
HAL Id: hal-01301382
https://hal.archives-ouvertes.fr/hal-01301382

Submitted on 1 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Heuristics for Placing Large-Scale Distributed
Applications on Multiple Clouds
Pedro Silva, Christian Pérez, Frédéric Desprez

To cite this version:
Pedro Silva, Christian Pérez, Frédéric Desprez. Efficient Heuristics for Placing Large-Scale Distributed
Applications on Multiple Clouds. CCGrid 2016 - 16th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing, May 2016, Cartagena, Colombia. �10.1109/CCGrid.2016.77�.
�hal-01301382�

https://hal.archives-ouvertes.fr/hal-01301382
https://hal.archives-ouvertes.fr

Efficient Heuristics for Placing Large-Scale
Distributed Applications on Multiple Clouds

Pedro Silva and Christian Perez
Avalon Team, LIP, INRIA

École Normale Superieure de Lyon
Lyon, France

Email: pedro.silva@inria.fr, christian.perez@inria.fr

Frédéric Desprez
Corse Team, LIG, INRIA

Minatec Campus, 17 rue des Martyrs
Grenoble, France

Email: frederic.desprez@inria.fr

Abstract—With the fast growth of the demand for Cloud com-
puting services, the Cloud has become a very popular platform
to develop distributed applications. Features that in the past were
available only to big corporations, like fast scalability, availability,
and reliability, are now accessible to any customer, including
individuals and small companies, thanks to Cloud computing. In
order to place an application, a designer must choose among VM
types, from private and public cloud providers, those that are
capable of hosting her application or its parts using as criteria
application requirements, VM prices, and VM resources. This
procedure becomes more complicated when the objective is to
place large component based applications on multiple clouds. In
this case, the number of possible configurations explodes making
necessary the automation of the placement. In this context,
scalability has a central role since the placement problem is a
generalization of the NP-Hard multi-dimensional bin packing
problem.

In this paper we propose efficient greedy heuristics based on
first fit decreasing and best fit algorithms, which are capable
of computing near optimal solutions for very large applications,
with the objective of minimizing costs and meeting application
performance requirements. Through a meticulous evaluation, we
show that the greedy heuristics took a few seconds to calculate
near optimal solutions to placements that would require hours
or even days when calculated using state of the art solutions,
namely exact algorithms or meta-heuristics.

I. INTRODUCTION

Cloud computing has become a popular platform for deploy-
ing applications as it provides an attractive pay-per-use model
and enables any customer to tap into features that in the past
were available only to big corporations, including fast scalabil-
ity, availability, and reliability. We focus on Infrastructure as a
Service (IaaS), which consists of providing compute resources,
usually as a virtual environment, onto which customers can
deploy their applications. The choice of requested resources
and even of cloud providers – organizations responsible for
providing the infrastructure to users – is up to the application
designer, who commonly attempts to balance cost and perfor-
mance when deploying an application.

The number of cloud providers has grown very quickly to
deal with the increasing demand for cloud computing ser-
vices, and consequently, the number of possible infrastructure
configurations to be considered by an application designer
has exploded. Hence, placing an application on the cloud –
i.e., choosing the best suited ensemble of computers, or more

commonly, the best suited set of Virtual Machines (VMs), for
an application – becomes a challenge [1].

This challenge is more evident when we consider situations
where a large application must be placed in a narrow time
constraint. It may arrive that, due to economic advantages,
position on marketplace, internal strategy, etc., users are faced
with short-term deadlines to execute their large scale applica-
tions. In more extreme cases, large crisis management systems,
like large scale simulation, data analysis [2] or information
management systems [3], may have to be deployed immedi-
ately after a disaster. Hence, calculating a placement must not
be a time consuming obstacle.

When choosing an environment to host a large application, a
designer must choose among possibly thousands of VM types,
from different private and public cloud providers, those that are
capable of hosting each application part using as criteria appli-
cation requirements, VM prices, and VM resources. Doing this
manually may not be an option, specially if we consider the
possibility of deploying multiple application parts on a single
VM. Despite the potential economic advantage, this highly
increases the complexity of the deployment since the number
of possible configurations is exponential. Adding the size of
the application and its requirements to the equation leads to
an almost intractable problem.

Automating application placement is therefore crucial and
has been vastly explored in the literature [1], specially in
previous works about cloud brokering [4]. As the placement
problem is a generalization of the bin packing problem, which
is NP-Hard, meaning that a polynomial-time algorithm to solve
it is unknown, scalability becomes a crucial concern.

Most of related work concentrates on solving small to
medium sized problems, i.e., problems with a few VM types
or small applications. They usually propose solutions based on
exact algorithms, which do not scale, or meta-heuristics, which
in spite of being able to give solutions for large problems
in feasible time, have their solution quality dependent on
the amount of time used to compute it. Works based on
more scalable heuristics targeting large problems exist, but
despite their important contributions, there are still limitations
concerning problem size and cloud model to be treated.

This work addresses the placement of component-based
applications on top of environments offered by IaaS. Appli-

cation components or software components are binary units
of independent production, acquisition, and deployment that
interact to form a functioning system [5]. In general, each
component exposes only an interface of communication hiding
its implementation and preserving reusability. N-tier services
are a clear example of component-based applications where
functions are grouped in tiers, or components. Each application
tier provides certain functionality to its preceding tier and uses
the functionality provided by its successor to carry out its part
of the overall request processing [6].

We are interested in the problem of calculating an initial
placement for components of a component based application
on multiple clouds with the objective of minimizing renting
costs and meeting performance requirements. Given a set of
components describing performance constraints, our objective
is to place them in virtual machines rented from possibly many
multiple cloud providers meeting the performance constraints
and minimizing renting costs. We increase the complexity of
placement problems beyond the limits of exact algorithms
and meta-heuristics. Hence, we study the use of heuristics,
more specifically greedy heuristics, based on first fit decreasing
and best fit algorithms, which are scalable and capable of
giving near optimal solutions to bin packing problems and
its applications.

The remainder of this article is organized as follows. Sec-
tion II presents the problem characteristics and Section III
reviews the literature. Section IV presents the greedy heuris-
tics we used to solve the problem. The evaluation of those
heuristics is presented in Section V while conclusions and
perspectives are discussed in Section VI.

II. INITIAL PLACEMENT OF COMPONENT-BASED
APPLICATIONS ON MULTIPLE CLOUDS

This work addresses the problem of computing an initial
placement for component-based applications on possibly mul-
tiple clouds. An instance of the problem comprises a set of
application components, or just components, for short, that
must be placed on virtual machines rented from possibly
multiple cloud providers who offer a set of virtual machine
types. Each component has requirements that must be satisfied
by the capacity of a rented virtual machine on which it will
be placed. To satisfy a placement constraint, a capacity must
be larger than a requirement. Examples of requirements or
capacities are: 100 MB of RAM, 10 GB of disk storage, 200
Flops of processing, etc. Thus, a problem instance can be
summarized as a number d of requirements and capacities,
which we will call dimensions, a set with n components and
another set with v virtual machine types. The following sub-
sections give more details and formalize the problem.

A. Problem Statement

Let I be a set of components, T a set of virtual machine
types with D resources (or dimensions) of interest. Let ri,d
be the requirements of component i on dimension d, ct,d
the capacity of VM type t on dimension d and pt the price
of renting VM of type t per hour. We consider that there

is no limit on the number of VM instances for any VM.
No component can be assigned to more than one VM, but
each VM may hold various components. The objective is to
assign all components to VMs so that the requirements of each
component is met, the capacities of each VM are respected,
and the renting cost is minimized.

We do not consider network usage by components and data
locality in our model. They are important problem parameters,
but as component placement and network placement are both
NP-Hard problems, the latter is left for future work. As this
work considers the initial placement, we do not assume: à
priori information concerning expected workload, dynamic
actors that would allow online modifications of the placement,
and renting times. These factors are also left for future work.

B. Optimization Problem Formulation

Let vk,t be the k-th rented VM of type t. Notice that 1 ≤
k ≤ |I|. If we consider that only VMs of type t are rented,
then at most |I| of them will be needed – case where there
is only one component per VM. Hence, the set containing all
possible rented VMs V = {vk,t | 1 ≤ k ≤ |I|, ∀t ∈ T } has
size |V| = |I| × |T |.

To simplify the notation, let v ∈ V . Hence ∃! k where
1 ≤ k ≤ |I| and ∃! t ∈ T such that v = vk,t. Let cv,d be the
capacity of dimension d of rented VM v, i.e., cv,d = ct,d and
pv the price paid for renting VM v, i.e., pv = pt.

Let mi,v = 1 if a component i is assigned to a rented VM
v, and 0 on the contrary. Let av = 1 if v were assigned to at
least one component and 0 on the contrary.

The optimization problem is described in Equation II-B.
Constraint (i) guarantees that each component is assigned to
at most one VM, (ii) ensures that no instantiated VM has more
components than it can host, (iii) guarantees that av = 1 when
there is at least one component assigned to v.

Minimize
∑
v∈V

pv.av

s.t. ∑
v∈V

mi,v = 1 ∀i ∈ I (i)∑
i∈I

mi,v.ri,d ≤ cv,d ∀v ∈ V (ii)

1 ≤ d ≤ D

av =
{

1 if
∑

i∈Imi,v > 0
0 otherwise ∀v ∈ V (iii)

mi,v ∈ {0, 1}
av ∈ {0, 1}

III. RELATED WORK

This work investigates efficient algorithms to compute an
initial placement for very large distributed component based
applications on multiple clouds. We consider that we are
dealing with thousands of VM types from tens of different
cloud providers, tens or hundreds of application components

and tens of performance constraints. Exact algorithms and
meta-heuristic approaches would consume long execution
times to solve this kind of problem since the placement is a
generalization of the bin packing problem, which is NP-Hard.

More specifically, placing component-based applications on
the cloud is an instance of the cost-aware multi-dimensional
bin packing problem with heterogeneous bins, which, is a
generalization of traditional multi-dimensional bin packing.
In this problem, given a set of n-dimensional items and a
group of n-dimensional bins, it is necessary to assign all items
to bins using the least number of bins possible. In its cost-
aware version, each bin has an opening price, and the objective
becomes spending the least possible. The mapping between the
cost-aware multi-dimensional bin packing problem with het-
erogeneous bins and the initial placement of component based
applications on the cloud is direct. Items are components, bins
are VM types, item dimensions are component requirements
and bin dimensions are VM capacities. The opening price of
a bin is the price of renting a VM.

To the best of our knowledge, no work discusses the exact
problem posed here, but since bin packing and more specif-
ically the multi-dimensional bin packing problem and their
applications have been vastly explored, there is interesting
related work that can be used as starting point to design a
solution to our problem. We divided the related work into three
groups based on their solution strategies: exact algorithms,
meta-heuristics and greedy heuristic.

A. Exact Algorithms Based Strategies

In [7], a solver which uses column generation and branch
and bound algorithms to solve multiple type, two dimensional
bin packing problems is presented. [8] uses a mixed integer
programming (MIP) solver to calculate application placements
on VMs, VM resource allocation and consolidation, meeting
SLA constraints. In the latter, the number of dimensions
is raised to four (CPU, memory, I/O, and bandwidth) in
comparison to the former, however only experiences with
at most 20 VM types are performed during evaluation. On
the same subject, authors in [9] utilize a MIP solver to the
problem of VM consolidation aiming at satisfying application
SLAs and limiting the number of VM migrations. Also, they
allow for a large number of dimensions, approximating their
problematic to ours. In [10], a MIP solver is used on a control
theory based approach to dynamically calculate the resource
allocation for adaptive applications.

Exact algorithms are capable of giving optimal solutions,
but when dealing with NP-Hard problems, they all suffer from
scalability issues. Depending on the size of the problem, the
execution time from an exact algorithm can easily be in the
scale of days, as discussed in Section V-B1. Also, except
for [8], the cited work is not cost-aware, i.e. none of the
solutions considers a price associated to opening a bin. We
address this limitation in our approach and use a MIP solver to
generate optimal solutions to evaluate the proposed heuristics.

B. Meta-Heuristic Based Strategies

A common approach to address bin packing, and conse-
quently placement related problems, is the usage of meta-
heuristic strategies, like genetic algorithms, particle swarm
optimization, ant colony optimization and so on. An usual
strategy identified in [7], [11], and [12], is the usage of
the objective function and constraints of linear programming
problems as fitness function / energy function and selection
criterion / cooling strategy respectively for genetic algorithms
and simulated annealing.

In [13], an approach to do the placement of workflows tasks
on the cloud using a genetic algorithm is presented. However,
in spite of considering the problem of data locality, it models
only two resources and it is implicit that workflow tasks and
virtual machine types must be similar. On the same subject,
but also addressing the task and virtual machine homogeneity
issues, authors in [14] propose a particle swarm optimization
based strategy. However, the very high computation complex-
ity of the algorithm is not adequate to our objectives. The same
issue characterizes [15], which uses an ant colony optimization
approach to calculate workload placement on the cloud.

Despite of commonly finding near-optimal solutions, meta-
heuristic based algorithms have their solution quality con-
strained to the available execution time, meaning that, for large
problems, the necessary time to output a near optimal solution
may be unfeasible. Also, this type of algorithm usually heavily
depends on several application specific tuning parameters to
work well. We address huge problem instances that must
be solved in feasible time, consequently, this solution is not
adequate. Also, when compared to greedy heuristics, the exe-
cution time of meta-heuristics are orders of magnitude slower
(seconds versus hours) and often the quality of solutions does
not follow this proportion, as discussed in [7] and [15].

C. Greedy Heuristics Based Strategies

The usage of greedy heuristics and more specifically best
fit and first fit decreasing based approaches are known to be
very good options to calculate near optimal solutions to the
bin packing problem in feasible time.

In short, the first fit decreasing algorithm sorts items in
decreasing order of size and them assigns them to the first
bin they fit into. Best fit works in a similar manner, but in
general, it also sorts bins in increasing order of size aiming at
assigning the largest items to the smallest suitable bins.

Additionally, first fit decreasing solutions are proved to be
least 11

9 OPT [16] for one-dimensional bin packing problems.
Works like [17] and [18] which present, respectively, a best
fit based algorithm for the resource allocation of real-time
applications and a first fit based algorithm to deal with
placement and elasticity issues, take advantage of this result.

However, to our knowledge, when dealing with heuristics
for the multi-dimensional bin packing problem, there is not
such a strong evidence of solution quality like a mathematical
proof. In spite of that, various works indicates that, in practice,
those algorithms are capable of giving very good results.

When dealing with multi-dimensional bins, sorting items
or bins becomes a difficult task. To solve this, [19] proposes
different procedures of measuring or giving an score to multi-
dimensional elements. The authors proposed a function that
receives a multi-dimensional input and returns a scalar. We
point out that if we consider the size of an item or bin as a
utility, thus, those functions may be seen as utility functions.

[20] proposes a hierarchical resource model and a best-
fit based heuristic to map processes onto machines which
describe CPU and network requirements and needs. The
objective is to minimize communication costs, by assigning
communicating processes together inside a same structure
hierarchy. Despite considering network bandwidth usage and
having up to two dimensions, the algorithms proposed take
as an assumption that all machines inside the same hierarchy
are homogeneous. This same limitation affects [21], which
presents the First Fit Windowed Multi-Capacity, an algorithm
for the multi-dimensional bin packing problems that assigns
items to bins in order to balance the usage of bin dimensions.
[19] presents the Best Fit Dot Product, First Fit Weighted Sum
based algorithms and the process, that would be latter named
measure in [22], of measuring multi-dimensional items or bins.
[7] presents the First Fit Ordered Deviation, an algorithm that
deals with homogeneity issues but manages only to output
solutions to two-dimensional bin packing problems.

[22] and [23] contribute with very interesting ameliorations
to the greedy heuristics and measures presented in [19] and
also they propose the Priority measure. In spite of that, their
algorithms do not consider bin prices.

From the greedy heuristics based on first fit or best fit
algorithms and measures discussed in this section, we describe
in more details those which presented the most promising
results in our tests. Let D be the number of dimensions of
the problem, i an item, b a bin and B the set of bins. id and
bd are the values of dimension d of i and b respectively.

• Measure Weighted Sum [19], [22]: This measure uses
the weighted sum of dimension values, as described in
Equation 1.

Mws(i) =

D∑
d=1

αd.id, 1 ≤ d ≤ D (1)

αd is a scaling vector that can assume the following
values: 1, 1

Cd
, 1

Rd
, and Rd

Cd
where Cd =

∑
b∈B bd and

Rd =
∑

i∈I id.
• Measure Priority [22]: This measure uses the maximal

normalized value of dimensions, as described in Equa-
tion 2.

Mp(i) = max(
id∑
b∈B bd

), 1 ≤ d ≤ D (2)

• First Fit Windowed Multi-Capacity [21]: The basic
idea of this heuristic is to assign items to bins aiming at
balancing bins capacities and items requirements through
a ranking matching process.

• Best Fit Dot Product [19]: This heuristic uses the dot
product between items and bins dimensions as a measure.
Items are assigned to bins that maximizes the dot product,
as described in Equation 3.

Mdp(i) =

D∑
d=1

id.bd,∀b ∈ B, 1 ≤ d ≤ D (3)

D. Discussion

The discussed literature has shown that the cost-aware
multi-dimensional bin packing problem with heterogeneous
bins and its applications has important open challenges.
We discussed an extensive bibliography about the multi-
dimensional bin packing, a subproblem of our problem – when
bin prices are all equal –, and despite the many contributions
from those related works, we identified a range of issues that
limit the usage out of the box of their proposed algorithms.
Obstacles like cost-obliviousness and homogeneity of bins or
items are the main limitations that we had to overcome to
target our problem. In Section IV, we detail the chosen greedy
heuristics and the necessary changes we implemented to solve
our problem. In Section V, we evaluate their performance in
terms of solution quality and execution time.

IV. IMPROVED GREEDY HEURISTICS

In Section III-C, we discussed a set of greedy heuristics
created for solving the multi-dimensional bin packing problem
(MDBPP). Due to limitations, however, it is not possible to use
MDBPP greedy heuristics directly for solving the cost-aware
MDBPP with heterogeneous bins.

This section discusses the changes we made that enabled
us to use MDBPP greedy heuristics to address our problem.
In summary, we modified existing algorithms so that they
consider opening prices and heterogeneity of bins.

A. Cost-Awareness

In the traditional MDBPP, the cost of a solution is simply
measured in terms of number of open bins. This is equivalent
to consider that all bins are free. However, in the cost-aware
MDBPP with heterogeneous bins, there is a price for opening
bins and they may vary, thus, MDBPP greedy heuristics must
be adapted to allow for bins with heterogeneous prices.

This means that, to solve the cost-aware MDBPP, it should
try to assign items to the most profitable bins first. For
example, in the cost-aware MDBPP a solution with ten $1
bins of size s is better than a solution with one $20 bin of
size 10s. Both solutions manage to assign all items to bins,
but the former costs $10 and the latter $20. We can observe
that the ratio capacity

price of the first solution’s bin is larger than
that of the second solution’s bin. Hence, sorting the list of bins
by the ratio between price and capacity is essential.

To accomplish this task we use the concept of measures (see
Section III-C) where a measure is a function that receives as
input a multi-dimensional vector (the representation of a bin or
item dimensions) and outputs a score or the size of that vector.
Measures are originally used for sorting items in decreasing

order, but we use it to sort bins in a way that more profitable
bins comes first. Thus, when assigning items to vectors, the
first bins to be scanned would be the most profitable.

It is also important to open bins the least often possible,
hence, using the capacities of already open bins is imperative.
To do so, before looking for new bins, we verify if items
can be assigned to already open bins, by scanning them, in
decreasing order of size.

Equations 4 and 5 describes the weighted sum, which is the
measure we use to sort bins and open bins.

Mbin
ws(t) =

1

pt

D∑
d=1

αd.ct,d (4)

Mopen bin
ws (v) =

1

pv

D∑
d=1

αd.
∑
i∈I

mi,v.ri,d (5)

We use the coefficient αd = Rd

Cd
=

∑
i∈I ri,d∑
t∈T ct,d

as a scaling
vector. We do not detail the process of choosing the best co-
efficients and measures due to space constraints, but essentially
it is based on the evaluation of the performance of the greedy
heuristics using data gathered from experimenting different
combinations of coefficients. This adaptation allowed us to use
First Fit Decreasing Priority (FFD-P) on cost-aware MDBPPs.

To make Best Fit Dot Product (BF-DP) cost-aware, we
used a similar approach. In this heuristic, the objective is to
assign each item to its “most adapted” bin, which, in this
case corresponds to the bin that maximizes the dot product
between item and bins. To make the algorithm cost-aware, it
was necessary to consider bin prices when calculating the dot
product. We use a strategy to prioritize the usage of open bins
similar to the one used for FFD-P. A dot product between
unassigned items and open bins is calculated before opening
a bin. Those adaptations are described in Equation 6 and 7 .

Mbin
dp (i) =

1

pt

D∑
d=1

ri,d.ct,d, ∀t ∈ T (6)

Mopen bin
dp (i) =

1

pv

D∑
d=1

ri,d
∑
i∈I

mi,v.ri,d, ∀v ∈ V (7)

B. Heterogeneous Bins

Among the heuristics in which we are interested, First Fit
Decreasing Windowed Multi-Capacity (FFD-WMC), consid-
ers that bins are homogeneous.

FFD-WMC assigns items to bins with the objective of
balancing the usage of dimensions through a rank matching
mechanism (see Section III-C). Ranks are calculated using
an empty bin as basis of comparison and they express the
percentage of used dimensions. It is essential that ranks share
the same base so they can be compared. Our strategy to allow
for heterogeneous bins, is to construct a maximal bin, which
is composed by the largest dimension capacities from all bins

d n v
A 1, . . . , 8 1, . . . , 19 100, 200, . . . , 1000
B 1, . . . , 8 10, 20, . . . , 100 1000, 1100, . . . , 10000

TABLE I
EXPERIENCE CLASSES.

and use it as basis of comparison. Thus, ranks dimensions
become percentages of these maximal bin dimensions.

Clearly, now that bins may be heterogeneous it is also
necessary to introduce price heterogeneity to the problem. To
do so, we make use of the approach presented on Section
IV-A and sort the bins by decreasing capacity

price ratio, using the
weighted sum (see Section 1) as a measure. Thus, the more
profitable bins would be scanned first.

V. EVALUATION

This section evaluates the performance of greedy heuristics
for calculating an initial placement for component based
applications on multiple clouds. To achieve this, we compare
these greedy heuristics to two state of the art solutions, namely,
a MIP solver and a simulated annealing meta-heuristic, in
different scenarios, and analyze the results. Before going into
that, it is important to present how the necessary experiments
were performed and how their input data were generated.

A. Methodology

An experiment is the resolution of a set of placement
problem instances by a set of algorithms within a given
timeout. A problem instance, as discussed in more details in
Section II, is composed by a group of n components and a
group of v virtual machine types, both describing d dimensions
requirements and capacities, respectively.

There are two classes of experiments, A and B, distinguished
by problem instances sizes as described on Table I. The small
to medium problem instances from Class A will be used to
evaluate the performance of greedy and meta heuristics against
the exact algorithm, as the latter is not scalable. Class B is
composed by large problem instances which will be used to
evaluate the greedy heuristics against meta-heuristics.

To construct the problem instances it is necessary to gen-
erate the values of VM capacities, prices and component
requirements. The procedure we use is the generation of
pseudo-random values picked uniformly inside an interval
using the method randint from python‘s module random.
Table II presents in detail those intervals.

Dimension Requirements Capacities
(i) 800 ∼ 3000 1000 ∼ 3500
(ii) 1 ∼ 16 2 ∼ 32
(iii) 1 ∼ 32 2 ∼ 40
(iv) 50 ∼ 3500 150 ∼ 4000
(v) 5 ∼ 30 10 ∼ 80
(vi) 1 ∼ 8 1 ∼ 16
(vii) 1 ∼ 10 5 ∼ 40
(viii) 10 ∼ 80 10 ∼ 80

TABLE II
INTERVALS OF DATA GENERATION.

To generate the VM renting prices, we use the capacities
from the first 4 VM type dimensions, in a way that, the larger
they are, the more expensive is the renting price. We simulate
different prices from different cloud providers through the
generation of pseudo-random coefficients – as before, using
the method randint – from predefined intervals. The price of
a VM type pt = α+β+γ+δ where α = ci,1×randint(1, 3);
β = ci,2 × randint(8, 20); γ = ci,3 × randint(5, 8);
δ = ci,4 × randint(10, 15), if ci,4 ≤ 500, otherwise δ =
ci,4 × randint(20, 25).

The three greedy heuristics we are evaluating are the fol-
lowing: Best Fit Dot Product, First Fit Decreasing Priority,
and First Fit Decreasing Windowed Multi-Capacity. Those
algorithms were introduced in Sections III and IV. Our test
platform and greedy heuristics were developed in Python.

Experiments were conducted on Dell PowerEdge R720
(2 CPUs, 6 cores) and AMD Opteron 6164 HE 1.7GHz
(2 CPUs, 12 cores) from Taurus and Stremi clusters from
Grid’5000 [24].

B. MIP Solver and Simulated Annealing Analysis

We are interested in evaluating the performance of our
greedy heuristics with the very large Class B (see Table
I) problem instances. It would be interesting to compare
the solutions from greedy heuristics to the optimal of each
problem instance, however, as we are dealing with a NP-Hard
problem, this is unfeasible.

Our strategy, then, is to calculate the optimal solution of
each problem instance from a Class A experiment (see Table
I) giving the MIP solver 30 hours per instance to do this task.
Using these data, we validate the performance of a scalable
meta-heuristic, which in our case is simulated annealing, and
use it as a baseline algorithm to analyze the performance of
the greedy heuristics on the large Class B problem instances.

1) MIP Solver: To evaluate the performance of MIP
solvers, we integrated to our test platform the SCIP solver [25],
a framework for constraint integer programming and branch-
cut-and-price (the formulation is described in Section II-B).

We conducted one Class A experiment using SCIP with
a timeout of 30 hours. The framework managed to calculate
the optimal for around 34% of all Class A problem instances.
These solved problem instances are mainly characterized by
having a small number of application components, virtual
machine types and dimensions. This performance is expected
as we are dealing with a NP-Hard problem. Even if we
consider that there is room for improvement of the solver
performance by optimizing the modeling or by using a faster
solver, we would still expect a low rate of solved instances
due to the nature of the problem we are dealing with. Hence,
despite giving optimal solutions, using a MIP solver is not an
option when resolution time is a strong constraint.

2) Simulated Annealing: As discussed in Section III, using
meta-heuristics to solve problems similar to the bin packing
problem is a very common approach. Among all algorithms of
this type, like genetic algorithms, particle swarm optimization,
ant colony optimization and others, we choose the simulated

Fig. 1. Distances between solution costs from MIP solver and simulated
annealing aggregated by number of components for Class A experiments.

annealing because, in addition to successful experiences in
other similar contexts [7], it has less configuration parameters,
hence it is easier to apply it to our problem.

We used the Simanneal [26] module, which is written in
Python and was easily integrated to our test platform. Also,
we conducted one Class A experiment and 2 sets of Class B
experiments always using a timeout of 10 minutes per problem
resolution. We use 10 minutes instead of the 30 hours given
to SCIP solver because 10 minutes is more realistic and also
because during our tests we noticed that in most of cases,
after this time, the solution improvements became scarcer.
The algorithm parameters were optimized for computing a
solution within that timeout by the auto-tuning tool included
in Simanneal module.

We observed that simulated annealing managed to output
a solution for all problem instances in less than ten minutes.
From the around 34% of problem instances whose optimal
solution was known, the simulated annealing algorithm man-
aged to achieve it on around 97% of the cases, as illustrated
in Figure 1. To construct this graph, we grouped all Class
A problem instances by number of components and plotted,
in form of box-plot, the distances (or differences) between
solution costs from MIP solver and simulated annealing.
Throughout this work we will always group solutions by
number of components because this parameter showed to be
the one that most interferes on solution cost in a consistent
way. We can notice that in spite of the small variation observed
as the number of components grows, the distance is always
smaller than 3% and the median is always zero, except when
the number of components is 17.

Even if it was only possible to compare the solutions from
simulate annealing to the optimal in a reduced portion of the
experiments, we have a promising indication of the capabilities
of this meta-heuristic. This justifies the usage of simulated
annealing as baseline in our further analysis and also the
success of that meta-heuristics to solve this kind of problem.

C. Greedy Heuristics

In this section, our objective is to evaluate the performance
of our greedy heuristics. The main goal is evaluating them
using the large Class B experiences, however, we also inves-
tigate the performance of our greedy heuristics using the 34%

Fig. 2. Distances between optimal solution costs and greedy heuristic group‘s
aggregated by number of components for Class A experiments.

of Class A experiments whose optimal solution is known. The
considered greedy heuristics are Best Fit Dot Product, First Fit
Decreasing Priority, and First Fit Decreasing Windowed Multi
Capacity. For more details about them, see Section IV.

Our evaluation strategy is, at first, analyzing the perfor-
mance of the greedy heuristics together, i.e., comparing them
in group to other algorithms and then, in a second moment,
evaluating them individually. We consider that the greedy
heuristics are executed sequentially, thus, when group com-
paring, the execution time is the sum of the execution times
from all involved greedy heuristics. Then, we keep only the
best cost – less expensive – among all greedy heuristics costs.

Throughout this section we use data gathered from one
Class A and two Class B experiments with a timeout of 10
minutes to solve each problem instance. Class A and Class B
experiments are used to evaluate greedy heuristics against the
MIP solver and simulated annealing respectively. To analyze
the two Class B experiments results, we take the solutions
from each problem instance in each of the experiments and
calculate the average of costs and execution times.

1) Group analysis – Class A Experiment: At first we
compare solutions from the group of heuristics to the available
34% of optimal solutions from Class A problem instances.
Figure 2 illustrates the cost distance between the group of
greedy heuristics solutions and optimal values. The distances
are aggregated by the number of components from the solved
problems and the median is represented by a solid curve.

The first thing to notice is that despite giving very few
optimal solutions (about 3.4%), the greedy heuristics group
managed to output solutions at most 30% more expensive
than the optimal with a median varying from 5.52% to
22.25%. These measures are consistent with those found when
comparing the greedy heuristics group to simulated annealing,
also using Class A experiments, as illustrated in Figure 3.
In this case, the median varies between 5.56% and 24.88%
and distances between -8.22% and 45.86%. It is important to
highlight that in Figure 3 we plot 100% of Class A problem
instances since simulated annealing managed to give solutions
to all feasible problem instances.

Negative distances (around 3.18%) refer to situations where
greedy heuristics group managed to output a better solution
than simulated annealing. Finally, in both graphs it is possible

Fig. 3. Distances between solution costs from simulated annealing and
greedy heuristic group aggregated by number of components with Class A
experiments.

to identify a degradation of greedy heuristics group solutions
as the number of components raises, specially when the
number of components is greater than 12.

To complete this first analysis, it is important to compare
the execution times from the algorithms. Nevertheless, due to
space constraints, we let the evaluation of the execution time
from simulated annealing to Section V-C2.

When comparing the execution times from the solver and
greedy heuristics, we observe a huge difference: the solver
took around 3 hours and 36 minutes to solve about 34% of
Class A problems while the greedy heuristics group consumed
23.21 seconds to give solutions to all Class A problems. It is
important to remember that the solver was given a timeout of
30 hours per problem instance to solve Class A problems.

There are some preliminary conclusions taken from this
first analysis. The most important is that, the quality of
solutions is at most 30% worst than the optimal but they
are calculated at least 10 times faster, indicating a reasonable
solution quality. Also, being at most 30% worst than optimal
is only around 8% greater than the 11/9 OPT [16] (see Section
III-C) or 22.22% of the optimal proved to be the ceil of first
fit decreasing solutions for the one-dimensional bin packing
problem. Finally, when comparing Figure 2 with Figure 3 it is
possible to identify that both distance medians follow a similar
pattern, which indicates that simulate annealing would be an
interesting choice as a baseline algorithm.

2) Group analysis – Class B Experiments: Figure 4 illus-
trates the cost distance between the group of greedy heuristics
and simulated annealing. Solutions are aggregated by the
number of components from the solved problem instances and
the evolution of the median is represented by a solid curve. It
is possible to observe that the greedy heuristic group managed
to output a better solution than simulated annealing to around
15% of problem instances. One can notice that it happens
more frequently when the number of components is bigger
than 70. This is observed because the timeout of 10 minutes
is not sufficient for simulated annealing to calculate a better
solution as the size of problem instances grows.

In the remainder 85% of problem instances, where simulated
annealing outputs better solutions, we can also observe that
although the distances are always smaller than 40%, the

Fig. 4. Distance between simulated annealing solution costs and greedy
heuristic group aggregated by number of components.

Fig. 5. Distance between solution costs from simulated annealing solutions
and greedy heuristics group on problem instances where simulated annealing
solutions were better.

median never exceeds 30%.
Figure 5 helps us to have a better understanding on how

worse was the solution cost of greedy heuristics on these
85% of problem instances where simulated annealing calcu-
lated better solutions. The Y-axis is the percentage of solved
problem instances and the X-axis is the cost distance between
the greedy heuristic group and simulated annealing. The solid
curve is the aggregated percentage of problem instances. We
can observe that around 40% of solutions are between 11% and
20% worse than simulated annealing and, most importantly,
that around 95% of solutions are at most 30% worse than sim-
ulated annealing’s ones. This clearly indicates that, depending
on the application requirements, the degradation of solution
quality may not be very significant, especially when taking
into account the difference between execution times from the
group of greedy heuristics and the simulated annealing which
will be discussed in the following lines.

In Figure 6 the execution times to solve problems with the
same number of components are summed up. While the sum of
execution times from greedy heuristics vary from 25 to 210
seconds, simulated annealing’s ranges from 26200 to 42185
seconds or from 7.3 to 11 hours.

This can be better seen in Figure 7, which aggregates the
ratio between greedy heuristics group and simulated annealing
execution times by number of components and plot this data as
a box-plot. We are using ratios instead of distances percentages
because of the huge gap between values. We can see that the
sum of greedy heuristic group execution times is at least 10

Fig. 6. Sum of execution times from greedy heuristics group (above) and
simulated annealing (bellow) to solve all problem instances. Results are
aggregated by number of components.

Fig. 7. Ratio between simulated annealing and greedy heuristics execution
times aggregated by number of components.

times and at most around 4750 times faster than simulated
annealing’s ones. We can also observe that the median is
always greater than 138 and as the number of components
grows, the efficiency of the greedy heuristics group reduces.

It is well known that the usage of heuristics involves a
trade-off between solution quality and execution time. The
analysis of the performance of our greedy heuristics as a block
indicated that even with an execution time between 10 to
4750 times smaller, the greedy heuristics managed to output
good quality solutions and sometimes better solutions than
simulated annealing‘s for large problems.

3) Individual Analysis: In this section, we evaluate the
greedy heuristics individually using an average of two Class B
experiments. Our objective is to understand their behavior and
also to investigate how the reduction of the group of greedy
heuristics would affect the quality of solutions.

Figure 8 illustrates the percentage of best, second best,
and third best solutions per greedy heuristic. We notice that
First Fit Decreasing Priority (FFD-P), First Fit Decreasing
Windowed Multi-Capacity (FFD-WMC), and Best Fit Dot
Product (BF-DP) have the best solutions for around 56%, 29%
and 30% of problem instances respectively. Even if BF-DP
has a relatively small number of best solutions, it manages
to output second best solutions to almost 57% of problems.
Thus, BF-DP gives the best or second best answer to around
74% of all problems. FFD-P and FFD-WMC manage to do

Fig. 8. Percentage of best, second best and third best solutions by greedy
heuristic.

Fig. 9. Distance in % from best greedy heuristic solution per algorithm and
number of occurrences in % of problem instances.

the same to 76% and 50% of problem instances, respectively.
Figure 9, which illustrates the percentage of problems where

a greedy heuristic did not have the best solution and the
distance to it, helps us understand the quality of non best
solutions. The most important aspect to notice in this graph
is that, for all considered algorithms, the maximum distance
to the best solution is bellow 25% and that, in most of the
cases, it is bellow 10%. Also, one can notice that BF-DP
manages to give a solution at most 10% worst than the best
greedy solution for 99.20% of problem instances where it does
not output the best solution. Concerning the 44% of problem
instances where FFD-P did not give the best solution, it was
capable of giving solutions 5%, 10%, 15%, 20% and 25%
worst than the best solution to 33.75%, 2.5%, 4.4%, 2.5% and
0.27% of problem instances respectively. FFD-WMC, by its
turn, managed to output solutions 5%, 10%, 15%, 20% worst
than the best solution to 33.8%, 10.7%, 11.38% and 14.58%
of problem instances, respectively.

This first analysis based only on solution cost quality indi-
cates the superiority of FFD-P and BF-DP against FFD-WMC,
however, to have a better understanding, it is necessary to
verify their individual execution times too.

Table III summarizes the individual execution times from
the considered greedy heuristics. Those values are the sum
of the execution times used to compute solutions to all
problem instances. We can observe that despite giving good
solutions, BF-DP responds for around 90.78% of the sum of
greedy heuristics execution times, followed by FFD-WMC and

FFD-P, responsible for around 6% and 2.44% respectively.
This indicates that it may be interesting to reduce the size
of the greedy heuristics group to have a smaller execution
time. However, it is also important to verify the impact of this
reduction on the solution quality.

Algorithm Time (s) Participation
B.F. Dot Product 1012.535 90.78%
F.F.D. Priority 27.25 2.44%
F.F.D. Windowed Multi-Capacity 75.57 6%

TABLE III
EXECUTION TIMES FROM GREEDY HEURISTICS

Table IV presents a series of metrics related to comparisons
between possible combinations of greedy heuristics groups
and the original group. It is possible to verify that using
only FFD-P improves the execution time in 97.55%. However,
doing so also degrades 43.47% of solutions in about 17.38%.
Also, we can verify that it is possible to improve the execution
time in 90% with a smaller impact over solution quality
when using FFD-P and FFD-WMC together. In this case, we
observe that around 19.02% of solution costs would suffer a
degradation between 0.87% and 4%, in average. Thus, clearly,
if it is necessary to improve execution time, the best option is
to remove BF-DP from the group of heuristics.

MAX AVG MIN MED DEG IMP
BF 9.93 4.46 0.02 4.64 41.08 9.21
FP 17.38 3.73 0.01 1.97 43.47 97.55
FW 16.34 7.07 0.01 5.56 69.58 93.22
BF & FP 6.2 2.07 0.02 1.38 18.61 6.77
BF & FW 9.93 4.72 0.02 4.73 50.13 2.44
FP & FW 4.00 0.87 0.01 0.58 19.02 90.78
BF & FP & FW 0 0 0 0 0 0

TABLE IV
BF, FP AND FW ARE BF-DP, FFD-P AND FFD-WMC, RESPECTIVELY.

MAX, AVG, MIN AND MED ARE MAXIMUM, AVERAGE, MINIMUM AND
MEDIAN OF SOLUTION COSTS DISTANCES, IN PERCENTAGE OF SOLUTIONS

FROM THE ORIGINAL GROUP OF HEURISTICS. DEG IS THE PERCENTAGE
OF SOLUTIONS THAT WERE DEGRADED AND IMP IS THE EXECUTION TIME

IMPROVEMENT IN PERCENTAGE OF ORIGINAL EXECUTION TIME.

Finally, we identify 3 possible configurations for the greedy
heuristics group: (i) the fastest one, which would be com-
posed uniquely by FFD-P, with an improvement of 97.55%
of execution time but with around 43.47% of its solutions
degraded, (ii) the medium term, which would be composed by
FFD-P and FFD-WMC, with an improvement of 90.78% of
execution time but having 19.02% of solutions degraded and,
(iii) the slowest configuration, composed by FFD-P, BF-DP,
and FFD-WMC which give the best solutions. It is important
to notice, however, that “slowest” here means a configuration
capable of solving 720 large problem instances in less than
19 minutes. If we go further and analyze execution times per
problem instance from Class B, we will find averages of 1.4
s, 0.03 s and 0.1 s for BF-DP, FFD-P and FFD-WMC, respec-
tively, and, at the same conditions, maximum execution times
of 5.7 s, 0.23 s and 0.35 s for BF-DP, FFD-P and FFD-WMC,
respectively. Thus, extremely short execution times.

VI. CONCLUSION AND FUTURE WORK

Cloud computing has changed the way applications are
developed and ported over distributed infrastructures. New ap-
plications built upon several components have to be deployed
over multiple clouds to benefit from many different VMs and
offering different renting costs. This is indeed a complicated
problem, especially as the complexity of these applications
and the number of parameters and features grows.

The main objective of this work was thus to develop
fast algorithms to solve the problem of calculating an initial
placement for large-scale component based applications over
multiple clouds. In addition, we considered that the param-
eters of this problem (number of VM types, multiple cloud
providers, number of components, number of dimensions and
objective functions) could be huge, which might prohibit the
usage of solutions such as MIP solvers and meta-heuristics.

To achieve that objective we adapted to our problem very
efficient greedy heuristics originally conceived to solve the
multi-dimensional bin packing problem. After a detailed eval-
uation, we indicated that our greedy heuristics were capable of
giving solutions compatible with meta-heuristics solutions but
calculated at least 100 times faster. Certainly, our approach is
better suited for situations where there is space for a light
degradation of solution quality in exchange of a reduced
execution time. It is also possible to use our greedy heuristics
solutions as a first solution input for meta-heuristics or exact
algorithms. Finally, virtually any application of the cost-aware
multi-dimensional bin packing problem with heterogeneous
bins may take advantage of our results and algorithms.

We have started incorporating these greedy heuristics in the
PaaSage open source integrated platform developped within
the European project Paasage1 to calculate placements for
large-scale N-tier applications on the multi-cloud.

In the future, we plan to increment our heuristics to allow
taking network bandwidth and data locality into consideration
when calculating a placement. Moreover, dynamicity and
elastic resource management have to be taken into account.
We plan to design semi-static algorithms adapting the resource
allocation after a static allocation.

Finally, we see the ascension of edge computing related
applications [27] as a source of interesting use cases for our
work. Although the problem of placing an edge computing
application usually presents less cloud providers and conse-
quently a reduced set of virtual machines, the potential size
of applications and their level of distribution are challenging.

ACKNOWLEDGMENT

All experiments were carried out using the Grid’5000
testbed, supported by a group hosted by Inria and including
CNRS, RENATER and several Universities as well as other
organizations (see https://www.grid5000.fr). This work was
partially supported by the PaaSage (FP7-317715) EU project.

1C.f., http://www.paasage.eu/

REFERENCES

[1] B. Jennings and R. Stadler, “Resource management in clouds: Survey
and research challenges,” Journal of Network and Systems Management,
2014.

[2] S. Voigt, T. Kemper, T. Riedlinger, R. Kiefl, K. Scholte, and H. Mehl,
“Satellite image analysis for disaster and crisis-management support,”
Transactions on Geoscience and Remote Sensing, 2007.

[3] M. Kuhnert, O. Paterour, A. Georgiev, K. Petersen, M. Bscher, J. Pot-
tebaum, and C. Wietfeld, “Next generation, secure cloud-based pan-
european information system for enhanced disaster awareness,” in IS-
CRAM, 2015.

[4] N. Grozev and R. Buyya, “Inter-cloud architectures and application
brokering: taxonomy and survey,” Software: Practice and Experience,
2014.

[5] C. Szyperski, Component Software: Beyond Object-Oriented Program-
ming, 2002.

[6] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and A. Tantawi, “An
analytical model for multi-tier internet services and its applications,” in
SIGMETRICS, 2005.

[7] B. Han, G. Diehr, and J. Cook, “Multiple-Type, Two-Dimensional Bin
Packing Problems: Applications and Algorithms,” Annals of Operations
Research, 1994.

[8] C. Seçinti and T. Ovatman, “On Optimizing Resource Allocation and
Application Placement Costs in Cloud Systems,” in CLOSER, 2014.

[9] H. N. Van, F. Tran, and J.-M. Menaud, “SLA-Aware Virtual Resource
Management for Cloud Infrastructures,” in CIT, 2009.

[10] Q. Zhu and G. Agrawal, “Resource Provisioning with Budget Con-
straints for Adaptive Applications in Cloud Environments,” in HPDC,
2010.

[11] C. C. T. Mark, D. Niyato, and T. Chen-Khong, “Evolutionary Optimal
Virtual Machine Placement and Demand Forecaster for Cloud Comput-
ing,” IEEE AINA, 2011.

[12] D. P. Chandu, “A Parallel Genetic Algorithm for Three Dimensional Bin
Packing with Heterogeneous Bins,” International Journal of Computer
Trends and Technology, 2014.

[13] H. Goudarzi and M. Pedram, “Multi-dimensional SLA-Based Resource
Allocation for Multi-tier Cloud Computing Systems,” in CLOUD, 2011.

[14] M. Rodriguez and R. Buyya, “Deadline Based Resource Provisioning
and Scheduling Algorithm for Scientific Workflows on Clouds,” IEEE
Transactions on Cloud Computing, 2014.

[15] E. Feller, L. Rilling, and C. Morin, “Energy-Aware Ant Colony Based
Workload Placement in Clouds,” in GRID, 2011.

[16] M. Yue, “A Simple Proof of the Inequality FFD(L) ≤ 11
9
OPT (L)+

1, ∀L for the FFD Bin-Packing Algorithm,” Acta Mathematicae Appli-
catae Sinica, 1991.

[17] K. Kumar, J. Feng, Y. Nimmagadda, and Y.-H. Lu, “Resource Allocation
for Real-Time Tasks Using Cloud Computing,” ICCCN, 2011.

[18] U. Sharma, P. Shenoy, S. Sahu, and A. Shaikh, “Kingfisher: Cost-Aware
Elasticity in the Cloud,” INFOCOM, 2011.

[19] R. Panigrahy, K. Talwar, L. Uyeda, and U. Wieder, “Heuristics for Vector
Bin Packing,” Microsoft Research, Tech. Rep., 2011.

[20] F. Tessier, G. Mercier, and E. Jeannot, “Process Placement in Multicore
Clusters:Algorithmic Issues and Practical Techniques,” IEEE Transac-
tions on Parallel and Distributed Systems.

[21] W. Leinberger, G. Karypis, and V. Kumar, “Multi-Capacity Bin Packing
Algorithms with Applications to Job Scheduling Under Multiple Con-
straints,” in ICPP, 1999.

[22] M. Gabay and S. Zaourar, “Variable Size Vector Bin Packing Heuristics
- Application to the Machine Reassignment Problem,” INRIA, Tech.
Rep., 2013.

[23] ——, “Vector Bin Packing with Heterogeneous Bins: Application to the
Machine Reassignment Problem,” Annals of Operations Research, 2015.

[24] D. Balouek, A. Carpen Amarie, G. Charrier, F. Desprez, E. Jeannot,
E. Jeanvoine, A. Lèbre, D. Margery, N. Niclausse, L. Nussbaum,
O. Richard, C. Perez, F. Quesnel, C. Rohr, and L. Sarzyniec, “Adding
Virtualization Capabilities to the Grid’5000 Testbed,” in CLOSER.

[25] T. Achterberg, “SCIP: Solving Constraint Integer Programs,” Mathemat-
ical Programming Computation, 2009.

[26] M. Perry, “Simanneal: Python module for simulated annealing opti-
mization.” [Online]. Available: https://github.com/perrygeo/simanneal

[27] M. T. Beck, M. Werner, S. Feld, and S. Schimper, “Mobile edge
computing: A taxonomy,” in AFIN, 2014.

