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Preface

This technical report summarizes the results of a Master seminar on Practical
Introduction to Deep Learning for Computer Vision at the Hasso Plattner Institute in
the winter term 2020/2021. The seminar was organized by Christian Bartz from
the Multimedia and Machine Learning Group of the Internet Technologies and
Systems chair and Dr. Ralf Krestel, Head of the Web Science Group. Both groups
are involved in a joint research project analyzing art-historic data in collaboration
with the Wildenstein Plattner Institute.1

The goal of the seminar was to give an introduction to current computer vision
approaches with a focus on deep learning. We wanted to make the seminar as
applied as possible and therefore decided to define three tasks that the students
had to solve in the course of the winter term. The tasks were major computer
vision tasks: classification, object detection, and image retrieval. As an application
domain, we decided to look into fine art paintings with a collection of images
provided by the Getty Research Institute.2 Students were divided into three teams
with three students each and each team had to solve each task. For each task, the
teams had around one month to come up with a good solution. Each task was then
automatically evaluated by us using a hold-out test dataset or manual annotations.
The winning team of each task won a small award.

This report consists of the description of the approaches and results achieved by
the three teams for each of the three tasks. The first chapter was written by us as
an introduction to the tasks and data. We also summarize the results for the three
tasks. Finally, we want to thank the participating students for the results and the
Getty Research Institute for providing the image collection.

Potsdam, June 16th, 2021 Christian Bartz,
Dr. Ralf Krestel

1https://wpi.art/ (last accessed June 16, 2021).
2https://www.getty.edu/research/ (last accessed June 16, 2021).
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Introducing the Seminar Topics

Christian Bartz and Ralf Krestel

Hasso Plattner Institute for Digital Engineering, University of Potsdam
{christian.bartz,ralf.krestel}@hpi.de

In recent years, computer vision algorithms have seen a rapid develop-
ment. One of the most important factors is the availability of annotated
training data. However, in the art domain annotated data is a scarce
resource. The Getty Research Institute provided us with a challenging
evaluation dataset, which we used throughout the seminar to evaluate the
solutions of our students. In this chapter, we introduce this dataset, dis-
cuss the tasks of the students tackled during the seminar, and summarize
the results.

1 Introduction

Computer vision algorithms have seen a rapid development in recent years [4, 6,
7]. Much of this development is based on the availability of computing hardware
that executes calculations in a massive parallel way, e.g., GPUs. Another reason for
this development is the availabilty of large-scale annotated datasets, such as the
ImageNet dataset [2]. Research has mainly focused on the analysis of semantics in
photographs and videos because no expert knowledge is required for the annota-
tion of everyday objects in images and videos, thus it can be performed cheaply by
clickworkers.

While a huge amount of annotations is available for the analysis of everyday
objects in photographs, only a small amount of annotations is available for the
analysis of works of art. The reasons for this are rooted in two aspects. First,
annotating data is a too costly endeavor for most non-profit organizations dealing
with digitized copies of works of art. Thus organizations such as the Getty Research
Institute1 are interested in research on possible applications of computer vision
algorithms on their scarcely annotated digitized data.

To go forward in this direction, we offered an introductory master seminar that
dealt with the application of computer vision methods on a dataset supplied to us
by the Getty Research Institute.

Based on a thorough analysis of the available data we identified three possible
areas of different difficulty that would set a challenging objective for our students
and also benefit the research endeavors of the Getty. During the course of the
seminar, the students dealt with the following tasks: (1) Image Classification, i.e.,
classifying whether a work of art is a drawing or painting and also classifying

1https://www.getty.edu/research/ (last accessed June 16, 2021).
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the genre of a work of art (section 3). (2) Object Detection, i.e., detecting objects
depicted in a work of art (section 4). (3) Image Retrieval, i.e., given a query work
of art, return a pre-defined number of similar works of art (section 5). During our
work on each of the tasks, we used the resources of the Future SOC lab to train
a wide range of deep neural networks on the multi-GPU machines of the Future
SOC lab.

2 Dataset

The Getty Research Institute is undertaking a large digitization project in the
course of their PhotoTech project.2 Since they are digitizing a large collection of
approximately 700, 000 items they are looking for the possibility of automated
analysis of the photographed works of art. The goal of the Getty is to find ways
that support the researchers in fast metadata generation for faster categorization
and search of digitized data. To achieve this they provided us with an excerpt of the
PhotoTech collection. The dataset provided by the Getty consists of 7872 scans of
works of art. Besides the images, some manually created metadata for the training
of machine learning methods is also available. For each image three different kinds
of information are available: 1) A categorization whether the image is a painting or
a drawing. 2) A categorization which artistic genre the photographed work of art
belongs to. For our work, we followed the definition of artistic genres by Cetinic et
al. [1] and mapped the provided categories to their corresponding artistic genres.
3) The provided metadata also contains an enumeration of depicted subjects in each
image. However, this field does not contain standardized identifiers. Therefore, we
could not use it in our analysis.

For each of the tasks, we split the dataset into a dedicated train and test set. For
the task of classification (see section 3), no additional annotation from our side
for the test set was necessary. For the task of object detection(see section 4), we
manually annotated 156 images by adding bounding boxes for objects of each class
we wanted to identify. For the task of image retrieval (see section 5), we did not
provide any annotated data for testing. Instead, we held back a small number of
images and evaluated the performance of each developed retrieval method using a
consensus based approach.

3 Image Classification

The first task we tackled was the classification of the provided Photo Tech data
into different classes. On the one hand, we developed a set of neural networks
for the classification of the form (painting vs. drawing) of the work of art. On the

2https://www.getty.edu/research/scholars/research_projects/phototech.html (last ac-
cessed June 16, 2021).
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4 Object Detection

Table 1: Classes of Objects to be Detected in the Images

Persons Animals Produce Structures Landforms Faces

Angel Cow Flower Ruins Water Bodies Others
Child Jesus Cat Fish Ship Hills
Crucifixion Cock Meat Building Mountains
Mary Dog Fruit Others Others
Nudity Horse Others
Saint Sebastian Duck
Others Others

other hand, we developed a set of neural networks for the classification of the genre,
where we follow the definition introduced by Cetinic et al. [1].

Results For our experiments we compared a multitude of network configurations
and architectures. We evaluated our models by calculating the average F1-Score for
all classes.

For the task of form classification our best model (based on a DenseNet-201)
achieves a near perfect classification result with an average F1-Score of 0.9846.
Further experiments showed that even using a network with a considerable lower
amount of layers (ResNet-50) also achieves comparable results (average F1-Score
0.9844), which hints at the fact that the task itself is not very complex.

For the task of genre classification our best model (based on a DenseNet-201)
achieves an average F1-Score of 0.924. The score is considerably lower compared
to the form classification task. However, the task of genre classification involves
more classes (5 vs. 2) and the dataset is also highly imbalanced across the available
images.

4 Object Detection

The second task we tackled was the localization and classification of objects de-
picted in the artworks. Here, we defined a range of object categories that should
be detected in the images. We provide an overview of all categories in Table 1. The
categories “persons”, “animals”, “produce”, “structures” and “landforms” serve
as high-level categories while the classes belonging to them are finer sub-divisions.
The classes “others” are meant as a default fallback: Whenever an object does not
fit into any of the subcategories, it is classified as the corresponding supercategory.
This can be seen as a two-level classification approach. We distinguish between a
fine classification (e. g., “cow”, “cat”, “cock” etc.) and a coarse classification (e. g.,
“animals”).

The dataset provided by the Getty does not include any annotations for object
locations, hence we manually annotated 156 images for evaluation using the classes
defined in Table 1.

3
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Table 2: Average Precision on the Manually Annotated Test Set for Object Detection

Ensemble
Fine Labels Coarse Labels

AP@0.5 AP@0.75 AP@0.5 AP@0.75

YOLO 11.5% 4.6% 18% 4.5%
ResNe(X)t and WBF 12.9% 3.8% 22.8% 5.9%
IconArt/pre-trained 4.3% 1.1% 8.5% 1.8%

Results We performed experiments with three different model ensembles, which
were mostly trained on non-art data due to the lack of sufficient annotated training
data from the art domain. First, we built an ensemble using pre-trained object
detection models with one model specifically trained on the IconArt [3] dataset.
We denote this ensemble as “IconArt/pre-trained”. Second, we built an ensemble
consisting of a YOLO v5

3 object detector for detection of models from each category,
accompanied by a face detection model introduced by Zhang et al. [8]. We denote
this ensemble as “YOLO”. Our last ensemble consists of several object detection
networks from the Detectron 2

4 toolkit that were adapted to the domain of art
analysis by performing art transformations on real photographs and fine-tuning
of the models on the adapted images. We denote this ensemble as “ResNe(X)t and
WBF”.

We evaluated our models by computing the average precision (AP) of the pre-
dictions on our fine set of labels and our coarse set of labels, as shown in Table 2.
We provide results using detection thresholds of 0.5 and 0.75. These thresholds
denote that a prediction is counted as correct if the intersection over union of the
ground truth bounding box and the predicted bounding box is larger or equal to
the defined threshold. Our results show that it is in general possible to identify
objects within works of art by training on non-art images, namely photo collections.
However, the performance of the models is very low and hints at the fact that
the domain gap from photographs to works of art is too large. We conclude that
current methods cannot directly be applied to object detection on works of art,
without improved training data or better transfer learning approaches.

5 Image Retrieval

In image retrieval, we investigated the task of returning a set of similar images given
a query image. Here, the given Getty dataset also does not include any annotations
that could be used for the development or evaluation of an image retrieval system.
This is why we did not use an automated approach for the evaluation of this
task. We rather specifically selected a number of works of art that we used as

3https://pytorch.org/hub/ultralytics_yolov5/ (last accessed June 16, 2021).
4https://github.com/facebookresearch/detectron2 (last accessed June 16, 2021).
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6 Conclusion

Figure 1: Exemplary result of our best performing image retrieval model. The left-
most image is the query image and the following images are the top 3 results in
ascending order.

query images and did a manual evaluation of the results returned by the different
approaches. We then determined the best approach by calculating the normalized
discounted cumulative gain [5] based on the ranking created by our group.

Results After evaluating all developed approaches, we found that a simple ap-
proach based on a ResNet-50 trained on the genre classification task (see section 3)
performs best. We show an exemplary result obtained by using our best model on
an image in Figure 1. In this approach the features before the classification layer
are extracted and the distance of the query image to all images in the database is
calculated. We also found that adding another training objective that also predicts
the mean color of the input image helps to improve the results of the model.

6 Conclusion

In this report, we briefly summarized our experiments on the analysis of works of
art, based on an excerpt of the PhotoTech project by the Getty Research Institute.
We performed experiments for three different tasks of computer vision, namely
image classification, object detection, and image retrieval. While we achieved very
good results for the classification tasks using current state of the art methods,
this was not the case for the object detection. The main reason was the lack of
suitable annotated training data, which current deep neural networks rely on. The
good results for image retrieval are based again on the models trained on the
classification tasks where sufficiently large training data was available.
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Image Classification

Josafat-Mattias Burmeister, Konstantin Dobler, and Nataniel Müller

Hasso Plattner Institute for Digital Engineering, University of Potsdam
{josafat-mattias.burmeister,konstantin.dobler,nataniel.mueller}

@student.hpi.de

Digitizing art collections is a major challenge for many museums and
art galleries. To facilitate and accelerate cataloging photos of artworks,
we tackle two classification tasks from the art domain using deep learn-
ing: type classification and genre classification of artworks. To train our
models, we use the popular transfer learning approach. Since our training
dataset is highly imbalanced, our work focuses on coping with imbalanced
training data. Our results show that the transfer learning approach can
produce very good results even for small and highly imbalanced training
datasets. We observed that acquiring or generating additional training
data as well as certain data augmentation methods can slightly improve
training results. Over- and undersampling techniques, on the other hand,
do not seem to be necessary and did not provide a substantial benefit.
To optimize performance in both classification tasks, we experiment with
multiple training methods and model architectures. In this way, we obtain
good results in both tasks: In the type classification task, we achieve an
accuracy of over 99% and an F1-score above 97% for both the minority
and majority class. In the genre classification task, we achieve an accuracy
of over 96% and F1-scores ranging from 88% to 99% for the respective
classes.

1 Introduction

In recent years, many museums and art galleries have made great efforts to digi-
tize their collections. For example, Amsterdam’s Rijksmuseum [36, 44], London’s
National Gallery [33], Oslo’s National Museum [8, 43] and the J. Paul Getty Mu-
seum [14] have made significant parts of their art collections available online. Re-
cently, the COVID-19 pandemic has prompted further institutions to digitize their
collections [24, 4]. Digitization involves capturing high-resolution images of the
artworks [2, 35] and linking them to related information in digital repositories [31].
These repositories can not only facilitate researchers’ access to information [42],
but can also be used to provide digital content to museum visitors [1]. In addition,
digital collections play an important role in marketing and in digital selling of
prints and merchandise [1, 44].

However, the creation of digital collections is a major challenge for many in-
stitutions. Many museums and galleries own large collections but have limited
human and financial resources for digitization [1, 24]. In particular, cataloging

7

mailto:{{josafat-mattias.burmeister, konstantin.dobler, nataniel.mueller}}
mailto:@student.hpi.de


Josafat-Mattias Burmeister, Konstantin Dobler, Nataniel Müller: Image Classification

photos and updating existing records is expensive and laborious [1, 31]. During
cataloging, photos of artworks are linked to metadata such as author, style, genre,
and type of artwork. Automated acquisition of these metadata using computer
vision techniques could greatly facilitate and accelerate the digitization of museum
collections [29, 6, 32]. A wide range of research has already addressed this issue.
Some works rely on the extraction of image features and classify them using shal-
low machine learning models such as SVMs or kNN classifiers [48, 38, 12]. The
image features used can be either low-level features such as color histograms and
edge maps [48], or feature maps extracted from convolutional neural networks [38,
6].

In contrast, another part of the existing work uses end-to-end deep learning
models [41, 23, 37]. Training deep neural networks to classify artworks is chal-
lenging because the available datasets are comparatively small [37] and in some
cases unbalanced [47]. Labeling of additional training data is often impractical as
it requires expert knowledge from the art domain [38, 7]. Therefore, the transfer
learning approach became popular in the art domain [7, 37, 23, 41]. In transfer
learning, the deep learning models are first pre-trained on large photo datasets
such as ImageNet with a different classification task. Subsequently, some layers of
the models are re-trained on the actual training set from the art domain to solve a
classification task for artworks [37].

This work applies the transfer learning approach to two classification tasks from
the art domain: In the first classification task, artworks are to be classified in terms
of their type as a painting or a drawing. To our knowledge, similar classification
tasks have been studied only by Sabatelli et al. [37] and Mensink et al. [29] so far.
The second task is a genre classification of artworks. Most existing work on genre
classification uses only the popular Wikiart dataset [38, 41], although additional
datasets with genre annotations are available [13, 16, 27, 34, 9]. In this paper, we
make use of several other datasets for training.

For both classification tasks, we systematically evaluate different architectures
and training methods. We investigate how different techniques for data augmen-
tation and different approaches for coping with imbalanced data affect model
performance. In addition, we study whether model performance can be improved
by ensemble learning. Through model optimization, we achieve human-like perfor-
mance in type classification, with F1-scores above 97 % for both classes on the test
set. In genre classification, we also achieve high performance, with F1-scores above
88 % for all classes on the test set.

2 Related Work

Since the majority of available fine-art datasets contain metadata on style, artist,
genre, technique and material, research efforts have been predominantly focused
on style, genre, and artist classification [7]. These classification problems have
been addressed through two major methodological categories namely classical
approaches and deep learning-based techniques [39]. In classical approaches, im-

8



2 Related Work

age features are extracted and classified using shallow machine learning models.
Feature extraction approaches are divided into feature engineering and feature
learning methods [32].

Feature engineering approaches. In feature engineering approaches, domain-
specific knowledge is used for transforming “low-level” feature sets such as brush
strokes and color into meaningful image features [38]: Florea et al. [12] use local
and global features in combination with shallow machine learning models like
SVM, Random Forest Models and k-Nearest Neighbor to classify artworks in terms
of the artistic movement. Other works use texture feature extractors that take into
account global color features and composition features to classify artworks based
on their genre [48].

Feature learning approaches. With the advancements of CNN-based feature
learning approaches, Cetinic et al. investigate the use of features derived from
pre-trained CNN layers [6]. Results indicate higher accuracies for “high-level”
CNN-based feature sets given the problem of genre classification compared to
“low-level” feature sets derived by Scale-Invariant Feature Transform (SIFT) [26]
and Histogram of Oriented Gradients (HOG) [10].

Deep learning-based approaches. Lecoutre et al. demonstrate the performance of
a residual neural network (ResNet50) and a pre-trained AlexNet for genre classifi-
cation on the Wikiart paintings dataset, achieving an overall accuracy of more than
62% over 25 classes [23]. Emphasizing the importance of brush stroke in fine-art
classification, Huang et al. implement a two-channel deep residual network consist-
ing of a RGB channel and a brush stroke information channel. They achieve a test
accuracy of 68.96 % using a pre-trained ResNet50 [18]. Sabatelli et al. compare the
performance of transfer learning approaches that solely re-train the decision layer
of pre-trained CNNs with approaches that also retrain the convolutional layers [37].
While retraining the convolutional layers is computationally more demanding, it
also yields better results.

Tan et al. compare different fine-tuning methods on the Wikiart paintings dataset
for style, genre and artist classification. They show that pre-trained CNNs with an
additional softmax layer (genre accuracy: 74.14 %) outperform a pre-trained CNN
with a 1000 dimensional feature extraction layer compressed by PCA and a SVM
trained on top [41]. Zhao et al. tackle the same genre classification problem on the
Wikiart paintings dataset with pre-training on ImageNet and random initialization
in the last fully connected layer and achieve an accuracy of 78.03% [47]. Cetinica et
al. [7] evaluate five different fine-tuning scenarios on a range of datasets including
the Wikiart paintings on a CaffeNet architecture [19]: They observe that retraining
all except the first two convolutional layers yields the best results with a test
accuracy of 77.7 %.

Recently, Mohammadi et al. proposed a hierarchical classification approach,
based on clustering the Wikiart paintings dataset styles into 7 super-style parent
classes P each containing image style children C [30]. Then a hierarchical ensem-
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ble of P+1 parallel CNNs predict parent as well as the child class, improving
the average F1-score of a DenseNet121 compared to a hierarchical DenseNet121

by more than 3%. Focusing on the highly imbalanced class distribution of the
Wikiart paintings dataset, Joshi et al.[20] train a semi-supervised Ensemble of Auto-
Encoding Transformations (EnAET) model [45]: Instead of pre-training the model,
autoencoding transformations are used to train the classifiers in a four-block wide
ResNet-28-2. When comparing to ResNet50 models with/without data augmenta-
tion and fine-tuned over all layers this approach yields a test accuracy of 82.61%
compared to the ResNet50 baseline of 50.1% [20].

3 Datasets and Classification Tasks

In this paper, we aim to solve two distinct classification tasks for artworks. Both
tasks are to be solved using deep learning models that receive images of the art-
works as input. The first task is to determine the type of an artwork. We distinguish
two types of artworks, drawings and paintings. Examples from both classes are
shown in Figure 1. In the following, we refer to this binary classification task as
“type classification”. The second task is a multi-class classification task, where art-
works are to be classified in terms of their genre. The term “genre” is used in
different meanings in existing works. In this paper, we follow the definition from
Cetinic et al. [6] and distinguish between the five classical genres of art: genre paint-
ing, history painting, landscape painting, portrait, and still life. Example images for
each genre are shown in Figure 2. In the following, we refer to this task as “genre
classification”.

(a) Drawings

(b) Paintings

Figure 1: Example images from the classes of the type classification task.

10



3 Datasets and Classification Tasks

Table 1: Datasets Used for the Type Classification Task (not all datasets were used
in all experiments)

Dataset
Number of suitable training images

Drawings Paintings Total

Bing1
662 0 662

Brill2
185 20 205

Getty 746 4425 5171

Kaggle3,4
1,231 2,270 3,501

Metropolitan5
1,000 0 1,000

Rijksmuseum6
14,223 3,593 17,816

Wikiart7
3,943 0 3,943

All datasets 21,990 10,308 32,298

1 https://www.microsoft.com/en-us/bing/apis/bing-image-search-api
(last accessed June 16, 2021).

2 https://labs.brill.com/ictestset (last accessed June 16, 2021).
3 https://www.kaggle.com/thedownhill/art-images-drawings-painting-
sculpture-engraving (last accessed June 16, 2021).

4 https://www.kaggle.com/ikarus777/best-artworks-of-all-time (last
accessed June 16, 2021).

5 https://metmuseum.github.io (last accessed June 16, 2021).
6 https://doi.org/10.21942/uva.5660617 (last accessed June 16, 2021).
7 https://github.com/cs-chan/ArtGAN/tree/master/data (last accessed

June 16, 2021).

3.1 Training Set

The main training datasets for both classification tasks consist of images provided
by the Getty Research Institute (“Getty dataset”). All images shown in Figure 1 and
Figure 2 belong to this Getty dataset. The label distribution of the Getty dataset is
very unbalanced: Paintings occur much more frequently than drawings (Table 1).
The most represented genre are landscape paintings with 1156 samples, the least
represented genre are portraits with only 35 samples (Table 2).

To enlarge the training datasets and to address their imbalance, we used data
from additional sources in some of our experiments. For the type classification,
a subset of the Brill Iconclass AI Test Set (“Brill dataset”) [34], two datasets from
Kaggle (“Kaggle datasets”), a dataset from the Rijksmuseum Amsterdam (“Ri-
jksmuseum dataset”) [29], and a subset of the Wikiart paintings dataset (“Wikiart
dataset”) [41] were used. Table 1 provides an overview of these datasets. Because
the datasets differ in quality, in some of our experiments only a subset of the
datasets was used. While the Kaggle datasets and the Rijksmuseum dataset in-
cluded type labels that were suitable for our type classification task, the other
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(a) Genre painting (b) History painting (c) Landscape

(d) Portrait (e) Still life

Figure 2: Example images from the classes of the genre classification task.

Table 2: Datasets Used for the Genre Classification Task (not all datasets were used
in all experiments)

Dataset
Number of suitable training images

Genre History
Land-
scape

Portrait Still life Total

Art500k1
14,752 8,394 18,632 19,593 3,467 64,838

Europeana2
11 0 4,368 6,213 1,068 11,660

Getty 763 898 1556 35 421 3673

SemArt3
1,813 8,931 2,779 3,650 1,029 18,202

WGA4
2,897 1,4507 4,474 5,184 1,435 28,497

All datasets 20,236 45,010 42,287 35,984 7,648 151,165

1 https://deepart.ust.hk/ART500K/art500k.html (last accessed June 16,
2021).

2 https://pro.europeana.eu/page/search (last accessed June 16, 2021).
3 http://noagarciad.com/SemArt/ (last accessed June 16, 2021).
4 https://www.wga.hu/index1.html (last accessed June 16, 2021).
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3 Datasets and Classification Tasks

datasets required preprocessing of the labels: Images labeled as “sketches” in the
Wikiart dataset were assigned to our drawings class. Images from the Brill dataset
with the Iconclass codes “48(+354) / art (+ drawing)” or “48C52 / drawing” were
assigned to our drawings class and images with the iconclass code “48(+351) /
art (+ painting)” to our paintings class. Some images from the Brill dataset were
discarded in a manual filtering step because they differed strongly from the rest of
the training data. In addition to the previously mentioned datasets, we also down-
loaded training data from the Collection API of New York’s Metropolitan Museum
of Art (“Metropolitan dataset”) [40] and from the Bing Image Search API (“Bing
dataset”). In the case of the Metropolitan Museum API, we retrieved all images
from the “Drawings and Prints” department whose “objectName” property was
“drawing”. For the Bing Image Search API, we used the search terms “anatomical
drawing” and “court sketch” to retrieve images of drawings. To ensure high data
quality, the query results were filtered manually in both cases.

For the genre classification task, in addition to the Getty dataset, we used a
subset of the Art500k dataset (“Art500k dataset”) [27], the SemArt dataset (“SemArt
dataset”) [13], and data from the Web Gallery of Art (“WGA dataset”) [16]. In the
Art500k, SemArt, and WGA datasets, there is no “history paintings” class, but a
“religious paintings” class. Images from this class were classed as history paintings
for our genre classification task. Additional training data for the genre classification
task were obtained from the Europeana Search API (“Europeana dataset”) [9]. An
overview of all datasets applicable for the genre classification task is provided in
Table 2. Since the listed datasets differ in quality, not all available training data
were used in all of our experiments.

3.2 Validation Set and Test Set

For both tasks, a split of the Getty dataset was used for model validation (“Getty
validation set”). The validation set for the type classification consists of 1,438 images.
Similar to the Getty training set for this task, it is also very unbalanced: 1,271 of the
images represent paintings, while only 212 images show drawings. The validation
set for the genre classification consists of 1,049 images and is also unbalanced: It
includes 445 landscape paintings, 276 history paintings, 208 genre paintings, 109

still lifes and 11 portraits.
To evaluate the models, another split of the Getty dataset was used, which was

not used to train or validate the models (“Getty test set”). The test set for the type
classification task consists of 750 images. 636 of these are paintings and 114 are
drawings. The test set for the genre classification task consists of 156 images. It
includes 47 landscape paintings, 37 history paintings, 19 genre paintings, 50 still
lifes, and 3 portraits. For the genre classification task, we also used the SemArt
dataset described in subsection 3.1 to evaluate some of our models. This dataset
was not used for training the models in these cases.
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4 Methods

We have two distinct problem statements: a binary classification whether an image
is a painting or a drawing (“type classification”) and a multi-class classification of
an image’s genre (“genre classification”). Our approaches to these two share many
similarities; however, we will also highlight the differences.

4.1 Evaluation Metrics for Imbalanced Datasets

For the Getty dataset, we can trivially construct a classifier with 85% validation
accuracy in the type classification challenge by classifying each image as paint-
ing. When dealing with imbalanced datasets in general, accuracy is not a good
performance metric [3]. Therefore, we use two other metrics that are commonly
recommended for such scenarios: the F1-score and Matthew’s Correlation Coeffi-
cient. Both metrics account for the frequency distribution of the classes.

A hypothetical classification of 24 images, with TP=18, TN=1, FP=3, and FN=2

would yield an F1-score of 88%. This would indicate a good classifier, however
closer examination reveals the following facts: Only one in four drawings is clas-
sified correctly; also, two out of three predicted drawings are actually paintings.
One of the weaknesses of the F1-score is that it is not symmetric; the positive class
is given more “weight” and this choice therefore affects the result. Also, the num-
ber of true negatives (TN) has no impact on the F1-score as it does not influence
precision or recall. If we were to flip positive and negative classes in our example,
the F1-score would drop to 29%. Matthew’s Correlation Coefficient (MCC) is a
symmetric performance measure that is also well-suited for imbalanced datasets.
It measures the correlation between predicted and actual values (obviously, a high
correlation is desirable). It is given by the formula:

MCC =
TP× TN + FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(1)

Because the F1-score was one of the primary metrics by which we were evaluated
in the challenges, we still use it as our primary metric. We also use the MCC as a
“sanity check”; when the MCC and F1-score are too far apart, it indicates that our
model is not performing well across all classes.

4.2 Type Classification

We use the popular DenseNet and ResNet architectures [15, 17]. Motivated by
similar research [23, 37] and initial experiments, we make heavy use of transfer
learning. In particular, we use the ResNet18, ResNet34, ResNet50 and DenseNet201

architectures with weights pre-trained on ImageNet [11], which are provided by
Torchvision [28]. Because of the imbalances in our primary dataset (the Getty
dataset), we pay special attention the the F1-score computed with “drawings” as
the positive class.
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Data preprocessing. Our dataset contains images that often exceed a dimension
of 1000× 1000 pixel. Because of hardware limitations, we are forced to re-scale our
inputs to a smaller size. Additionally, the images are not square. Therefore, we
also apply a quadratic crop before feeding the images to our networks. Although
researchers often re-scale their inputs to 224× 224, following a convention from
AlexNet [22], we also experiment with input dimensions up to 400× 400. We expect
that larger images contain more information and thus improve the performance of
our models.

In order to further speed up the training process, we re-scaled the entire training
set so that the smaller dimension (width or height) is equal to 400. This way, we can
still apply various cropping techniques but significantly reduce disk I/O, which
was a bottleneck in our initial experiments. In particular, we apply either a centered
or a random quadratic crop. As we observed that some paintings and drawings
are framed or do not fill the entire input image, we also implemented a “random
borderless crop”: before applying the random crop, we truncate 20 pixels from
every side of the input image. In most cases, this was sufficient to remove frames
from a picture.

We also used a multitude of different augmentation techniques on our training
images. We experimented with random horizontal flipping, perspective transfor-
mations, color jittering, grayscale transformations, Gaussian blurs and random
rotations, shearing or re-scaling with varying probabilities.

We normalized all images with the channel means and standard deviations from
ImageNet. It should be noted that this is suboptimal and could be improved by
calculating the means and standard deviations of our actual training set; however,
we did achieve satisfactory results.

Model architecture and training details. As mentioned above, we conducted ex-
periments with ResNet50 and DenseNet201. We chose these as the deepest represen-
tatives of their respective classes that we could feasibly train on our hardware. How-
ever, we also ran experiments with smaller versions of ResNet, such as ResNet18

and ResNet34, which have the benefit of reduced training times. We use transfer
learning: the model weights are pre-loaded with weights pre-trained on ImageNet.
As we want to adapt to a new problem space, we replace the fully-connected deci-
sion layers. Whereas the original architectures use only one fully-connected layer
to produce the one thousand outputs of ImageNet, we also experimented with
using 4 consecutive fully-connected layers with the ReLU activation function. The
motivation is two-fold: firstly, our problem space requires only one output instead
ImageNet’s thousand and we theorized that this additional reduction warrants
additional layers. Secondly, we believe our problem space to be more complex and
additional layers might be able to better capture this complexity. Our best model
for the type classification task uses four such fully-connected layers.

There are two main variants of transfer learning: feature extraction and fine-
tuning. During feature extraction, only the decision layer is trained on the new
dataset, while the rest of the weights are frozen. Therefore, the pre-trained part
of the network extracts useful features that the new decision layer then receives
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as inputs. During fine-tuning, all weights of the network are re-trained to adapt
the entire network to the new problem space. Of course, one can also re-train only
selected layers such as the last convolutional layer during fine-tuning.

During our experiments, we try feature extraction as well as differing degrees
of fine-tuning. In all cases, we do not freeze the weights of batch normalization
layers. These layers capture statistics of the underlying dataset, which is ImageNet
in the cases of our pre-trained weights. As we use a different dataset, we want these
statistics to be updated according to our new dataset. We found that fine-tuning
leads to superior results compared to feature extraction. Since our dataset consists
of paintings and drawings, which are not part of ImageNet, we expected to achieve
better results when adapting larger parts of our model to the new dataset.

We use the AdaDelta and Adam optimizers [21, 46] and a binary cross-entropy
loss. We run experiments with cosine learning rate scheduling [25], step-wise
learning rate decay, and constant learning rates. We employ a version of early-
stopping: after every epoch, we evaluate our model on the validation set and store
the result as well as the model weights. At the end of the training, we can then
choose the model weights that yielded the best results.

Combating data imbalances. A significant challenge was the imbalance of our
primary dataset. In the following, we detail several different strategies that we
implemented to address this problem.

If we train our models only on the Getty dataset, they will see many more paint-
ings than drawings. This can be counteracted by sampling drawings at a higher rate
than paintings, so that the model is presented an even distribution between the two
classes. Since we have few original drawings, this should be coupled with strong
augmentation techniques. Otherwise the model might overfit to the drawings that
it is repeatedly shown. There are two “flavours” of this sampling technique: over-
sampling and undersampling. Oversampling works as described by sampling the
minority class at a higher rate, while undersampling works by sampling the major-
ity class at a lower rate to make the two classes balanced. While oversampling has
the drawback of potential overfitting, undersampling can cause loss of information
as majority-class samples are randomly excluded from the training set each epoch.

Another solution is to use additional datasets that contain drawings to achieve
balance. As can be seen in section 3, we experimented with many additional
datasets. Because they also did not have an even distribution of paintings and
drawings, we combined the additional datasets with oversampling or undersam-
pling. In some cases, depending on the additional datasets that were used, paintings
became the minority class and had to be oversampled (or drawings undersampled).
Another approach we have taken is to generate artificial training data. We perform
a rudimentary style transformation of paintings to drawing-like images. Paintings
are first converted to greyscale, then a gaussian filter with a σ of 10 is applied. The
inverted image and the gaussian filter are then overlayed. After the style transfor-
mation, a random resize crop to 224 x 224 pixels, a random horizontal flip and a
normalization is applied. We evaluate transformation probabilities of 1

3 and 1
2 that

regulate the proportion of transformed paintings.
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The methods described above operate at the data level: they modify the data so
that the model is not “aware” of the imbalance. We also implemented methods at
the algorithm level; specifically, we use two modifications of the loss function. One is
a weighted loss, where the influence of wrongly classified minority-class samples
on the loss can be increased by a weight factor. The imbalance in the dataset is then
offset by the fact that the minority class has more impact on the loss and therefore
the training process.

Another modification is to use a different loss that incorporates a balancing
mechanism: the F1-score. This has the added benefit of a closer alignment between
the loss that is used to train the model and the primary metric that we want to
optimize. Unfortunately, the F1-score is not guaranteed to be differentiable as there
is the possibility of a division by zero. This problem can be overcome by adding a
small ε = 1e-10 to the denominator wherever this possibility exists. As we want to
maximise the F1-score, we minimize the F1-score subtracted from one as our loss.

Other improvements. We employ test-time augmentation. Using PyTorch’s Five-
Crop and TenCrop modules,1 we feed our model five versions of the same image
at test-time: one crop from every corner of the image as well as the center crop. In
the case of TenCrop, the model is also fed a horizontally flipped version of every
crop. The final prediction is then set to the most common prediction over all crops.
We also experiment with an ensemble of three different ResNet models. As the
ResNet50 model has more parameters than the smaller ResNets, it is more prone
to overfitting, which is why we also included a ResNet34 and ResNet18.

4.3 Genre Classification

In the genre classification challenge, we implemented two different approaches: an
ensemble-based approach consisting of five one-versus-the-rest classifiers for the
five genres and one single-model approach.

The data preprocessing and techniques to combat data imbalances are analogous
to the type classification described in subsection 4.2. However, we use an additional
sampling technique: a combination of over- and undersampling. The open-source
ImbalancedDatasetSampler2 aims to achieve a balance between over- and under-
sampling to alleviate their respective drawbacks.

Ensemble model. To classify the five different genres, we train one model for
each genre that classifies whether an image belongs to that genre or not (“one-
versus-the-rest”). These models then build an ensemble. The final predicted genre
is decided by the network that yielded a positive result with the highest confidence.
For the individual models of the ensemble we used the ResNet50 architecture. We
train each ResNet50 model with different combinations of augmentation methods

1https://pytorch.org/vision/stable/transforms.html#torchvision.transforms.[Five|
Ten]Crop (last accessed June 16, 2021).

2https://github.com/ufoym/imbalanced-dataset-sampler (last accessed June 16, 2021).
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and learning rate scheduling. We did not do a systematic search for the best combi-
nations but rather made choices based on intuition. Our first ensemble consisted of
the best-performing classifiers for each genre. However, we found that this choice
was not optimal. Through manual experimentation, we found an ensemble where
the individual classifiers were sub-optimal but together, they outperformed the
previous ensemble.

Single model. In contrast to the ensemble approach, we also trained a single
model capable of classifying all genres. We experiment with the same model archi-
tectures mentioned in subsection 4.2. Because there are five different genres, our
models’ final decision layer now has five outputs instead of just one, which are fed
into a softmax layer. Instead of binary cross-entropy loss, categorical cross-entropy
loss is used.

5 Results and Discussion

In the following, we describe our results for both classification tasks. For the type
classification task, we explored multiple training methods. In the genre classifica-
tion task, we built on these results and used the best training approaches from the
type classification task.

6 Type Classification Results

For the type classification task, we first describe the main findings we obtained
from the exploration of different training methods. Subsequently, we describe the
model with the best overall performance and compare it to some of our other
models.

6.1 Impact of Data Augmentation

Since the Getty dataset is comparatively small, we experimented with various
augmentation methods to prevent model overfitting. To identify the most suitable
augmentation methods, we trained ResNet50 models on the Getty dataset with one
augmentation method each and compared them to a baseline model trained with-
out data augmentation. To account for different model initializations, we ran three
trainings with 30 epochs for each augmentation method. We determined the best
model (best F1-score for the drawings class on the Getty validation set) from each
training and report the averaged F1-scores of the best models in Table 3. Details
on the training setting are also provided in Table 3. As shown in Figure 3, con-
verting the training images to grayscale images significantly degrades the model
performance on the validation set compared to the baseline model. Random resiz-
ing and cropping of the training images, on the other hand, slightly improves the
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Figure 3: Performance of ResNet50 models trained with different data augmenta-
tion methods on the unbalanced Getty dataset. In both plots, we show the F1-score
for the drawings class on the Getty validation set.

performance on the validation set. For all other augmentation methods we tested,
the performance of the models on the Getty validation set is very similar to that of
models trained without data augmentation.
The fact that converting training images to grayscale images significantly degrades
the training results suggests that the models strongly account for color information
in discriminating between drawings and paintings. This is surprising given that
only a subset of the training set consists of color images. However, among the
colored training images, paintings are indeed usually colorful, while drawings use
a limited color palette.
One possible explanation for the performance increase achieved by random resiz-
ing and cropping is that it prevents overfitting to certain image features. However,
it is unclear why random cropping does not have a similar effect on model perfor-
mance. Our custom “border cropping” technique that removes image frames led
to a slight decrease in performance. It could be that the image frames, which we
initially thought of as clutter or noise, actually contain information that our model
can learn from.

6.2 Coping With Unbalanced Training Data

As described in subsection 4.2, we implemented several approaches to address
the imbalance in the Getty training set. Below, we describe how these approaches
impact model performance.

Oversampling and undersampling. To examine how oversampling of the minor-
ity class (drawings) or undersampling of the majority class (paintings) affects model
performance, we trained three ResNet50 models for 30 epochs with each sampling
method. To determine the baseline performance, we trained three Resnet50 models
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Table 3: Performance of ResNet50 Models Trained on the Getty Dataset

Augmentation
Method

Validation Set Test Set
F1-Score for
Drawings

F1-Score for
Paintings

F1-Score for
Drawings

F1-Score for
Paintings

RandomResized-
Crop

0,974 ± 0,002 0,996 ± 0,000 0,971 ± 0,005 0,995 ± 0,001

No Augmentation 0,956 ± 0,004 0,993 ± 0,001 0,967 ± 0,009 0,994 ± 0,002

ColorJitter 0,959 ± 0,004 0,993 ± 0,001 0,965 ± 0,008 0,994 ± 0,001

Border Cropping 0,946 ± 0,008 0,991 ± 0,001 0,965 ± 0,002 0,994 ± 0,000

RandomPerspective 0,961 ± 0,002 0,994 ± 0,000 0,964 ± 0,000 0,994 ± 0,000

RandomHorizontal-
Flip

0,959 ± 0,005 0,991 ± 0,003 0,963 ± 0,006 0,993 ± 0,001

RandomRotation 0,958 ± 0,004 0,993 ± 0,001 0,962 ± 0,008 0,993 ± 0,001

RandomAffine 0,948 ± 0,004 0,992 ± 0,001 0,961 ± 0,006 0,993 ± 0,001

RandomCrop 0,955 ± 0,005 0,993 ± 0,001 0,954 ± 0,014 0,992 ± 0,002

Grayscale 0,919 ± 0,020 0,986 ± 0,004 0,920 ± 0,022 0,985 ± 0,005

Models were pre-trained on ImageNet; batch norm, conv. 4, conv. 5 and fc. layers were
fine-tuned for 30 epochs on the unbalanced Getty dataset. Training images were resized
and cropped to 224 x 224 pixels. A batch size of 100 was used. An Adam optimizer and
a cosine annealing learning rate scheduler were used (initial learning rate: 10−4, ηmin =
0). For all augmentation techniques except border cropping, the implementations from
the torchvision package were used.1 For border cropping, a custom implementation was
used as described in subsection 4.2. For the augmentation methods from the torchvision
package, the default parameters were used unless otherwise specified below:
ColorJitter: brightness=0.5, contrast=0.5, saturation=0.5, hue=0.1
RandomAffine: degrees=(0, 40), translate=(0.0, 0.4), scale=(0.6, 1.4), shear=0.2, resam-
ple=BICUBIC
RandomCrop: size=224, images were resized to 224 pixels (longer edge) in advance
RandomResizedCrop: size=224, images were resized to 300 pixels (longer edge) in advance
RandomRotation: degrees=360

1 https://pytorch.org/vision/stable/transforms.html (last accessed June 16, 2021).
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on the unbalanced Getty dataset. We determined the best model (best F1-score for
the drawings class on the Getty validation set) from each training and report the
averaged F1-scores of the best models in Table 4.
We expected that undersampling the majority class would degrade the model
performance because information is lost by randomly discarding training images.
On the other hand, we expected that oversampling would improve the results by
counteracting a model bias in favor of the majority class. However, as our results
in Table 4 show, this did not prove true. All three ResNet50 models achieve very
similar performance on the Getty test set. Similar observations were made when
training models with other architectures, e.g. ResNet18. This demonstrates that
transfer learning yields satisfactory results even on highly imbalanced datasets and
that over- or undersampling techniques are not necessarily needed.

Table 4: Performance of ResNet50 Models Trained on the Getty Dataset Using
Different Sampling Methods

Dataset
Validation Set Test Set

F1-Score for
Drawings

F1-Score for
Paintings

F1-Score for
Drawings

F1-Score for
Paintings

Getty,
unbalanced

0,956 ± 0,004 0,993 ± 0,001 0,967 ± 0,009 0,994 ± 0,002

Getty, random
undersampling

0,960 ± 0,004 0,994 ± 0,001 0,966 ± 0,008 0,994 ± 0,001

Getty, random
oversampling

0,955 ± 0,006 0,993 ± 0,001 0,965 ± 0,005 0,994 ± 0,001

Models were pre-trained on ImageNet; batch norm, conv. 4, conv. 5 and fc. layers were
fine-tuned for 30 epochs. Training images were resized and cropped to 224 x 224 pixels.
A batch size of 100 was used. An Adam optimizer and a cosine annealing learning rate
scheduler were used (initial learning rate: 10−4, ηmin = 0).

Additional training data. We expected that models trained on larger training
sets would perform better and overfit less. To verify this assumption, we trained
ResNet50 models on the Getty dataset and one additional dataset each. To exclude
differences caused by different distributions of the datasets, we balanced the train-
ing sets by random undersampling. Table 5 shows for each dataset combination
the metrics of the model that achieved the highest F1-score for the drawings class
on the Getty validation set. Despite our assumption, not all datasets improve per-
formance compared to the model trained only on the Getty dataset. Possibly this
is because some datasets differ too much from the Getty dataset in terms of style
and era of the artworks. In particular, the images in the Bing and Brill datasets
differ significantly from those in the Getty dataset. In contrast, the Rijksmuseum
dataset, which is stylistically most similar to the Getty dataset and represents the
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largest dataset, yields the model with the best performance. This indicates that
additional, high quality datasets can improve the models. However, the transfer
learning approach allows to obtain satisfactory results even with small datasets.

Table 5: Performance of ResNet50 Models Trained on the Getty Dataset and One
Additional Dataset Each

Dataset
Validation Set Test Set

F1-Score for
Drawings

F1-Score for
Paintings

F1-Score for
Drawings

F1-Score for
Paintings

Getty + Rijksmuseum 0.9644 0.9941 0.9735 0.9953

Getty + Wikiart 0.9573 0.9929 0.96 0.9929

Getty + Metropolitan 0.9567 0.993 0.96 0.9929

Getty 0.954 0.9926 0.96 0.9929

Getty + Bing 0.9571 0.9929 0.9469 0.9906

Getty + Brill 0.9592 0.9933 0.9432 0.9898

Getty + Kaggle 0.9471 0.9914 0.9417 0.9898

The models were pre-trained on ImageNet; batch norm, conv. 4, conv. 5 and fc. layers were
fine-tuned for 30 epochs. Training images were resized and cropped to 224 x 224 pixels.
The training sets were balanced by random undersampling and a batch size of 100 was
used. An Adam optimizer and a cosine annealing learning rate scheduler were used (initial
learning rate: 10−4, ηmin = 0).

Artificial training data. Besides acquiring additional training data, we also exper-
imented with algorithmically converting paintings into drawing-like images. The
results of these experiments are listed in Table 6. For each experiment, we report
the highest micro-averaged F1-scor achieved on the Getty validation set. Convert-
ing a portion of the paintings to drawing-like images slightly improved results
over the baseline model. This indicates that the models consider color and edge
information when discriminating between drawings and paintings, as our style
transformation mainly changes colors and edges of the images. This is consistent
with our observation from the experiments with data augmentation, which showed
that color information is very important for the type classification task.

Adapted loss functions. As described in subsection 4.2, we also tested two custom
loss functions. In the first loss function, the cross-entropy loss of the minority class
was weighted higher by a factor. Intuitively, this factor should be chosen according
to the relation of drawings to paintings in the training set. This did not prove
correct in our initial experiments and we had to manually fine-tune this factor to
give drawings even more weight in order to achieve satisfactory results. Because
of this difficulty and the introduction of yet another hyper-parameter in form of
the weight factor, we discarded this strategy in our further experiments. Using the
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F1-score as loss function also did not improve the results. Therefore, for simplicity,
we used only the binary cross-entropy loss in our other experiments.

6.3 Model With the Best Overall Performance

The overall best performance in the type classification task was achieved with a
DenseNet201 pre-trained on the ImageNet dataset. We fine-tuned all layers of the
model using the Getty dataset, the Kaggle datasets, the Metropolitan dataset and
the Wikiart dataset. Images were resized to 400× 400. We apply random horizontal
flipping and random affine augmentations.3 During training, the drawings class
was randomly oversampled. The model optimization was done using the binary
cross-entropy loss, a constant learning rate of 0.005 and the AdaDelta optimizer.
When generating predictions, we used FiveCrop for test-time augmentation, as
described in subsection 4.2. With this configuration, we achieve an F1-score of
0.9825 for the drawings class on the Getty validation set. On the Getty test set, we
achieve an F1-score of 0.9739 for the drawings class and an F1-score of 0.9953 for
the paintings class (Table 7). Overall, this is our best result, but we have obtained
similar results with other model architectures and configurations. For example,
the ResNet50 listed in Table 7 that was trained on the Getty and the Rijskmusuem
dataset, yields almost the same performance. However, the ensemble model listed in
Table 7 did not improve the results. Considering the comparatively low complexity
of the type classification task, satisfactory results can also be obtained with flatter
models, e.g. ResNet18 models. Due to the transfer learning approach, good results
are usually achieved after only a few training epochs, allowing to train models for
type classification even with limited computational resources.

Table 6: Performance of ResNet18 Models Trained on the Getty Dataset

Dataset Micro F1-Score

Getty 0.9256

Getty, 1/3 of paintings converted to drawings 0.9357

Getty, 1/2 of paintings converted to drawings 0.9365

The models were pre-trained on ImageNet; batch norm, conv. 4, conv. 5 and fc. layers were
fine-tuned for 30 epochs. Training images were resized and cropped to 224 x 224 pixels
and a batch size of 32 was used. An Adam optimizer and a constant learning rate of 10−3

were used.

3https://pytorch.org/vision/stable/transforms.html#torchvision.transforms.
RandomAffine (last accessed June 16, 2021).
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Table 7: Performance of Selected Models in the Type Classification Task

Model
Validation Set Test Set

F1-Score for
Drawings

F1-Score for
Paintings

F1-Score for
Drawings

F1-Score for
Paintings

DenseNet201 0.9749 0.9959 0.9739 0.9953

ResNet50 0.9644 0.9941 0.9735 0.9953

Ensemble of Resnet18, Res-
net34 and Resnet50

0.969 0.9949 0.96 0.9929

ResNet34 0.9592 0.9933 0.9553 0.9922

ResNet18 0.9596 0.9933 0.9391 0.9890

The DenseNet201 was trained on the Getty dataset, the Kaggle datasets, the Metropolitan
dataset and the Wikiart dataset. The ResNet50 was trained on the Getty dataset and the
Rijksmuseum dataset. The ResNet34 and the ResNet18 were trained on the Brill dataset, the
Getty dataset, the Kaggle datasets and the Rijksmuseum dataset. In the ensemble model,
the predictions of the ResNet18, the ResNet34 and the ResNet50 were combined by a
majority vote.

7 Genre Classification Results

Building upon the results of the binary type classification task, we approach the
multi-class genre classification with single model setups of different architectures,
as well as ensemble-based approaches.

7.1 Single Model Approaches

For the single model approach, we used two different architectures, ResNet50 and
DenseNet201. Table 8 compares the results obtained with both architectures. There,
we report the highest micro-averaged F1-score achieved on the Getty validation set
for each model.

To determine the baseline performance for the DenseNet201 architecture, we fine-
tuned a model on the Getty and Art500K datasets. In this baseline configuration, all
layers were fine-tuned and the training set was balanced by random oversampling.
In Table 8, this baseline model is compared to a model that was trained with
cosine annealing learning rate scheduling [25]. We observe that the model without
learning rate scheduling performs slightly better and achieves a 0.3% higher micro
F1-score. We observed only small differences between the FiveCrop and TenCrop
test-time image augmentations. FiveCrop performed better in our final model but
we do not believe that this observation is generalizable. The overall best model of
the DenseNet201 architecture achieves a micro F1-score of 0.924. For this model, we
resized and cropped the images to 400 x 400 pixels and applied random horizontal
flipping and random affine transformations for data augmentation.
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For the ResNet50 architecture, we use a model as baseline with only the soft-
max classifier fine-tuned. Compared to the baseline model, a model trained with
the Pytorch “reduce learning rate on plateau” scheduler4 achieves a 0.3% higher
micro F1-score. Using the ImbalancedDatasetSampler5 we improve the baseline
micro F1-score by 3.4%. For type classification, we observed that unfreezing the last
convolutional layers and the classifier results in further improvements. We there-
fore evaluate the impact of retraining layers in combination with the previously
explained balancing technique for the genre classification. We note that retraining
three layers outperforms retraining five layers and results in an overall best run of
the ResNet50 with a micro F1-score of 0.931.

Table 8: Results for Single Models of DenseNet201 and ResNet50 Architecture in
the Genre Classification Task

Experiment Configuration Micro F1-Score

DenseNet201

Baseline Baseline configuration1
0.924

Learning rate Cosine annealing scheduling 0.921

ResNet50

Baseline Baseline configuration2
0.838

Learning rate Reduce on plateau scheduling 0.841

Balancing Imbalanced sampler 0.872

Retraining
3 layers retrained3

0.928

5 layers retrained4
0.881

1 The DenseNet201 models were pre-trained on ImageNet; all layers were fine-tuned for
30 epochs using the Art500k dataset and the Getty dataset. The training set was balanced
by random oversampling and a batch size of 32 was used. A constant learning rate of 10−3

was used in the baseline configuration.
2 The ResNet50 models were pre-trained on ImageNet; the classifier was fine-tuned for
30 epochs using the Getty dataset. A batch size of 32 was used. A constant learning rate
of 10−3 was used in the baseline configuration. Both retraining configurations used the
ImbalancedDatasetSampler for balancing.
3 Retraining of conv. 4, conv. 5 and fc.
4 Retraining of conv. 2, conv. 3, conv. 4, conv. 5 and fc.

4https://pytorch.org/docs/stable/optim.html#torch.optim.lr_scheduler.
ReduceLROnPlateau (last accessed June 16, 2021).

5https://github.com/ufoym/imbalanced-dataset-sampler (last accessed June 16, 2021).
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Table 9: Performance of ResNet50 Models Trained to Detect One Genre Each (one-
versus-the-rest)

Hyperparameter
Class

Portrait,
ImageNet

Portrait,
VGGFace2

Genre History Still life Landscape

Without data augmentation
Stepwise 0.474 0.545 0.728 0.899 0.53 0.9
Cosine annealing 0.439 0.390 0.705 0.9 0.545 0.918

With data augmentation
Stepwise 0.428 - 0.572 0.841 0.472 0.762

Cosine annealing 0.342 0.5 0.592 0.702 0.395 0.734

The models were pre-trained on ImageNet, for the portrait class an additional model
pre-trained on VGGFace2 was evaluated. Batch norm, conv. 4, conv. 5 and fc. layers were
fine-tuned for 30 epochs on the Art500k, Europeana, Getty and WGA datasets. Training
images were resized and cropped to 224 x 224 pixels. The training sets were balanced by
random undersampling and a batch size of 115 was used. An Adam optimizer was used.
For stepwise learning rate decay (denoted as stepwise), the initial learning rate was set
to 10−3 and the step size to 4. For cosine annealing learning rate scheduling (denoted as
cosine annealing), the initial learning rate was set to 10−4 and ηmin to 0. The transformations
RandomGrayscale, RandomPerspective and RandomHorizontalFlip from the torchvision
package were used for data augmentation1.

1 https://pytorch.org/vision/stable/transforms.html (last accessed June 16, 2021).

Table 10: Performance of Two Ensemble Models for Genre Classification

Genre
Ensemble Model 1 Ensemble Model 2

F1-Score on
Getty

F1-Score on
SemArt

F1-Score on
Getty

F1-Score on
SemArt

Genre 0.757 0.5101 0.7646 0.5237

History 0.763 0.8542 0.7467 0.8631

Landscape 0.9154 0.8574 0.9145 0.8658

Portrait 0.8 0.6949 0.8 0.7736

Still life 0.9507 0.7434 0.9507 0.7711

Ensemble 1 is a combination of the best individual models from the experiments presented
in Table 9. Ensemble 2 was created by exploring various single model combinations. Both
Ensemble models consist of one individual ResNet50 classifier per genre category pre-
trained on ImageNet. Batch norm, conv. 4, conv. 5 and fc. layers of each ResNet50 were
fine-tuned for 30 epochs on the Art500k, Europeana, Getty and WGA datasets. For details
on the training setting, see Table 9. In both ensemble models, the prediction of the classifier
with the highest confidence was used as final prediction.

26

https://pytorch.org/vision/stable/transforms.html


8 Conclusion

7.2 Ensemble model approach

Besides single models, we also experimented with ensemble models in the genre
classification task. As described in subsection 4.3, our ensemble models consist
of five one-versus-the-rest ResNet50 classifiers where each classifier is trained to
detect one genre class. For each of the five classifiers, we evaluate the impact of
data augmentation and learning rate scheduling. For all genres, we use ResNet50

models pre-trained on the ImageNet dataset. For the portrait class, we addition-
ally evaluate an InceptionResNet pre-trained on the VGGFace2 dataset [5] for face
recognition. Table 9 shows the performance of the best single models for these
different experimental settings. For each model, we report the highest F1-score that
was achieved on the Getty validation set. For landscape paintings we observe a
baseline F1-score of 0.9 which is the highest baseline score over all classes. Data
augmentation reduces the F1-score by 14%. This decrease caused by the use of aug-
mentation is observed throughout all single models of the ensemble with varying
margins. Fine-tuning with cosine annealing learning rate scheduling improved the
F1-scores of the landscape, history and still life classifiers up to 1% compared to
the stepwise learning rate decay. For the classification of the genre paintings class
the use of stepwise learning rate decay outperforms the cosine scheduling by 2.3%.
A similar effect is noticeable for the InceptionResNet classifier for the portrait class
where the the F1-score drops by 15% when using the cosine annealing learning rate
scheduling. Comparing the ResNet50 and the InceptionResNet for classifying the
portrait class, we notice that they both perform better without image augmentation
but the InceptionResNet shows slightly higher confidence.

When selecting the individual models for the ensemble, we compared a combi-
nation of the best individual models (Ensemble 1) with a trial-and-error ensemble
(Ensemble 2) whose composition was guided by intuition. Table 10 shows that both
ensemble models perform similarly on the Getty validation set. When validated on
the SemArt dataset, Ensemble 2 performs slightly better. In particular, Ensemble 2

achieves a higher F1-score for the history paintings class on the Semart dataset. We
therefore conclude that Ensemble 2 shows increased robustness compared to the
best-of-model.

8 Conclusion

In this work, we successfully applied deep learning models to two image classifica-
tion tasks from the art domain. In the type classification of artworks, our models
achieve human-like accuracy. As expected, the genre classification of artworks
turned out to be more a complex problem. Building on our results, future work
should aim to further improve model performance for this classification task.
Overall, our results demonstrate that the transfer learning approach can produce
very good results even on small, highly unbalanced training datasets. By using
additional training data and employing random resizing for data augmentation, we
were able to further improve the performance of our models. In contrast, most data
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augmentation methods, over- and undersampling techniques, and adjustments
to the loss functions did not yield any benefits. Ensemble learning also did not
improve the results compared to the single-model approach. Since most of our
experiments rely on a comparatively small number of training runs, future work
should strive for additional statistical evidence. In particular, the impact of data
augmentation and over- or undersampling techniques likely depends on the train-
ing datasets and should therefore be further investigated.
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As more and more art collections are being digitized, new opportuni-
ties for automatic analysis open up, object detection being one of such
tasks. However, annotated collections of artworks are still rare and models
pre-trained on photos generally do not transfer well onto works of art.
We therefore evaluated what can be achieved, relying only on available
datasets and pre-trained convolutional neural networks (CNNs) in a com-
plex object detection task.

We present three different ensemble training approaches for building
a cross-domain object detector on art data. These models can predict 22
classes divided into six categories. While average precision metrics are still
quite low, qualitative analysis shows promising results for many classes.
Due to a lack of data, some classes performed better than others.

1 Introduction

Nowadays, many museums are digitizing their art collections to enable worldwide
public web access (e. g. the New York Public Library Digital Collection 1) and
through the digitization the artworks remain preserved. Filtering functions based
on artwork metadata (e. g. epoch, genre, painter etc.) and the types of objects
depicted in images can be very helpful when it comes to exploring these digital
collections. This is where automatic object detection can be applied. An exemplary
use case for a user who wants to study religious paintings, could be to filter all art
works for ones that contains only Mary and Jesus.

Various machine learning methods have already been developed for detecting
objects in images [32]. They include the localization of objects by predicting bound-
ing boxes and the classification of these objects into a set of classes. Most often,
convolutional neural networks (CNNs) are used for this purpose as they have
proved to be an extremely powerful tool in the area of image recognition in recent
years [9]. Their ability to take images as input and encode semantics in their hid-
den layers makes them very efficient algorithms for image recognition with good
generalization qualities.

However, CNNs usually require very large amounts of labeled training data in
order to generalize well on unseen images. Object detection tasks in particular need
very detailed labeling of individual objects with bounding boxes in the training

1https://digitalcollections.nypl.org (last accessed June 16, 2021).
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images (so called instance-level annotation). This annotation process is both time-
intensive and expensive, resulting in only a few available data sources. Especially
in the art domain, only a handful of datasets are available and even fewer contain
annotations. We take a closer look into this in section 3.

To tackle this issue, a commonly used method is to rely on pre-trained CNNs,
which are trained on large, general photo collections and encapsulate low-level
image understanding. They are then fine-tuned on the target domain (retrained
on the target dataset while initializing layers with the pre-trained weights) in a
separate training step, requiring less data and time. In section 4, we present three
distinct approaches which rely on such pre-trained CNNs.

Still, the question of cross-domain transfer remains. Photos and artworks are
known to have largely different data distributions [3] rendering a transfer learning
from the photo domain difficult. In order to assess how well existing object detec-
tion models can be transferred to the art domain we set up a complex and very
broad detection task covering 22 object classes in six categories, which were given
as the project task. In section 5, we evaluate the effectiveness of our implementa-
tions of such transfer learning, before discussing the results in section 6, concluding
and giving an overview of possible future work in section 7.

2 Related Work

In the following section we provide an overview of common object detection al-
gorithms and introduce related work in the domain of detecting objects in the art
domain.

2.1 Object Detection Algorithms

The first big leap in the development of detection algorithms was made through
the introduction of CNNs, namely the region-based CNN (R-CNN) by Girshick et
al. [7]. Previously mainly hand-crafted image features were used in combination
with classification algorithms [33]. R-CNNs are based on the selective search al-
gorithm [27], which proposes hundreds of regions per image, which potentially
contain an object. These regions are then passed through a pre-trained CNN to
extract features and are then classified using linear classifiers [33].

Further improvements were made with Fast R-CNN [6] and later Faster R-
CNN [23], which made the region proposal step part of the CNN itself in the
form of a region proposal network (RPN). This allowed for much faster processing
as the original region proposal stage could be skipped.

An even faster model was presented by Redmon et al. [21] with You Only Look
Once (YOLO). Their CNN processes an image once and predicts all bounding
boxes across all classes for the image simultaneously with only a single network
evaluation.

Predictions are made taking into account the whole picture, which means that
YOLO partially encodes contextual information as well. This distinguishes YOLO
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from existing detection methods, such as Fast R-CNN, which cannot detect wider
contexts as it is restricted to region proposals. Furthermore, YOLO allows for real-
time prediction because the image is processed only once by the CNN, and it is
also more than twice as accurate as other real-time detection systems and generates
fewer false positives [21].

2.2 Object Detection in Artworks

Style Transfer and Style Prediction. Smirnov et al. [24] propose a transfer learn-
ing approach to object detection in artworks. They stylize photos from the PASCAL
VOC dataset [5] using artistic reference images and fine-tune a pre-trained object
detection model using these painting-like images. Additionally, they use a style
prediction network and fuse the high-level features of both models into a final
classifier. Using this technique the authors report a mean average precision (mAP)
on the transformed PASCAL VOC of 0.58.

Detecting Persons in Artwork. Westlake et al. [28] tried to detect people in
paintings. They achieve an mAP of 0.58 on their dataset, called ‘People-Art’, by
fine-tuning a VGG-16, which was pre-trained on ImageNet.

Region Proposals and MI-max. Gonthier et al. [8] present a weakly supervised
approach using transfer learning with the help of residual networks (ResNets) [11]
to detect objects in artworks. Their algorithm is able to only work with image-level
annotations marking whether an object of a certain class is present in the image or
not without knowing its exact location.

They use a Faster R-CNN, whose region proposal network serves as a feature
extractor, from which they store 300 proposals (bounding boxes) with the highest
objectness scores of an image and their feature maps. A linear classifier is then
trained on these feature maps, which decides for each of the bounding boxes
whether it belongs to the class annotated for the image at the image level. For
training this classifier, Gonthier et al. [8] use a multiple instance learning loss. In
this way, they want the model to learn to distinguish the bounding boxes with
the highest scores of positively labeled images from the bounding boxes with the
highest scores of negatively labeled images. They call this method MI-max.

3 Problem Statement

In this section we present the project task and the training data we relied on to
solve it.
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3.1 Prediction Target

Our goal is to train an object detection model which can correctly detect the classes
listed in Table 1 in artworks.

Table 1: Classes of Objects to be Detected in the Images

Persons Animals Produce Structures Landforms Faces

Angel Cow Flower Ruins Water Bodies
Child Jesus Cat Fish Ship Hills
Crucifixion Cock Meat Building Mountains
Mary Dog Fruit Others Others
Nudity Horse Others
Saint Sebastian Duck
Others Others

The categories Persons, Animals, Produce, Structures and Landforms serve as high-
level categories while the classes belonging to them are finer sub-divisions, so we
distinguish between a coarse classification (e. g. Animals) and a fine classification
(e. g. Cow, Cat or Cock). The classes Others are meant as a default fallback: Whenever
an object does not fit into any of the classes, it is classified as the corresponding
category.

3.2 Data Description

The dataset we are working with contains 4722 images provided by the Getty
Research Institute.2 The dataset is not annotated for object detection, which means
that we have to rely on additional data for model training. For evaluation we
manually constructed a test dataset from these images consisting of 156 images.

Since the most applications of machine learning are often based on photo-realistic
images, finding adequate data sources in the artwork domain can be difficult. Ac-
cording to Milani and Fraternali [19], some prominent painting-centric examples in-
clude the Art500K [17], Rijksmuseum [18], Multitask Painting 100K [1], WikiArt [26]
and IconArt [8] datasets. Of these, only the IconArt dataset provides instance-level
bounding box annotations for a small part of its images, while most other available
datasets only offer image-level annotations, which are not as helpful concerning
the goal of object detection. Furthermore, the IconArt dataset only covers some of
our target classes, namely the Persons category. For the training of these classes we
partially used the IconArt dataset.

2https://www.getty.edu/research (last accessed June 16, 2021).
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We give a complete overview of the annotated datasets we used for training
in Table 2. As annotated art data is so rare except for IconArt all of them are
photographic datasets.

The Google Open Images (GOI) dataset [13] is a large open source collection of
over 9M images for 600 classes including bounding box annotations. However, the
number of images per class varies greatly between classes.

A second dataset containing annotated photographs is the COCO 2014 dataset [16],
which also provides some usable class images.

One further source of instance-level annotations is the ImageNet dataset [4]. It
contains some examples of classes that are hard to find elsewhere, for example
geographical features such as Water Bodies, Hills or Mountains.

The intersection of classes contained in the different annotated datasets and those
that should be detected in the artworks is depicted in Table 2.

While some classes, such as those of the different animals, transfer well from
recently-taken photographs, classes such as Ship or Building do not only contain
the sailing boats or castles and cottages contained in the artworks, but also modern
container ships and contemporary architecture. This data quality constraint should
be kept in mind when training models on these classes later on.

4 Approaches and Methods

In the following, we present three different approaches for detecting objects in
artworks. All these approaches rely on ensembles but use different methods to
generate and merge their predictions.

4.1 ResNe(X)t and WBF Ensemble

The first approach is to combine the predictions of multiple different network
architectures. We used Detectron2, a computer vision framework developed by
Wu et al. [29], which is based on PyTorch [20] and is commonly used for object
detection and image segmentation tasks. It provides a simple training pipeline
that is designed for transfer learning based on a variety of network architectures.
The available baseline weights have been trained on the COCO dataset [16] and
include Faster R-CNN [23], RetinaNet [15], as well as RPN and Fast R-CNN [6]
and ResNeXt [30] architectures.

“Artifying” Training Augmentations. Given that the majority of the classes to
be detected in the artworks is only found in photograph-based annotated datasets,
we tried to augment these photorealistic source images to make them more similar
to the artworks of the prediction domain. In order to achieve this, we supplied
custom functions to the augmentation wrappers provided by Detectron2 during
the training phase.

The OpenCV library [2] offers four different functions that were used for this
kind of style transfer: edgePreservingFilter, pencilSketch, stylization and
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Table 2: Dataset Sources for the Prediction Targets

Category Classes GOI COCO 2014 IconArt ImageNet

Animals

Dog 7714 4562 × ×
Cat 6348 4298 × ×
Duck 4737 × × ×
Horse 6312 3069 × ×
Cow 1147 2055 × ×
Cock × × × 474
Others 6211 9483 × ×

Produce

Fruit 5762 5792 × ×
Meat × × × ×
Fish 5790 × × ×
Flower 8336 4624 × ×
Others 7709 6823 × ×

Persons

Angel × × 261 ×
Child Jesus × × 313 ×
Crucifixion × × 107 ×
Mary × × 446 ×
Nudity × × 403 ×
Saint Sebastian × × 82 ×
Others × 66808 × ×

Structures
Ruins × × 114 ×
Ship 6567 3146 × ×
Building 6640 × × ×
Others × × × ×

Landforms
Water Bodies × × × 1384
Hills × × × 87
Mountains × × × 133
Others × × × ×

Sum 73282 110660 1726 2078
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xphoto.oilPainting. All of these transform the input image in a way that makes
them appear more like some form of artwork and thus “artify” an input photo-
graph. The last two transforms make photographs appear like water colour and oil
paintings respectively, and thus are most likely to match the target images. These
two were therefore given a higher probability to be applied through weighting, as
shown in Table 3.

Given that a large number of the artworks in the Getty dataset are greyscale
images, we also reduced saturation to zero with a high probability (80%).

We found that in most training runs, the “artification” did not lead to a large
increase in detection accuracy, but that it could provide a small boost if applied
sparingly. This lead us to apply this type of augmentation with a probability of
only 20%.

Table 3: Augmentations Applied to “Artify” Training Images

Augmentation Weight Transform Subweight

“Artify” 0.2

edgePreservingFilter 0.05
pencilSketch 0.05
stylization 0.2
xphoto.oilPainting 0.7

Greyscale 0.8 Reduce saturation to 0 1.0

Repeat Factor Sampling. Working with imbalanced training data is a common
challenge in machine learning. The niche status of some of the prediction targets,
such as particular saints in religious images means that they are underrepresented
in the training data. We employed is repeat factor sampling (RFS) as proposed by
Gupta et al. [10] to address the problem. This resampling strategy increases the
number of infrequently occurring classes shown to the neural network by over-
sampling them to a certain degree. While they apply it in a case where the most
infrequent classes make up less than 0.1% of all instances, our least frequent classes
occur more often relative to the most frequent ones. We used a repeat factor thresh-
old of 5%, which we applied using Detectron2’s RepeatFactorTrainingSampler
class. This ensures that, classes that make up less than 5% of the training data are
oversampled to such a degree that they make up 5% of all instances shown to the
model during training. The specific values used are shown in Table 4.

Model Training and Selection. Since we did not have any instance-level anno-
tated data to use as a validation set with which to judge the quality of the trained
models, we decided to hand-pick a suitable set of the unlabelled Getty images for
this purpose. The subset of “interesting” images that we chose covered at least one
example of each image genre as well as some edge cases that seemed hard in an
object detection sense.
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Then, we fine-tuned a variety of pre-trained network architectures found in the
Detectron2 model zoo 3 on our training set assembled from the sources listed in
Table 2. We decided to select three different architectures with the best performance
on the COCO Object Detection baseline [16]. These are all Faster R-CNN approaches
with ResNet50, ResNet101 and ResNeXt101 backbones which use a feature pyramid
network (FPN) [14] that further improves their performance.

During training, we mainly varied the learning rate, the RFS threshold and the
content of the training dataset.

Next, we subjectively judged the performance of each fine-tuned network on
our validation set. Here, the goal was to identify models with a good general
performance, as well as models with a high accuracy for specific classes. In this
step we found that including instances from the ImageNet dataset during training
increased the number of false positives during validation dramatically. This is likely
due to fact that the Landforms classes covered by ImageNet do not transfer well
from photographs to artworks, even when applying the “artify” augmentations as
mentioned before. We therefore decided to exclude all ImageNet instances from
our training set.

For the final ensemble, we chose the qualitatively best-performing models on our
validation set. We then also checked if the addition of any model further improved
the predictions of the overall ensemble by doing predictions on the same validation
set. The final list, shown in Table 4, includes three different model architectures
trained with and without our “artify” augmentations as well as with different
repeat factor sampling thresholds. All ResNe(X)t models employ FPN and were
trained on training data from all sources in Table 2 except the ImageNet instances.

Table 4: Model Architectures and Parameters Used in the Final Ensemble

Model “Artify” RFS threshold Conf. threshold

ResNeXt-101-32x8d 0.06 0.3
ResNet101 X 0.4 0.15
ResNet101 X 0.2 0.3
ResNet101 0.2 0.5
ResNet101 0.06 0.2
ResNet50 X 0.06 0.2
ResNet50 0.06 0.2

Weighted Boxes Fusion. Solovyev et al. [25] present an alternative to non-maximum
suppression (NMS) when ensembling bounding box predictions from multiple
models. Instead of removing the subset of boxes with low confidence, their ap-

3https://github.com/facebookresearch/detectron2 (last accessed June 16, 2021).
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proach uses confidence scores of all proposed boxes in order to construct averaged
bounding boxes and their corresponding confidence scores. This method is espe-
cially useful if the ensembled models predict slightly inaccurate boxes that still at
least partly overlap on a ground truth target. In order to determine how to address
overlapping boxes, an intersection over union (IoU) threshold has to be provided.
To further improve performance, the models to be ensembled can be weighted by
the user, making it possible to increase the influence of a well-performing model
in the ensembling process. A general confidence threshold can be used to filter
predictions with very low confidence. In the authors’ testing, weighted boxes fu-
sion (WBF) outperformed both regular and soft NMS. Judging by our chosen test
images, we also found WBF to perform better than either NMS solution in our case.
For the given challenge, we used their publicly available implementation 4.

In the context of our predictions, we used WBF to merge the predictions of our
selected fine-tuned networks. We did not assign WBF weights to our models, but
varied each one’s confidence threshold for returning bounding boxes, as shown in
Table 4. Generally, we used an IoU threshold for WBF of 0.4, meaning that any two
boxes with an IoU ≥ 0.4 would be matched.

Post-Processing. To further improve our solution, we also applied some addi-
tional, manual tuning to deal with the peculiarities of our data. For example, we
commonly found duplicate predictions of the fine classes on a single object, such as
Nudity co-occurring with Child Jesus on the same detection. We addressed this issue
by first mapping each class to its category (e. g. Child Jesus and Nudity to Persons).
Then we used the WBF approach to calculate an averaged bounding box. To this
new bounding box, we then assigned the label of the most confident prediction
that was fed into the WBF step by mapping its coarse category back to its class
label. An instance with the two predictions Child Jesus and Nudity thus received an
averaged bounding box labelled as the more confident of the two.

We faced another issue with the classes Flower, Fruit, Produce and Ship. For
these, our models would in some cases find sub-instances of a class inside a
larger detection. While not necessarily wrong, we assumed that a bounding box
encompassing the entire plant is semantically more sensible than a multitude of
blooms labelled as such. One example are flowers, where smaller blooms or petals
inside a larger bounding box were also labelled. In such cases, we simply removed
the inner predictions and thus only kept the largest bounding box.

The final flaw that we decided to handle is associated with the Building class. Our
models labelled entire scenes taking place indoors with this class in some cases.
While these predictions do have some semantic validity, we did not view them as
particularly meaningful, especially as they tended to cover almost the entire image
in such cases. Therefore, this particular problem of whether a depicted scene might
be located inside a building could be solved more efficiently with a classifier than
in our object detection approach. As a result, we decided to prune these predictions

4https://github.com/ZFTurbo/Weighted-Boxes-Fusion (last accessed June 16, 2021).
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by eliminating any Building predictions covering more than 85% of the total image
area.

Face Detection Using MTCNN. A common task in computer vision is the detec-
tion of faces within images. A popular algorithm in this domain was developed
by Zhang et al. [31], which enables face detection in real-time through a cascaded
architecture of deep CNNs. In the case of face detection inside the artworks, we re-
lied on Centeno’s 5 implementation of a multi-task cascaded convolutional network
(MTCNN). As this model is pre-trained mainly on photographs, we suspected that
it might not necessarily transfer well to the art domain. However, we found its
predictions to be reasonable in most cases and did not resort to fine-tuning of any
kind. We also did not compare its performance to other network architectures or
implementations. This could be an area of future research.

Given the pruned output of the previous steps, we then simply appended the
predicted face bounding boxes without any further modification to yield our final
predictions.

4.2 IconArt and Pre-Trained Ensemble

Another approach we pursued was an ensemble approach of self-trained and pre-
trained models. For this, we trained some of the models ourselves using supervised
training (only for the IconArt classes), but we also made use of pre-trained models
(for the other classes). For example, we trained a common Faster R-CNN for almost
all IconArt classes (except Saint Sebastian). Then we trained one Faster R-CNN each
for the classes Angel, Mary and Crucifixion. We used NudeNet 6 for the class Nudity,
YOLOFace 7 for the category Faces and for all other classes and categories, we used
a Faster R-CNN pre-trained on the COCO dataset, a Faster R-CNN pre-trained on
the Google Open Images dataset, and YOLO9000 [22]. The input image is processed
by the individual submodels and possible bounding boxes are cached after a NMS
is performed at the class level in each case. The resulting bounding boxes are then
merged and filtered using further NMS.

4.3 YOLO Ensemble

In this ensemble approach, we do not aggregate different model architectures, but
rather split the data into the categories (see Table 1) and train individual models
on each of these separate categories.

The assumption is that object detectors are easier to train on a single category
(e. g. Animals) rather than on a mixture of all target categories. After training
individual models on all categories, the predictions get aggregated, filtering con-

5https://pypi.org/project/mtcnn (last accessed June 16, 2021).
6https://github.com/notAI-tech/NudeNet (last accessed June 16, 2021).
7https://github.com/sthanhng/yoloface (last accessed June 16, 2021).
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tradicting labels of overlapping bounding boxes based on predefined rules. This
approach also alleviates data imbalance concerns between categories.

Model Training. We used the YOLO v5 [12] model for each category. As men-
tioned in subsection 2.2 it is one of the state-of-the-art object detectors, which allow
end-to-end training and do not rely on region proposals. This makes the model
very fast during inference and well suited for ensemble prediction as we can run
multiple models sequentially and still expect reasonable runtime performance.

For the classes of the category Persons, we trained the model on the annotated
image from the IconArt dataset.

In addition to that we relied on a YOLO model pre-trained on the COCO dataset
for general person detection (i.e. class Others in category Persons). Through manual
assessment we determined that the IconArt model rarely produced false positives
for person predictions, i. e. it did not classify general persons as religious characters.
This let us use it as a special case for religious figures, whereas the pre-trained
COCO model covered all other persons in an image.

For training on the categories Animals, Structures and Produce we used the data
from the Google Open Images dataset. All models were trained for 30 epochs.

For the category Faces we relied on MTCNN as described above.
We left out the category Landforms entirely as we were not able to gather enough

training data to train a whole separate model on it.

Post-Processing. The post-processing of the ensemble prediction involved filter-
ing bounding boxes which overlapped with an IoU by more than a threshold (we
chose 0.7 for all experiments) and removing the higher-level class prediction in
favor of more specific classes. For example, if Mary is simultaneously classified as
Person we would erase the latter.

The YOLO model output also includes a confidence measure. Our initial ap-
proach of using these values to filter low-scoring bounding box predictions did not
work as the model was often underconfident on good predictions. We therefore
did not perform any confidence filtering.

5 Experiments and Results

In this section we present detection results for all three approaches and compare
them against each other in the end. In addition, we compare quantitatively based
on our test dataset from the Getty dataset, as well as qualitatively through manual
assessment of example images.

5.1 ResNe(X)t and WBF Ensemble

As stated in subsection 4.1, we validated the individual models and the complete
ensemble model only qualitatively on a set of hand-picked images. Generally, the
predictions were quite accurate. We found that overall prediction quality was better
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when leaving out classes representing geographic features, such as water bodies or
hills. We only had instances for these classes from a single, photorealistic source,
ImageNet. Including these instances in the training process lead to much worse
results on our validation set. We therefore did not train on any of the instances
taken from ImageNet.

In cases where we found significant and systematic prediction errors that were
simple to fix, we applied the post-processing mentioned in subsection 4.1.

Generally, the approach of relying solely on qualitative validation on a very
small set of hand-picked images as opposed to a quantitative evaluation on a
larger, instance-level annotated validation set did not result in a significantly worse
performance on the hold-out test set, as visible in Table 6.

5.2 YOLO Ensemble

For the category-based ensemble of multiple YOLO models, we evaluated the
performance of each individual model per category by using a validation dataset
extracted from the Google Open Images and IconArt data respectively (50% vali-
dation split for Google Open Images, 20% for IconArt). Table 5 shows the mean
average precision for an IoU of 0.5 (mAP@0.5) for all classes in a category.

Table 5: Results on Domain Models (mAP)

Category mAP@0.5

Persons (IconArt) 0.63
Animals 0.82
Structures 0.52
Produce 0.34

The results show a varying performance of the category-specific models. The
category Produce scored the lowest performance with only 0.34 mAP. Manual
examination of the data in that category showed very poor annotation quality for
some images. We believe this to be the reason for the low performance.

We are unsure of the reason behind the performance of the Structures model.
As mentioned before, these results cannot be easily transferred to the art domain,
which is why an even lower AP is to be expected on the Getty data.

The model for Animals performed quite well. The same can be said for IconArt,
even though its AP is quite a bit lower, because the classes in the IconArt data
are much more complicated in a semantic sense. It is for instance very difficult to
differentiate Saint Sebastian, who is always depicted without clothes, from Nudity.
The same goes for telling apart all of the religious figures from regular persons
appearing in the same image. In addition to that, the model also had much less
training data available.

44



5 Experiments and Results

5.3 IconArt and Pre-Trained Ensemble

Before we decide to use the ensemble approach as mentioned in subsection 4.2, we
pursued the MI-max classifier approach by Gonthier et al. [8]. With this approach,
we did not achieve the results as Gonthier et al. (for example results see Figure 1).
Objects were often false positive classified and so we decided against this approach.

Figure 1: Example images with the results of the predicted bounding boxes using
the MI-max classifier for the class Ship. On the top, ships are correctly classified,
but on the other two images (below) there are a lot of false positive classified ships.

Due to the lack of bounding box labels, evaluation for the IconArt and pre-
trained ensemble approach was only possible at image level (except for the IconArt
classes). For the IconArt classes, we could evaluate the precision of our approach
with IoU. For example, we achieved a mAP@0.5 of 0.25 for the Crucifixion class.
The precision on the hold-out test set can be seen in Table 6.
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5.4 Evaluation on Hold-out Test Set

The images in our test set were manually annotated with bounding boxes for the
target detection task.

Table 6 shows the mAP results for all three approaches on this test data. Both the
YOLO and ResNe(X)t and WBF methods outperformed the IconArt/pre-trained
approach by a large margin (e. g. 12.9% vs. 4.3% for class labels AP@0.5). Out of
all models the ResNe(X)t ensemble produced the best results. Worth noting is the
large drop in precision between IoU of 0.5 and 0.75. This hints to very inaccurate
bounding boxes compared to the ground truth. We assume this inaccuracy to
originate in large objects in the images, e. g. buildings or ruins, as these tend to
have a much larger play in size and shape. These findings can be confirmed when
looking at the example images as well (e. g. Figure 3e).

The effectiveness of the post-processing steps of the ResNe(X)t and WBF ap-
proach is evident in Figure 2: while the other two approaches draw too many
bounding boxes, only the first approach yields the desired prediction, although it
is slightly out of place. However, this method seems to reduce performance in the
case of Figure 3f, where some ships are omitted that might otherwise have been
detected. Furthermore, the post-processing step of always mapping back to the
specific class does not seem to work well in the case of buildings, where a Ruins
label seems much more likely to be assigned than a generic Building label.

The IconArt detection works quite well in most cases, as can be seen for the
YOLO and the weighted-box fusion ensemble models in Figure 3a. Persons also
work very well, even though in larger crowds (see Figure 3b) not all persons are
detected.

In many cases the models do not recall all of the bounding boxes and often
also have overlapping predictions. This especially a problem with the IconArt/pre-
trained model, which explains its weaker performance.

Some annotated objects are arguably very hard to distinguish, even for humans.
In these cases poor model performance is to be expected. An example for this are
birds or very small animals, e. g. in Figure 3e.

Table 6: AP Results on the Getty Test Set

Ensemble
Class labels Category labels

AP@0.5 AP@0.75 AP@0.5 AP@0.75

YOLO 11.5% 4.6% 18% 4.5%
ResNe(X)t and WBF 12.9% 3.8% 22.8% 5.9%
IconArt/pre-trained 4.3% 1.1% 8.5% 1.8%
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Figure 2: Example images of results; top-left: ground truth, top-right: ResNe(X)t
and WBF ensemble (1), bottom-left: YOLO ensemble (2), bottom-right: IconArt/pre-
trained ensemble (3). Model 1 predicts nearly the same as the ground truth. Model
2 predicts individual flowers, while model 3 predicts both individual flowers as
well as many of their petals.
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6 Discussion

Taking the complexity of the task (being cross-domain over 22 classes) into account
an AP@0.5 of 12.9% for the best model for fine classification is still very satisfactory.
The approaches named in related work achieved 58% for single domain use cases,
ours is much more difficult.

We attribute the limitations of our approaches mainly to the lack of data. Even
though we already made use of transfer learning because of the rarity of artistic
data, we still ended up short of training examples for some classes of which not
enough suitable photographic material existed. Datasets for some of the categories
were simply too small or of too poor quality. Qualitative analysis showed that some
categories performed therefore much better than others. These are specifically
persons and animals as these are common target classes in computer vision tasks.
The off-the-shelf face detector worked also great on our art data. Produce and
Landforms however were a lot harder to predict. Further research and data synthesis
in these categories would likely have a great impact on the results.

7 Conclusion and Future Work

After extensive research on existing approaches to object detection on art data, we
implemented and adapted some of them. The results were however not satisfactory.
Thus, we turned to different pre-trained object detection models and built ensemble
predictors by fine-tuning them on different photographic datasets. We covered
almost all of the predefined 22 classes and achieved promising results on some
of the categories, especially considering the complexity of the task at hand. The
results are by far not optimal yet, requiring further work in some categories, like
detecting Landforms and Produce.

Building more datasets with annotated bounding boxes is very important for
greater success in the area of object detection. Photographic datasets are a great
start and it can be shown that they can be transferred to art data. However, for
the art analysis community more effort should be put into annotating existing art
collections.
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A Appendix

In the appendix, we list additional example images.

Figure 3: Example images of results; respectively top-left: ground truth, top-right:
ResNe(X)t and WBF ensemble (1), bottom-left: YOLO ensemble (2), bottom-right:
IconArt/pre-trained ensemble (3).

(a) Model 1 summarizes many of the flowers to one bounding box and the other two
models detect individual flowers. Each model detects the woman as Mary. Models 1 and 2
also detect the baby as Jesus, although neither figure is labelled with this class label in the
ground truth. Only model 3 detects both faces.
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(b) Many persons are annotated. None of the models detect all of them, model 2 detects
the most. The same is true for face detection. Model 1 detects the buildings as Ruins. The
Angel in the sky is correctly classified by model 2 and 3, however model 3 also detects it
as a Ship and model 1 as a Flower. The scale is detected as two ships, which it strongly
resembles.
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(c) Model 1 has only some overlapping bounding boxes but its predictions are near by the
ground truth. Model 2 predicts only Fruit but misses some. Model 3 has many overlapping
bounding boxes and mostly detects the category Produce instead of the correct class Fruit.
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(d) Models 1 and 2 detect one of the ships and predict some persons as animals. Model
3 detects no ships. All models found some cows in the image but there isn’t any in the
ground truth and none of the models recognize the buildings or dogs.
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(e) Model 1 is the only one to detect the Angel correctly, but classifies a large section the
artwork as a Building. The other two models detect the Persons correctly and also recognize
the Angel as such. There are many animals in the image, but every model detects only very
few (not necessarily correct) animals.
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(f) Model 1 predicts the big ships correctly but does not detect the small ships or any
persons. Model 2 detects some ships and persons but not all. Model 3 manages to detect
the small ships, but it has a lot of overlapping bounding boxes and it predicts a person as
an animal (so category Animals).
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Over the last years, gigantic art libraries were digitized. This however
raises the issue of retrieving certain images from those archives. One
solution is content-based image retrieval (CBIR), this allows to search
for artworks by providing similar paintings or photos. We propose and
evaluate several existing CBIR methods and apply them to a set of pho-
tos of artworks that only have genre and category labels. In doing so
we observed that bag of visual words and variational autoencoders are
outperformed by an approach based on embeddings generated by the
popular ResNet deep neural network. We added a co-occurrence filter
to the ResNet embedding that had shown promising results in image
retrieval. Though our experiments revealed that the addition leads to in-
ferior results. This work tests fundamental approaches in CBIR regarding
a dataset without ranking annotations.

1 Introduction

Due to the advancement in technology and the large-scale digitization of artworks,
new challenges regarding the accessibility of such large datasets. For example
researchers that try to find similar artworks in vast digitized archives mostly need
to manually search for each similar image. Therefor it is desirable that computers
could automatically search for similar images. However, finding desired images in
large-scale collections such as WikiArt1 can be a challenge. In the past algorithms
mostly relied on metadata and tags and not on certain features of artworks, features
describe certain characteristics of artworks and can be used to identify similar
images. In practice, it is hard for a human to carefully describe the desired features
and visual content of the desired artwork or use low-level visual features to describe
an artwork’s concept and art style. Therefore, it is difficult for search algorithms
to find the desired images. One approach to retrieve similar images is content-
based image retrieval. Various methods aim to find similar images with the help
of machine learning algorithms which we will focus on in this work. In total, we
will look at four different approaches variational auto encoders, a ensemble of a
certain object detection network, bag of visual words and a model based on the
popular ResNet. In order to compare our approaches we will first train them on

1https://www.wikiart.org/ (last accessed June 16, 2021).
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the same dataset and for evaluation a group of 20 people will rate the images that
were retrieved by each network on their similarity.

In Section 2, we give an overview of related work done in the field of content-
based image retrieval for artworks. Section 3 gives an overview of the problem
statement that we tried to assess with our project. Afterward, Section 4 provides an
overview of the different approaches that we examined, while Section 5 provides
details of the conducted experiments. In the following, Section 6 describes the
results we achieved with each of our approaches. Section 7 discusses the advantages
and disadvantages as well as possible reasons for the shortcomings of certain
techniques. In the end, Section 8 gives a conclusion and outlook into possible
future work.

2 Related Work

The problem of content-based image retrieval has already been researched for the
last two decades. The first approaches were based on hand-crafted descriptor-based
image retrieval [30] which lacks the generalization ability, this means it performs
poorly on data that is different from the original training data. This refers to
the capability of achieving almost equal performance on unseen data. In the last
decade, a shift in content-based image retrieval happened due to the rise of deep
learning. Razavian et al. [21] showed that convolutional neural network (CNN)
representations can outperform the state-of-the-art hand-crafted image features for
retrieval. CNNs can deal with rotation and translation invariance off-the-shelf [9]
that are necessary capabilities for the given problem. Thus, CNNs started to replace
other established methods for representing image data [6].

A sub-problem of image retrieval is the detection of instance-level features where
reappearing parts of images should be detected. Gordo et al. [13] created an archi-
tecture that can generate a global descriptor in a single forward pass with excellent
performance. A self-supervised learning pipeline for automatic reappearing pat-
tern recognition in art collections has been developed by fine-tuning the network
based on the spatial consistency between neighboring features [23].

Different categories of approaches emerged over the years. A category consists
of using variational and non-variational autoencoders [17] that are trained to com-
press and reconstruct an image. The compressed latent vector is used as the image
descriptor. Another idea is to generate hash codes from images and use these
hash codes to compute the similarity between two images [16]. A further approach
generates embeddings from CNN architectures like ResNet [14] or VGG [24] that
were invented for classification tasks. The idea is to take a feature map of the last
convolutional layer and use it as a high-level image representation. Castellano et al.
[4] used transfer learning on a VGG16 by taking that higher-level features. After-
words, they compressed the features with Principle Component Analysis (PCA) [7]
to obtain a compact feature vector. We combine the feature extraction and compres-
sion by simply taking the output of the global average pooling layer of a ResNet.
Forcen et al. [8] suggested a strategy in which they use a special co-occurrence
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filter to enrich the embedding which surpassed state-of-the-art performance on
multiple benchmark datasets. They directly trained their network for the retrieval
problem using e.g. the Oxford dataset [20]. We want to explore if the co-occurrence
approach can achieve good results when the network is trained on a classification
task instead.

Image retrieval for art can use the research results of general photorealistic
image retrieval. Though there are some important differences. Using a pre-trained
network without fine-tuning will lead to inferior results because of the difference in
photorealism and art. The quality suffers due to a lack of annotated data that could
be used for training. Therefore, fine-tuning and transfer learning are promising
techniques. Fine-tuning means the usage of a pre-trained network on a different
dataset and adapt the learned features to the given dataset by only training a few
epochs on the given dataset and optionally freezing the first few layers of the
network. This can lead to good results when only a few annotated data is available.
Seguin et al. [22] propose the automatic construction of a graph of visual links
between art paintings which is a specialization of our topic. They achieved the best
performance by fine-tuning a VGG16 that was trained on the Imagenet dataset and
using the feature map of the last convolutional block and applying a sum-pool
followed by PCA. They also observe inferior results when taking the output of
a fully connected layer as the feature map. García et al. [10] improved the CNN
embedding approach by adding a context embedding from a knowledge graph for
art-specific knowledge to raise the performance of image retrieval for photos of
artworks. Since we do not have such a knowledge graph, we could not evaluate the
gain of such an extended embedding. Therefore, we will focus on using the output
of convolutional layers as well.

3 Problem Statement

Content-based image retrieval is the problem of finding images that resemble a
described content, provided through text or similar images, from a image corpus
for a search request or the most related images based on a keyword. In this work
we will only address the first aspect. It is supposed to be performed exclusively
based on the visual information within the images. CBIR involves two fundamental
difficulties. The first difficulty is the semantic gap. Smeulders et al. [26] define it as

“the lack of coincidence between the information that one can extract from the visual data and
the interpretation that the same data have for a user in a given situation.” The presented
methods can only address this problem. However, necessary contextual knowledge
for the similarity must be a visual part of the image to be regarded. For example,
the period of creation of a work of art cannot be included directly as a similarity
measure. Only an image’s style might indirectly give away the period. The second
problem is called the intention gap and refers to users’ inability to formulate a
precise search query. Imprecision might be caused by the ambiguity of language
or a lack of notions of what one intuitively considers similar. Since neither is a
universally binding definition of similarity nor can perceptions differ from person
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to person. The art domain in which we operate is rich in complex and ambiguous
concepts that can be used for similarity assessment. Since our image corpus consists
exclusively of historical paintings and drawings, domain-specific aspects such as
artist, style, content, period, or iconography are suitable as similarity aspects.

To address the intention gap in the best possible way, we use a query by exam-
ple approach. For each method, we return five similar images, that resemble the
query image in style and content, for a given query image that are then manually
evaluated for visual similarity. The query images for testing are each randomly
chosen from our image corpus. By manual inspection we ensured that the test data
contains a diverse set of images concerning the evaluation aspects. We evaluate the
similarity of similar images, based on subjective guidelines and majority voting
in a group of students, that are returned by our methods concerning similar style
(painting, drawing), similar colors, depicted people, animals or objects, the art his-
torical classification in history, portrait, genre, landscape and still lifes and possible
individual peculiarities, such as unique cuts of images. The evaluation takes place
through a visual inspection by ourselves. Since we do not have a background in
art history and our idea of similarity may differ from domain experts’ ideas, this
is a possible limitation of our evaluation. For the training and test of our methods,
we use exclusively the Getty data set as image corpus and no external data. We
extracted some images as test images and used the rest for training and building
the image database. Therefore, a test is done by taking a test image and retrieve
the result image from all non-test images.

4 Approach

Since our approach is based on finding the nearest neighbors in a high dimensional
feature space, by feeding the images to some form of an encoder that represents the
images in the mentioned feature space. This section is focused on the different types
of encoders we tested. In total there were 4 different methods testes an approach
based on variational auto encoders, one based of bag of visual words, an ensemble
of YOLO object detection models and encoding generated from a ResNet.

4.1 Variational Autoencoder Feature Extraction

Autoencoders are characterized by two components, an encoder and a decoder. The
encoder component’s objective is to transform a high-dimensional input into a low-
dimensional representation. This representation is referred to as latent space. The
decoder’s objective is to reconstruct the original input from the low-dimensional
representation. The loss function utilizes the reconstruction error, reducing the
difference between the reconstructed image and its original input. Autoencoders
are employed for image retrieval [3, 18] but also for tasks such as image denoising
[12], anomaly detection [1], image generation[29] or deepfake detection [5].

The variational autoencoder (VAE) was introduced in 2013 by Kingma and
Welling [17]. While a traditional autoencoder maps an input directly to a fixed
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point within latent space, a variational autoencoder maps to a normal distribution
and incorporates random noise. A term is included in the loss function, usually
the Kullback-Leibler divergence, to penalize too large deviation from the normal
distribution. This promotes the low-dimensional space being symmetric through
normal distributed mapping as well as nearby regions representing similar images
through random noise employment, which might be beneficial for image retrieval.
To utilize a variational autoencoder for image retrieval, we train the network on
an image corpus. To retrieve similar images for a query image, we first extract all
latent space features for our corpus. Subsequently, we compare all latent space
feature maps, which means the outputs of the different filters of each layer, to the
query image feature map for a given query image. We assess the five images closest
to the query image in the latent space, using a k-nearest-neighbor approach, and
return them.

4.2 Bag of Visual Words (BOVW)

A bag of visual words [25] represents prominent image features and can be utilized
to find similar images. The approach consists of two steps. First, each image’s
interesting features from the image corpus are manually identified (e.g., humans,
animals, trees, houses), counted, and saved within a histogram. One interesting
feature is called a visual word, and the histogram is referred to as a bag of visual
words. Second, if we want to retrieve similar images for a given input, we compare
all bags of visual words and return the most similar ones.

4.3 YOLO Ensemble

Another approach to solving the task at hand is to use a multitude of YOLOv5

Models [11]. The YOLOv5 architecture is a CNN-based model that is designed to
detect objects in images as well as assign a bounding box for each of the detected
entities. It accomplishes this task with a CNN based feature extractor that extracts
objects from the given images. These objects are then fed into a prediction module
which try to predict their class and draws a bounding box that surrounds the given
object. By training a multitude of these models on a group of objects the goal is
to cover a wide variety of possible variations of objects in artworks. In order to
create a single embedding that represents the result of all the different models, we
concatenate all the embedding vectors that were extracted from each YOLO model.
Therefor the resulting embedding should represent all objects that were detected
by each of the different models. Since images with similar objects are also similar
to each other, retrieval can be done by comparing these embeddings to each other
using cosine similarity.

4.4 ResNet Feature Extraction

One challenge in content-based image retrieval is to gain a higher-level understand-
ing of each image and select the images that are the closest to the given query
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image. We use a Convolutional Neural Network (CNN) for the generation of em-
bedding vectors of images. CNNs can learn to recognize features at different levels
of image abstraction.

As Zeiler et al. [28] have shown, CNNs tend to learn low-level features such
as recognizing edges or color gradients in the first layers of the architecture. The
deeper a layer lies in the chosen architecture, the more high-level are the learned
features, such as from edge to animal detection.This concludes that the output
of deep layers of a CNN, called feature maps, can be used as a high-level image
representation, which we can use for our image retrieval problem. Other researchers
already adopted this idea [8, 10, 27].

We decided to use the ResNet architecture as our feature generator since it is a
model that generally performs well in classification tasks and we therefor assume
that it is able to learn a good representation of certain features in the given images.
We tried two different approaches to extract the higher-level representation. One
takes the output of the average pooling layer and the other takes the output of a
convolutional layer and applies further processing in the shape of a co-occurrence
filter.

Co-Occurrence Filter. Applying a co-occurrence filter to improve the results
of content-based image retrieval was already done by Forcen et al. [8]. The co-
occurrence filter idea is based on the understanding that different features are
encoded in each feature map and that simultaneous activations along different
feature maps in a local area can yield valuable information for image retrieval. It
works by passing the image through the CNN and taking the activations of the last
layer as a tensor (A). These are passed through the co-occurence filer resulting in
C, A and C are then combined as shown in Equation 1. In the end the L2 norm
followed by PCA and another L2 is applied.

We based our pipeline on the approach of Forcen et al. but adjusted the approach
to better fit to our problem setting. Because the ResNet architecture’s residual
connections make training deep neural networks easier, we decided to use the
ResNet18 architecture and not the VGG16. In the end we decided to use the bilinear
pooling suggested by Forcen et al. [8] and skip other post-processing because we
can have a large image descriptor. The bilinear pooling B is calculated by:

B(A, C) =
M

∑
i

N

∑
j

Aij · (Cij)T (1)

Where C and A ∈ RM×N×D resulting in a large tensor of B ∈ RD×D.
The image database is created by calculating the pooled image descriptor for

every image and storing them. For each query image, the descriptor Q is calculated
in the same way by using Equation 1. Hereafter, we calculate the similarity S of
an image descriptor I by the squared Frobenius norm which sums the squared
difference of each feature of Q and I:
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S =
D

∑
i

D

∑
j

(Qij − Iij)2. (2)

Then we create a ranking R of all database images by sorting all S values de-
scending. Finally, we return the first k images of the ranking R as the query results
as the kNN of the query image.

5 Experiments

After introducing our approaches, we describe the experimental setups.

5.1 Variational Autoencoder Feature Extraction

While we tried various configurations due to hyperparameter tuning in the pre-
liminary experiments, the following three setups for variational autoencoder (VAE)
turned out promising and were incorporated for subsequent latent space feature
extraction.

(i) as traditional autoencoder that samples to low-dimensional latent space.
(ii) maintains a high-dimensional latent space and focus on reconstruction.
(iii) maintains a high-dimensional latent space and focus on its symmetry.

Experiment (i) employs a traditional variational autoencoder aiming to distill all
relevant properties of the high-dimensional input images into a low-dimensional la-
tent space. We mapped an input image of size 64x64 (4 096) to a lower-dimensional
latent space of size 1 024. After resizing and center cropping the image, we applied
several data augmentations.2 The objective of (ii) and (iii) is to examine if image
retrieval profits from maintaining the input vector’s high-dimensional structure
in the latent space. While (ii) focuses on structuring the latent space with a larger
weight on the reconstruction loss, (iii) concentrates on a latent space that is heavier
centered towards the normal distribution. Both are mapping an input image of size
280x280 (78 400) to a latent space with 72 900 dimensions.

The basic architecture of the variational autoencoder is defined for all experi-
ments consistently. Let x be the input image vector, z = Encoder(x) ∼ q(z|x) is the
latent space representation of x, and x̂ = Decoder(z) ∼ p(x|z) is the reconstructed
image of x. For all experiments, the Encoder and Decoder utilize five sequential
components. As the dimensionality of the latent space should remain the same as
the input image’s dimensionality in (i), we changed the filter output size of the
last component of the encoder (first of the decoder) back to the initial filter size

2Data Augmentation refers to the transformations as implemented in PyTorch https://pytorch.
org/vision/stable/transforms.html (last accessed June 16, 2021).
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Table 1: Experimental Setup Variational Autoencoder Feature Extraction

VAE (i) VAE (ii) VAE (iii)

input size 64x64 280x280 280x280

latent space size 1 024 72 900 72 900

kernel size 3 3 3

padding 0 1 1

stride 1 2 2

Lreconstruction MSE BCE BCE
Lweight 10 10 000 1

data augmentation yes yes no

of 16. The output of the Encoder is mapped to a normal distribution N(0, 1) with
mean 0 and variance 1. We add random gaussian noise to the mapping to ensure
similar images being mapped to similar regions. All further specifications for the
architecture can be taken from Table 1. We define the loss function to minimize as
follows:

(3)LVAE = Lα · Lreconstruction + LKullback−Leibler

The Lα enables balancing reconstruction and Kullback-Leiber loss. While a
larger weight improves reconstruction, a small weight shifts the focus to a nor-
mal distributed latent space. The latter fosters both a more symmetric as well
as dense latent space. Preliminary experiments exhibited problems with binary
cross-entropy for (i) as reconstruction loss. Therefore, we used the mean squared
error as Lreconstruction (i), while we applied the binary cross-entropy as Lreconstruction
in (ii) and (iii). All experiments were implemented in PyTorch3 and are using its
implemented mean squared error and binary cross-entropy loss.

5.2 Bag of Visual Words (BOVW)

We utilized an implementation by Chenyang Meng.4 He first extracted for each
image keypoint detectors using a Hessian affine region detector [19] and obtained
local invariant descriptors by using RootSIFT [2]. Regions and keypoints are rep-
resented by feature vectors that he subsequently clusters by k-means into a vo-
cabulary. This vocabulary consists of the visual words combined into a histogram,
i.e., the bag of visual words, for each image. We adjusted the number of clusters,
which is the vocabulary size, to 1, 500. Meng subsequently employed Redis5 as a
database for querying the bag of visual words. For each input image’s bag of visual
words, the five most relevant images are returned. According to their scoring, a

3https://pytorch.org/ (last accessed June 16, 2021).
4https://github.com/meng1994412/CBIR (last accessed June 16, 2021).
5https://redis.io/ (last accessed June 16, 2021).
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relevance ranking is determined by comparing the histograms by chi square as
distance measure.

5.3 Yolo Ensemble

We used four different YOLO models for our experiments, each trained for a
specific type of object: animals, structures, produce, and a model trained on the
classes of IconArt as explained in the object detection task. From these models, we
then tried to extract an encoding by getting the output of each model’s specific
layer. Afterward, these vectors can be combined and formed into an embedding.
We used cosine similarity to calculate similarity scores to extract similar images. In
the following, we tried multiple different layer approaches from where we extract
the encodings.

5.4 ResNet Feature Extraction

As one approach, we used a ResNet classifier that was trained for the genre classifi-
cation task (cf. Chapter Image Classification in Deep Learning for Computer Vision
in the Art Domain) and used the average pooling layer to extract embeddings. We
used different similarity measures for calculating the scores for each embedding
and different sizes of the ResNet model. Additionally, we introduced the possibility
of using a color loss. This component enables a model to learn the RGB channels’
average values from an image to include these values in the embedding vector for
each image.

We did three different experiments with a ResNet50, which is the biggest model
we used in our tests. The first experiment was done to see if taking a larger model
would result in better performance compared to a Resnet18 and have a baseline
for the implementation of the color loss variant of the same model. The following
two experiments both tested the impact of the color loss based on a different
weighting of 1% and 5%. The goal of these two was, to evaluate if the addition of
the color component significantly impacted the result. Furthermore, we needed to
see which weighting we would need to choose to put some emphasis on color but
not disregard the context that was depicted in the image.

Co-Occurrence Filter. We experimented with different variants of the co-occurrence
filter with a ResNet18. In each experiment, we decided to overfit our model on
the classification task on purpose. That way the network can memorize all images
of the dataset and learn a better representation for them which can be helpful for
the present task but is probably not useful in the general case. We experimented
with untrained and trained co-occurrence filters and the layer of the network which
is used for the feature extraction. Moreover, we explored the influence of data
augmentation. Finally, we unified multiple models in an ensemble.
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6 Results

In order to be able to compare results between our different approaches we used
the normalized discounted cumulative gain (nDCG) [15]. As depicted in Equation 4

the nDCG is calculated by dividing the discounted cumulative gain(DCG) by the
ideal DCG (iDCG). The DCG is a score which sums the relevance scores of each
entry in a returned list of items, in our case images, and penalizes high relevance
images at the end of such a list. This means it would rank methods better if they
return all the high relevance images first instead of later on. For our evaluation the
DCG had a maximum score of 15 and the nDCG always has values between 0 and
1, in both cases the retrieval results are better the higher the score is. Since we did
not have any rankings included in our given data we used an approach to infer
the ranking after retrieving the images. First all models were trained and given a
specific set of images as the catalogue from which to choose the similar images.
Afterwards each model was given the same reference images and returned the five
images it would consider as similar to the reference, in descending order. In the
following our seminar group looked at all returned images for a given example
image and ranked each image, without knowing from which model at which rank
it was returned, in one of three categories good match, okayish match and no
match. The results can then be used as relevance rating with different scores a good
match has a value of three, an okay match has two and no match has a score of
one, therefor we can calculate the DCG and also the iDCG. After calculating both
we can then use them to calculate the nDCG and rate our models based on these
results.

nDCG =
DCG
iDCG

(4)

In the following we will present the results obtained from our different ap-
proaches and give some example images for each model. The variational autoen-
coders performed well on images depicting landscapes but only the first experimen-
tal setup performed well on other categories of images like genre or portrait. One
aspect in that both experiment (i) and (ii) proved to be good at, is distinguishing
certain styles of images and matching the colors of a given example. As can be
seen in Figure 1 the models can find similar looking images that match the color
and the style of the original image. However there are also some errors present,
were images are returned even though they have no visible connection to the query
image.

Using bag of visual words only provided good result regarding images depict-
ing landscapes. For other images there were some similar images returned but
also often images that had no similarity to the input image made their way into
the returned results. In addition, when given an image depicting a still life of a
flower pot the models had a tendency to return images depicting trees and branch
structures. This can also be seen inFigure 2 in result four, the model only managed
to retrieve two similar images in result 1 and 3, every other image had no visible
connection to the query image.
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(a) Query image (b) Result 1
(c) Result 2

(d) Result 3

(e) Result 4

(f) Result 5

Figure 1: VAE retrieval results.

The YOLO ensemble had very poor results regardless of the category of a certain
image. As we can see in Figure 3 the returned results show no visible similarity
to the given query image. The only result were one could argue that there might
be some similarity is result one but even that would be extremely lenient. Also, it
seems like the model does not value color at all regarding similarity since none of
the returned images have a color palette that even vaguely represents the query
image given to the model.
The ResNet models that used the cosine similarity as a distance measure for im-
ages and ResNet50 as the embedding network had an overall good performance.
They performed well on landscape images, correctly identifying the presence of
people or structures and returning similar landscape images with those properties.
However, we noticed the same tendency to pick images with windmills as the
BOVW approach for marine motives. This approach also yielded very good results
regarding Still Life images and handles flower bouquets especially well. As shown
in Figure 4 the model only returned images that also depict flowers. The only
image that is not a good fit thematically is result five, since it is not a still life of a
flower pot on a table. It can also be seen that the model put emphasis on similar
colors in the images without disregarding the content. Result two is the only black
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(a) Query image (b) Result 1

(c) Result 2

(d) Result 3

(e) Result 4 (f) Result 5

Figure 2: BOVW retrieval results.

and white image while the remaining images have a somewhat similar color pallet
to the query image. Additionally, it only happens very sparsely that images with
no similarity to the input image are mixed in with the results. One weakness of
this approach was that it did not emphasize the color patterns in the images and
would, for example, return a black and white image of a flower bouquet as the
best match to a color image of a similar bouquet. This error could be reduced by
using the color loss in addition to the normal classifier to include an emphasis on
color in the embedding. After some experimentation, a five percent color loss was
chosen to match images based on their color and include more images of similar
colors in the returned results. Increasing the importance of color too much, results
in a drastic loss of quality in the returned images as images of the same color are
returned with little to no regard for the image depicted in it.

When using the co-occurrence filter we could observe a clear performance de-
crease when data augmentation is added during the training time. As it can be
seen in Figure 5 the quality of the results takes a heavy hit and there is not a clear
connection between the query image and the results anymore. When testing the
quality of the results regarding the used layer, we could confirm the initial specu-
lation that the last layer has a bias on the genre and category of the image. That
bias is weaker in the second last layer though this did not lead to a visible improve-
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(a) Query image
(b) Result 1

(c) Result 2

(d) Result 3

(e) Result 4

(f) Result 5

Figure 3: YOLO ensemble image retrieval.

ment of the results. We compared the performance of an untrained and a trained
co-occurrence filter. The performance is slightly better when the filter is trained
during the classification training. Finally, we combined different good-performing
models in an ensemble. The models vary in the layer used for the feature extraction
and some use a non-trained co-occurrence filter. Yet, it did not increase the quality
of the results and can lead to inferior results compared to a single last layer with a
trained co-occurrence filter. Thus, we do not recommend using an ensemble. In the
end the addition of a co-occurrence filter did not improve the retrieval results as
we can see if we compare Figure 4 and Figure 6. There is no visible improvement
in the retrieved images on the contrary the similarity between the query images
and the result seems to worsen after adding a co-occurence filter to the previous
ResNet approach.

In the end the ResNet that included a 1% color loss performed the best on 20

selected reference images with a mean nDCG score of 0.55 and an accumulated
score of 9.38.
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(a) Query image
(b) Result 1

(c) Result 2

(d) Result 3 (e) Result 4
(f) Result 5

Figure 4: ResNet image retrieval.

7 Discussion

This section discusses our experimental results and reasons about limitations.

7.1 Variational Autoencoder Feature Extraction

Notably, the variational autoencoders of experiments (i) and (ii) deliver mediocre
to good performance, while (iii) is convincing only in broad perspectives and
otherwise achieves consistently poor results. The superiority of (i) over (ii) can
possibly be attributed to the smaller number of dimensions in the latent space.
Although the reconstruction of (i) can be considered significantly worse than that
of (ii), this does not also lead to worse results in finding similar images. Thus, it can
be stated that a smaller number of dimensions may capture more concise features
in the latent space. The reconstruction performance itself is not essential for finding
good results, rather attention has to be paid to the resulting structuring of the
latent space. Thereby, a stronger symmetry or higher density of the latent space,
as focused in the experiment (iii), seems to harm the ability to find similar images.
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(a) Query image (b) Result 1 (c) Result 2

(d) Result 3 (e) Result 4 (f) Result 5

Figure 5: ResNet image retrieval with augmentation.

This also confirms the observation that a good reconstruction of shapes alone, as
observed in Figure 7 in (iii), is not crucial for good results. This suggests further
focusing on the role of the number of dimensions for a good performance in future
experiments. While the stochastic property of variational autoencoders to map
randomly to the normal distribution is beneficial to the latent space’s similarity, the
symmetry and density of the normal distribution itself do not seem to matter or
might even have a negative impact. The influence of these properties needs further
investigation.

The general strengths of autoencoders (i) and (ii) concerning the style and color
of images should be emphasized. This observation is consistent with a more in-
depth analysis of latent space that we conducted. Figure 8 shows an input image
(still life as a bouquet of flowers) on the left. Starting from the feature maps of the
image in the latent space of experiment (ii), we increased all dimensions stepwise
and reconstructed them into an image using the decoder. The changes thus give
an impression of which features a particular axis represents in the latent space.
Figure 8 shows on the left the bouquet as a painting and in dark colors. The further
we move along the dimensional axis, the brighter the colors become, and the style
itself gradually changes from a painting to a drawing. Based on this observation, a
systematic study of latent space and its dimensions is recommended. Possibly, the
number of dimensions can still be drastically reduced, on the other hand, further
mapped properties can be discovered on other axes, which have not been part
of our evaluation so far. In general, these strengths in style and color should be
explicitly incorporated into possible future ensemble models. The poor results of
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(a) Query image (b) Result 1

(c) Result 2

(d) Result 3

(e) Result 4

(f) Result 5

Figure 6: ResNet with co-occurence filter.

(iii) are interesting because basic shapes are captured in the reconstruction and thus
must also be part of the latent space. In particular, the foreground is captured well,
while the background is ignored in a clear separation. This nevertheless does not
seem to represent abstract features that sufficiently condition a similarity. We also
investigated whether, due to the almost constant number of dimensions compared
to the original image in the experiment (ii), the network may have learned the
identity function. To do this, we compared the results from (ii) with those that a
direct comparison of the images would have obtained. In doing so, we can rule
out the possibility that (ii) learned the identity function. Although a comparison
among original images obtained good results for broad landscape perspectives (but
not the same as in (ii)), the results were not satisfactory for all other comparison
images. Therefore, we can conclude that (ii) does not map the identity function.

7.2 Bag of Visual Words

The bag of visual words approach finds acceptable results, but it only finds consis-
tently similar results for landscapes. This might be caused by either a too small or
too large vocabulary size. Furthermore, possibly different visual words are grouped
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Figure 7: Input and Reconstruction of Images for Experimental Setups VAE (i),
VAE (ii), VAE (iii).

Figure 8: Traversal of Latent Space of VAE (ii).

in the wrong clusters. The latter is suggested by observing that bouquets of flowers
and tree structures were often classified as similar, or windmills and ships were
often grouped. A manual exploratory examination of visual words supports the
latter hypothesis. Figure 9 contains three examples of the 1500 visual word clusters.
In the cluster on the far left, flowers occasionally appear together with tree struc-
tures. The one on the left contains ship masts but no (obvious) windmill blades.
However, three-building roofs can be seen. Then, the specific roofs of windmills
may contribute to the co-occurrence rather than the windmill-specific blades. On
the right, we see an example of a cluster where only tree leaves are included cor-
rectly. A systematic analysis of these clusters and how they change with a smaller
or larger chosen vocabulary size may help improve the approach. In principle, we
consider the clustering step as a possibility for optimization.

7.3 YOLO Ensemble

The YOLO Ensemble did not yield any striking results. This might result from
the low accuracy of the object detection models. If objects in specific images are
not correctly identified or the detection has low accuracy in general, the result-
ing embeddings are likely inaccurate. Those inaccurate embeddings subsequently
cause poorly captured abstract object features and therefore do not find similar
images. However, a likely performance boost from a better object detection model
remains an open question. In theory, domain-specific art historic similarities might
prevent finding similar images from objects, e.g., humans in an image might not
automatically indicate similarity. Practically, the variety and magnitude of depicted
objects in images might be unmanageable to cover by object detectors.

7.4 ResNet Feature Extraction

The approach using a ResNet model outperformed every other method. It yielded
good results on every category of artwork we tested while being largely indepen-
dent of the perspective. This could be due to the fact, that the ResNet architecture is
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Figure 9: Visual words from the BOVW approach.

well tested and proven to work well for image classification. Therefore, we assume
that this method powerfully addresses the semantic gap through an embedding
vector containing a well-captured representation of important abstract features. The
high abstraction ability of the ResNet experiments is also supported by explorative
preliminary investigations in which we trained ResNets only on single art historical
categories. These did not yield meaningful results overall, nor on their category,
indicating that abstract features could not be learned. Since the models used for
image classification show very good performance in classifying the different genres
of the artworks, we assume that well-defined features are learned and represented
in the embedding and positively impact the retrieval results (cf. Chapter Image
Classification in Deep Learning for Computer Vision in the Art Domain). By includ-
ing the additional color features it is possible to also nudge a model to pay closer
attention to colors and therefore representing them in the resulting embedding
vector. This approach also improved the result since it put artworks closer together
that not only have the same context but a similar color palette as well.

Co-Occurrence Filter. The co-occurrence filter was able to outperform state-of-the-
art results for photorealistic image retrieval [8]. Yet, we only managed to achieve
mediocre results with the changes we made to the approach. Thus, the reason for
the performance difference lies in the differences between ours and the original
approach. The most likely causes are the training on a classification task and not a
ranking task and the very large image descriptor used for the comparison between
images.

8 Conclusion

We can conclude that very similar images for a given query image can be found in
our art-historical data corpus. The use of variational autoencoders gives very good
results for all categories and is mediocre only for still lifes. A low-dimensional
latent space provides the best results. An adequately chosen size of the dimensions
of the latent space and necessary analysis of it remains an important task in the
future. The bag of visual words approach performs mediocre in all categories,
only showing strength in landscapes. A systematic evaluation of the vocabulary
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clusters and an optimized clustering as well as the associated correct vocabulary
size should be part of future improvements. The use of a YOLO ensemble resulted
in very poor results. Since this is likely because the object detection had a low
accuracy, future work would include trying to improve the result of the object
detection and see if that would lead to better retrieval results as well. We achieved
the best results by using a ResNet50 model which was trained to classify the genres
of each image as well as put some emphasis on the color depicted in each image.
This combination provides very good results regarding the context in each image
while also maintaining some form of awareness for images with similar colors. The
co-occurrence filter leads to inferior results compared to the results of the average
pooling of the ResNet50. This contradicts the research of Forcen et al. [8]. Since
we modified the pipeline, further research should be made to reveal what causes
that gap. We expect that the co-occurrence approach might outperform the other
approaches when the cause of that gap can be removed.
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