
POLAR: Adaptive and Non-invasive Join Order Selection via
Plans of Least Resistance

David Justen
∗

TU Berlin

Daniel Ritter

SAP

Campbell Fraser

Google

Andrew Lamb

Nga Tran

InfluxData

Allison Lee

Snowflake

Thomas Bodner

Hasso Plattner Institute

University of Potsdam

Mhd Yamen Haddad

INRIA, Ecole Polytechnique

Steffen Zeuch

Volker Markl

TU Berlin

Matthias Boehm

TU Berlin

ABSTRACT

Join ordering and query optimization are crucial for query perfor-

mance but remain challenging due to unknown or changing charac-

teristics of query intermediates, especially for complex queries with

many joins. Over the past two decades, a spectrum of techniques for

adaptive query processing (AQP)—including inter-/intra-operator

adaptivity and tuple routing—have been proposed to address these

challenges. However, commercial database systems in practice do

not implement holistic AQP techniques because they increase the

system complexity (e.g., intertwined planning and execution) and

thus, complicate debugging and testing. Additionally, existing ap-

proaches may incur large overheads, leading to problematic perfor-

mance regressions. In this paper, we introduce POLAR, a simple yet

very effective technique for a self-regulating selection of alternative

join orderings with bounded overhead. We enhance left-deep join

pipelines with alternative join orders, perform regret-bounded tu-

ple routing to find and validate “plans of least resistance”, and then

process the majority of tuple batches through these plans. We study

different join order selection techniques, different routing strate-

gies, and a variety of workload characteristics. Our experiments

with a POLAR prototype in DuckDB show runtime improvements

of up to 9x and less than 7% overhead for all benchmark queries,

while outperforming state-of-the-art AQP systems by up to 15x.

PVLDB Reference Format:

David Justen, Daniel Ritter, Campbell Fraser, Andrew Lamb, Nga Tran,

Allison Lee, Thomas Bodner, Mhd Yamen Haddad, Steffen Zeuch, Volker

Markl, and Matthias Boehm. POLAR: Adaptive and Non-invasive Join

Order Selection via Plans of Least Resistance. PVLDB, 17(6): 1350 - 1363,

2024.

doi:10.14778/3648160.3648175

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/damslab/reproducibility/tree/master/vldb2024-POLAR.

∗
Corresponding author’s email: david.justen@tu-berlin.de

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 6 ISSN 2150-8097.

doi:10.14778/3648160.3648175

1 INTRODUCTION

Cost-based query optimizations [72, 87] for selecting optimal join

orders, join methods, and data access paths are crucial for the end-

to-end performance of analytical queries. State-of-the-art exact join

ordering algorithms such as DPsize [42, 87], DPsub, DPcpp [73],

and DPhyp [74] rely on dynamic programming for efficient enu-

meration. These algorithms yield optimal execution plans, but only

under the assumption of precise cardinality estimates.

Cardinality Estimation Challenges: Estimating precise car-

dinalities for intermediate results of complex queries remains a

stubbornly difficult problem [65]. First, most systems assume uni-

form distributions (no skew) and independence of predicates (no

correlation) [50]. These simplifying assumptions often cause under-

estimation, which is problematic due to plan choices with poor

asymptotic behavior (e. g., nested-loop joins), which perform poorly

for larger intermediates [50, 65]. Second, too coarse-grained sta-

tistics (e. g., histograms [58] or sketches [55]) may misrepresent

clustered data. Third, user-defined functions and new environments

(e. g., federated, raw data) often do not allow obtaining statistics

[48, 56, 84]. Fourth, complex queries with many operators are diffi-

cult to estimate because errors propagate exponentially [52, 55, 76].

Although recent work on ML-based estimators [35, 60, 98], learning

to distrust certain estimates [70], and learning to rank plans [14]

offer benefits, they do not solve all problems above.

Adaptive Query Processing (AQP): In the past two decades, a

spectrum of AQP techniques [10, 29, 30, 53] has been devised to ad-

dress the challenges of unknown and changing data characteristics.

Many AQP techniques follow the classical MAPE control loop of

monitoring, analyzing, planning, and executing [4, 49, 53]. Existing

techniques include inter-query optimization with learned cardinal-

ities for expressions [23, 25, 89], late binding with re-optimization

at pipeline breakers [29] or parameter binding [17], inter-operator

re-optimization at checkpoints [57], progressive and pro-active re-

optimization with validity ranges [11, 71], intra-operator adaptivity

with union stitch-up plans [54], intra-query adaptivity via rein-

forcement learning [93, 94, 97], as well as tuple routing policies in

Eddies [8, 9, 16, 28]. Many of these strategies require both optimizer

and runtime extensions for effective and efficient adaptivity.

Robust Query Processing: An alternative mitigation strategy

for poor cardinality estimates is robust query processing [44]. The

influential Picasso project [43] on plan diagrams [83] revealed that

https://doi.org/10.14778/3648160.3648175
https://github.com/damslab/reproducibility/tree/master/vldb2024-POLAR
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3648160.3648175

POLAR

Source

Sink

Unmodified
Optimizer

Multiplexer

SELECT ...
 FROM R, S, T, U, V
 WHERE ...
 GROUP BY ...

U
...

...

...Pipeline Construction
(Join Order Selection,

Custom Operators)

Figure 1: POLAR pipeline compilation from input query over standard, pipelined plan to POLAR pipeline.

state-of-the-art DBMS compile many very specialized plans that

are only optimal in a small subspace of cardinalities. Since these

cardinalities are difficult to estimate, robust query processing seeks

to find a small number of plans that together cover a broad range of

cardinalities [32, 33]. Despite a sequence of valuable improvements

[3, 33, 34, 38] (including so-called plan bouquets [34]), many of

these strategies are offline approaches and largely intractable for

intra-query or intra-operator adaptation during runtime [44].

POLAR Overview: Although AQP comprises many valuable

ideas, only very few are implemented by data(base) systems in

practice. We attribute this largely to the induced complexity of

intertwining planning and execution, difficulties in testing and

debugging, and potential performance regressions due to overheads

of adaptivity. Inspired by tuple-routing and self-scheduling (queue-

based) systems, we introduce POLAR as a novel adaptive processing

approach of join pipelines. We enhance left-deep join pipelines with

alternative join orders during planning, perform regret-bounded

tuple routing for exploration, and process most data through plans

of least resistance (i.e., plans with few intermediates). In contrast

to tuple routing in Eddies and SkinnerDB, POLAR is non-invasive

to the optimizer and runtime, has low and bounded overhead, and

does not require state management (e.g., partially-built hash tables).

Contributions:Our primary contribution is the concept of plans

of least resistance (POLAR) as a new AQP technique designed for

simple system integration and bounded overhead. Our detailed

contributions include the novel POLAR design and its evaluation:

• Pipeline Design: We introduce a holistic, non-invasive pipe-

line design from objectives over pipeline compilation and

join order selection to parallel pipeline processing with

performance tracking (Section 2).

• Routing Strategies: We propose an extensible multiplexer

operator and several routing strategies, as well as describe

their trade-offs and runtime characteristics (Section 3).

• SSB-skew Benchmark:As a basis for evaluating AQP systems

on data with correlations and clustering, we introduce and

share the new SSB-skew benchmark (SSB-skew repository).

• Experiments: Using a variety of benchmarks (JOB, SSB, SSB-

skew), we systematically study the performance character-

istics of a POLAR prototype in DuckDB [81]. We evaluate

different join order selection and routing strategies and

compare with different AQP systems (Section 5).

2 PIPELINE DESIGN

POLAR is an adaptive join processing approach designed for non-

invasive integration into common database systems with support

for vectorization and operator pipelining. In contrast to other AQP

techniques, POLAR pipelines do not require fine-grained inter-

twining of existing optimizers and runtime systems. As shown in

Figure 1 (right), we enhance amenable pipelines with additional join

orders. At runtime, we measure the performance of these orders

and route tuples to well-performing orders while exploring others

using a regret budget. This section introduces POLAR’s design ob-

jectives and gives an overview of the compilation and execution of

POLAR pipelines and related essential primitives.

2.1 Design Objectives

We largely attribute the stagnant adoption of adaptive join pro-

cessing approaches to difficult system integration and problematic

performance regressions. Accordingly, we propose a non-invasive

approach specifically designed for low and bounded overhead. In

the following, we define these objectives and distinguish POLAR

from existing AQP systems along these dimensions (in Table 1). As

bitmap filtering is increasingly adopted in popular database sys-

tems [31, 63], we also compare POLAR to Lookahead Information

Passing [102] (LIP) as a representative candidate.

Non-invasive System Integration: We call an AQP system

non-invasive if it clearly separates compilation from execution

(no plan generation at runtime) because this separation simplifies

debugging and testing. Furthermore, for simple system integration

and maintenance, a non-invasive AQP system should reuse existing

infrastructure such as the query optimizer and physical operators.

Eddies [9] and SkinnerDB [93] intertwine query processing phases,

and require specific optimizers and operators. LIP mostly adheres to

non-invasiveness but generates new bloom filter orders at runtime.

Table 1: System Integration and Bounded Overhead.

Approach Separation Reuse Bounded Overhead

Eddies × × ×
SkinnerDB × × ✓
LIP (✓) ✓ ×
POLAR ✓ ✓ (✓)

https://github.com/d-justen/duckdb-polr/tree/master/benchmark/ssb-skew

BoundedOverhead: Preventingmajor performance regressions

on any workload—even if adaptation is not beneficial—is essential

for enabling AQP by default. Accordingly, an AQP system should

provide bounds for the overhead of adaptivity (e.g., exploration of

alternative join orders). Eddies and LIP do not define bounds for

their overheads, SkinnerDB gives a strict bound based on the single

best (robust) join plan, and POLAR provides a probabilistic bound

on the number of intermediates incurred for exploration.

2.2 POLAR Pipeline Compilation

During query compilation (cf. Figure 1), we replace amenable oper-

ator pipelines with POLAR pipelines. A POLAR pipeline contains

alternative join orders and two dedicated operators: a multiplexer

(for tuple routing) and an adaptive union∪ (for result consolidation).
In the following, we describe the pipeline selection, the dedicated

operators, and the pipeline transformation in more detail.

Pipeline Construction: After query optimization and gener-

ation of a query execution plan—consisting of multiple operator

pipelines—POLAR replaces all pipelines of left-deep join trees with

at least two joins (where the right-hand-sides are build sides, and

left-hand-side intermediates are probed in a pipelined fashion). The

pipeline’s source is the left-most node and fixed as POLAR’s source

of input tuples for the tuple routing. Our approach generates a

set of alternative join orders using a join order selection algorithm

(cf. Section 2.3) and includes them with the original join order. Al-

though focusing only on existing join pipelines is limiting, it allows

for a system integration without changing the query optimizer and

robust performance that is at least as good as the original plan. If

the original plan contains pipelines with multiple joins, POLAR can

improve these pipelines via alternative orders.

Custom Operators: Additionally, we introduce two new opera-

tors into each POLAR pipeline for tuple routing. The multiplexer

(cf. Section 3) accepts bags of tuples from the source table and de-

termines the next path and the number of tuples to route to that

path. It uses performance indicators from previous path runs to

make routing decisions. After each path run, a lightweight adaptive

union operator processes the results from the last join. Besides nor-

mal union-all semantics, this operator re-arranges the additional

columns from the joins to a consistent order of the original plan.

Pipeline Transformation: Finally, we replace the existing op-

erator pipeline with a POLAR pipeline consisting of the multiplexer,

the set of join orders, and the adaptive union. The individual join

orders reuse the read-only hash tables of the build sides without re-

dundant allocation. This transformation does not break the pipeline

to prevent further materialization and multiplexing. Other non-

blocking operators (e. g., projections, filters) and the pipeline sink

(e. g., aggregation) also remain unchanged. The POLAR pipeline

allocates space for state per alternative join order (e.g., operator

caches, intermediate result vectors). Thus, the space overhead grows

linearly with the number of join orders but is negligible in practice.

2.3 Join Order Selection

When generating alternative join orders for individual pipelines,

we aim to compose a diverse set of orders that could handle a wide

range of mis-estimated cardinalities and clustered data. The selec-

tion strategy should find good plans early (i. e., be robust for large

pipelines), should not re-invoke the query optimizer (i. e., ensure

Algorithm 1 Selectivity Space Sampling

Input: Joins 𝐽 , Max Join Orders MAX , Max Iterations maxi

Output: Join Orders𝑇

1: 𝑇 ← ∅, 𝑖 ← 0

2: D← discretizeSelectivities(𝐽) // exponential decay

3: while |𝑇 | < MAX ∧ 𝑖 <𝑚𝑎𝑥𝑖 do

4: 𝑑𝑖 ← sample(D) , 𝑖 ← 𝑖 + 1 // | 𝐽 | selectivities
5: 𝑇 ← 𝑇 ∪ DPSize(J, 𝑑𝑖) // keep distinct optimal join orders

6: return𝑇

Algorithm 2 Next-best Join Order Search

Input: Joins 𝐽 , Edge Counts 𝑛0, ..., 𝑛 | 𝐽 | ∈ 𝑁 , Max Join Orders MAX

Output: Join Orders𝑇

1: 𝑅 ← ∅
2: 𝑆 ← LegalJoinCandidates(𝑅, 𝐽) // Find first join candidates

3: for 𝑖 ← 0 to 𝑛0 do // Consider 𝑛0 of the candidates

4: 𝑠𝑖 ← GetNextJoin(𝑆)
5: prio← (|𝑅 |, 𝑖)
6: 𝑝𝑞𝑢𝑒𝑢𝑒.Enqeue(𝑝𝑟𝑖𝑜, 𝑅, 𝑠𝑖)
7: 𝑆 ← 𝑆 \ 𝑠𝑖
8: while !𝑝𝑞𝑢𝑒𝑢𝑒.Empty() and | 𝐽 | < MAX do

9: 𝑅, 𝑠 ← 𝑝𝑞𝑢𝑒𝑢𝑒.Deqeue() // Remove next item

10: 𝑅 ← 𝑅 ⊕ 𝑠
11: if |𝑅 | = | 𝐽 | − 1 then

12: 𝑅 ← 𝑅 ⊕ 𝐽 \ 𝑅 // Append remaining join

13: 𝑇 ← 𝑇 ∪ 𝑅
14: else

15: 𝑆 ← LegalJoinCandidates(𝑅, 𝐽)
16: for 𝑖 ← 0 to 𝑛 |𝑅 | do
17: 𝑠𝑖 ← GetNextJoin(𝑆)
18: prio← (|𝑅 |, 𝑖)
19: 𝑝𝑞𝑢𝑒𝑢𝑒.Enqeue(𝑝𝑟𝑖𝑜, 𝑅, 𝑠𝑖)
20: 𝑆 ← 𝑆 \ 𝑠𝑖
21: return𝑇 ∪ GetOriginalJoinOrder()

non-invasive integration and low overhead), and should pick few

complementary join orders (i. e., reduce the amount of exploration

overhead). To this end, we propose two novel, anytime join order

selection strategies that do not require optimizer invocations, as

well as additional heuristics to serve as baselines.

S1 SelSampling: For good coverage of complementary join

orders, we propose selectivity-space sampling in Algorithm 1, a

method to sample the space of unknown selectivities and gener-

ate optimal join orders for each sample. Inspired by progressive

parametric query optimization [17], the discretized selectivities of

base table predicates and joins form a d-dimensional grid, which we

sample uniformly. For each sampled point, we then call DPsize with

𝐶𝑜𝑢𝑡 cost model to generate the optimal plan for this scenario. In

order to efficiently explore alternative orders, we use an exponen-

tial discretization (e.g., 0.1, 0.01, 0.001). For predicates and foreign

key/primary key joins, we multiply this selectivity with |𝑅 |; for
general joins with |𝑅 × 𝑆 |. Compared to brute-force creation of all

left-deep join orders (2
𝑛−1

for chain, 𝑛! for clique queries) [72],

SelSampling generates only up to MAX join orders, and can be

terminated anytime (e.g., if maxi samples were taken).

S2 NextBestSearch:With Algorithm 2, we introduce an al-

ternative join order selection approach called next-best search that

R

S T U

T U S U T S

U T U S S T

1

2 3 4

5 6 7

8

Figure 2: The Join Order Search Space as a Tree: A path from

root to leaf denotes a sequence of joins. The visited nodes are

marked in gray, and the digits indicate the order in which

they are visited using the Next-Best Join Order Search. At

step 8, the algorithm emits the first join order ⟨𝑅, 𝑆,𝑇 ,𝑈 ⟩.

uses a priority queue to explore join candidates in a breadth-first

searchmanner. The algorithm considers the search space a tree with

parent-child sequences representing join orders. In this tree, the set

of all paths from root to leaf node is the set of all legal join orders.

Figure 2 shows an example of such a join order search tree. We ex-

plore the tree by retrieving all possible join candidates 𝑆 for a given

node 𝑅. The function GetNextJoin(S) then determines the 𝑛 |𝑅 |
fittest candidates, with 𝑛 |𝑅 | being the number of edges to consider

at a certain tree level. For each candidate 𝑠𝑖 , the algorithm pushes

an item containing the current node, the join candidate 𝑠𝑖 , the tree

level (i. e., the length of the current join sequence 𝑅), and the fitness

index 𝑖 . The priority queue compares its items based on the tree

level and fitness index—similar to recent heuristic search strategies

in join enumeration to maximize pruning [41]—so that the fittest

join candidate in the lowest level is always the next item to pro-

cess. Depending on the values for 𝑁 = (𝑛0, . . . , 𝑛 | 𝐽 |), the maximum

number of join orders MAX, and GetNextJoin, the algorithm al-

lows finding different join order subsets. For example, setting 𝑁

to increasing values favors diversity of join candidates for the rear

joins of a join order. We utilize two versions of GetNextJoin:

• S2a GetRandom: Pick a random join candidate.

• S2bGetMinCard: Pick the join candidate with the lowest

estimated cardinality.

Basic Heuristics: Besides the search-based approaches, we use

two simple additional heuristics to generate alternative join orders:

• S3 PushDown: Permute the original join order such that

each join gets pushed to be the first in the join order once

if legal (assuming that the first join in the pipeline often

has the largest performance impact [86]).

• S4 PullUp: Pull each join to the last position in the join

order if possible (assuming that join blowups may be miti-

gated if the problematic join is pulled up to the end of the

join order as other joins may filter its input).

2.4 Pipeline Execution

During query execution, POLAR routes tuples from the source table

of a pipeline through multiple join paths. The pipeline executor of

these paths reports the performance and calculates their resistance

for future routing decisions. By using thread-local state (e.g., for

tuple buffers andmultiplexer state), POLAR can execute its pipelines

in parallel without blocking. In this section, we discuss the related

techniques for pipeline orchestration, our resistance metric, and

parallel execution strategies in detail.

Pipeline Orchestration: To process a POLAR pipeline, the data-

base system spawns a custom POLAR pipeline executor responsible

for passing tuples to the operators according to the multiplexer’s

routing decisions. The executor fetches chunks (i. e., mini-batches

or sets of tuples) from the source and passes them sequentially

through the pipeline. The multiplexer consumes a chunk and re-

turns an output chunk containing a subset of the input (or the

whole input) and the index of the next join order to pass the subset

to. If the multiplexer does not return all tuples from the input, the

executor re-invokes the multiplexer with the same input chunk in

the next iteration to emit the next tuple subset instead of fetching a

new chunk from the source. After routing the chunk to its dedicated

join order, the executor passes the chunk to the adaptive union,

other pipeline operators, and finally the pipeline sink. During this

process, the executor counts the number of intermediates appearing

within the path as a performance indicator. We chose intermediates

over time because they allow isolated observations (irrespective of

other operators and parallelism), and the related 𝐶𝑜𝑢𝑡 cost model

is known to be simple yet accurate [65, 72]. After fully processing

one multiplexer output chunk in a join order, the executor reports

back the number of intermediates from that routing iteration to the

multiplexer. This design allows adapting the plans of least resistance

to clustered data. For example, table 𝑅 from Figure 1 may have

many matches with 𝑆 and few with 𝑇 for its first half of rows but

behave the opposite for its second half. For this reason, POLAR

never discards previously generated join orders.

Resistance Metric: As a proxy for performance, the POLAR

executor calculates a join order resistance. This quantity comprises

the sum of intermediate results 𝐼 observed in the current routing

iteration, the number of tuples routed to the current join order

𝑇 , and a constant𝑤 representing the overhead of a routing itera-

tion without intermediate results. We calculate the resistance as

𝑟 = 𝐼
𝑇
+𝑤 . The constant𝑤 prevents edge cases of a routing itera-

tion with zero intermediates counting as infinitely better than an

iteration with few intermediates. If only a few tuples are routed to

a join order, the resistance may not be representative for a larger

set of tuples. Consequently, the executor applies a moving average

from previous iterations for smoothing fluctuations.

Parallel Source

Parallel Sink

Thread 1 Thread 2

Multiplexer

...

...

...

Multiplexer

...

...

...

Figure 3: Parallel Execution: Each thread processes a pipeline

with an isolated state, sharing build sides to probe into.

Parallel Execution: Similar to traditional data-parallel process-

ing, POLAR executes pipelines in a multi-threaded fashion using

multiple executors with thread-local states (cf. Figure 3). The ex-

ecutors concurrently fetch batches of tuples from the source and

push results to the sink. Each executor has an isolated multiplexer

state and calculates the path resistances solely based on its fetched

tuples. Note that the executors only isolate their processing states

but share build-side data structures such as read-only hash tables.

With the input tuples, the executor follows the paths sequentially

and independently from each other. The lack of global multiplex-

ing may delay finding better paths because each multiplexer com-

putes resistances individually. However, this parallelization strategy

avoids synchronization among the executors and ensures correct

resistance metrics for clustered data. As an alternative baseline

parallelization strategy, POLAR also supports spawning one thread

per join order and applying a backpressure mechanism to route

tuples in a self-scheduling manner (cf. Section 3.4).

3 ROUTING STRATEGIES

At the core of POLAR pipeline execution is the multiplexer operator

that makes routing decisions for exploration and exploitation to

determine the number of input tuples for each join order. To this

end, the pipeline executor passes an input chunk to the multiplexer,

which uses a routing strategy to return the next join path index

and a subset of the tuples to route. The routing strategies attempt

to follow the plans of least resistance, which is the—potentially

temporally changing—sequence of join order paths that incur the

fewest number of intermediates. In this section, we first discuss the

overall multiplexer algorithm, followed by four dedicated routing

strategies used by the multiplexer and one self-scheduling strategy.

3.1 Overall Multiplexer Algorithm

Algorithm 3 shows the overall multiplexer algorithm. In the initial-

ization phase, the multiplexer sends a small number of tuples to

each join order with a resistance of zero (i. e., an uninitialized join

order without reported resistance) to measure initial performance.

When all join orders are initialized, the multiplexer requests a tuple

distribution from a configurable routing strategy. The distribution

indicates the fraction that each join order receives from the current

input chunk. The algorithm finally returns the join order index

with the largest fraction and its respective input tuple count. If

the multiplexer does not emit all tuples from the input chunk, the

multiplexer emits the remaining tuples from the tuple distribution

in the next iteration until the input chunk is fully processed (cf.

Section 2.4). In the following, we introduce four different routing

strategies implementing the tuple distribution method. Assuming

that POLAR is executed in a vectorized database system, the imple-

mentation must trade-off path optimality (following the cheapest

path through the join orders) and operator cache friendliness (min-

imizing the number of join order switches). The caching aspect can

impact the processing performance as the pipeline executor must

flush all operator caches buffering intermediates for vectorization

before reporting the join order resistance to ensure that each in-

put tuple has been fully processed and was thus correctly counted.

Additionally, processing without buffering or too frequent plan

switches may increase the number of instruction cache misses [88].

Algorithm 3 Multiplexer

Input: Tuple Distribution𝑇 , Resistances W
Output: Join Order Index idx, Tuple count 𝑐

1: if ∃𝑡
idx
∈ 𝑇 : 𝑡

idx
> 0 then

2: fraction← 𝑡
idx

// Route tuples from previous multiplexing

3: 𝑡
idx
← 0

4: return idx, fraction · INPUT_SIZE
5: else if ∃𝑤

idx
∈ W : 𝑤 = 0 then // Initialize join order

6: return idx, INIT_COUNT

7: 𝑇 ← GetTupleDistribution(W)
8: idx, fraction← max(𝑇)
9: 𝑡

idx
← 0

10: return idx, fraction · INPUT_SIZE

3.2 Static Selection

Static routing strategies, or path selection approaches, do not per-

form any exploration apart from initialization. For this reason, they

are very simple to implement, and thus, we omit their pseudo-code

of GetTupleDistribution but provide high-level descriptions.

R1 InitOnce: This simple strategy retrieves the join order with

the lowest resistance after the initialization phase and then routes

every following chunk to that join order. InitOnce is extremely

cache-friendly (i.e., in terms of tuple buffering in operator pipelines)

because it does not require path switching or counting intermedi-

ates throughout the query. However, this strategy is prone to bad

routing if a join order only performs well for the first few tuples.

Moreover, it is unable to find well-performing paths if different join

orders are optimal for different data clusters of the source.

R2 Opportunistic: The Opportunistic routing strategy is

similar to InitOnce but makes use of the resistance reports after

routing each chunk. If the reported resistance of the current join

order exceeds the resistance of another, it routes the next input

chunks to that join order. This approach allows switching join or-

ders if the previous order deteriorates. However, the decision is

solely based on the resistance of a single join order and old initial-

ization results of others, which may miss additional opportunities,

such as better plans for clusters of data. Cache flushing is needed

but can be reduced by only updating the resistance after every 𝑛-th

chunk, trading granularity with cache-efficiency.

3.3 Pro-active Exploration

In order to handle varying data characteristics and find well-per-

forming join orders, routing strategies need to pro-actively explore

alternative join orders. To this end, these strategies periodically

route tuples to join orders that performed sub-optimal in the past.

We introduce two strategies that both use the notion of an ex-

ploration budget that probabilistically bounds the overhead the

strategy allocates for finding the optimal join path (cf. Section 2.1).

The two following strategies use the exploration budget to calcu-

late a tuple distribution over the join orders, producing additional

intermediates based on the resistances measured so far.

R3 AdaptTupleCount: For each input chunk, the Adapt-

TupleCount strategy determines a tuple distribution that (assum-

ing previous resistances) would stay within the exploration budget

relative to the best path’s intermediate count. The strategy initial-

izes the output tuple fractions with ones (line 1), orders paths by

0 100 200 300
0

1

2
InitOnce

0 100 200 300

Opportunistic

0 100 200 300

AdaptTupleCount

0 100 200 300

AdaptWindowSize

Tuples

Jo
in

 o
rd

er
 in

de
x

Figure 4: Behavior of four different routing strategies in a single-threaded example scenario with 30 input batches of 10 tuples

each (green: optimal join paths, blue diamond: multiplexer invocations, blue line: path chosen by routing strategy).

Algorithm 4 GetTupleDistribution – AdaptTupleCount

Input: ResistancesW, Output: Tuple Distribution𝑇

1: 𝑇 ← Initialize(|W |, 1)
2: W← SortInc(W)
3: cost ← LastElement(W)
4: for 𝑖 ← |W | − 1 to 0 do // Calculate distribution bottom-up

5: target ← 𝑤𝑖 · (1 + BUDGET)
6: decrease← 𝑤𝑖−target

𝑤𝑖−cost
7: for 𝑗 ← 𝑖 + 1 to |W | do // Adjust fractions to new target

8: 𝑡 𝑗 ← 𝑡 𝑗 · decrease
9: 𝑡𝑖 ← 1 − decrease

10: cost ← target

11: return𝑇

Algorithm 5 GetTupleDistribution – AdaptWindowSize

Input: ResistancesW, Output: Tuple Distribution𝑇

1: 𝑇 ← Initialize(|W |, 0)
2: 𝑡

minIndex(𝑊) ← 1 // Route all tuples to least resistant order

3: size, offset ← GetWindowState()
4: if size = 0 then // Determine window size

5: 𝑊 ′ ←W \ min(W)
6: size← 1

INPUT_SIZE
·
∑
𝑤′
𝑖
·INIT_COUNT

BUDGET·min(𝑊)

7: if offset < size then

8: offset ← offset + 1
9: else // Re-explore join orders next time

10: W← SetToZero(W \ min(W)) // Reset resistances

11: offset, size← 0

12: SetWindowState(size, offset)
13: return𝑇

their resistances (line 2), and adjusts the distribution in a bottom-up

fashion. We start by reducing the problem to the two join orders

with the highest resistances. The target cost is based on the lower

resistance and the exploration budget, which we then use to calcu-

late a decrease factor (line 6). By multiplying that factor with the

join order’s tuple fraction, we find the amount of tuples that must

be sent to the worst join order to stay within the exploration budget

based on the resistance of the second-last join order. Consequently,

the amount for the second-last order is 1 − decrease (line 10). We

calculate these values for the next-best join order while decreasing

the fractions of the orders with higher resistances until we reach the

first join order. AdaptTupleCount calculates tuple distributions

for each incoming chunk, allowing for fine-grained path explo-

ration bounded by the exploration budget. However, splitting each

chunk into smaller sets of tuples obstructs vectorized execution

and causes many cache flushes to report resistances. To reduce the

number of splits per chunk, the algorithm could serve only join

orders receiving more than 𝑛 tuples, redistributes unserved tuples,

and recalls them when calculating the next distribution.

R4 AdaptWindowSize: In contrast to AdaptTupleCount,

theAdaptWindowSize strategy does not calculate individual tuple

counts per join order. Instead, this strategy either routes complete

chunks or a static, low number of tuples and adapts the window

size (i. e., number of input chunks) within which it will only serve

the best join order. When exceeding the window, it re-initializes the

remaining join orders by routing a small number of tuples to each

of them. The internals of this strategy are shown in Algorithm 5,

which distinguishes between three cases. Irrespective of the case,

this strategy always returns a tuple distribution in which the best

order receives the whole input chunk (line 2). If there is no window

size calculated yet (line 4), we estimate the number of intermediates

occurring in a reinitialization phase based on the resistances and

adjust the number of tuples for reinitialization accordingly. We then

divide the cost estimate by the overhead allowed by the exploration

budget resulting in the number of tuples that should be routed to

the best join order before reinitializing the others. The number

of tuples per chunk scales this value down to the window size

(line 6). If the current offset does not exceed the window size, we

increment it (line 9). Finally, if the window size is exceeded, we set

the resistances for all join orders, except the best, to zero (line 12) to

trigger re-initialization on the next invocation. By routing multiple

chunks to the same join order, the AdaptWindowSize strategy

better allows for vectorization and can defer cache flushing until the

window size is exceeded. On the other hand, its path exploration

granularity is more coarse-grained than AdaptTupleCount as

changes in resistances may appear within the routing window.

Example 1 (Routing Example). To illustrate the behavior of

the routing strategies, Figure 4 compares their decisions in an exam-

ple scenario (three join orders, 30 input chunks of 10 tuples each).

The resistances of the join orders change every 10 chunks, namely

𝐶0 ← ⟨1, 10, 15⟩, 𝐶10 ← ⟨10, 15, 5⟩, and 𝐶20 ← ⟨10, 1, 5⟩. The result-
ing optimal path changes from 1st to 3rd to 2nd (indicated as green

solid lines). The blue diamonds show the multiplexer invocations of

the different paths, and the blue line indicates the chosen path. Init-

Once tests every join order once and follows the initially optimal

path. The Opportunistic strategy switches to the correct path after

the first one deteriorates but misses the second switch. AdaptTuple-

Count correctly adapts to the optimal join paths but requires many

switches and multiplexer invocations, including cache flushing. Fi-

nally, AdaptWindowSize first uses a large window and thus detects

the join order switch only after a delay. Later, it reduces the window

size as the difference between the resistances decreases. Hence, the

next switch comes after a shorter delay due to window resizing.

3.4 Self-scheduling

R5 Backpressure: To enable comparing against a self-scheduling

strategy without parameters, we include a “backpressure” strategy.

Instead of using a multiplexer, the POLAR pipeline spawns indi-

vidual threads for each join order so that each thread concurrently

pulls new input chunks. The approach does not depend on a budget

and simply favors faster join orders as they can pull more chunks

per time unit than others. The Backpressure strategy does not rely

on multiplexing, does not require any operator cache flushes, and

thus, fully supports vectorized execution. However, with potentially

many join orders, this strategy has the intrinsic limitation that the

majority of threads waste CPU cycles on sub-optimal paths.

4 LIMITATIONS AND SCOPE

POLAR is designed for adaptive query processingwith non-invasive

system integration as well as small and bounded overhead. This

design leads to certain limitations as its applicability is ultimately

dependent on the system’s existing query optimizer.

• Amenable Pipelines: POLAR only replaces left-deep-trees. If

the optimizer emits a right-deep tree (where intermediates

feed into the build side of hash joins), POLAR cannot gen-

erate alternative join orders, as there are no pipelines with

more than one join. Support for directed acyclic graphs

(DAGs) and bushy trees is interesting future work.

• Source Table: As POLAR replaces normal operator pipelines

that consume tuples from a specific source, it cannot change

the source (sometimes called driver [66]) table.

• Operator Types: POLAR only supports pipelines with join

sequences. Extended support for additional operators—such

as projection, selection, and groupjoin [75]—is interesting

future work as well.

POLAR is currently most applicable to star-schema workloads

with cardinality estimation challenges (e. g., parameterized queries,

UDFs, correlated data). If the source table contains clustered data

(e. g., orders sorted by date with different join cardinalities over

time), POLAR can further exploit different plans for different data.

5 EXPERIMENTS

Our experimental evaluation of a prototype implementation of

POLAR studies its general applicability and performance character-

istics with a variety of benchmarks. After describing the prototype

and experimental setting, we use various micro benchmarks to

evaluate the behavior of different strategies and parameters and

conduct end-to-end performance comparisons with DuckDB [81],

Postgres [90], SkinnerDB [93, 94], SkinnerMT [97], and Lookahead

Information Passing [102] in DuckDB. Our major findings are that:

(1) Non-invasive AQP yields robust end-to-end performance,

(2) Offers substantial speedups for certain queries, especially

on skewed benchmarks, and

(3) Is already effective with small exploration budgets of ≤1 %.

Table 2: Total Number of Intermediates and Fraction of Total

Execution Time Spent in Amenable Pipelines (Coverage).

Benchmark DuckDB Routing Static Coverage

JOB 107.49M 16.92M 25.84M 36 %

SSB 747.67M 547.40M 578.23M 73 %

SSB-skew 2690.05M 342.67M 474.28M 99 %

5.1 Experimental Setup

Prototype:We implemented POLAR in DuckDB, a state-of-the-art

OLAP DBMS. The prototype
1
, including the different routing and

selection strategies, is 2500 LoC and requires minimal changes to

the existing DuckDB code. The input to POLAR is a query plan

produced by the DuckDB optimizer, which uses equivalence sets to

estimate cardinalities [36] and DPhyp [74] for join ordering.

Evaluation System:We conducted all experiments on a Lenovo

ThinkSystem SR635 server with a single AMD EPYC 7443P CPU

at 2.85GHz (24 physical/48 virtual cores), 256GB DDR4 RAM at

3.2GHz, 1 × 480GB SATA SSD, 8 × 2TB SATA HDDs (data) and

Mellanox ConnectX-6 HDR/200Gb Infiniband. We compiled the

source code with clang-12 on Ubuntu 20.04.1.

Benchmarks: We evaluate POLAR on the Join Order Bench-

mark (JOB) [64], Star Schema Benchmark (SSB) [79], and a modified

SSB with correlation and skew (SSB-skew), both with a scale factor

of 100. We introduce SSB-skew as a benchmark with SSB’s appli-

cability (long join pipelines, cf. Section 5.2) but real-world data

characteristics such as cross-correlations, skew, and clustered data.

In SSB-skew, most customers are from the US and most suppliers

are from Asia. Moreover, the part table references are skewed, so
many lineitems belong to a few part categories and brands. The

lineorder table is clustered by order date, with a recession of few

orders in 1997 and a year of growth in 1998. Finally, the number of

lineitems from suppliers in the United States increases over time.

SSB-skew uses SSB’s original queries except query set 1 (only one

join). We do not use TPC-H [92] and JCC-H [20] because (1) their

optimal join orders are well-known and often tuned for, and (2) the

join orders generated by DuckDB are mostly right-deep trees, not

amenable to POLAR. We also considered the LDBC Social Network

BI Workload [7], but LDBC requires advanced SQL features which

are not supported by all systems we compare, and the DuckDB

optimizer often generates pipelines with alternating joins and pro-

jections, which our prototype does not yet support (cf. Section 4).

5.2 Applicability Study

In a first series of experiments, we aim to analyze the potential

of POLAR by estimating the possible reduction in the number of

intermediates with optimal routing strategies. These results serve

as a baseline—in terms of an upper bound—for later experiments

evaluating the quality of POLAR routing strategies. Furthermore,

we also examine the time spent in amenable pipelines. Combining

these measures allows estimating the overall potential.

Potential Reduction of Intermediates: Table 2 shows the

potential performance improvements achievable with adaptive join

order switching. We calculated the potential improvement by mea-

suring the number of intermediate results for all amenable pipelines

1
We share our prototype and artifacts at https://github.com/damslab/reproducibility.

https://github.com/damslab/reproducibility

1x 10x
Potential Improvement

0.0

0.5

1.0

Fr
ac

tio
n

of
 Q

ue
rie

s

JOB
SSB
SSB-skew

Figure 5: Potential Query Performance Improvement.

using DuckDB’s default join order, the best static join order for each

pipeline, and an estimated optimal routing strategy. We determined

this optimal value using a multiplexer debugging mode, routing

each input chunk to every legal join order and measuring the min-

imal number of intermediates. Table 2 shows that dynamic tuple

routing reduces the number of intermediates for all benchmarks

but the potential improvement over an ideal static join order is

most significant with skewed datasets. For JOB, the best static join

order produces 25.84M tuples compared to 107.49M tuples from

DuckDB’s default join order. Dynamic routing further improves this

number to 16.92M tuples. This result shows that a better static join

order could improve JOB to a large extent without dynamic join or-

der switching at runtime. For SSB, neither join order switching nor

better join orders considerably improve the number of intermedi-

ates. The best static join order produces 578.23M tuples, a moderate

improvement over the 747.67M tuples in the default DuckDB plan,

and dynamic routing yields only a slight additional improvement

to 547.40M tuples. DuckDB’s near-optimal plan for SSB is expected

because the benchmark contains well-behaved FK/PK joins and

uniform, non-skewed data. For SSB-skew, which includes corre-

lation and skew, the potential for improvement is much higher.

The default DuckDB join order produces 2690.05M tuples, while

the best static join order produces 474.28M tuples. Tuple routing

further decreases the optimal number of intermediates to 342.67M.

Thus, SSB-skew benefits from routing about the same as JOB.

Coverage of Amenable Pipelines: Given DuckDB’s default

query plans, we measure each benchmark’s total execution time

and the time spent processing POLAR-amenable pipelines (i. e.,

pipelines containing left-deep trees of two or more joins). Com-

paring the difference of these values yields the Coverage, that is,

the fraction of time spent in improvable pipelines. Note that the

coverage also includes other operators from these pipelines, such

as scans and aggregations, which POLAR cannot improve. The Cov-

erage column in Table 2 shows that for JOB, DuckDB only spends

36 % of the processing time in POLAR-applicable pipelines. Conse-

quently, almost two-thirds of the total execution time cannot be

improved by POLAR. For SSB, DuckDB spends 73 % of the time in

applicable pipelines, but many of them are dominated by large table

scans and the joins only account for a small portion of the time. For

SSB-skew, DuckDB spends almost all of the execution time (99 %)

in applicable pipelines, and joins account for a large fraction of that

time, providing substantial room for performance improvements.

Potential Query Performance Improvement: Furthermore,

we aim to assess how much the runtime of individual queries could

be improved. We estimate these improvements per query by multi-

plying the optimal number of intermediates with the coverage of

amenable pipelines (assuming a linear relationship between tuple

0 1 2 4 6 8 10 12 14 16
Selectivity Space Samples

20

21

22

23

M
in

. I
nt

er
m

ed
ia

te
s

JOB
SSB
SSB-skew
Exhaustive

Figure 6: SelSampling – Rel-

ative Number of Intermedi-

ate of Best Join Order with In-

creasing Number of Samples.

5 10 15
Sample Count

0.0

0.1

0.2

0.3

Av
er

ag
e

Co
m

pi
le

 T
im

e
(m

s)

SelSampling
GetMinCard
GetRandom
PullUp
PushDown

Figure 7: Average Pipeline

Compilation Time [ms] for

Different Join Order Selec-

tion Strategies on SSB.

count reduction and execution time). Figure 5 shows a cumulative

distribution function over the potential performance improvements

for all queries. Less than 10% of the queries in JOB and SSB can

be improved by more than 2x. Queries in SSB-skew show a much

larger potential for improvement: over 40 % of the queries can be

improved by more than an order of magnitude.

5.3 Micro Benchmarks

In order to understand the trade-offs of different join selection and

routing strategies, in a second series of experiments, we conduct

several micro benchmarks regarding plan quality, compilation time,

adaptivity, and runtime overhead. We also investigate the impact

of the exploration budget on adaptivity and overhead. All micro

benchmarks were executed single-threaded to isolate the effects.

Sampling for Join Order Selection: The SelSampling join se-

lection strategy—introduced in Section 2.3—systematically samples

the space of cardinalities to find alternative join orders. We set the

maximum join order count𝑀𝐴𝑋 to |𝐽 |! (i. e., the number of possi-

ble orders for joins 𝐽 , assuming clique queries). For an increasing

number of samples, we determine the best possible outcome for

the resulting join order set in terms of the intermediate optimum

introduced in Section 5.2. As a baseline, we exhaustively enumerate

all possible join orders for each of the join pipelines. The results in

Figure 6 show that even few samples allow for effective intermedi-

ate result reduction close to the level of exhaustive enumeration.

By default, we set the sample count to 8 for the following exper-

iments, which allows POLAR to find well-performing sequences

of join paths while excluding unnecessary routing options. We

used SSB-skew to test performance penalties induced by exhaustive

enumeration and found deteriorations—despite no very long join

pipelines—of up to 9% with AdaptTupleCount and 1.5 % with

AdaptWindowSize compared to SelSampling using 8 samples.

Pipeline Compilation Time: The time required to compile

a POLAR pipeline is dominated by the join order selection. We

measure this compilation time for the different join order selection

strategies using pipelines with varying numbers of joins from SSB

and SSB-skew as they contain the longest join pipelines. Figure 7

compares the average pipeline compilation time with an increasing

number of samples for SelSampling to the other strategies (again,

with a join path limit of 8). Our results show that SelSampling

generally takes longer to compile than the baselines, and its com-

pilation time increases linearly until it reaches 8 join orders. After

10−4 10−2 100
0.0

0.5

1.0
1e8 JOB

10−4 10−2 100
0.0

2.5

5.0

7.5

1e8 SSB

10−4 10−2 100
0

1

2

1e9 SSB-skew

Exploration Budget

In
te

rm
ed

ia
te

s

AdaptWindowSize
AdaptTupleCount
Optimal
DuckDB

Figure 8: Exploration Budgets – Number of Intermediate Tuples for Different Routing Strategies and Exploration Budgets (the

dotted lines denote sweet spots in which the strategy generates minimal intermediates).

Table 3: Join Order Selection – Total Number of Intermediates

for POLAR Pipelines with Different Selection Strategies.

Enumeration JOB SSB SSB-skew JOB-ldt

DuckDB 107.49M 747.67M 2690.05M 248.30M

Optimal 16.92M 547.40M 342.67M —

SelSampling 17.97M 576.76M 347.61M 160.52M

GetMinCard 16.92M 573.72M 351.42M 192.68M

GetRandom 16.92M 572.31M 356.09M 193.07M

PushDown 17.04M 562.50M 356.09M 208.41M

PullUp 17.22M 595.18M 512.69M 210.57M

that, the increase becomes smaller as the strategy stops taking new

samples if we already found𝑀𝐴𝑋 distinct join orders. In any case,

the compilation time for any pipeline is way below one millisecond

and thus, negligible compared to the overall query processing times.

Join Order Selection: We further compare the quality of the

join order selection strategies by comparing the actual number of

intermediates to the optimal number, as described in Section 5.2.

To stress-test the different join order selection strategies, we also

compared JOB-ldt, which compiles the JOB queries using a greedy

algorithm that only generates left-deep trees. Table 3 summarizes

the results. For GetMinCard and GetRandom, we limit the num-

ber of join orders to 8, analogous to the SelSampling. For our set

of benchmarks, even simple strategies such as PushDown yield

competitive results that are close to the optimal number of interme-

diates. However, especially on SSB-skew, PullUp performs poorly.

On JOB-ldt, SelSampling outperforms our baselines noticeably. Fur-

thermore, as GetMinCard and GetRandom always produce the

maximal number of join orders within the user-set limit and Push-

Down may include plans that are highly unlikely well-performing

(such as an PK-FK join on a table without predicate as first join),

SelSampling is the only strategy that may select small sets of use-

ful, complementary join orders excluding unreasonable join paths.

Therefore, we use SelSampling as POLAR’s default.

Join Order Initialization: All routing strategies (excluding

Backpressure) use a static number of tuples to initialize each of

the join paths. In AdaptWindowSize, this number is also used

to explore weaker paths after the initialization phase. To find a

meaningful tuple count for path (re-)initialization, we conduct an

experiment using the InitOnce strategy with an increasing number

of initialization tuples and count the resulting number of interme-

diates. Figure 9 shows the results of that experiment. For JOB, 8

initialization tuples are already sufficient to determine join orders

2 4 8 16 32 64 128 256 512 1024
Init Tuple Count

0.00

0.25

0.50

0.75

1.00

Re
l.

In
te

rm
ed

ia
te

 C
ou

nt

JOB
SSB
DuckDB

Figure 9: Path Initialization – Relative Number of Intermedi-

ates for Initial Input Tuple Counts using InitOnce.

that produce less than 40% intermediates incurred by DuckDB.

However, for SSB, the number of intermediates gradually improves

with the number of tuples. Therefore, we conservatively set the

default initialization tuple count to 1024, which is also the chunk

size in our DuckDB-based prototype.

Exploration Budgets: For adaptive routing strategies, such as

AdaptTupleCount and AdaptWindowSize, the quality of rout-

ing depends on the exploration budget. A higher budget allows the

strategies to adapt better to path changes but also incurs larger

overheads. To understand how the exploration budget affects the

different workload characteristics, we execute JOB, SSB, and SSB-

skewwith exploration budgets from 0.001 % to 320 %. Figure 8 shows

how the number of intermediates produced by the two adaptive

routing strategies varies with increasing exploration budget. Both

AdaptTupleCount and AdaptWindowSize achieve close to the

optimal numbers of intermediates. However, the ideal exploration

budgets differ for each benchmark. We attribute this effect to the

differences in exploration potential, already observed in 5.2. While

a larger budget only creates exploration overhead for SSB, explo-

ration is crucial to find better join order alternatives for JOB and

SSB-skew as the data characteristics change during query execu-

tion. AdaptWindowSize is especially sensitive to the exploration

budget while AdaptTupleCount shows more robust behavior:

small exploration budgets of up to 1% are sufficient to obtain ro-

bust performance characteristics. Moreover, the sweet spots for

AdaptWindowSize are generally higher than for AdaptTuple-

Count as the latter consistently keeps exploring alternative join

orders even under small exploration budgets. As a result of this

analysis, we set the exploration budget for AdaptWindowSize to

1 % and AdaptTupleCount to 0.1 % for the following experiments.

Routing Strategies – Intermediates:We compare the differ-

ent routing strategies from Section 3 with regard to the number

Table 4: Intermediate Results – Number of Intermediates of

Different Routing Strategies (Tuned Exploration Budgets).

Routing Strategy JOB SSB SSB-skew

DuckDB 107.49M 747.67M 2690.05M

Optimal 17.97M 576.76M 347.61M

InitOnce 44.92M 622.28M 790.52M

Opportunistic 24.81M 608.03M 499.75M

AdaptTupleCount 22.72M 613.07M 439.65M

AdaptWindowSize 25.04M 622.74M 360.12M

Backpressure 88.21M 2542.49M 3940.55M

Table 5: Execution Time – Pipeline Execution Time of Dif-

ferent Routing Strategies [seconds].

Routing Strategy JOB SSB SSB-skew

DuckDB 48.85 92.88 147.32

InitOnce 31.43 93.13 86.26

Opportunistic 31.16 107.28 92.25

AdaptTupleCount 31.43 120.51 100.85

AdaptWindowSize 30.85 94.19 76.28

Backpressure 67.69 217.93 222.76

of intermediates they produce. Table 4 shows the results. Adapt-

TupleCount produces the least intermediates for JOB and shows

competitive performance for SSB, whereas AdaptWindowSize

produces the fewest intermediate results for SSB-Skew. InitOnce

performs substantially worse than the adaptive strategies because

it picks sub-optimal join orders whenever the initialization phase is

not representative for the remaining data batches. This observation

is especially pronounced for SSB-skew, where there are different

optimal plans for different clusters of the data. The Opportunistic

strategy performs best on SSB as it allows path switching without

the overhead of exploration. Backpressure produces the most in-

termediate results because many executor threads process tuples

through sub-optimal join orders.

Routing Strategies – Execution Time: The performance of

routing strategies does not solely depend on reducing intermediates.

Another influential factor is howmuch adaptivity negatively affects

vectorized execution. A high path switching rate can reduce inter-

mediate buffer sizes, as explained in Section 3. Therefore, we also

examine the actual pipeline execution times for each routing strat-

egy, as they are closely correlated with overall query execution time.

Table 5 shows the total pipeline execution time for different strate-

gies using the tuned exploration budgets reported before. Since

AdaptWindowSize trades path exploration granularity for better

vectorization, the strategy performs best for exploration budgets

that are below its sweet spots for minimal intermediates. Interest-

ingly, the lowest number of intermediates does not necessarily lead

to the lowest pipeline execution time. Despite producing more inter-

mediates than its competitors on JOB and SSB, AdaptWindowSize

outperforms each of them in all of our benchmarks. Therefore, we

conclude that the strategy offers the best trade-off between reduc-

ing the number of intermediates and preserving good vectorized

execution. Thus, we use AdaptWindowSize as POLAR’s default

routing strategy for the remainder of the experiments.

Table 6: Overall Performance Impact – Single-threaded Total

Execution Time, and Max Query Execution Time [seconds].

Total Execution Time Max. Query Time

JOB SSB SSB-skew JOB SSB SSB-skew

DuckDB 134.2 127.9 148.8 10.8 17.0 35.6

POLAR 115.4 129.0 76.8 3.9 18.3 11.9

Speedup 1.16x 0.99x 1.94x 2.78x 0.93x 2.98x

5.4 End-to-End Performance Comparison

Informed by the results from our micro benchmarks, we evaluate

POLAR’s end-to-end benchmark performance with SelSampling

join order selection with 8 samples, an initialization tuple count

of 1024, and the AdaptWindowSize routing strategy with a 1%

exploration budget for all benchmarks. In this context, we com-

pare POLAR with DuckDB [81], a Lookahead Information Pass-

ing [102] prototype on DuckDB, Postgres [90], SkinnerDB (i. e.,

Skinner-C) [93], and SkinnerMT [97], a state-of-the-art AQP sys-

tem, in both single- and multi-threaded configurations.

Overall Performance Impact: Table 6 shows the total, end-to-

end, single-threaded execution time and the maximum query exe-

cution times for DuckDB and POLAR on the different benchmarks.

POLAR shows a slight overhead on SSB in total and maximum

execution times and a moderate total execution time improvement

of 1.16x on JOB. Moreover, POLAR shows a substantial 1.94x end-

to-end improvement for SSB-skew and reduces the maximal query

runtimes for JOB and SSB-skew by 2.78x and 2.98x, respectively.

These results show that POLAR yields robust performance with

substantial improvements for workloads on skewed data and only

minor overhead for workloads where adaptation is not needed.

Query Performance Impact: Figure 10 shows the speedups

and slowdowns for each individual query with POLAR-amenable

pipelines in JOB, SSB, and SSB-skew. A value of 1 indicates an im-

provement of 100 % (i. e., half the execution time or 2x), whereas

a value of -1 indicates double the execution time. For most JOB

queries, POLAR has no positive or negative effect on the execution

time. However, for a few queries, POLAR substantially reduces

the execution time by up to 9x. The two queries with the largest

speedups are also the longest-running queries in the benchmark.

On SSB, the POLAR overhead increases the execution time for

most queries, as expected, given how close to optimal the origi-

nal plans are. However, one of the SSB queries also benefits from

POLAR. Finally, almost all queries in SSB-skew improve with PO-

LAR, up to 4x in one case. Therefore, POLAR achieves substantial

performance and robustness improvements on non-uniform data

and incurs only slight overhead for some queries on uniform data

due to plan exploration and impact on vectorization at runtime.

However, this moderate overhead is an acceptable price to pay for

increased robustness, and the overhead could be further decreased

when specializing POLAR to the underlying runtime system.

Number of Intermediates: The execution times of our baseline

systems are strongly correlated with their underlying execution en-

gines. Hence, we first conduct an experiment comparing the number

of intermediates produced by their join orders. Table 7 shows the

results. Note that SkinnerDB ran out-of-memory for SSB and SSB-

skew. However, for JOB, SkinnerDB achieves a much lower number

0

2

4

6

8
JOB

0.0

0.1

0.2

SSB

0

1

2

3
SSB-skew

QueriesPe
rfo

rm
an

ce
 Im

pa
ct

Speedup
Slowdown

Figure 10: Individual Query Performance Impact – Query performance changes between unmodified DuckDB and POLAR. A

value of +1 indicates the query was 100% faster (2x), and a value of -1 indicates a 100% overhead (doubled execution time).

1 8
0

100

200

300

400

115

 41

118

 41

134

 43

197

 31

419

 98

391
346

JOB

1 8
0

100

200

300

400

500

129

 19

136

 22

128

 20

502

182

SSB

1 8
0

200

400

600

 77
 13

 93
 19

149

 23

577

300

SSB-skew

Number of Threads

To
ta

l E
xe

cu
tio

n
Ti

m
e

(s
)

POLAR
LIP
DuckDB
SkinnerMT
SkinnerDB
Postgres

Figure 11: AQP System Comparison – Total execution times for JOB, SSB, and SSB-skew, using 1 and 8 threads [seconds].

Table 7: Total Number of Intermediates (𝐶𝑜𝑢𝑡) Comparison.

System JOB SSB SSB-skew

DuckDB 896M 761M 2690M

Postgres 271M 598M 536M

SkinnerDB 121M — —

POLAR 814M 636M 360M

of intermediates than DuckDB, POLAR, and Postgres because it is

not restricted to amenable pipelines. The comparison further shows

that Postgres generally produces plans with fewer intermediates

than DuckDB. Using POLAR reduces DuckDB’s intermediates and

outperforms Postgres by 1.4x on SSB-skew.

AQP System Comparison: To contextualize POLAR’s perfor-

mance, we compare POLAR, DuckDB, Postgres, SkinnerDB, and

SkinnerMT, measuring the total execution time in single- and multi-

threaded (8 threads) configurations. Additionally, we implemented a

prototype of Lookahead Information Passing [102] (LIP) in DuckDB

to compare POLAR against a bitmap filtering approach. We allow

SkinnerDB/MT to cache indexes on all join columns in memory to

reduce its pre-processing time. We use Postgres 12.15 with indexes

on all foreign key columns to prevent it from compiling aggressive

plans with fatal nested-loop joins on unindexed join columns. Fig-

ure 11 shows that POLAR performs equally or better than DuckDB,

SkinnerDB, and Postgres on almost all benchmarks. On SSB, PO-

LAR shows a similar performance as DuckDB both single- and

multi-threaded. On SSB-skew, POLAR outperforms DuckDB by

1.9x single-threaded and by 1.8x multi-threaded. While LIP shows

equal execution times as POLAR on JOB, it performs slightly worse

on SSB and substantially worse on SSB-skew. Regarding individ-

ual JOB queries, LIP shows occasional performance regressions

of more than 2x, which is in line with experimental results from

other bitmap filtering approaches [31, 63]. We account this per-

formance gap to the large number of additional hash probes, lack

of vectorization, and unstable bloom filter orderings. SkinnerMT

shows the best performance on JOBwithmultiple threads. However,

SkinnerDB/MT run out-of-memory on SSB and SSB-skew. Previous

experiments on SSB with scale factor 10 showed POLAR speedups

of up to 15.6x over SkinnerDB (8 threads, 1.9 s vs 29.6 s) and around

3.9x over SkinnerMT. We attribute this to SkinnerDB/MTs custom

join operator with tuple-at-a-time processing and the systems’ abil-

ity to change the source table, which requires building hash tables

for each relation. As expected, Postgres shows much higher total

execution times than POLAR and DuckDB, given its different target

workloads and runtime system. These experiments demonstrate

the benefits of a non-invasive, bounded-overhead system design in

an engine designed for analytic workloads. In contrast to invasive

AQP systems, POLAR favors reusing existing database components

and original plans resulting in competitive performance and much

greater performance robustness with modest overhead.

6 RELATEDWORK

Besides the brief background in the introduction, here, we broadly

survey related work and emphasize the differences of POLAR.

Traditional AQP: Adaptive query processing has received lots

of attention in the data management literature, and great surveys

[10, 30] and tutorials [29, 53] already exist. Existing classifications

distinguish AQP for traditional ad-hoc queries (or plan-based sys-

tems) versus continuous queries [10], as well as a spectrum of

adaptivity from coarse- to fine-grained adaptation [29]. First, inter-

query optimization utilizes learned cardinalities for expressions

[23, 25, 89] for optimizing future queries. Second, inter-pipeline op-

timization utilizes monitored statistics even within a single query.

Examples are late binding (staged execution) with re-optimization at

pipeline breakers [29] or at parameter binding in parametric query

optimization [17]. Third, inter-operator re-optimization compiles

new remaining plans at so-called checkpoint operators [57]. Similar,

progressive and pro-active re-optimization apply plan changes if

actual cardinalities are outside computed validity ranges [11, 71].

Fourth, intra-operator adaptivity allows changing plans after par-

tial operator evaluation. Examples are union stitch-up plans and

handling of state in double-pipelined hash joins [54], intra-query

adaptivity via reinforcement learning in SkinnerDB [93, 94, 97], as

well as adaptive join reordering of index-nested-loop joins with

depleted states for correctness [66]. Fifth, there is tuple routing with

routing policies in Eddies [8, 9, 16, 28]. Many of these strategies

require both optimizer and runtime extensions for effective and effi-

cient adaptivity. Moreover, Eddies requires complex tuple tracking

to produce correct results. Instead, POLAR aims at a simple system

integration with bounded exploration overhead.

AQP for Continuous Queries: The adaptation of continuous

queries—on infinite data streams—always focuses on intra-operator

and tuple-routing. Early stream processing systems with adaptive

query processing include STREAM [13], Aurora [2]/Borealis [1],

NiagaraCQ [26], and TelegraphCQ [24]. Unique characteristics are

the incremental collection of statistics to detect workload changes

[12], multi-query optimization with queries entering and leaving

the system, asynchronous optimization outside the critical path [18],

the applicability of load shedding [91], as well as stateful operators

and queues which require draining for plan changes [96]. Modern

distributed stream processing engines like Flink [6], Spark [99],

Beam [5], Heron [62]/Dhalion [37], and NebulaStream [100] further

deal with the reconfiguration of distributed query topologies. In

contrast to POLAR, AQP is naturally deeply integrated in almost

all components of such stream processing engines.

Different Plans for Different Data: Both, ad-hoc and contin-

uous queries are typically compiled and optimized according to

average statistics. However, especially in correlated data, relations

are naturally divided into partitions with different characteristics

[95]. Early work on selectivity-based partitioning [80] and content-

based routing [16] address this observation by generating different

plans for different partitions, and different value-based routing

policies. Such approaches often leverage more fine-grained statis-

tics such as serial histograms (i.e., detailed frequency matrices)

[51]. Recent work on multi-way join size estimation [55, 78] utilize

hash-based translation grids [78] and AKMV sketches [15] as well

as fast-AGMS sketches [55]. Since selectivity-based partitioning

might compute the same intermediate multiple times, further work

on sharing-aware horizontal partitioning [95] introduced a condi-

tional join plan, and related optimization and runtime techniques.

Exploratory AQP via reinforcement learning like SkinnerDB [93]

would also lend itself to discovering different paths. Due to repeated

path sampling, POLAR can also exploit different paths for different

data, but only if these tuples are scanned in a clustered manner.

Micro Adaptivity: Besides finding alternative plans (e.g., join

orders), some work also focused on micro adaptivity. Raducanu et al.

introduced this concept in Vectorwise [82] by providing alternative

kernel implementations (e.g., branch, no-branch), measuring their

runtime on sample vectors, and selecting the best configuration

via a learning algorithm. Later work used performance counters to

minimize the measurement overhead, and more properties such as

sortedness and co-clustering [101]. Other forms of micro adaptivity

are compiling continuous queries for HW specialization, paralleliza-

tion, as well as exploitation of selectivities or value distributions

[39, 85]. Micro adaptivity requires specific optimization algorithms,

whereas POLAR relies on existing optimizers without changes.

AQP for Non-relationalWorkloads:AQP ideas have also been

applied and extended for non-relational systems and workloads.

Examples include JIT compilation for programming languages [47]

(e.g., Java or WebAssembly); lazy expression compilation in Ten-

sorFlow [77], dynamic recompilation of blocks and functions in

SystemML [19]; periodic or on-demand reoptimization of integra-

tion flows [18]; and AQP on raw data [59]. These systems also

incrementally collect telemetry and perform plan adaptation, but

unlike POLAR, seek a single optimal plan or configuration.

Learned Optimizers and Estimators: With the trend towards

ML for systems [61], there has been substantial progress on im-

proved cardinality estimates that could mitigate some of the need

for AQP. Early work focused on the featurization of schemas and

workloads and sampling-based training data collection [35, 60, 98].

Hilprecht and Binnig later introduced representations for zero-

shot cost models [45, 46] that can generalize to unseen database

instances. Early work like LEO [89] also focused on learned car-

dinalities, but in retrospective had the problem of “fleeing from

knowledge to ignorance” [67] because the exponential search space

gets only sparsely sampled, and skewed cardinalities are often

larger than the estimates under independence assumption. How-

ever, recent work has shown that learned optimizers and cardinality

estimators can learn from mistakes [69, 70], making a case for state-

ful, learning-based systems [68], especially for cloud DBMS like

Snowflake [27] or Redshift [40]. In contrast to POLAR, integrating

learned optimizers and estimators is still very invasive in terms of

system complexity, bootstrapping, and integration points.

7 CONCLUSIONS

We introduced the new concept of plans of least resistance for lever-

aging adaptive query processing in a non-invasive manner. POLAR

pipelines replace, where applicable, standard join pipelines and in-

ternally multiplex tuple batches among alternative join paths. This

design allows periodically sampling join paths, collecting telemetry,

and adapting the routing to the best path accordingly. We draw

three key conclusions. First, the simple design without optimizer

changes greatly simplified the integration into systems such as

DuckDB. Second, POLAR shows robust performance but only on

workloads yielding a large fraction of applicable pipelines. Third,

there are examples of substantial performance improvements for

individual pipelines, queries, and workloads, especially for skewed

data (fix for bad cardinality estimates) and clustered data (exploit

different plans for different data partitions). Interesting directions

of future work include more advanced strategies for selecting al-

ternative pipelines (e.g., considering the uncertainty of cardinality

estimates), and broader support for different plan structures (e.g.,

DAGs, bushy plans, additional operators like groupjoin [75]).

ACKNOWLEDGMENTS

We thank the participants of Dagstuhl Seminar 17222 [21] and

22111 [22] for inspiring this research and invaluable discussions.

We also gratefully acknowledge funding from the German Fed-

eral Ministry of Education and Research (under research grant

BIFOLD23B) as well as initial funding from SAP.

REFERENCES

[1] Daniel J. Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Çetintemel, Mitch

Cherniack, Jeong-Hyon Hwang, Wolfgang Lindner, Anurag Maskey, Alex Rasin,

Esther Ryvkina, Nesime Tatbul, Ying Xing, and Stanley B. Zdonik. 2005. The

Design of the Borealis Stream Processing Engine. In CIDR. 277–289. http:

//cidrdb.org/cidr2005/papers/P23.pdf

[2] Daniel J. Abadi, Donald Carney, Ugur Çetintemel, Mitch Cherniack, Christian

Convey, Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and Stanley B.

Zdonik. 2003. Aurora: a new model and architecture for data stream manage-

ment. VLDB J. 12, 2 (2003), 120–139. https://doi.org/10.1007/s00778-003-0095-z

[3] M. Abhirama, Sourjya Bhaumik, Atreyee Dey, Harsh Shrimal, and Jayant R.

Haritsa. 2010. On the Stability of Plan Costs and the Costs of Plan Stability.

PVLDB 3, 1 (2010), 1137–1148. https://doi.org/10.14778/1920841.1920983

[4] Ashraf Aboulnaga, Peter J. Haas, Sam Lightstone, GuyM. Lohman, VolkerMarkl,

Ivan Popivanov, and Vijayshankar Raman. 2004. Automated Statistics Collection

in DB2 UDB. In VLDB. https://doi.org/10.1016/B978-012088469-8.50100-5

[5] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael

Fernández-Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills, Frances Perry,

Eric Schmidt, and Sam Whittle. 2015. The Dataflow Model: A Practical Ap-

proach to Balancing Correctness, Latency, and Cost in Massive-Scale, Un-

bounded, Out-of-Order Data Processing. PVLDB 8, 12 (2015), 1792–1803.

https://doi.org/10.14778/2824032.2824076

[6] Alexander Alexandrov et al. 2014. The Stratosphere platform for big data

analytics. VLDB J. 23, 6 (2014), 939–964. https://doi.org/10.1007/s00778-014-

0357-y

[7] Renzo Angles et al. 2020. The LDBC Social Network Benchmark. CoRR

abs/2001.02299 (2020). arXiv:2001.02299 http://arxiv.org/abs/2001.02299

[8] Remzi H. Arpaci-Dusseau. 2003. Run-time adaptation in river. ACM Trans.

Comput. Syst. 21, 1 (2003), 36–86. https://doi.org/10.1145/592637.592639

[9] Ron Avnur and Joseph M. Hellerstein. 2000. Eddies: Continuously Adaptive

Query Processing. In SIGMOD. 261–272. https://doi.org/10.1145/342009.335420

[10] Shivnath Babu and Pedro Bizarro. 2005. Adaptive Query Processing in the

Looking Glass. In CIDR. 238–249. http://cidrdb.org/cidr2005/papers/P20.pdf

[11] Shivnath Babu, Pedro Bizarro, and David J. DeWitt. 2005. Proactive Re-

optimization. In SIGMOD. 107–118. https://doi.org/10.1145/1066157.1066171

[12] Shivnath Babu, Rajeev Motwani, Kamesh Munagala, Itaru Nishizawa, and Jen-

nifer Widom. 2004. Adaptive Ordering of Pipelined Stream Filters. In SIGMOD.

407–418. https://doi.org/10.1145/1007568.1007615

[13] Shivnath Babu and Jennifer Widom. 2004. StreaMon: An Adaptive Engine for

Stream Query Processing. In SIGMOD. https://doi.org/10.1145/1007568.1007702

[14] Henriette Behr, Volker Markl, and Zoi Kaoudi. 2023. Learn What Really Matters:

A Learning-to-Rank Approach for ML-based Query Optimization. In BTW.

535–554. https://doi.org/10.18420/BTW2023-25

[15] Kevin S. Beyer, Peter J. Haas, Berthold Reinwald, Yannis Sismanis, and Rainer

Gemulla. 2007. On synopses for distinct-value estimation under multiset opera-

tions. In SIGMOD. 199–210. https://doi.org/10.1145/1247480.1247504

[16] Pedro Bizarro, Shivnath Babu, David J. DeWitt, and Jennifer Widom. 2005.

Content-Based Routing: Different Plans for Different Data. In VLDB. http:

//www.vldb.org/archives/website/2005/program/paper/thu/p757-bizarro.pdf

[17] Pedro Bizarro, Nicolas Bruno, and David J. DeWitt. 2009. Progressive Parametric

Query Optimization. IEEE Trans. Knowl. Data Eng. 21, 4 (2009), 582–594. https:

//doi.org/10.1109/TKDE.2008.160

[18] Matthias Boehm. 2011. Cost-based optimization of integration flows. Ph. D.

Dissertation. Dresden University of Technology. https://nbn-resolving.org/urn:

nbn:de:bsz:14-qucosa-67936

[19] Matthias Boehm, Douglas R. Burdick, Alexandre V. Evfimievski, Berthold Rein-

wald, Frederick R. Reiss, Prithviraj Sen, Shirish Tatikonda, and Yuanyuan

Tian. 2014. SystemML’s Optimizer: Plan Generation for Large-Scale Ma-

chine Learning Programs. IEEE Data Eng. Bull. 37, 3 (2014), 52–62. http:

//sites.computer.org/debull/A14sept/p52.pdf

[20] Peter A. Boncz, Angelos-Christos G. Anadiotis, and Steffen Kläbe. 2017. JCC-H:

Adding Join Crossing Correlations with Skew to TPC-H.. In TPCTC, Raghunath

Nambiar and Meikel Poess (Eds.), Vol. 10661. 103–119. http://dblp.uni-trier.de/

db/conf/tpctc/tpctc2017.html#BonczAK17

[21] Renata Borovica-Gajic, Goetz Graefe, and Allison W. Lee. 2017. Robust Per-

formance in Database Query Processing (Dagstuhl Seminar 17222). Dagstuhl

Reports 7, 5 (2017), 169–180. https://doi.org/10.4230/DagRep.7.5.169

[22] Renata Borovica-Gajic, Goetz Graefe, Allison W. Lee, Caetano Sauer, and Pinar

Tözün. 2022. Database Indexing andQuery Processing (Dagstuhl Seminar 22111).

Dagstuhl Reports 12, 3 (2022), 82–96. https://doi.org/10.4230/DagRep.12.3.82

[23] Nicolas Bruno and Surajit Chaudhuri. 2002. Exploiting statistics on query

expressions for optimization. In SIGMOD. 263–274. https://doi.org/10.1145/

564691.564722

[24] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J. Franklin,

Joseph M. Hellerstein, Wei Hong, Sailesh Krishnamurthy, Samuel Madden,

Vijayshankar Raman, Frederick Reiss, and Mehul A. Shah. 2003. TelegraphCQ:

Continuous Dataflow Processing for an Uncertain World. In CIDR. http://www-

db.cs.wisc.edu/cidr/cidr2003/program/p24.pdf

[25] Chung-Min Chen and Nick Roussopoulos. 1994. Adaptive Selectivity Estimation

Using Query Feedback. In SIGMOD. https://doi.org/10.1145/191839.191874

[26] Jianjun Chen, David J. DeWitt, Feng Tian, and Yuan Wang. 2000. NiagaraCQ: A

Scalable Continuous Query System for Internet Databases. In SIGMOD. 379–390.

https://doi.org/10.1145/342009.335432

[27] Benoît Dageville et al. 2016. The Snowflake Elastic DataWarehouse. In SIGMOD.

ACM, 215–226. https://doi.org/10.1145/2882903.2903741

[28] Amol Deshpande. 2004. An initial study of overheads of eddies. SIGMOD Rec.

33, 1 (2004), 44–49. https://doi.org/10.1145/974121.974129

[29] Amol Deshpande, Joseph M. Hellerstein, and Vijayshankar Raman. 2006. Adap-

tive query processing: why, how, when, what next. In SIGMOD. 806–807.

https://doi.org/10.1145/1142473.1142603

[30] Amol Deshpande, Zachary G. Ives, and Vijayshankar Raman. 2007. Adaptive

Query Processing. Found. Trends Databases 1, 1 (2007), 1–140. https://doi.org/

10.1561/1900000001

[31] Bailu Ding, Surajit Chaudhuri, and Vivek R. Narasayya. 2020. Bitvector-aware

Query Optimization for Decision Support Queries. In SIGMOD. ACM, 2011–2026.

https://doi.org/10.1145/3318464.3389769

[32] Harish Doraiswamy, Pooja N. Darera, and Jayant R. Haritsa. 2007. On the

Production of Anorexic Plan Diagrams. In VLDB. 1081–1092. http://www.vldb.

org/conf/2007/papers/research/p1081-d.pdf

[33] Harish Doraiswamy, Pooja N. Darera, and Jayant R. Haritsa. 2008. Identifying

robust plans through plan diagram reduction. PVLDB 1, 1 (2008), 1124–1140.

https://doi.org/10.14778/1453856.1453976

[34] Anshuman Dutt and Jayant R. Haritsa. 2014. Plan bouquets: query processing

without selectivity estimation. In SIGMOD, Curtis E. Dyreson, Feifei Li, and

M. Tamer Özsu (Eds.). 1039–1050. https://doi.org/10.1145/2588555.2588566

[35] Anshuman Dutt, Chi Wang, Azade Nazi, Srikanth Kandula, Vivek R. Narasayya,

and Surajit Chaudhuri. 2019. Selectivity Estimation for Range Predicates using

Lightweight Models. PVLDB 12, 9 (2019), 1044–1057. https://doi.org/10.14778/

3329772.3329780

[36] Tom Ebergen. 2022. Join Order Optimization with (Almost) No Statistics. Master’s

thesis. https://homepages.cwi.nl/~boncz/msc/2022-TomEbergen.pdf

[37] Avrilia Floratou, Ashvin Agrawal, Bill Graham, Sriram Rao, and Karthik Ra-

masamy. 2017. Dhalion: Self-Regulating Stream Processing in Heron. PVLDB

10, 12 (2017), 1825–1836. https://doi.org/10.14778/3137765.3137786

[38] Goetz Graefe, Wey Guy, Harumi A. Kuno, and Glenn N. Paulley. 2012. Robust

Query Processing (Dagstuhl Seminar 12321). Dagstuhl Reports 2, 8 (2012), 1–15.

https://doi.org/10.4230/DagRep.2.8.1

[39] Philipp M. Grulich, Sebastian Breß, Steffen Zeuch, Jonas Traub, Janis von Ble-

ichert, Zongxiong Chen, Tilmann Rabl, and Volker Markl. 2020. Grizzly: Effi-

cient Stream Processing Through Adaptive Query Compilation. In SIGMOD.

2487–2503. https://doi.org/10.1145/3318464.3389739

[40] Anurag Gupta, Deepak Agarwal, Derek Tan, Jakub Kulesza, Rahul Pathak,

Stefano Stefani, and Vidhya Srinivasan. 2015. Amazon Redshift and the Case

for Simpler Data Warehouses. In SIGMOD. 1917–1923. https://doi.org/10.1145/

2723372.2742795

[41] Immanuel Haffner and Jens Dittrich. 2023. Efficiently Computing Join Orders

with Heuristic Search. Proc. ACM Manag. Data 1, 1 (2023), 73:1–73:26. https:

//doi.org/10.1145/3588927

[42] Wook-Shin Han, Wooseong Kwak, Jinsoo Lee, Guy M. Lohman, and Volker

Markl. 2008. Parallelizing query optimization. PVLDB 1, 1 (2008), 188–200.

https://doi.org/10.14778/1453856.1453882

[43] Jayant R. Haritsa. 2010. The Picasso Database Query Optimizer Visualizer.

PVLDB 3, 2 (2010), 1517–1520. https://doi.org/10.14778/1920841.1921027

[44] Jayant R. Haritsa. 2020. Robust Query Processing: Mission Possible. PVLDB 13,

12 (2020), 3425–3428. https://doi.org/10.14778/3415478.3415561

[45] Benjamin Hilprecht and Carsten Binnig. 2022. One Model to Rule them All:

Towards Zero-Shot Learning for Databases. In CIDR. https://www.cidrdb.org/

cidr2022/papers/p16-hilprecht.pdf

[46] Benjamin Hilprecht and Carsten Binnig. 2022. Zero-Shot Cost Models for

Out-of-the-box Learned Cost Prediction. PVLDB 15, 11 (2022), 2361–2374.

https://www.vldb.org/pvldb/vol15/p2361-hilprecht.pdf

[47] Urs Hölzle and David M. Ungar. 1994. Optimizing Dynamically-Dispatched

Calls with Run-Time Type Feedback. In PLDI. 326–336. https://doi.org/10.1145/

178243.178478

[48] Fabian Hueske, Mathias Peters, Matthias Sax, Astrid Rheinländer, Rico

Bergmann, Aljoscha Krettek, and Kostas Tzoumas. 2012. Opening the Black

Boxes in Data Flow Optimization. PVLDB 5, 11 (2012), 1256–1267. https:

//doi.org/10.14778/2350229.2350244

[49] IBM. 2005. An architectural blueprint for autonomic computing. Whitepaper.

[50] Ihab F. Ilyas, Volker Markl, Peter J. Haas, Paul Brown, and Ashraf Aboulnaga.

2004. CORDS: Automatic Discovery of Correlations and Soft Functional De-

pendencies. In SIGMOD. 647–658. https://doi.org/10.1145/1007568.1007641

[51] Yannis E. Ioannidis. 1993. Universality of Serial Histograms. In VLDB. 256–267.

http://www.vldb.org/conf/1993/P256.PDF

[52] Yannis E. Ioannidis and Stavros Christodoulakis. 1991. On the Propagation of

Errors in the Size of Join Results. In SIGMOD. 268–277. https://doi.org/10.1145/

http://cidrdb.org/cidr2005/papers/P23.pdf
http://cidrdb.org/cidr2005/papers/P23.pdf
https://doi.org/10.1007/s00778-003-0095-z
https://doi.org/10.14778/1920841.1920983
https://doi.org/10.1016/B978-012088469-8.50100-5
https://doi.org/10.14778/2824032.2824076
https://doi.org/10.1007/s00778-014-0357-y
https://doi.org/10.1007/s00778-014-0357-y
https://arxiv.org/abs/2001.02299
http://arxiv.org/abs/2001.02299
https://doi.org/10.1145/592637.592639
https://doi.org/10.1145/342009.335420
http://cidrdb.org/cidr2005/papers/P20.pdf
https://doi.org/10.1145/1066157.1066171
https://doi.org/10.1145/1007568.1007615
https://doi.org/10.1145/1007568.1007702
https://doi.org/10.18420/BTW2023-25
https://doi.org/10.1145/1247480.1247504
http://www.vldb.org/archives/website/2005/program/paper/thu/p757-bizarro.pdf
http://www.vldb.org/archives/website/2005/program/paper/thu/p757-bizarro.pdf
https://doi.org/10.1109/TKDE.2008.160
https://doi.org/10.1109/TKDE.2008.160
https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa-67936
https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa-67936
http://sites.computer.org/debull/A14sept/p52.pdf
http://sites.computer.org/debull/A14sept/p52.pdf
http://dblp.uni-trier.de/db/conf/tpctc/tpctc2017.html#BonczAK17
http://dblp.uni-trier.de/db/conf/tpctc/tpctc2017.html#BonczAK17
https://doi.org/10.4230/DagRep.7.5.169
https://doi.org/10.4230/DagRep.12.3.82
https://doi.org/10.1145/564691.564722
https://doi.org/10.1145/564691.564722
http://www-db.cs.wisc.edu/cidr/cidr2003/program/p24.pdf
http://www-db.cs.wisc.edu/cidr/cidr2003/program/p24.pdf
https://doi.org/10.1145/191839.191874
https://doi.org/10.1145/342009.335432
https://doi.org/10.1145/2882903.2903741
https://doi.org/10.1145/974121.974129
https://doi.org/10.1145/1142473.1142603
https://doi.org/10.1561/1900000001
https://doi.org/10.1561/1900000001
https://doi.org/10.1145/3318464.3389769
http://www.vldb.org/conf/2007/papers/research/p1081-d.pdf
http://www.vldb.org/conf/2007/papers/research/p1081-d.pdf
https://doi.org/10.14778/1453856.1453976
https://doi.org/10.1145/2588555.2588566
https://doi.org/10.14778/3329772.3329780
https://doi.org/10.14778/3329772.3329780
https://homepages.cwi.nl/~boncz/msc/2022-TomEbergen.pdf
https://doi.org/10.14778/3137765.3137786
https://doi.org/10.4230/DagRep.2.8.1
https://doi.org/10.1145/3318464.3389739
https://doi.org/10.1145/2723372.2742795
https://doi.org/10.1145/2723372.2742795
https://doi.org/10.1145/3588927
https://doi.org/10.1145/3588927
https://doi.org/10.14778/1453856.1453882
https://doi.org/10.14778/1920841.1921027
https://doi.org/10.14778/3415478.3415561
https://www.cidrdb.org/cidr2022/papers/p16-hilprecht.pdf
https://www.cidrdb.org/cidr2022/papers/p16-hilprecht.pdf
https://www.vldb.org/pvldb/vol15/p2361-hilprecht.pdf
https://doi.org/10.1145/178243.178478
https://doi.org/10.1145/178243.178478
https://doi.org/10.14778/2350229.2350244
https://doi.org/10.14778/2350229.2350244
https://doi.org/10.1145/1007568.1007641
http://www.vldb.org/conf/1993/P256.PDF
https://doi.org/10.1145/115790.115835

115790.115835

[53] Zachary G. Ives, Amol Deshpande, and Vijayshankar Raman. 2007. Adaptive

query processing: Why, How, When, and What Next?. In VLDB. 1426–1427.

http://www.vldb.org/conf/2007/papers/tutorials/p1426-deshpande.pdf

[54] Zachary G. Ives, Alon Y. Halevy, and Daniel S. Weld. 2004. Adapting to Source

Properties in Processing Data Integration Queries. In SIGMOD. 395–406. https:

//doi.org/10.1145/1007568.1007613

[55] Yesdaulet Izenov, Asoke Datta, Florin Rusu, and Jun Hyung Shin. 2021. COM-

PASS: Online Sketch-based Query Optimization for In-Memory Databases. In

SIGMOD. 804–816. https://doi.org/10.1145/3448016.3452840

[56] Vanja Josifovski, Peter M. Schwarz, Laura M. Haas, and Eileen Tien Lin. 2002.

Garlic: a new flavor of federated query processing for DB2. In SIGMOD. 524–532.

https://doi.org/10.1145/564691.564751

[57] Navin Kabra and David J. DeWitt. 1998. Efficient Mid-Query Re-Optimization

of Sub-Optimal Query Execution Plans. In SIGMOD. 106–117. https://doi.org/

10.1145/276304.276315

[58] Carl-Christian Kanne and Guido Moerkotte. 2010. Histograms reloaded: the

merits of bucket diversity. In SIGMOD. 663–674. https://doi.org/10.1145/1807167.

1807239

[59] Manos Karpathiotakis, Miguel Branco, Ioannis Alagiannis, and Anastasia Ail-

amaki. 2014. Adaptive Query Processing on RAW Data. PVLDB 7, 12 (2014),

1119–1130. https://doi.org/10.14778/2732977.2732986

[60] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter A. Boncz, and

Alfons Kemper. 2019. Learned Cardinalities: Estimating Correlated Joins with

Deep Learning. In CIDR. http://cidrdb.org/cidr2019/papers/p101-kipf-cidr19.

pdf

[61] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018.

The Case for Learned Index Structures. In SIGMOD. 489–504. https://doi.org/

10.1145/3183713.3196909

[62] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli, Christopher

Kellogg, Sailesh Mittal, Jignesh M. Patel, Karthik Ramasamy, and Siddarth

Taneja. 2015. Twitter Heron: Stream Processing at Scale. In SIGMOD. 239–250.

https://doi.org/10.1145/2723372.2742788

[63] Kukjin Lee, Anshuman Dutt, Vivek R. Narasayya, and Surajit Chaudhuri. 2023.

Analyzing the Impact of Cardinality Estimation on Execution Plans in Microsoft

SQL Server. PVLDB 16, 11 (2023), 2871–2883. https://doi.org/10.14778/3611479.

3611494

[64] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper,

and Thomas Neumann. 2015. How Good Are Query Optimizers, Really? PVLDB

9, 3 (Nov. 2015), 204–215. https://doi.org/10.14778/2850583.2850594

[65] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper,

and Thomas Neumann. 2015. How Good Are Query Optimizers, Really? PVLDB

9, 3 (2015), 204–215. https://doi.org/10.14778/2850583.2850594

[66] Quanzhong Li, Minglong Shao, Volker Markl, Kevin S. Beyer, Latha S. Colby, and

Guy M. Lohman. 2007. Adaptively Reordering Joins during Query Execution.

In ICDE. 26–35. https://doi.org/10.1109/ICDE.2007.367848

[67] Guy M. Lohman. 2017. Query Optimization - Are We There Yet?. In BTW. 25–26.

https://dl.gi.de/handle/20.500.12116/646

[68] Ryan Marcus. 2023. Learned Query Superoptimization. CoRR abs/2303.15308

(2023). https://doi.org/10.48550/arXiv.2303.15308

[69] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Al-

izadeh, and Tim Kraska. 2021. Bao: Making Learned Query Optimization

Practical. In SIGMOD. 1275–1288. https://doi.org/10.1145/3448016.3452838

[70] Ryan C. Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Al-

izadeh, Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. 2019. Neo: A

Learned Query Optimizer. PVLDB 12, 11 (2019), 1705–1718. https://doi.org/10.

14778/3342263.3342644

[71] Volker Markl, Vijayshankar Raman, David E. Simmen, Guy M. Lohman, and

Hamid Pirahesh. 2004. Robust Query Processing through Progressive Optimiza-

tion. In SIGMOD. 659–670. https://doi.org/10.1145/1007568.1007642

[72] Guido Moerkotte. 2023. Building Query Compilers. https://pi3.informatik.uni-

mannheim.de/~moer/querycompiler.pdf Last Accessed: February 9, 2024.

[73] Guido Moerkotte and Thomas Neumann. 2006. Analysis of Two Existing and

One New Dynamic Programming Algorithm for the Generation of Optimal

Bushy Join Trees without Cross Products. In VLDB. 930–941.

[74] Guido Moerkotte and Thomas Neumann. 2008. Dynamic programming strikes

back. In SIGMOD. 539–552. https://doi.org/10.1145/1376616.1376672

[75] Guido Moerkotte and Thomas Neumann. 2011. Accelerating Queries with

Group-By and Join by Groupjoin. PVLDB 4, 11 (2011), 843–851. http://www.

vldb.org/pvldb/vol4/p843-moerkotte.pdf

[76] Guido Moerkotte, Thomas Neumann, and Gabriele Steidl. 2009. Preventing Bad

Plans by Bounding the Impact of Cardinality Estimation Errors. PVLDB 2, 1

(2009), 982–993. https://doi.org/10.14778/1687627.1687738

[77] Dan Moldovan, James M. Decker, Fei Wang, Andrew A. Johnson, Brian K. Lee,

Zachary Nado, D. Sculley, Tiark Rompf, and Alexander B. Wiltschko. 2019.

AutoGraph: Imperative-style Coding with Graph-based Performance. In MLSys.

https://proceedings.mlsys.org/book/272.pdf

[78] Magnus Müller and Guido Moerkotte. 2022. Translation Grids for Multi-way

Join Size Estimation. In EDBT. 2:378–2:382. https://doi.org/10.48786/edbt.2022.

25

[79] P E O’Neil, E J O’Neil, and X Chen. 2009. The Star Schema Benchmark (SSB).

https://cs.umb.edu/~poneil/StarSchemaB.pdf Last Accessed: February 9, 2024.

[80] Neoklis Polyzotis. 2005. Selectivity-based partitioning: a divide-and-union

paradigm for effective query optimization. In CIKM. 720–727. https://doi.org/

10.1145/1099554.1099730

[81] Mark Raasveldt and Hannes Mühleisen. 2019. DuckDB: an Embeddable Analyt-

ical Database. In SIGMOD. 1981–1984. https://doi.org/10.1145/3299869.3320212

[82] Bogdan Raducanu, Peter A. Boncz, andMarcin Zukowski. 2013. Micro adaptivity

in Vectorwise. In SIGMOD. 1231–1242. https://doi.org/10.1145/2463676.2465292

[83] Naveen Reddy and Jayant R. Haritsa. 2005. Analyzing Plan Diagrams of Data-

base Query Optimizers. In VLDB. 1228–1240. http://www.vldb.org/archives/

website/2005/program/paper/fri/p1228-reddy.pdf

[84] Alice Rey, Michael Freitag, and Thomas Neumann. 2023. Seamless Integration

of Parquet Files into Data Processing. In BTW. 235–258. https://doi.org/10.

18420/BTW2023-12

[85] Viktor Rosenfeld, Sebastian Breß, and Volker Markl. 2023. Query Processing on

Heterogeneous CPU/GPU Systems. ACM Comput. Surv. 55, 2 (2023), 11:1–11:38.

https://doi.org/10.1145/3485126

[86] Nils L. Schubert, Philipp M. Grulich, Steffen Zeuch, and Volker Markl.

2023. Exploiting Access Pattern Characteristics for Join Reordering. In Da-

MoN@SIGMOD. 10–18. https://doi.org/10.1145/3592980.3595304

[87] Patricia G. Selinger, Morton M. Astrahan, Donald D. Chamberlin, Raymond A.

Lorie, and Thomas G. Price. 1979. Access Path Selection in a Relational Database

Management System. In SIGMOD. 23–34. https://doi.org/10.1145/582095.582099

[88] Utku Sirin, Pinar Tözün, Danica Porobic, and Anastasia Ailamaki. 2016. Micro-

architectural Analysis of In-memory OLTP. In SIGMOD. 387–402. https://doi.

org/10.1145/2882903.2882916

[89] Michael Stillger, Guy M. Lohman, Volker Markl, and Mokhtar Kandil. 2001. LEO

- DB2’s LEarning Optimizer. In VLDB. 19–28. http://www.vldb.org/conf/2001/

P019.pdf

[90] Michael Stonebraker and Lawrence A. Rowe. 1986. The Design of Postgres. In

SIGMOD, Carlo Zaniolo (Ed.). ACM Press, 340–355. https://doi.org/10.1145/

16894.16888

[91] Nesime Tatbul, Ugur Çetintemel, Stanley B. Zdonik, Mitch Cherniack, and

Michael Stonebraker. 2003. Load Shedding in a Data Stream Manager. In VLDB.

309–320. https://doi.org/10.1016/B978-012722442-8/50035-5

[92] Transaction Processing Council. 1993. TPC Benchmark H (Decision Support).

https://www.tpc.org/tpch/ Last Accessed: February 9, 2024.

[93] Immanuel Trummer, Junxiong Wang, Deepak Maram, Samuel Moseley, Sae-

han Jo, and Joseph Antonakakis. 2019. SkinnerDB: Regret-Bounded Query

Evaluation via Reinforcement Learning. In SIGMOD. 1153–1170. https:

//doi.org/10.1145/3299869.3300088

[94] Immanuel Trummer, Junxiong Wang, Ziyun Wei, Deepak Maram, Samuel Mose-

ley, Saehan Jo, Joseph Antonakakis, and Ankush Rayabhari. 2021. SkinnerDB:

Regret-bounded Query Evaluation via Reinforcement Learning. ACM Trans.

Database Syst. 46, 3 (2021), 9:1–9:45. https://doi.org/10.1145/3464389

[95] Kostas Tzoumas, Amol Deshpande, and Christian S. Jensen. 2010. Sharing-Aware

Horizontal Partitioning for Exploiting Correlations During Query Processing.

PVLDB 3, 1 (2010), 542–553. https://doi.org/10.14778/1920841.1920911

[96] Li Wang, Tom Z. J. Fu, Richard T. B. Ma, Marianne Winslett, and Zhenjie Zhang.

2019. Elasticutor: Rapid Elasticity for Realtime Stateful Stream Processing. In

SIGMOD. 573–588. https://doi.org/10.1145/3299869.3319868

[97] Ziyun Wei and Immanuel Trummer. 2022. SkinnerMT: Parallelizing for Effi-

ciency and Robustness in Adaptive Query Processing on Multicore Platforms.

PVLDB 16, 4 (2022), 905–917. https://www.vldb.org/pvldb/vol16/p905-wei.pdf

[98] Zongheng Yang, Eric Liang, Amog Kamsetty, Chenggang Wu, Yan Duan, Xi

Chen, Pieter Abbeel, Joseph M. Hellerstein, Sanjay Krishnan, and Ion Stoica.

2019. Deep Unsupervised Cardinality Estimation. PVLDB 13, 3 (2019), 279–292.

https://doi.org/10.14778/3368289.3368294

[99] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and

Ion Stoica. 2013. Discretized streams: fault-tolerant streaming computation at

scale. In SOSP. 423–438. https://doi.org/10.1145/2517349.2522737

[100] Steffen Zeuch, Ankit Chaudhary, Bonaventura Del Monte, Haralampos Gavri-

ilidis, Dimitrios Giouroukis, Philipp M. Grulich, Sebastian Breß, Jonas Traub,

and Volker Markl. 2020. The NebulaStream Platform for Data and Application

Management in the Internet of Things. In CIDR. http://cidrdb.org/cidr2020/

papers/p7-zeuch-cidr20.pdf

[101] Steffen Zeuch, Holger Pirk, and Johann-Christoph Freytag. 2016. Non-Invasive

Progressive Optimization for In-Memory Databases. PVLDB 9, 14 (2016), 1659–

1670. https://doi.org/10.14778/3007328.3007332

[102] Jianqiao Zhu, Navneet Potti, Saket Saurabh, and Jignesh M. Patel. 2017. Looking

Ahead Makes Query Plans Robust. PVLDB 10, 8 (2017), 889–900. https://doi.

org/10.14778/3090163.3090167

,

https://doi.org/10.1145/115790.115835
http://www.vldb.org/conf/2007/papers/tutorials/p1426-deshpande.pdf
https://doi.org/10.1145/1007568.1007613
https://doi.org/10.1145/1007568.1007613
https://doi.org/10.1145/3448016.3452840
https://doi.org/10.1145/564691.564751
https://doi.org/10.1145/276304.276315
https://doi.org/10.1145/276304.276315
https://doi.org/10.1145/1807167.1807239
https://doi.org/10.1145/1807167.1807239
https://doi.org/10.14778/2732977.2732986
http://cidrdb.org/cidr2019/papers/p101-kipf-cidr19.pdf
http://cidrdb.org/cidr2019/papers/p101-kipf-cidr19.pdf
https://doi.org/10.1145/3183713.3196909
https://doi.org/10.1145/3183713.3196909
https://doi.org/10.1145/2723372.2742788
https://doi.org/10.14778/3611479.3611494
https://doi.org/10.14778/3611479.3611494
https://doi.org/10.14778/2850583.2850594
https://doi.org/10.14778/2850583.2850594
https://doi.org/10.1109/ICDE.2007.367848
https://dl.gi.de/handle/20.500.12116/646
https://doi.org/10.48550/arXiv.2303.15308
https://doi.org/10.1145/3448016.3452838
https://doi.org/10.14778/3342263.3342644
https://doi.org/10.14778/3342263.3342644
https://doi.org/10.1145/1007568.1007642
https://pi3.informatik.uni-mannheim.de/~moer/querycompiler.pdf
https://pi3.informatik.uni-mannheim.de/~moer/querycompiler.pdf
https://doi.org/10.1145/1376616.1376672
http://www.vldb.org/pvldb/vol4/p843-moerkotte.pdf
http://www.vldb.org/pvldb/vol4/p843-moerkotte.pdf
https://doi.org/10.14778/1687627.1687738
https://proceedings.mlsys.org/book/272.pdf
https://doi.org/10.48786/edbt.2022.25
https://doi.org/10.48786/edbt.2022.25
https://cs.umb.edu/~poneil/StarSchemaB.pdf
https://doi.org/10.1145/1099554.1099730
https://doi.org/10.1145/1099554.1099730
https://doi.org/10.1145/3299869.3320212
https://doi.org/10.1145/2463676.2465292
http://www.vldb.org/archives/website/2005/program/paper/fri/p1228-reddy.pdf
http://www.vldb.org/archives/website/2005/program/paper/fri/p1228-reddy.pdf
https://doi.org/10.18420/BTW2023-12
https://doi.org/10.18420/BTW2023-12
https://doi.org/10.1145/3485126
https://doi.org/10.1145/3592980.3595304
https://doi.org/10.1145/582095.582099
https://doi.org/10.1145/2882903.2882916
https://doi.org/10.1145/2882903.2882916
http://www.vldb.org/conf/2001/P019.pdf
http://www.vldb.org/conf/2001/P019.pdf
https://doi.org/10.1145/16894.16888
https://doi.org/10.1145/16894.16888
https://doi.org/10.1016/B978-012722442-8/50035-5
https://www.tpc.org/tpch/
https://doi.org/10.1145/3299869.3300088
https://doi.org/10.1145/3299869.3300088
https://doi.org/10.1145/3464389
https://doi.org/10.14778/1920841.1920911
https://doi.org/10.1145/3299869.3319868
https://www.vldb.org/pvldb/vol16/p905-wei.pdf
https://doi.org/10.14778/3368289.3368294
https://doi.org/10.1145/2517349.2522737
http://cidrdb.org/cidr2020/papers/p7-zeuch-cidr20.pdf
http://cidrdb.org/cidr2020/papers/p7-zeuch-cidr20.pdf
https://doi.org/10.14778/3007328.3007332
https://doi.org/10.14778/3090163.3090167
https://doi.org/10.14778/3090163.3090167

	Abstract
	1 Introduction
	2 Pipeline Design
	2.1 Design Objectives
	2.2 POLAR Pipeline Compilation
	2.3 Join Order Selection
	2.4 Pipeline Execution

	3 Routing Strategies
	3.1 Overall Multiplexer Algorithm
	3.2 Static Selection
	3.3 Pro-active Exploration
	3.4 Self-scheduling

	4 Limitations and Scope
	5 Experiments
	5.1 Experimental Setup
	5.2 Applicability Study
	5.3 Micro Benchmarks
	5.4 End-to-End Performance Comparison

	6 Related Work
	7 Conclusions
	Acknowledgments
	References

