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GPUs are well-equipped to quickly process joins and other 
stateful operators due to their high memory bandwidth.

We propose a new join algorithm that scales to large data 
volumes by exploiting fast interconnects, e.g., NVLink.

Partitioning is faster on a GPU with a 
fast interconnect than on a CPU.  

Out-of-core join state results in a performace cliff and 
slow-down, despite using a fast interconnect.

Triton join achieves 1.9–2.6× speedup over CPU and up 
to 400× over no-partitioning hash join on same GPU.

Fine-grained, random accesses to main memory are 
slow. However, cacheline-sized accesses are fast!

IO TLB misses slow down accesses to main 
memory by one order-of-magnitude.

Take advantage of data locality by two-pass radix 
partitioning and in-GPU partition caching.

Scalable due to spilling join state to main memory via a 
fast interconnect.

Robust due to graceful performance degradation under 
an increasing join state size.

Efficient due to offloading nearly all processing from 
the CPU to the GPU.
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However, GPUs do not scale to large joins because:
      large join state does not fit into GPU memory
      spilling state to main memory is constrained by
      interconnect bandwidth.


