
www.bifold.berlin

 The NebulaStream Platform

Data and Application Management for the Internet of Things

Visit our websiteDistributed Query Deployment Flow in NebulaStream

Overview

Research Goals:

● Efficient execution for thousands of
concurrently running queries.

● Fast deployment to massive and dynamic
topologies combining edge and cloud.

● Full utilization of heterogeneous hardware
resources and accelerators.

● Support for complex analytical workloads
involving stateful operators and UDFs.

Unifying Edge and Cloud

Evaluation

An Example Application

Query::from("smart_meter")
.filter(Attribute("type")=="electricity")
.window(TumblingWindow(days(1))
.byKey(Attribute("owner_id"))
.apply(Sum("value"))

Cloud
Workloads

Results

Data Ingestion

● Geo-distribution.

● Moving devices.

● Hierarchical topologies.

● Diverse use cases and workloads.

● Heterogeneous compute resources.

● Control over data acquisition.

Query
Merging

Src1 Src2

Op1 Op2

Op3 Op4

How to leverage
heterogeneous resources?

Src1

Op3

Op2

Src2

Op1

Op4

Src1

Query
Placement

Single Query
Optimization

Where to place operators?How to optimize query plans?

Src1 Src2

Op2

Op1

Central Optimizer

Local Optimizer

Query Compiler

Pipelined
Execution Plan

Worker

Adaptive Execution
Engine

Profile execution
and re-optimize

Task-based
execution

Input Stream Output Stream

Constructive Approach:

● Bottom Up

● Top Down

Cost-based Approach:

● Random Search

● Integer Linear

Programming

● Genetic Algorithm

NebulaStream
https://nebula.stream

nebulastream@dima.tu-berlin.de

Op5

Src1 Src2

Op1 Op2

Op3 Op4

Query 2

Conditions: car.source == “car” and
car.speed * 1.6 > 100
Columns: car.speed = car.speed * 1.6

 car.id = car.id
 car.loc = car.loc

 car.over_speeding = true

Query::from("car")
.filter(Attribute("speed")*1.6 > 100)
.map(Attribute("speed") = Attribute("speed")*1.6)
.map(Attribute("over_speed") = true)
.sink(...)

Query::from("car")
.map(Attribute("speed") = Attribute("speed")*1.6)
.filter(Attribute("speed") > 100)
.map(Attribute("over_speed") = true)
.sink(...)

Query 1

Challenges:

● Millions of devices

● Resource heterogeneity

● Hierarchical infrastructure

● Geo-distributed data sources

● Changing data-characteristics and statistics
Common Signature

How much energy do our
clients consume per day?NebulaStream is a scalable, adaptive,

and efficient data management
platform for the Internet-of-Things

1 2 3

Query
Execution

4

Concurrently-running streaming queries
often consume the same sources or
perform similar tasks.

We use Semantic Stream Query Merging:

● To derive semantic operator signatures.

● To identify sharing opportunities via constraint

solving even for syntactically different queries.

Unified edge/cloud environments consist
of heterogeneous nodes with very
different resources.

We explore different operator placement
strategies:

State-of-the-art SPSs do not fully utilize
available hardware resources.

We rely on adaptive query compilation to
specialize the execution to data and
hardware characteristics.

NebulaStream combines the
performance of research prototypes
with the generality of mature SPSs.

Query merging is crucial to support a
high number of concurrent queries.

Executing 1000 random concurrent queries on nine nodes.

Executing the Yahoo Streaming Benchmark on eight cores.

no sharing

with query merging

Enable user to make trade-offs to
speed-up query deployment

Enable resource-efficient execution of
semantically-equivalent queries

Enable hardware-conscious and
data-conscious query execution

Learn about NebulaStream.
Try out our examples.

Join our project and collaborate with us!

https://nebula.stream

