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Overview

Research Goals:

● Efficient execution for thousands of 
concurrently running queries.

● Fast deployment to massive and dynamic 
topologies combining edge and cloud.

● Full utilization of heterogeneous hardware 
resources and accelerators.

● Support for complex analytical workloads 
involving stateful operators and UDFs.

Unifying Edge and Cloud 

Evaluation

An Example Application

Query::from("smart_meter")
.filter(Attribute("type")=="electricity")
.window(TumblingWindow(days(1))
.byKey(Attribute("owner_id"))
.apply(Sum("value"))

Cloud
Workloads

Results

Data Ingestion

● Geo-distribution.

● Moving devices.

● Hierarchical topologies.

● Diverse use cases and workloads.

● Heterogeneous compute resources.

● Control over data acquisition.
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How to leverage 
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Single Query 
Optimization 

Where to place operators?How to optimize query plans?
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Profile execution 
and re-optimize

Task-based 
execution

Input Stream Output Stream

Constructive Approach:

● Bottom Up

● Top Down

Cost-based Approach:

● Random Search

● Integer Linear 

Programming

● Genetic Algorithm

NebulaStream
https://nebula.stream

nebulastream@dima.tu-berlin.de
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Query 2

Conditions: car.source == “car” and 
car.speed * 1.6 > 100
Columns: car.speed = car.speed * 1.6

     car.id = car.id
              car.loc = car.loc

     car.over_speeding = true

Query::from("car")
.filter(Attribute("speed")*1.6 > 100)
.map(Attribute("speed") = Attribute("speed")*1.6)
.map(Attribute("over_speed") = true)
.sink(...)

Query::from("car")
.map(Attribute("speed") = Attribute("speed")*1.6)
.filter(Attribute("speed") > 100)
.map(Attribute("over_speed") = true)
.sink(...)

Query 1

Challenges:

● Millions of devices

● Resource heterogeneity

● Hierarchical infrastructure

● Geo-distributed data sources

● Changing data-characteristics and statistics
Common Signature

How much energy do our 
clients consume per day?NebulaStream is a scalable, adaptive, 

and efficient data management 
platform for the Internet-of-Things 
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Concurrently-running streaming queries 
often consume the same sources or 
perform similar tasks.

We use Semantic Stream Query Merging:

● To derive semantic operator signatures.

● To identify sharing opportunities via constraint 

solving even for syntactically different queries.   

Unified edge/cloud environments consist 
of heterogeneous nodes with very 
different resources.

We explore different operator placement 
strategies:

State-of-the-art SPSs do not fully utilize 
available hardware resources.

We rely on adaptive query compilation to 
specialize the execution to data and 
hardware characteristics.

NebulaStream combines the 
performance of research prototypes 
with the generality of mature SPSs.

Query merging is crucial to support a 
high number of concurrent queries.

Executing 1000 random concurrent queries on nine nodes.

Executing the Yahoo Streaming Benchmark on eight cores.

no sharing

with query merging

Enable user to make trade-offs to 
speed-up query deployment 

Enable resource-efficient execution of 
semantically-equivalent queries

Enable hardware-conscious and 
data-conscious query execution

Learn about NebulaStream. 
Try out our examples. 

Join our project and collaborate with us! 

https://nebula.stream

