
Towards Scalable Real-time Analytics:
An Architecture for Scale-out of OLxP Workloads

Anil K Goel, Jeffrey Pound, Nathan Auch, Peter Bumbulis, Scott MacLean
SAP Labs Canada, Waterloo, Canada

Franz Färber, Francis Gropengiesser, Christian Mathis, Thomas Bodner
SAP SE, Germany

Wolfgang Lehner†
TU Dresden, Dresden, Germany

〈firstname.lastname〉@sap.com, †wolfgang.lehner@tu-dresden.de

ABSTRACT
We present an overview of our work on the SAP HANA
Scale-out Extension, a novel distributed database architec-
ture designed to support large scale analytics over real-
time data. This platform permits high performance OLAP
with massive scale-out capabilities, while concurrently allow-
ing OLTP workloads. This dual capability enables analytics
over real-time changing data and allows fine grained user-
specified service level agreements (SLAs) on data freshness.
We advocate the decoupling of core database components
such as query processing, concurrency control, and persis-
tence, a design choice made possible by advances in high-
throughput low-latency networks and storage devices. We
provide full ACID guarantees and build on a logical times-
tamp mechanism to provide MVCC-based snapshot isola-
tion, while not requiring synchronous updates of replicas.
Instead, we use asynchronous update propagation guaran-
teeing consistency with timestamp validation.

We provide a view into the design and development of a
large scale data management platform for real-time analyt-
ics, driven by the needs of modern enterprise customers.

1. INTRODUCTION
There are two fundamental paradigm shifts happening in

enterprise data management. The first is a dramatic increase
in the amount of data being produced and persisted by en-
terprises. Click data, ad views, sensor readings, stock price
tickers, customer orders, company purchases, and financial
transactions are just a few streams of data generated by
enterprises from which business intelligence needs to be ex-
tracted. Driven by the potential business value hidden in
these data sources and increasing high-speed storage capac-
ities, enterprises are now storing generated data which in

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact copy-
right holder by emailing info@vldb.org. Articles from this volume were
invited to present their results at the 41st International Conference on Very
Large Data Bases, August 31st - September 4th 2015, Kohala Coast, Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 12
Copyright 2015 VLDB Endowment 2150-8097/15/08.

previous generations was considered transient and discarded
after its purpose was served. The second shift is the need for
businesses to have analytical access to up-to-date data in or-
der to make critical business decisions. The legacy extract-
transform-load pipelines for offline analytical processing of
day-, week-, or even month-old data do not meet the de-
mands of modern enterprises that want real-time insights
from their data in order to make critical time-sensitive busi-
ness decisions.

The combination of these two shifts in enterprise data
usage creates a significant challenge for data management
systems. On one hand, a system must provide on-line trans-
action processing (OLTP) support to have real-time changes
to data reflected in queries. On the other, systems need to
scale to very large data sizes and provide on-line analytical
processing (OLAP) over these large and changing data sets.
As the role of the modern “data scientist” solidifies its po-
sition as a core contributor to enterprise decision making,
the demand for rich analytics on large scale data grows. In
this context, the challenge is in how a system can provide
real-time analytics at big data scale.

Various systems have been developed, both as academic
prototypes and commercial products, to address various
facets of this problem. There are high performance transac-
tion processing architectures that can scale-out to very large
database sizes and achieve impressive OLTP performance.
There are also a number of systems that can provide high
performance analytics at very large scale. However, the de-
sign of an integrated system that can provide large scale
analytic processing power over real-time updating data re-
mains a daunting challenge.

In this paper, we describe the architecture for a research
prototype system called the SAP HANA Scale-out-extension
(SOE), a holistically integrated data platform consisting of
different functional components that provide the foundation
of a novel data management system.

We advocate the separation of transaction processing from
query processing and utilize a high-performance distributed
shared log as the persistence backbone. We believe that such
an architecture constitutes the basis for a robust and scal-
able data management platform that can tackle the evolving
data management challenges we are currently facing. The
resulting requirements include the following.

1716



• Mixed transactional and analytical workloads: The
successful adoption of SAP HANA as an integration
platform for traditional enterprise resource planning
(ERP) as well as data warehousing has demonstrated
the necessity of removing the traditional separation
of transactional and analytical processing in database
systems. We aim to continue this trend in a large scale-
out architecture.

• Ability to take advantage of emerging hardware: SAP
HANA is able to effectively leverage current hardware
features such as high core count processors, SIMD in-
structions, large processor caches, and large memory
capacities. With SAP HANA SOE, we aim to take ad-
vantage of future hardware developments such as stor-
age class memories and high-bandwidth low-latency
network interconnects.

• Elastic scale, both on-premise and in the cloud: To-
day’s business challenges require an architecture that
can adapt to large load fluctuations by dynamically
provisioning resources. This adaptation may include
increasing storage capacities, increasing compute ca-
pacity by balancing load across dynamically provi-
sioned replicas, or co-locating data and services to
reduce the required resources. In a multi-tenant de-
ployment we need to be able to handle large tenants
spanning multiple nodes in a scale-out fashion as well
as many small tenants, which may share common re-
sources and be placed on a single node.

• Rapid innovation cycles: Separating the functional
components and establishing strict contracts between
them has proven to significantly improve development
performance in a large, globally distributed, research
and development team. The approach has also shown
to be extremely beneficial in introducing innovative as-
pects into a large system by decoupling development
and release cycles for functional components as well as
by providing alternative prototype implementations of
certain functional aspects.

Core contributions
In this paper we provide a blueprint of the SAP HANA
SOE data management platform. We present an end-to-end
system overview, detail the different components and their
interplay, and describe how they can provide:

• heterogeneous scale-out of OLTP and OLAP work-
loads independently within a single cluster;

• an approach to decoupling query processing from
transaction management;

• the ability to improve performance by scheduling snap-
shots for read-only OLAP transactions according to
fine-grained SLAs;

• a scalable distributed log providing durability, fault-
tolerance, and asynchronous update dissemination to
compute engines; and

• support for different compute engines as views over
the same transactionally consistent data, e.g., SQL en-
gines, R, Spark, graph, and text.

Compute Cluster 

DQP DQP 

Transaction Management 

Query Engine 1 

Transaction Broker 
VersionTable, 

TxTable, Sequencer 

Data partitions 

Query Engine 2 

Query Engine 3 

Shared Log 

Storage 
1 

Storage 
n 

Storage 
2 

Distributed Log (T1) 

… 

… 

R 

Cold Storage (checkpoints) 

Heap Store (T2) 

DQP 

R 

Query Engine n 
R 

Figure 1: Logical Building Blocks of the SAP HANA
SOE

We present sufficient design details on each of the major
components in order to describe how they interact to pro-
vide scalable database functionality for mixed OLTP and
OLAP workloads. However a more fine grained explanation
and evaluation of each component is beyond the scope of
this paper. We aim instead to present the end-to-end archi-
tecture, focussing on the distributed design and integration
of the various components.

Structure of the paper
Section 2 outlines the different components of the SAP
HANA SOE and sketches their interplay when handling read
and write requests. We follow with a more detailed descrip-
tion of the following components: transaction management
(Section 3), shared log (Section 4), and the HANA SOE
query engine (Section 5). We close with a discussion of re-
lated work, summary and conclusion.

2. SAP HANA SOE BUILDING BLOCKS
The goal of the SAP HANA SOE architecture is to build a

scalable data management platform for mixed OLTP/OLAP
workloads without having to compromise on strict ACID
guarantees. In this section, we outline the architecture and
describe how the core components interact.

Figure 1 illustrates the architecture. Our design decouples
the core database components, and provides them as ser-
vices in a distributed landscape. The three core components
are a distributed query execution cluster, a transaction bro-
ker, and a distributed shared log. An additional cold storage
layer can also be used for storing checkpoints.

2.1 Components of SAP HANA SOE
The Query Engine: At the core of SAP HANA SOE is

a high performance SQL-to-C code generation based query
engine (HSQE) [9, 22]. HSQE was initially released as a
stand alone query engine embedded in SAP Lumira, a mar-
ket leading data visualization software solution, and has
since been extended for scale-out [29]. SAP HANA SOE
further provides an optimizer that decomposes SQL queries

1717



into execution graphs suitable for running on a cluster of
HSQE nodes. The optimizer runs on the DQP nodes. To
aid in query processing, tables are horizontally partitioned
into slices of relatively large but bounded sizes. Generally
speaking, slices can be thought of as disjoint subsets of rows
within logical partitions of the table, like a large physical
page. Slices are large enough to fully exploit sequential in-
memory processing on dictionary compressed data but small
enough to enable efficient, elastic distribution and fast repli-
cation amongst HSQE nodes. Slices are directly embedded
into HSQE: even a standalone deployment creates slices.

While the data in an HSQE node must be updated over
time, HSQE nodes are not aware of, and do not partici-
pate directly in, database transactions. Conceptually HSQE
nodes process read-only queries on stable database snap-
shots. An HSQE node may hold data for a multitude of
snapshots concurrently. Versioning is typically done at the
slice level to maximize OLAP performance but can be done
at an arbitrarily fine granularity to reduce space require-
ments and to improve OLTP performance. In order to deal
with this natural tension between OLAP and OLTP re-
quirements, we propose to construct the database cluster
as two distinct subsets of HSQE nodes: one each for han-
dling OLAP and OLTP workloads. An OLAP node may
then make completely different trade-offs than typically re-
quired from an OLTP node. This dichotomy of node types
works well for real-world business scenarios where OLTP
workloads typically deal with a relatively small amount of
hot operational data, while the OLAP workloads want to
process all of the data. Note that our architecture allows for
the same data snapshot for a portion of operational data to
be concurrently resident on multiple nodes.

Transaction Broker: Transaction processing is coor-
dinated using a transaction broker. The transaction bro-
ker holds the shared state needed to process transactions.
This information consists of transaction metadata, versioned
write-sets for concurrency control, and a transaction se-
quencer. The system is structured to minimize the shared
state required so that, in the common case the broker can
be hosted on a single node. However, we allow for both high
availability and scale-out for the transaction broker. Fur-
thermore, the state held is such that the consequence of a
catastrophic broker failure is at most the abort of all cur-
rently running transactions.

Distributed Log: Transaction durability is achieved
with a separate distributed shared log built out of a dedi-
cated cluster of servers called storage units. The transaction
executors write transaction effects into this log: transaction
commit occurs when the corresponding commit log entry is
made durable. HSQE nodes can always obtain a particular
database snapshot by reading from the log. For performance,
mechanisms are provided to avoid having to do this contin-
ually in the common case.

2.2 Interplay of SAP HANA SOE components
In our system, we differentiate between read-only and

read-write transaction requests. When a read request enters
the system, the transaction broker issues a read timestamp
and forwards the query to the HSQE cluster responsible for
the corresponding database. At the executor, if the data
slices needed to process the query are not up-to-date with
the requested version, the executor consults the log for out-
standing updates with respect to the affected data slices.

After rolling the slices forward to the required snapshot, the
query can be executed, the partial result sets combined, and
the final result delivered to the application. Since the exe-
cution of a read query may possibly result in reading from
the log and compiling the changes into the local database
state, engines may instead subscribe to changes at the log
and proactively apply changes to the local database without
having a specific pull step as part of query execution. More
generally, our architecture provides the freedom to balance
the local update behavior between eager (push semantics)
and lazy updates (pull semantics), depending on the work-
load. In general, this principle can be used to control the
visibility of the most current data in a very fine-grained
manner. For example, the same read timestamp for OLAP
transactions (even though new transactions are committing)
can be refreshed only every k seconds/minutes depending on
a given SLA constraint, thereby amortizing the cost of read-
ing from the log, the update effort of the query nodes, and
the number of versions which have to be provided by the
query engines. It is also worthwhile to note that there is no
requirement for replicas of the same slice on different nodes
to be synchronized to the same timestamp since any replica
can bring itself up to date by reading the log.

Whenever a write request is received by the transaction
broker, a read timestamp is generated and the query is also
forwarded to the HANA SOE node cluster. At the specific
nodes, the updates are executed in “read-only” mode, i.e.
no database entities are modified; changes are only cached
locally in order to speed-up the change propagation process
for the next read request. The engine returns the set of row
IDs that would have been affected by the update. At trans-
action completion time, the transaction broker aborts the
transaction if it detects a conflict in the write set. Other-
wise a commit timestamp, which corresponds to a sequence
number in the log, is requested and the commit record is
written to the corresponding log position. After successfully
writing to the log, the transaction commits and the acknowl-
edgement is sent to the client.

3. TRANSACTION MANAGEMENT
We propose a distributed transaction processing architec-

ture designed to provide full ACID transactional guarantees
without requiring invasive modifications to the core HSQE
engine. Our architecture decouples transaction processing
from the update mechanism used in the engine, and indeed
from query processing, and provides an MVCC layer on top
of the existing slice abstraction. This decoupling means that
individual compiled query programs can run on a specified
version of a specified slice, and need not have internal aware-
ness of transactions or concurrency. Our design provides
strong snapshot isolation [8], while internally using asyn-
chronous propagation of changes to replicas, thereby avoid-
ing the debilitating overhead of synchronous replication at
large scale.

The HANA SOE architecture provides the following:

• Strong snapshot isolation: Our design enables strong
snapshot isolation in a distributed setting. This is
achieved by building an MVCC layer on top of a hori-
zontal physical partitioning abstraction called “slices”
using a logical timestamp mechanism.

• Independent OLAP scale-out: Our transaction pro-
cessing architecture allows OLAP nodes to scale in-

1718



dependently of the transactional workload by remov-
ing the obligation of transaction coordination from the
query compute nodes. However, compute nodes still
form transactionally consistent snapshots by reading
updates from the log as needed, without having to par-
ticipate in distributed commit protocols or having to
maintain synchronicity of their hosted data slices with
the corresponding updates.

• Efficient cross-partition transactions: Transactions
atomically commit by writing their updates indepen-
dently to the shared log. This design means that the
overhead of coordinating transaction commit is inde-
pendent of the number of nodes involved in processing
the transaction.

3.1 Transaction Processing in HANA SOE
Our proposal emphasizes strict decoupling of the logical

database components. In particular, the database log, the
concurrency control component, the transaction manager
and the query executors are considered independent compo-
nents that coordinate using well-defined interfaces. As such,
each component can have a number of implementation al-
ternatives without compromising correctness, so long as the
alternatives adhere to the design contract.

The system architecture is illustrated in Figure 1. There
is a need for a system component to handle a client connec-
tion context and to execute transaction stored procedures
or to invoke transaction functionality interactively on be-
half of a client request. To simplify our discussion, we as-
sume that this transaction coordination is co-located with
the logical DQP coordinator component, which may run in-
process with the database engine nodes. Our architecture,
however, also permits transaction coordination to occur on
the broker, in which case version table locality is gained at
the expense of limiting concurrency to the capabilities of
a single machine. We now describe the individual system
components in detail.

3.2 The Transaction Broker
A centralized Transaction Broker serializes transaction or-

der using a sequencer (atomic counter), maintains a transac-
tion table of running transactions and their state, and hosts
a version table. The version table is used by running trans-
actions to publish their write-sets and to detect conflicts.
The transaction broker presents a potential bottleneck for
system throughput, as the rate at which transactions can
commit is limited by the rate at which the sequencer can
hand out sequence numbers. However, based on published
literature (e.g., [2]) and our own early experimental results,
we expect a TCP-based sequencer to scale to hundreds of
thousands of requests per second, far beyond our practical
target requirements for transaction processing throughput.
As such, we consider the sequencer to be a theoretical, rather
than practical, bottleneck for our requirements. The second
point of contention in the transaction broker is the version
table. For a high rate of concurrent access, we use a scalable
concurrent hash-map that exploits multi-core parallelism.

The broker also maintains the timestamp of the last com-
mitted transaction, updated on each commit. This times-
tamp represents the current read timestamp for transactions
needing fresh data (e.g., OLTP transactions) and is handed
out to new transactions at start time. Additionally, the bro-
ker can maintain a current OLAP read timestamp which is

incremented at epochs depending on a service-level agree-
ment. This timestamp allows scheduling batches of OLAP
queries at the same read snapshot, which amortizes log reads
and large updates on OLAP nodes across all transactions
reading at the same snapshot. We discuss scheduling snap-
shots for OLAP transactions in Section 3.6.

The transaction broker maintains no persistent state, in-
stead all state that is needed for recovery is recorded in the
log. On failure, any other node can be elected the new trans-
action broker. An epoch-based versioning scheme is used to
ensure a “split-brain” scenario is not possible. All currently
running read/write transactions are aborted (the new broker
starts with an empty version and transaction table), and the
sequencer can be recovered by querying the log to find the
last written offset. The highest written sequencer value also
represents the last committed transaction, and the current
read timestamps will start at this same value. An in-memory
high availability scheme for the transaction broker can be
implemented to avoid the need for aborting currently run-
ning transactions, however this requires synchronous repli-
cation of the broker’s state which has an associated perfor-
mance penalty.

The broker is ideally hosted on a single machine. If the
load can be handled by a single large node, there is no need
to scale-out. It should also be noted that a distributed broker
is not prohibited by our design. For example, when the data
and workload can be totally partitioned we advocate simply
creating a dedicated instance of the broker per logical par-
tition. If the broker is partitioned to distribute load, then
consensus among brokers for transactions spanning multi-
ple broker partitions must be gained. A two-phase commit
protocol can be used in this scenario.

3.3 The Commit Log
The second major component of the transaction process-

ing architecture is a distributed shared log. All transactions
commit their changes to the log and it is considered the one
true copy of the database, providing the mechanism for dura-
bility, disaster recovery, and replication to compute nodes in
the system. Details of the log can be found in Section 4.

3.4 Compute Node Contract
The final component of the architecture is the actual com-

pute nodes used for processing queries. While our architec-
ture permits a variety of possible compute node engines
(e.g., SQL, R, graph, text), we optimize our design to sup-
port the HANA SOE SQL query engine as the compute
nodes. Compute nodes conceptually monitor the tail of the
log and incrementally incorporate updates affecting the ta-
ble slices that they host. Each log record contains an en-
tire transaction’s worth of updates and compute nodes must
maintain the ability to produce a new slice snapshot identi-
fied by a timestamp or a log sequence number (LSN). The
broker references the slice snapshots on individual compute
nodes to form transactionally consistent snapshots across
the cluster. Our scheme requires that the query engine op-
erates on stable row IDs and that these row IDs can be
returned to the transaction broker along with needed values
when it queries for write sets.

All queries sent to compute nodes must include a refer-
ence logical “as-of” timestamp (LSN). Compute nodes are
required to answer the query at the given timestamp by ex-
ecuting the query against an appropriate snapshot, possibly

1719



reading from the log first to bring their snapshots up to
date. Note that there is no requirement for different repli-
cas of the same slice to be synchronized to the same LSN
since any replica can bring itself up to date by reading the
log. The in-memory snapshots maintained by the compute
nodes are considered ephemeral and can be rebuilt from the
log in the event a node fails or a partition is migrated to a
new node. The broker will periodically make available a low-
watermark of the oldest transaction executing in the system
which the compute nodes can use to discard old snapshots.

For a compute node to participate in the cluster, it has to
adhere to a simple interface. To participate as a read-only
engine (e.g., OLAP node), the node must:

• perform queries at a given timestamp; and

• atomically apply ordered and timestamped updates to
construct new snapshots.

Note that the updates represent changes by already ordered,
consistent, and committed transactions. No concept of a
transaction or concurrency control is required at the com-
pute node, only atomic application of the updates to the
compute node’s internal data representation.

To participate as a transaction processing engine (OLTP
node), a compute node must:

• perform queries at a given timestamp;

• atomically apply ordered and timestamped updates to
construct new snapshots; and

• process an update statement and return write-sets
(IDs of affected rows);

An OLTP node may optionally cache the update result in its
local memory, labelled with the transaction ID that issued
the update, when processing an update statement. OLTP
nodes will be given asynchronous notification of transaction
commits, allowing them to simply make the cached updates
visible without actually having to pull the updates from the
log as is needed in the general transaction processing work-
flow (see Section 3.5). We discuss the internal engine dif-
ferences for running an HSQE node as an OLAP or OLTP
node in Section 5.

3.5 Transaction Execution
To make the abstract description in this section more con-

crete, we provide a walk through of the lifecycle of a transac-
tion in our system. The request flow for general transaction
execution proceeds as follows.

1. Transaction requests a read timestamp from the trans-
action broker. Broker records the transaction in the
transaction table with state RUNNING.

2. Transaction sends queries and update statements to
the query cluster.

3. If the compute node does not currently host the speci-
fied version of the specified data slice(s), it queries the
log for outstanding updates to the affected slices. If
the node has the required data updates in its cache, it
can be read from local cache instead of querying the
log.

4. Query cluster processes queries and update state-
ments.

(a) Compute nodes execute queries and return re-
sults.

(b) Compute nodes execute updates in read-only
mode (no rows are modified).

(c) Compute nodes may cache the computed up-
dates.

(d) In the case of two-tier storage, if the update is
large: compute node asynchronously writes the
updates to the second tier storage, and informs
the transaction executor of the file identifier on
transaction completion (either via the compute
node or directly as a remote callback from tier-
two storage to the executor).

(e) Compute cluster returns the set of row IDs that
are to be written.

5. Transaction requests publishing write-set (row IDs) to
the broker, which is successful if there are no conflicts.
The transaction is aborted there are conflicts.

6. Transaction requests a commit timestamp by con-
tacting the transaction broker sequencer and changes
transaction state to PRE-COMMIT. Commit times-
tamps correspond one-to-one to log LSNs.

7. If using two-tier storage for large updates, wait for
all writes to complete to obtain file handles. If using
single-tier storage or the writes are small, the writes
are in-lined in the tier-one commit record.

8. Transaction writes a commit record to the shared log
at the LSN previously obtained.

(a) If the write succeeds, contact the broker to pub-
lish commit timestamp and change transaction
state to COMMITTED.

(b) If the write fails contact the broker to change
transaction state to ABORTED.

9. Send acknowledgement of commit/abort to the client.

3.5.1 Read-Only Transactions
Read-only transactions first contact the transaction bro-

ker to get a read timestamp. Queries are then sent directly to
the compute nodes and can be fully handled without impos-
ing any load on the broker, with the exception that a client
should inform the broker when the transaction is complete
so it can track that the snapshot used by the transaction is
no longer needed. The execution flow is described as follows.

1. Request a read timestamp from the transaction broker.

2. Issue queries to compute nodes.

3. If the compute node does not currently host the speci-
fied version of the specified data slice(s), it queries the
log for outstanding updates to the affected slices.

4. Inform broker on completion (COMMIT).

Note that many read-only transactions do not always re-
quire reading the most up-to-date data. We discuss schedul-
ing OLAP transactions according to a configurable freshness
SLA in Section 3.6.

1720



3.5.2 Commit Path
Once transactions have successfully published their write-

sets they are free to commit. Many transactions are allowed
to commit in parallel so long as they don’t have write/write
conflicts. Our log design supports an efficient mechanism for
concurrent writes near the tail of the log by reserving a log
position at the same time the commit timestamp is assigned
by the broker. It’s possible that a client reading the log may
encounter an unfilled entry in the log (due either to a failed
or slow transaction coordinator). The client can choose to
either wait for the log entry to be written, or fill the log
entry with a junk value to force the transaction assigned
that position to retry writing its commit log record at a new
LSN obtained from the sequencer. To avoid starvation the
transaction aborts itself after a limited number of retries.

3.6 Snapshot Scheduling for Analytics
Studying the execution flow described in Section 3.5,

reveals two potential problems in scaling analytics. First,
nodes must construct and host a snapshot for every times-
tamp version requested by any query running on that node.
If a series of k analytics transactions all start around the
same (wall-clock) time, but due to a continuous stream of
committing OLTP transactions end up with distinct read
time-stamps (e.g., 10, 11, 12, 13, . . . ), then the compute
node would have to construct and maintain k different ver-
sions of its data to service these k different transactions. This
problem is inherent of any mixed workload system provid-
ing snapshot isolation. The second problem is that as each
request arrives at a compute node, it causes the node to pull
the needed entries from the log. In the worst case scenario for
the example described above, a compute node would request
all records from its last update to time 10, then request log
record 11, then request log record 12, and continue request-
ing individual log records as new queries arrive until the kth
query arrives.

We can remedy both of these problems by scheduling
analytics transactions to run at the same read timestamp
while adhering to a user specified SLA. This is achieved by
maintaining a separate read timestamp at the broker which
is handed out to analytics transactions that specify they
can tolerate stale data within the requirements of the SLA.
Along with the timestamp, the wall-clock time representing
the commit time of the transaction that wrote that version
is stored. Once the timestamp is set to expire, it is then
rolled forward to the last committed transaction timestamp
already maintained by the broker. Note that any transac-
tion that requires reading fresh data can always run at the
last committed timestamp, though in many practical sit-
uations we find that analytics transactions can tolerate a
certain amount of staleness. Scheduling analytics transac-
tions at SLA defined epochs has significant benefits. First,
it amortizes the cost of reading from the log and apply-
ing updates to in-memory structures over all transactions
that read at the same timestamp. Second, it allows compute
nodes to pull all needed updates from the log with a sin-
gle scan operation, avoiding multiple network round trips.
Third, it requires fewer versions to be kept in-memory by
the compute nodes, making better use of resources.

4. SHARED LOG ARCHITECTURE
As introduced in Section 3.3, the second major compo-

nent of HANA SOE is a distributed shared log to which

all transactions commit their changes. The log conceptu-
ally functions as a key-metadata-value store: integer keys
(log sequence numbers) are tagged with a variable number
of metadata identifiers and mapped to arbitrary variable-
length payloads. Each value is immutable once written.

The log constitutes a distributed system in its own right.
It is partitioned for scalability, replicated for fault-tolerance
and high-availability, and provides persistence of log entries
by writing them to non-volatile storage units.

Our log’s design provides several key features supporting
its use as a database transaction log:

1. Each log entry may be written to an arbitrary number
of logical streams within the log.

2. The log provides a total order over all writes to all
streams, guaranteeing linearizeable operations.

3. The log interface includes a scan operation which per-
forms bulk reads of log entries based on a specified
predicate on the metadata.

4. A secondary unordered heap store is provided for large
offline / asynchronous writes.

Although the distributed shared log was designed with
the needs of the HANA SOE landscape in mind, its imple-
mentation makes few assumptions on the nature of the data
stored within it. Rather, since the shared log is the single
true copy of the database, each query processor effectively
holds a materialized view of some subset of the log’s entries.
The log itself is agnostic as to the capabilities and internal
organization of its clients.

From this perspective, it is straightforward to incorpo-
rate different query executors into a scale-out cluster simply
by having them obtain data from the shared log. Moreover,
those types of executors may be heterogeneous within the
same cluster. For example, a particular cluster installation
might include OLAP executors, graph/hierarchy engines,
and text processors. The number of compute nodes dedi-
cated to each of these functions may be freely adjusted, and
all executors, regardless of their function, share access to
the same underlying data by reading transactional updates
from the log and applying them to their local data stores.
The shared log abstraction thus provides the data backbone
through which disparate data processing systems may share
information and receive transactional updates.

Additionally, log clients need not be strictly transactional.
Any application that requires strong consistency guarantees
of its data updates may make effective use of the log ab-
straction we present. For example, it may be used to imple-
ment a pub/sub message bus in which metadata identifiers
are used to tag message classes. The shared log simply pro-
vides a high-performance, fault-tolerant data store, which
it exposes via an append-only interface that guarantees lin-
earizeable updates. It is up to applications to decide how
that data store should be employed and interpreted.

The rest of this section describes how each feature enables
aspects of our transaction processing architecture.

4.1 Key Design Features
We start by outlining the key design features of the dis-

tributed shared log, followed by a description of the imple-
mentation decisions made in building this component.

1721



4.1.1 Logical Streams
Recall that the HANA SOE query executors load and op-

erate on small partitions of data called slices. Since every
executor hosts only a fraction of the slices comprising the
entire database, we can improve network utilization and re-
duce the time required to replay transactions by allowing
each executor to only pull updates from the log that pertain
to the slices they host. So as to not tie the slice mecha-
nism directly to the log, the log operates instead on logical
streams. Each log entry is tagged with stream identifiers
indicating to which streams it belongs. The relationship be-
tween stream identifiers and higher-level constructs (e.g.,
slices) is left entirely up to the higher levels of the system.

The log allows a single transaction to be split across to an
arbitrary number of streams. As such, it provides more flex-
ibility than other stream-oriented designs such as Tango[3],
which impose a fixed upper limit on the number of objects
that can be involved in a transaction. This flexibility is nec-
essary to permit a single transaction to modify data hosted
on many different slices.

4.1.2 Totally-Ordered Writes
The log provides a total ordering over all writes through

the use of write-once semantics and chain replication, sim-
ilarly to the CORFU shared log[2]. In particular, the log
provides three primary operations:

• write(S, n, x), which writes a variable-sized payload x
into log position n and annotates it with the set S of
logical streams. If position n has already been written,
write returns an error.

• scan(S, n,m), which returns to the client all log entries
at positions n through m which are tagged with at least
one stream in the set S.

• trim(n,m), which marks all log entries at positions n
through m as “trimmed” and reclaims the disk space
used to store those entries’ payloads. The log positions
themselves are not reclaimed.

By enforcing write-once semantics and by replicating log
writes using the chain replication protocol [28], these oper-
ations are guaranteed to be linearizeable. The writes them-
selves are totally ordered by log position number.

In HANA SOE, each transaction corresponds to a unique
log position. A transaction executor acquires a unique log
position from a sequencer node within the cluster (similar
to the sequencer used by CORFU to reduce contention be-
tween writers), then stores a payload at that log position
representing the transaction being committed.

As with any position-preallocation scheme, this approach
can result in log entries being written out of order, or never
being written at all if clients crash. Such holes in the log
may be filled by client-driven processes as in CORFU, or by
server-driven means as described in Section 4.1.3.

4.1.3 Scan Operation
Unlike the CORFU design, our log permits variable-sized

records and is deployed on servers with significant compute
power, affording a more capable interface. This compute
power enables our inclusion of the scan operation listed in
Section 4.1.2, as the filtering of entries by stream identifier
is performed locally on each storage unit. In the context of

HANA SOE, the scan operation reduces network utilization
in two ways:

1. By filtering based on stream identifiers, scan avoids
sending log entries across the network which are irrel-
evant for the scanning client. This means, for example,
that the entire log does not need to be shipped to all
OLAP nodes.

2. Compared with a log interface that reads one log entry
at a time, scan significantly reduces the number of
network round trips required to update a HSQE node
to a specific slice version.

The scan operation may also be used as an efficient hole-
filling mechanism by immediately filling any unwritten log
positions encountered during the scan. This strategy is quite
aggressive, but for a configuration in which OLAP queries
are scheduled to run at timestamps somewhat behind the
tail of the log, filling holes in this way is unlikely to cause
transactions to abort; rather it is likely to fill holes caused
by clients which have actually crashed or otherwise become
disconnected from the system.

4.1.4 Secondary Heap Store
In the proposed design, each database transaction is

stored in the log as a single entry. Large transactions, there-
fore, will entail large (hence slow) network transfers and
disk writes. To move these operations off the critical com-
mit path, we introduce a secondary storage area called the
heap store. When committing a large transaction, the trans-
action processor may use the heap store as follows:

1. Write the large log entry to the heap store without
synchronization.

2. Acquire the mutual exclusion necessary to commit the
transaction.

3. Write into the log a small commit entry containing a
reference to the large entry in the heap store.

If the transaction aborts after the heap store has been
written, the disk space used to store the large log entry may
be reclaimed. In this way, the duration for which mutual
exclusion is required for transaction commits is minimized.

The heap store may be implemented as a separate stor-
age unit within the storage cluster, but it is also possible to
overlay secondary “heap writes” within the existing storage
unit design. One may define a maximum log entry size for
which writes to the storage cluster have acceptable latency.
If a transaction payload exceeds that size, it is broken into
smaller chunks, which are each written to the log individ-
ually. Once all the pieces of a large write have been stored
successfully, a small “heap commit” record is appended to
the log describing the layout and log positions of the entries
comprising the single large transaction record. When a scan
operation encounters any of the chunks individually, it skips
over them; when it encounters the heap commit record, it
forms and transmits the entire transaction payload.

4.2 Implementation

4.2.1 Partitioning and Replication
The log is implemented as a cluster of storage units over

which its entries are partitioned and replicated. Each unit

1722



hosts a portion of the log, for which it provides the full log
interface. We are evaluating two alternative approaches to
cluster organization:

1. Shared Map
In this approach, all log clients share a mapping of
the log positions to the storage units that hold repli-
cas of entries belonging to those positions. Log clients
must contact specific storage units in the appropriate
replica set to initiate a log operation, and replication
may be driven by either server- or client-side logic.
This approach requires a minimal amount of coordi-
nation amongst storage units, but also requires clients
to move consistently from one version of the shared
mapping to the next, potentially causing short delays
when the mapping changes.

2. Distributed Hash Table
This variant organizes the storage units in a Chord-
style ring [24]. Log clients may contact any unit within
the ring to initiate a log operation; if that unit is not
hosting the log entry in question, the request is for-
warded along the ring. To improve operation routing
efficiency, each unit maintains a finger table index-
ing all other ring members. This design avoids sharing
state between clients and storage units, but when units
join or leave the cluster, the finger tables temporarily
degenerate and extra hops may be required to service
log requests.

For replication, both implementation variants employ the
chain replication protocol. To improve read throughput, this
can easily be extended to the CRAQ protocol [25].

4.2.2 Storage Units
The storage units themselves maintain metadata about

each log position they host, including the blocks on disk
where the log record is stored (represented as a sequence
of 〈offset, block-count〉 pairs) and the streams applicable to
each entry. All changes to this metadata are logged to an
internal append-only journal to ensure durability.

The storage unit implementation takes advantage of the
parallelism offered by modern SSD devices. I/O operations
are performed asynchronously, and many operations are
kept simultaneously in flight so that the persistence device
is consistently saturated. However, the log design is modular
in the sense that any storage unit implementation support-
ing our API may be used within the storage cluster. We
may, therefore, build storage units optimized for forthcom-
ing storage class non-volatile memories (NVM) and deploy
them alongside existing SSD-backed storage units. These
units may co-exist within the same cluster; for example,
NVM-backed units might be deployed on-demand to host
entries at the tail of the log, which experiences high read
and write load, while SSD-backed units might be used to
host older compacted log fragments with lighter read load
and no writes.

To improve read throughput the storage units will main-
tain an in-memory log entry cache. We furthermore intend
to expose the entire address space of this cache for RDMA
transfer so that all log entries required for a scan operation
may be read by a client in a single scatter-gather operation.
Such reads avoid context switches and memory copies on the
storage unit, which will free its compute resources for more
complex operations such as log compaction.

Da
ta

 M
an

ag
em

en
t 

Q
ue

ry
 &

 U
pd

at
e 

Ex
ec

ut
io

n 
St

ac
k

Interfaces

Se
ss

io
n 

M
an

ag
em

en
t

Metadata Mgr.

Data Mgr.

Query Plan Generator

Code Generator

Executor

Result Printer

SQL Parser

Semantic Analyzer

Algebra Generator 
& OptimizerVersion 

Mgr.

Update 
Cache

Column & 
Index Store

Figure 2: Architectural Components of a HANA
SOE Query Engine (Compute Node) instance

4.2.3 Log Compaction
The transactional payloads themselves may be seen as

delta updates to a key-value store in which the keys are
database row/column identifiers and the values are the data
written to the database. Log entries pertaining to the same
key in this sense may therefore be compacted simply by
keeping only the most recent log entry. This observation
may be leveraged to implement log checkpoints by com-
pacting all log entries prior to a particular log position p,
then trimming the log to remove all entries prior to p. The
compacted entries may be organized by stream identifiers to
simplify shipping to clients.

The log may also be compacted on the fly to reduce net-
work utilization. Rather than shipping to clients multiple log
entries pertaining to the same database “key”, we plan to
compact such entries at scan time and only ship the most re-
cent value of each database location touched by transactions
within the scan range. If log scan ranges are well-defined and
shared between executors, it is reasonable to cache the com-
pacted log entries so that compaction is not repeated for
multiple clients.

5. HANA SOE QUERY ENGINE
The third major component of our transaction process-

ing architecture is a cluster of HSQE nodes (“compute
nodes”) that implements a robust distributed query pro-
cessor (DQP). The HSQE cluster implements a DQP ser-
vice managing the mapping from horizontal table parti-
tions (“slices”) to compute nodes. For an incoming query,
the DQP service generates and globally optimizes a dis-
tributed execution plan that is specifically tailored for execu-
tion across the compute nodes in combination with efficient
communication algorithms [30]. As outlined in Section 3.4,
compute nodes are furthermore responsible to monitor the
tail of the log and to apply ordered and timestamped up-
dates to construct new versions, based on which queries are
executed. In this section, we take a look at the internals of
the HANA SOE query engine.

1723



5.1 HANA SOE Query Engine Internals
Figure 2 shows the architecture of a single HANA SOE

query engine instance. It resembles a classical in-memory
DBMS consisting of an interface layer, a session manager
(keeping track of client interactions), a data manager with
in-memory data store, and a query and update execution
stack. As persistence and concurrency control are managed
by the shared log and the transaction broker, we find nei-
ther functionality here. Furthermore, the update execution
stack is greatly simplified since it is only responsible for ver-
sion propagation for data slices based on ordered committed
transactions from the log.

At its heart, the SAP HANA SOE query engine sticks to
the HANA storage model paradigm which is based on a main
memory column store but uses specialized data structures
suitable for SQL-to-C code generation paradigm. When a
compute node starts up, it loads its assigned column slices
as the base version from a checkpoint on the cold store (see
Figure 1). As outlined earlier, queries specify an LSN to
indicate which version they need to be executed on. The
version manager is responsible to create and keep track of
these versions. It makes use of the update cache to receive
data from the shared log, if the necessary log entries to con-
struct a new version (e.g., from the base version) are not
locally available (see Section 5.3).

In our current design, any compute node can provide the
DQP service for an incoming request. Therefore, as shown
in Figure 2, the query engine comes with a full-fledged query
execution stack comprising of parser, semantic analyzer, al-
gebra generator and optimizer. After optimization and al-
gorithm selection, the engine compiles the physical query
plan into C code and translates it into an executable bi-
nary format. As Dees and Sanders described in [9] there are
significant performance advantages with this approach. The
compiler framework LLVM with Clang does the compilation
from C into native code. A similar approach is followed in
[19], however, we generate C instead of LLVM byte code to
support more sophisticated maintenance and debugging.

As outlined in [9], the generated C code aims to minimize
data transfer between the CPU caches and main memory by
applying as many operations (join, filter, project, aggregate,
expression evaluation, post process) on some cached data
item as possible. The generated code returns a very compact
result representation (in the simplest case, just row IDs are
generated) that allows late expression evaluation and result
materialization.

In case of pipeline breakers or intermediate result shar-
ing, multiple code units can be emitted by the code gen-
erator. The executor collects the (versioned) input column
slices, triggers the computation of join indexes and sched-
ules the compiled code units for execution. The executor
exploits data parallelism by following a parallel-reduce

style execution. The result printer finally receives the com-
pact result representation and materializes the final result
using late materialization.

A first version of the SAP HANA SOE query engine was
delivered to customers at the end of 2014 as part of SAP’s
analytical visualization software solution (SAP Lumira).

5.2 Query and Update Processing
Insert, update, and delete statements are also issued from

the client to the DQP service. The DQP engine locates the
affected slices and the optimal set of compute nodes hosting

these slices, where the log entries may have to be generated
before statement execution. The general control flow is de-
scribed in Section 3.5, here we focus on the compute node
internals.

On each involved compute node, update data is generated
in a two-phase process using the compute node’s code gen-
eration framework. In the first phase, code is generated to
compute the set of affected row IDs (write set) based on the
statement’s WHERE clause and all update expressions with
variable-sized result data. Here, we exploit data parallelism
on the input table. Once the write set is validated by the
transaction broker, the compute node allocates a memory
buffer to hold a log entry. Using information collected in
the first phase we know the final size of the update data
and can avoid re-allocation. In the second phase, the node
computes the fixed-sized update expressions based on the
row IDs from the write set and writes the result into the
log entry. Here we exploit data parallelism on the range of
row IDs from the write set: we can compute the prefix-sum
on the size of row-ID-based ranges to fix the write pointers
into the log entry for each such range. If the update is large,
the compute node writes its log entry to the log’s secondary
(heap) store and forwards a pointer of the heap location to
the transaction broker for inclusion in the payload of the
commit log record for the corresponding transaction.

5.3 Version Management
Applying updates in the core engine differs depending on

the HSQE node’s role as described in Section 3. In case of
OLAP query processing, log records stored in the distributed
log are consumed by OLAP nodes in either a push or pull
fashion. In the push approach, a node is continuously in-
formed about updates corresponding to a specified set of
slices by the distributed log using a publish/subscribe-like
mechanism. Records are pulled from the distributed log if
a specified version of the affected set of slices needs to be
materialized due to query requirements. Log record ship-
ping itself is done in a compacted fashion. This means, log
records are grouped by their type (update/insert/delete),
the affected slice, and the affected columns within the slice.

In our current implementation, a newer specified slice ver-
sion is created by copying the latest available version of this
slice and by applying the log records in order. Since this is
a costly operation, we materialize lazily where log records
are first stored in an update cache. The update cache con-
sists of two arrays of equal and configurable size to provide
double buffering. When the currently active array fills up,
it is flushed out by merging its contents into newer versions
of affected slices. New slice versions are created in parallel.
Since each log position always contains complete transac-
tions, newly materialized slice versions are always transac-
tionally consistent. While one of the arrays is being flushed
out, the second array allows for appending additional com-
pacted log records without blocking.

For future work, we plan to extend the version manager
implementation. If the number of changes is relatively small,
hashing or REDO lists per tuple could be used. Following
the first mentioned variant, new row data is stored in a hash
map by using the row ID as the key. Following the latter
variant, an additional hidden column is added to the base
slice storing new row data versions as a linked list. When the
number of updates per row increases and version retrieving
gets more expensive, a new slice version is materialized.

1724



In order to process OLTP queries, we have implemented
a basic strategy using the update cache described above.
However, besides persisting compacted log records in the
distributed log, they are written to the cache in order to con-
sume them directly, avoiding the detour of obtaining them
from the log. In the case a transaction wants to append its
updates to the buffer, it first gets validated by the transac-
tion broker for conflict detection and is issued a log sequence
number for commit. This number describes the offset within
the global log and is mapped to a position in the update
buffer. This allows for parallel writing. Since copying slices
in order to apply single updates is very expensive, we are
also investigating a more sophisticated strategy described
in [20] where an additional hidden column is added to the
base slice which stores UNDO records as linked list on a per-
row/tuple-level. Updates are applied in place. If a reader is
not allowed to see the current state of a tuple, an appropri-
ate older version is simply created by traversing the hidden
linked list of this tuple and applying the UNDO records.

5.4 Checkpointing
A periodic checkpoint operation can build a new stable

version of a table slice by writing a consistent snapshot to
cold storage. The checkpoint happens per slice for a specific
version and can be handled entirely by the query engine
without the need to involve the transaction broker or the
shared log. Furthermore, the checkpoint may take place on
any node in the system and need not interfere with query
execution while the checkpoint is in progress. These check-
points are used to improve restart times and initialize new
replicas. A persistent directory is required to store the loca-
tion of latest version of every slice.

6. RELATED WORK
In this section we discuss related work in the areas cover-

ing the various components of our system.

6.1 Shared Log
CORFU [2] is designed to use simple network-attached

flash drives and as such puts as much work onto the clients
as possible. Log offsets are coordinated by a centralized se-
quencer which hands out sequence numbers to clients in-
dependent of the actual log writes. Clients map log posi-
tions to physical flash units via a replicated projection data
structure. Replication is done using a client-driven version
of chain replication [28]. To deal with holes in the log caused
by the sequencer, readers may execute a special fill opera-
tion to write a known “junk” value to a log record. As in our
system, flash units in CORFU employ write-once semantics
so either the filler or the writer will win the race and progress
can be made. Tango [3] builds on CORFU by adding support
for multiple streams within the log and demonstrating how
to build transactionally consistent replicated data structures
over a shared log. The stream implementation in Tango re-
quires reserving space in every log record for every possible
stream supported by the runtime. This makes it unfeasible
to support a very large number of streams as is required by
our system in order to map slices to streams.

Kafka [15] provides a service which hosts many inde-
pendent log streams called Topics. Topics are partitioned
according to application-defined logical criteria. A process
called a broker holds a number of partitions, possibly from
different topics. Parallelism is achieved by having producers

write to different partitions and allowing one reader from
each consumer-group to read from a partition. Ordering is
not guaranteed between partitions of a topic, only within a
partition itself. This makes Kafka unsuitable as a database
commit log that requires write parallelism.

BookKeeper [11] provides a service which hosts a num-
ber of single-writer, append-only logs called ledgers. Servers
called Bookies hosts ledger fragments from a number of dif-
ferent tenants. Writes to a ledger are replicated to a quo-
rum of a client-configurable number of Bookies called an
ensemble. Under normal operation, a writer closes a ledger
(indicating that no further modifications are allowed) be-
fore clients are allowed to read from it. In a properly closed
ledger, all writes are fully replicated and a client can read for
any replica in the quorum that hosts it. This mode is suitable
to host e.g. a journal for the HDFS name node which was
the original motivation for BookKeeper. It is also possible
to read from an open ledger, but doing so requires read-
ers to contact every node in the ensemble to determine the
last confirmed write for each bookie and to not issue reads
beyond this limit. The single-writer nature and the perfor-
mance implications of reading from an open ledger make
BookKeeper unsuitable as a logging service for our system.

6.2 Decoupled Transaction Processing Sys-
tems

Deuteronomy [16, 17] decomposes the database kernel into
a transactional component (TC) responsible for concurrency
control and recovery and a data component (DC) responsi-
ble for supplying access methods and caching. The transac-
tion component operates only on logical entities and relies
on the data component to supply physical identifiers to fa-
cilitate operations such as locking. A significant source of
complexity in this work is ensuring that the TC and DC
have a consistent view of the distributed state. The MVCC-
based approach in our system where log LSNs double as
snapshot versions greatly simplifies the problem by provid-
ing a common way for the transaction broker and the query
engines to refer to snapshots.

Hyder [5] also separates transaction processing from data
storage by having multiple database engines share a common
log, as is done in our architecture. Hyder however avoids
all (non log) coordination between engines by having each
transaction write its intentions into the log followed by each
engine deterministically replaying the log to determine com-
mit/abort decisions. This is in contrast to our explicit co-
ordination using a transaction broker, where only commit-
ted transactions are written to the log. Our architecture is
also designed for facilitating transactions over large parti-
tioned databases, while Hyder fully replicates the log to all
database engines.

Calvin [26] implements a single version transaction layer
on top of any existing datastore providing a reliable CRUD
interface. Executors in Calvin collect transactions into
batches and then agree on a deterministic ordering that
minimizes contention and maximizes throughput. Once the
contents of the batches are agreed upon, they are sent to
all nodes where they are executed in a deterministic fash-
ion. This is similar to the approach taken in our system
where a transaction’s effects are written to the shared log
and incorporated without coordination at the query engines.
The main difference between the Calvin approach and ours
is that Calvin only provides single-version, serializable iso-

1725



lation and cannot support long-running transactions. This
makes Calvin unsuitable as a mixed OLTP/OLAP system.

DB2 pureScale [4] runs a number of database servers in
an active-active mode over a shared storage architecture.
Access to storage and locking is provided through a central-
ized cluster caching facility node accessed over RDMA. We
take a similar approach to centralizing resources to avoid
contention, but our architecture does not require a general
shared-storage pool and is designed to scale beyond the 128-
node limit of pureScale.

F1 [23] provides a transaction processing SQL layer on top
of Spanner [7], a transactional key/value store. A two-phase
commit is used to coordinate cross-partition transactions.

6.3 Scale-out OLTP Systems
Traditional OLTP systems are very difficult to scale out

as transactions which cross machine boundaries require
commit-time coordination (via algorithms like 2PC) to en-
sure that all executors agree on the commit/abort decision.
2PC-scalability is known to be poor beyond a handful of
nodes [1, 7]. The number of machines involved in a trans-
action grows with the product of the number of partitions
touched by the transaction and the number of replicas.

Like Calvin, H-Store [12] preprocesses transactions to
force a deterministic ordering and remove any non-
determinism from the transaction itself. In this way, a trans-
action can be sent to multiple replicas in parallel without the
need for coordination at commit time. This strategy per-
forms well when the database may be partitioned such that
few cross-partition transactions are executed. Unfortunately,
this is not always possible. Additionally, long running trans-
actions are disastrous to H-Store: it cannot execute transac-
tions outside of the predetermined order, so it must wait for
the long running ones to finish before others can continue.
This makes H-store unable to also support OLAP workloads.

6.4 Mixed OLTP/OLAP
A number of SQL over Hadoop systems such as Hive [27],

Impala [14] and Shark [31] have recently shown promise in
the area of big-data analytics, but are generally unable to
handle OLTP workloads.

SAP HANA [10, 21] already excels at handling mixed
OLTP/OLAP workloads in a single scale-up system or in
scale-out clusters of a small number of nodes. SAP HANA
SOE provides the extensions required to allow HANA to
scale out to thousands of nodes.

In HyPer [13], a master in-memory database processes
OLTP transactions. Periodically, a snapshot of the processes
memory is copied to a new process via the use of fork() and
brought back to a consistent state by applying undo records
to rows modified by in-progress transactions. OLAP queries
are run against these forked snapshots. The ScyPer [18] sys-
tem extends this idea to a distributed system by using re-
liable multicast to broadcast all committed updates to all
replicas. The primary system continues to act as a master for
OLTP transaction, while the replicas are used to run OLAP
style read-only queries. ScyPer is less fault-tolerant and less
scalable than our system, as it uses PGM-multicast instead
of a distributed log and requires that the entire database fit
in the memory of a single OLTP master machine.

In ConfluxDB [6] a primary, update-accepting database
is partitioned for scale-out across a primary cluster. Within
this cluster, cross-partition transactions are coordinated us-

ing 2PC in the usual fashion. Logs from the individual ex-
ecutors in the primary are merged together to form a totally
ordered log stream which is replicated to a number of sec-
ondary, read-only clusters. A relaxed form of snapshot isola-
tion (global-SI) is used across the cluster to identify consis-
tent snapshots. Transaction coordination is only dependent
on the number of nodes in the primary cluster, so OLTP
and OLAP can be individually scaled by running OLTP
workloads on the primary cluster and OLAP queries on the
secondary. The distributed shared log in our approach elimi-
nates the need for a log-merging step and also acts as a buffer
of the totally ordered log stream to allow read-only replicas
to join and leave the cluster, simplifying OLAP scale-out.

7. SUMMARY
This paper has presented the core components of the

SAP HANA SOE architecture and described how the pieces
fit together to provide a scalable snapshot isolation-based
database that decouples OLTP and OLAP processing yet
provides support for strict freshness SLAs. The design fun-
damentally distinguishes and decouples three types of ser-
vices. The transaction broker handles concurrency control,
allowing individual query engines to run without explicit
knowledge of transactions or concurrent writers. A dis-
tributed shared log allows us to scale write throughput for
committing transactions and provides a high throughput
scan interface to allow scaling out query engines while keep-
ing them up-to-date. The shared log exposes multiple logical
log streams and can be used to model sequences of changes
to particular partitions, allowing query engines to query only
the changes that affect their hosted data. Overall, this de-
sign allows scale-out of mixed OLTP/OLAP workloads with
strict freshness guarantees for analytics.

Acknowledgements
We would like to thank the HANA Research and Develop-
ment team for their incredible ongoing efforts. We would
also like to thank Adrian Nicoara for valuable discussions
and contributions during his internship.

8. REFERENCES
[1] P. Bailis, A. Fekete, M. J. Franklin, A. Ghodsi, J. M.

Hellerstein, and I. Stoica. Coordination avoidance in
database systems. Proceedings of the VLDB
Endowment, 8(3):185–196, 2014.

[2] M. Balakrishnan, D. Malkhi, J. D. Davis,
V. Prabhakaran, M. Wei, and T. Wobber. CORFU: A
distributed shared log. ACM Trans. Comput. Syst.,
31(4):10, 2013.

[3] M. Balakrishnan, D. Malkhi, T. Wobber, M. Wu,
V. Prabhakaran, M. Wei, J. D. Davis, S. Rao, T. Zou,
and A. Zuck. Tango: Distributed data structures over
a shared log. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles,
pages 325–340. ACM, 2013.

[4] V. Barshai, Y. Chan, H. Lu, and S. Sohal. Delivering
Continuity and Extreme Capacity with the IBM DB2
pureScale Feature, chapter 1. IBM Redbooks, 2012.

[5] P. A. Bernstein, C. W. Reid, and S. Das. Hyder-a
transactional record manager for shared flash. In
CIDR, volume 11, pages 9–20, 2011.

1726



[6] P. Chairunnanda, K. Daudjee, and M. T. Ozsu.
ConfluxDB: Multi-master replication for partitioned
snapshot isolation databases. Proceedings of the
VLDB Endowment, 7(11), 2014.

[7] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,
J. J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild, et al. Spanner: Google’s globally
distributed database. ACM Transactions on Computer
Systems (TOCS), 31(3):8, 2013.

[8] K. Daudjee and K. Salem. Lazy database replication
with snapshot isolation. In Proceedings of the 32nd
international conference on Very large data bases,
pages 715–726. VLDB Endowment, 2006.

[9] J. Dees and P. Sanders. Efficient many-core query
execution in main memory column-stores. In C. S.
Jensen, C. M. Jermaine, and X. Zhou, editors, 29th
IEEE International Conference on Data Engineering,
ICDE 2013, Brisbane, Australia, April 8-12, 2013,
pages 350–361. IEEE Computer Society, 2013.

[10] F. Färber, N. May, W. Lehner, P. Große, I. Müller,
H. Rauhe, and J. Dees. The SAP HANA database –
an architecture overview. IEEE Data Eng. Bull.,
35(1):28–33, 2012.

[11] F. P. Junqueira, I. Kelly, and B. Reed. Durability with
BookKeeper. ACM SIGOPS Operating Systems
Review, 47(1):9–15, 2013.

[12] R. Kallman, H. Kimura, J. Natkins, A. Pavlo,
A. Rasin, S. Zdonik, E. P. Jones, S. Madden,
M. Stonebraker, Y. Zhang, et al. H-store: a
high-performance, distributed main memory
transaction processing system. Proceedings of the
VLDB Endowment, 1(2):1496–1499, 2008.

[13] A. Kemper and T. Neumann. HyPer: A hybrid
OLTP&OLAP main memory database system based
on virtual memory snapshots. In Data Engineering
(ICDE), 2011 IEEE 27th International Conference on,
pages 195–206. IEEE, 2011.

[14] M. Kornacker, A. Behm, V. Bittorf, T. Bobrovytsky,
C. Ching, A. Choi, J. Erickson, M. Grund, and
D. Hecht. Impala: A modern, open-source sql engine
for hadoop. In Proc. CIDR, volume 15, 2015.

[15] J. Kreps, N. Narkhede, J. Rao, et al. Kafka: A
distributed messaging system for log processing. In
Proceedings of 6th International Workshop on
Networking Meets Databases (NetDB), Athens,
Greece, 2011.

[16] J. J. Levandoski, D. B. Lomet, M. F. Mokbel, and
K. Zhao. Deuteronomy: Transaction support for cloud
data. In CIDR, volume 11, pages 123–133, 2011.

[17] D. B. Lomet, A. Fekete, G. Weikum, and M. J.
Zwilling. Unbundling transaction services in the cloud.
In CIDR 2009, Fourth Biennial Conference on
Innovative Data Systems Research, Asilomar, CA,
USA, January 4-7, 2009, Online Proceedings, 2009.

[18] T. Mühlbauer, W. Rödiger, A. Reiser, A. Kemper,
and T. Neumann. ScyPer: Elastic OLAP throughput
on transactional data. In Proceedings of the Second
Workshop on Data Analytics in the Cloud, pages
11–15. ACM, 2013.

[19] T. Neumann. Efficiently compiling efficient query

plans for modern hardware. PVLDB, 4(9):539–550,
2011.

[20] T. Neumann, T. Mühlbauer, and A. Kemper. Fast
serializable multi-version concurrency control for
main-memory database systems. In Proceedings of
SIGMOD, 2015. to appear.

[21] H. Plattner. A common database approach for OLTP
and OLAP using an in-memory column database. In
Proceedings of SIGMOD, pages 1–2, 2009.

[22] H. Plattner, F. Färber, J. Dees, M. Weidner,
S. Baeuerle, and W. Lehner. Towards a web-scale data
management ecosystem demonstrated by SAP HANA.
In IEEE 31st International Conference on Data
Engineering, To Appear, 2015.

[23] J. Shute, R. Vingralek, B. Samwel, B. Handy,
C. Whipkey, E. Rollins, M. Oancea, K. Littlefield,
D. Menestrina, S. Ellner, J. Cieslewicz, I. Rae,
T. Stancescu, and H. Apte. F1: A distributed sql
database that scales. Proc. VLDB Endow.,
6(11):1068–1079, Aug. 2013.

[24] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. ACM
SIGCOMM Computer Communication Review,
31(4):149–160, 2001.

[25] J. Terrace and M. J. Freedman. Object storage on
CRAQ: High-throughput chain replication for
read-mostly workloads. In USENIX Annual Technical
Conference. San Diego, CA, 2009.

[26] A. Thomson, T. Diamond, S.-C. Weng, K. Ren,
P. Shao, and D. J. Abadi. Calvin: fast distributed
transactions for partitioned database systems. In
Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, pages 1–12.
ACM, 2012.

[27] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
S. Anthony, H. Liu, P. Wyckoff, and R. Murthy. Hive:
A warehousing solution over a map-reduce framework.
Proc. VLDB Endow., 2(2):1626–1629, Aug. 2009.

[28] R. van Renesse and F. B. Schneider. Chain replication
for supporting high throughput and availability. In
OSDI, volume 4, pages 91–104, 2004.

[29] M. Weidner, J. Dees, and P. Sanders. Fast OLAP
query execution in main memory on large data in a
cluster. In X. Hu, T. Y. Lin, V. Raghavan, B. W.
Wah, R. A. Baeza-Yates, G. Fox, C. Shahabi,
M. Smith, Q. Yang, R. Ghani, W. Fan, R. Lempel,
and R. Nambiar, editors, Proceedings of the 2013
IEEE International Conference on Big Data, 6-9
October 2013, Santa Clara, CA, USA, pages 518–524.
IEEE, 2013.

[30] M. Weidner, J. Dees, and P. Sanders. Fast olap query
execution in main memory on large data in a cluster.
In IEEE Big Data, pages 518–524, Oct 2013.

[31] R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin,
S. Shenker, and I. Stoica. Shark: Sql and rich analytics
at scale. In Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data,
SIGMOD ’13, pages 13–24, New York, NY, USA,
2013. ACM.

1727


