

HPI Lecture Series on Database Research WiSe 2023/24

System Infrastructure for Data-centric ML Pipelines

Prof. Dr. Matthias Boehm

Technische Universität Berlin Berlin Institute for the Foundations of Learning and Data Big Data Engineering (DAMS Lab)

About Me

- Since 09/2022 TU Berlin, Germany
 - University professor for Big Data Engineering (DAMS)

• 2018-2022 TU Graz, Austria

- BMK endowed chair for data management + research area manager
- Data management for data science (DAMS), SystemDS & DAPHNE

2012-2018 IBM Research – Almaden, CA, USA

- Declarative large-scale machine learning
- Optimizer and runtime of Apache SystemML
- 2007-2011 PhD TU Dresden, Germany
 - Cost-based optimization of integration flows
 - Time series forecasting / in-memory indexing & query processing

Motivation and Terminology

(ML) System Infrastructure for Data-centric ML Pipelines

Data-centric ML Pipelines

Key observation: SotA data engineering/cleaning based on ML

What is an ML System? (narrow vs broad scope)

A Case for Optimizing Tensor Computations

Optimizing Tensor Computations [SIGMOD'23 Tutorial] From Applications to Compilation and Runtime Techniques

- #1 Simplicity
 - Coarse-grained frame/matrix/tensor data structures and operations
 - Reduced system infrastructure complexity (boundary crossing)

#2 Reuse of Compiler/Runtime Techniques

- Focused work and reuse of commonly used compiler/runtime techniques
- Generality over hand-crafted, specialized systems and algorithms

#3 Performance and Scalability

- Leverage HW Accelerators and distributed runtime backends
 - → Increasing specialization and rapid evolution
- Homogeneous arrays and simple parallelization strategies

on HW X once and reuse

Build Libraries for Tensor Ops

Data Science Lifecycle: Data Cleaning Pipelines [SIGMOD'24a]

- Automatic Generation of Cleaning Pipelines
 - Library of robust, parameterized data cleaning primitives,
 - Enumeration of DAGs of primitives & hyper-parameter optimization (evolutionary, HB)

University	Country		University	Country
TU Graz	Austria		TU Graz	Austria
TU Graz	Austria		TU Graz	Austria
TU Graz	Germany		TU Graz	Austria
IIT	India		IIT	India
IIT	IIT		IIT	India
IIT	Pakistan		IIT	India
IIT	India		IIT	India
SIBA	Pakistan		SIBA	Pakistan
SIBA	null		SIBA	Pakistan
SIBA	null		SIBA	Pakistan

0.77	0.80	1	1	
0.96	0.12	1	1	
0.66	0.09	null	1	
0.23	0.04	17	1	
0.91	0.02	17	null	
0.21	0.38	17	1	
0.31	null	17	1	
0.75	0.21	20	1	
null	null	20	1	
0.19	0.61	20	1	
0.64	0.31	20	1	

D

в

)
L
L
L
L
L
L
1
1
L
1
L

Dirty Data

Dirty Data

Data Science Lifecycle: SliceLine for Model Debugging

Slicon Valley, HBO

Problem Formulation

- Intuitive slice scoring function
- Exact top-k slice finding
- $|S| \ge \sigma \land sc(S) > 0, \alpha \in (0,1]$

Properties & Pruning

- Monotonicity of slice sizes, errors
- Upper bound sizes/errors/scores
 - \rightarrow pruning & termination
- Linear-Algebra-based Slice Finding
 - Recoded/binned matrix X, error vector e
 - Vectorized implementation in linear algebra (join & eval via sparse-sparse matmult)

sc =

Local and distributed task/data-parallel execution

[SIGMOD'21b]

 $\alpha\left(\frac{\bar{e}(S)}{\bar{e}(X)}-1\right)-(1-\alpha)\left(\frac{|X|}{|S|}-1\right)$

 $= \alpha \left(\frac{|X|}{|S|} \cdot \frac{\sum_{i=1}^{|S|} es_i}{\sum_{i=1}^{|X|} e_i} - 1 \right) - (1 - \alpha) \left(\frac{|X|}{|S|} - 1 \right)$

0 2 0

== Level

20

0 2 0

111

0

Data Science Lifecycle: Other Examples

AlexNet

Data Augmentation

- Augment training data by synthetic labeled data
- #1: Movement/selection (translation, rotation, reflection, cropping)
- #2: Distortions (stretching, shearing, lens distortions, color, mixup)
- Graph Processing
 - Graphs are sparse matrices
 - Connected components, page rank, shortest path

ML Algorithms

- Clustering, dimensionality reduction, matrix factorization and completion
- Linear models, tree-based models, deep neural networks

Fairness and Explainability

- Group fairness constraints and monotonicity
- Locally weighted regression

Clean Mappings to Linear Algebra Operations

System Infrastructure for Data-centric ML Pipelines

Need for Data Independence

Sparsity Exploitation from Algorithms to HW

#3 Data (Value) Types FP32, FP64, INT8, INT32, INT64, UINT8, BF16, TF32, FlexPoint

#4 Data

[**Credit:** Uber Al Ludwig paper]

Data Independence

- "the independence of application programs
 - [...] from growth in data types and changes in data representations"

 $\frac{\Delta env}{\Delta t} \gg \frac{\Delta app}{\Delta t}$

[E. F. Codd: A Relational Model of Data for Large Shared Data Banks. Comm. ACM 13(6), 1970] [J. Hellerstein: 2005 <u>https://dsf.berkeley.edu/</u> <u>cs262/SystemR-annotated.pdf</u>]

#1 Apache SystemDS [https://github.com/apache/systemds]

berlin

Open Source SystemML Educate One Million

Establish Spark Technology Center

Language Abstractions and APIs

14 Matthias Boehm | Lecture Series on Database Research – System Infrastructure for Data-centric ML Pipelines

#2 Multi-level Lineage Tracing & Reuse [CIDR'20, SIGMOD'21a]

- Lineage as Key Enabling Technique
 - Trace lineage of ops (incl. non-determinism), dedup for loops/funcs
 - Model versioning, data reuse, incr. maintenance, autodiff, debugging

Full Reuse of Intermediates

- Before executing instruction, probe output lineage in cache Map<Lineage, MatrixBlock>
- Cost-based/heuristic caching and eviction decisions (compiler-assisted)
- Partial Reuse of Intermediates
 - Problem: Often partial result overlap
 - Reuse partial results via dedicated rewrites (compensation plans)
 - Example: stepIm
- Next Steps: multi-backend, unified mem mgmt

m>>n

t(X)

#3 Compressed Linear Algebra Extended [PVLDB'16a, VLDBJ'18, SIGMOD'23a]

new compression schemes, new kernels, intermediates, workload-aware)

Improved general applicability (adaptive compression time,

Workload-aware Compression **User Script**: X = read("data/X") v = read("data/v")

Compressed Representation

 \rightarrow execution planning

Workload summary

 \rightarrow compression

Lossless Matrix Compression

Next Steps

Frame compression, compressed I/O

■ Sparsity → Redundancy exploitation

(data redundancy, structural redundancy)

- Compressed feature transformations
- Morphing of compressed data

#4 Federated Learning in SystemDS

[SIGMOD'21, CIKM'22]

- Federated Backend
 - Federated data (matrices/frames) as meta data objects
 - Federated linear algebra, (and federated parameter server)
 - X = federated(addresses=list(node1, node2, node3), ranges=list(list(0,0), list(40K,70), ..., list(80K,0), list(100K,70)));

Federated Requests: READ, PUT, GET, EXEC_INST, EXEC_UDF, CLEAR

Design Simplicity:

(1) reuse instructions(2) federation hierarchies

Workloads and Baselines

- LM: linear regression, ImCG
- L2SVM: I2-regularized SVM
- MLogReg: multinomial logreg
- K-Means: Lloyd's alg. w/ K-Means++ init
- PCA: principal component analysis
- FFN: fully-connected feed-forward NN
- CNN: convolutional NN

PCA FFN CNN K-Means 105 120 120 80 90105 Time [s] 70 105 75 90 60 Comparisons w/ 60 75 50 75 Execution 60 60 4 Scikit-learn and 4530 30 30 20 **TensorFlow** Fed LAN 4 Local TensorFlow

#5 Fine-grained Device Placement in DAPHNE

[CIDR'22, NoDMC'23]

- Design Principles
 - Towards Integrated Data Analysis Pipelines
 - Abstract Frame and Matrix Operations
 - Open and Extensible Infrastructure

What's Next: Towards Holistic Redundancy Exploitation

[rejected ERC consolidator grant proposal 2023]

Redundancy-exploiting Techniques for data-centric ML Pipelines

Resource Allocation and Elasticity

Data Sampling and Composition

Sampling, distillation, augmentation-as-a-kernel, factorization

Sparsity Exploitation

- Algorithms, op pipelines, data/weights, kernels, HW
- Lossy and Lossless Compression
- Weight Pruning and Connection Sampling

Isolated Application, Exploration, and Tuning; Trial-and-Error Process

LAURYN: Towards Holistic Redundancy Exploitation

- Overall Approach
 - End-to-end learning of a holistic multiplexing of redundancy-exploiting techniques
 - Lossy decisions learned at algorithm level (sampling, sparsification, lossy compression), combined with lossless sparsity exploitation and compression at systems level

$$W' = \arg\min_{W} E_D(W) + \lambda \cdot R(W) + \dots + \lambda_S \cdot \sum_{i=1}^n (W_i \neq 0) + \lambda_C \cdot |W|$$

Currently Ongoing Sub-projects #1 Learned sampling and data augmentation #2 Learned sparsification and lossy quantization How to combine these learning strategies?

LAURYN: Towards Holistic Redundancy Exploitation, cont.

compressed Data Integration & Cleaning (Evolutionary / Reinforcement Learning pruned of Data Pipelines) Overall Goal: Data Augmentation **Learned Multiplexing** Model & Feature Selection compressed data **Hyper-parameter Tuning** (Feature Tranforms, Modality Alignment) Model Model Validation & Data Data Training Acquisition Preprocessing **Evaluation** Debugging Holistic, Learned Sample Compress **Sparsify** Multiplexing **Automatic** while(!convergedOuter) { Multi-objective **Redundancy Exploitation** X1 = sample(X, ...)**Optimization with** (foundational advancements while(!convergedInner) { **Hierarchical Multiplexing** for sparsity/error estimators, X2 = compress(X2, |X|)new sparse/compressed ... q = X2 %*% w ... proxy models data types and kernels,

sufficient?)

workload awareness)

Conclusions & QA

#1 Data-centric ML Pipelines

- Increasingly complex, composite ML pipelines
- State-of-the-art data engineering methods based on ML
- Partial resource, operational, and data redundancy

#2 Holistic Redundancy Exploitation (LAURYN)

- Learned multiplexing of redundancy-exploiting techniques (application and parameterization)
- Robust ML system integration for end-to-end improvements

TU Berlin – Big Data Engineering (DAMS Lab)

- #1 Integrated Data Analysis Pipelines (specialized for workload & HW)
- #2 Automatic Data Reorganization (specialized for data characteristics)
- #3 Data Engineering and Model Debugging (specialized for domain)
- #4 Data Platforms, Federated and Cloud Infra (specialized deployment)
- → Needs appropriate Abstractions and inter-disciplinary Collaborations

Optimizing Compiler and Runtime Infrastructure

Learn Lossy Decisions of Redundancy Exploitation

https://github.com/apache/systemds https://github.com/daphne-eu/daphne

