... }
}

m_lmDS = function(...) {
 l = matrix(reg,ncol(X),1)
 A = t(X) %*% X + diag(l)
 b = t(X) %*% y
 beta = solve(A, b) ...}

Linear
Algebra

Programs

ML
Algorithms

Feature
Selection

Facilitates optimization
across data science

lifecycle tasks

Data Independence + Impl-Agnostic Ops
➔ “Separation of Concerns”

Matthias Boehm | Lecture Series on Database Research – System Infrastructure for Data-centric ML Pipelines15

▪ Lineage as Key Enabling Technique
▪ Trace lineage of ops (incl. non-determinism), dedup for loops/funcs

▪ Model versioning, data reuse, incr. maintenance, autodiff, debugging

▪ Full Reuse of Intermediates
▪ Before executing instruction, probe output lineage in cache

Map<Lineage, MatrixBlock>

▪ Cost-based/heuristic caching and eviction decisions

(compiler-assisted)

▪ Partial Reuse of Intermediates
▪ Problem: Often partial result overlap

▪ Reuse partial results via dedicated rewrites (compensation plans)

▪ Example: steplm

▪ Next Steps: multi-backend, unified mem mgmt

#2 Multi-level Lineage Tracing & Reuse [CIDR’20, SIGMOD’21a]

for(i in 1:numModels)
 R[,i] = lm(X, y, lambda[i,], ...)

m_lmDS = function(...) {
 l = matrix(reg,ncol(X),1)
 A = t(X) %*% X + diag(l)
 b = t(X) %*% y
 beta = solve(A, b) ...}

m_steplm = function(...) {
 while(continue) {
 parfor(i in 1:n) {
 if(!fixed[1,i]) {
 Xi = cbind(Xg, X[,i])
 B[,i] = lm(Xi, y, ...)
 } }
 # add best to Xg (AIC)
} }

X

t(X)

m>>n

Matthias Boehm | Lecture Series on Database Research – System Infrastructure for Data-centric ML Pipelines16

▪ Lossless Matrix Compression
▪ Improved general applicability (adaptive compression time,

new compression schemes, new kernels, intermediates, workload-aware)

▪ Sparsity → Redundancy exploitation

(data redundancy, structural redundancy)

▪ Workload-aware Compression
▪ Workload summary

→ compression

▪ Compressed Representation

→ execution planning

▪ Next Steps
▪ Frame compression, compressed I/O

▪ Compressed feature transformations

▪ Morphing of compressed data

#3 Compressed Linear Algebra Extended [PVLDB’16a, VLDBJ’18, SIGMOD’23a]

Matthias Boehm | Lecture Series on Database Research – System Infrastructure for Data-centric ML Pipelines17

▪ Federated Backend
▪ Federated data (matrices/frames) as meta data objects

▪ Federated linear algebra, (and federated parameter server)

#4 Federated Learning in SystemDS

X = federated(addresses=list(node1, node2, node3),
 ranges=list(list(0,0), list(40K,70), ..., list(80K,0), list(100K,70)));

Federated Requests:
READ, PUT, GET, EXEC_INST,
EXEC_UDF, CLEAR

➔ Design Simplicity:
(1) reuse instructions
(2) federation hierarchies

[SIGMOD’21,
CIKM’22]

Matthias Boehm | Lecture Series on Database Research – System Infrastructure for Data-centric ML Pipelines18

▪ Workloads and Baselines
▪ LM: linear regression, lmCG

▪ L2SVM: l2-regularized SVM

▪ MLogReg: multinomial logreg

▪ K-Means: Lloyd’s alg. w/ K-Means++ init

▪ PCA: principal component analysis

▪ FFN: fully-connected feed-forward NN

▪ CNN: convolutional NN

#4 Federated Learning in SystemDS – Experiments Reproducible Results

Comparisons w/
Scikit-learn and

TensorFlow

Matthias Boehm | Lecture Series on Database Research – System Infrastructure for Data-centric ML Pipelines19

▪ Design Principles
▪ Towards Integrated Data Analysis Pipelines

▪ Abstract Frame and Matrix Operations

▪ Open and Extensible Infrastructure

▪ Vectorized (Tiled)
Execution Engine

#5 Fine-grained Device Placement in DAPHNE
[CIDR’22, NoDMC’23]

DM + HPC + ML

Federated Data
➔ Multi-device

Data

Matthias Boehm | Lecture Series on Database Research – System Infrastructure for Data-centric ML Pipelines20

What’s Next:
Towards Holistic Redundancy Exploitation

[rejected ERC consolidator grant proposal 2023]

Matthias Boehm | Lecture Series on Database Research – System Infrastructure for Data-centric ML Pipelines21

▪ Resource Allocation and Elasticity

▪ Data Sampling and Composition
▪ Sampling, distillation, augmentation-as-a-kernel, factorization

▪ Sparsity Exploitation
▪ Algorithms, op pipelines, data/weights, kernels, HW

▪ Lossy and Lossless Compression

▪ Weight Pruning and
Connection Sampling

Redundancy-exploiting Techniques for data-centric ML Pipelines

Isolated Application,
Exploration, and Tuning;
Trial-and-Error Process

[Credit: Ce Zhang]

[Credit: Chris Jermaine]

Matthias Boehm | Lecture Series on Database Research – System Infrastructure for Data-centric ML Pipelines22

▪ Overall Approach
▪ End-to-end learning of a holistic multiplexing of redundancy-exploiting techniques

▪ Lossy decisions learned at algorithm level (sampling, sparsification, lossy compression),

combined with lossless sparsity exploitation and compression at systems level

▪ Currently Ongoing Sub-projects
▪ #1 Learned sampling

and data augmentation

▪ #2 Learned sparsification

and lossy quantization

➔ How to combine these

 learning strategies?

LAURYN: Towards Holistic Redundancy Exploitation

𝑊′ = 𝑎𝑟𝑔 min
𝑊

 𝐸𝐷(𝑊) + 𝜆 ⋅ 𝑅(𝑊) + ⋯ + 𝜆𝑆 ⋅ 𝛴𝑖=1
𝑛 (𝑊𝑖≠ 0) + 𝜆𝐶 ⋅ |𝑊|

#non-zeros #distinct

Sampling
w/ min |X’|
s.t. accuracy

v

Data Augment
w/ max accuracy

s.t. |X’|

?

Matthias Boehm | Lecture Series on Database Research – System Infrastructure for Data-centric ML Pipelines23

▪ Overall Goal:
Learned Multiplexing

▪ Multi-objective
Optimization with
Hierarchical Multiplexing

LAURYN: Towards Holistic Redundancy Exploitation, cont.

while(!convergedOuter) {
 X1 = sample(X, ...)
 while(!convergedInner) {
 X2 = compress(X2, |X|)
 … q = X2 %*% w …
 }
}

Automatic
Redundancy Exploitation

(foundational advancements
for sparsity/error estimators,

new sparse/compressed
data types and kernels,
workload awareness)

(proxy models
sufficient?)

Matthias Boehm | Lecture Series on Database Research – System Infrastructure for Data-centric ML Pipelines24

▪ #1 Data-centric ML Pipelines
▪ Increasingly complex, composite ML pipelines

▪ State-of-the-art data engineering methods based on ML

▪ Partial resource, operational, and data redundancy

▪ #2 Holistic Redundancy Exploitation (LAURYN)
▪ Learned multiplexing of redundancy-exploiting

techniques (application and parameterization)

▪ Robust ML system integration for end-to-end improvements

▪ TU Berlin – Big Data Engineering (DAMS Lab)
▪ #1 Integrated Data Analysis Pipelines (specialized for workload & HW)

▪ #2 Automatic Data Reorganization (specialized for data characteristics)

▪ #3 Data Engineering and Model Debugging (specialized for domain)

▪ #4 Data Platforms, Federated and Cloud Infra (specialized deployment)

➔ Needs appropriate Abstractions and inter-disciplinary Collaborations

Conclusions & QA Thanks
Optimizing Compiler and
Runtime Infrastructure

Learn Lossy Decisions of
Redundancy Exploitation

https://github.com/apache/systemds
https://github.com/daphne-eu/daphne

https://github.com/apache/systemds
https://github.com/daphne-eu/daphne

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

