

 Overview

 The Triton Join Algorithm

Scaling to a Large, Out-of-Core Join State Take Home

Problem 1: Transfer Granularity

Out-of-Core Radix Partitioning using a GPU

Problem 2: IO TLB misses

Goal: Scalable Join Processing

Funding Acknowledgements

This work was funded by the EU Horizon 2020 programme as E2Data (780245), the German
Ministry for Education and Research as BIFOLD — “Berlin Institute for the Foundations of
Learning and Data” (01IS18025A and 01IS18037A), and the German Federal Ministry for
Economic Affairs and Energy as Project ExDra (01MD19002B).

Preprint is available!

www.clemenslutz.com

Clemens Lutz1, Sebastian Breß2, Steffen Zeuch1, Tilmann Rabl3, Volker Markl1

Triton Join: Efficiently Scaling to a Large Join State on GPUs with Fast Interconnects

1firstname.lastname@tu-berlin.de
2sebastian.bress@snowflake.com
3tilmann.rabl@hpi.de

GPUs are well-equipped to quickly process joins and other
stateful operators due to their high memory bandwidth.

We propose a new join algorithm that scales to large data
volumes by exploiting fast interconnects, e.g., NVLink.

Partitioning is faster on a GPU with a
fast interconnect than on a CPU.

Out-of-core join state results in a performace cliff and
slow-down, despite using a fast interconnect.

Triton join achieves 1.9–2.6× speedup over CPU and up
to 400× over no-partitioning hash join on same GPU.

Fine-grained, random accesses to main memory are
slow. However, cacheline-sized accesses are fast!

IO TLB misses slow down accesses to main
memory by one order-of-magnitude.

Take advantage of data locality by two-pass radix
partitioning and in-GPU partition caching.

Scalable due to spilling join state to main memory via a
fast interconnect.

Robust due to graceful performance degradation under
an increasing join state size.

Efficient due to offloading nearly all processing from
the CPU to the GPU.

1st Pass
Partitioning

Join R and S2nd Pass

R

S
i

j

ip

jp

iq

jq

Build R ⋈ S

Materialize

i

j

ip

jp

iq

jq

Probe

Materialize

Hash Tables
GPU Memory
Main Memory

Scratchpad Cache

However, GPUs do not scale to large joins because:
 large join state does not fit into GPU memory
 spilling state to main memory is constrained by
 interconnect bandwidth.

