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Zusammenfassung

Elektronische Integration zwischen Organisationen erfordert eine präzise Spezifikation des In-
teraktionsverhaltens: Informationssysteme, die Kommunikation per Telefon, Fax und Email
ablösen, können nicht so flexibel und selbständig auf Ausnahmesituationen reagieren wie Men-
schen. Choreographien ermöglichen es, Interaktionsverhalten genau zu spezifizieren. Diese
Modelle zählen die beteiligten Rollen, die erlaubten Interaktionen, Nachrichteninhalte und Ver-
haltensabhängigkeiten auf und dienen somit als Interaktionsvertrag zwischen den Organisatio-
nen. Auch als Ausgangspunkt für eine Anpassung existierender Prozesse und Systeme sowie für
die Implementierung neuer Softwarekomponenten finden Choreographien Anwendung.

Da ein Vergleich von Choreographiemodellierungssprachen in der Literatur bislang fehlt,
präsentiert diese Arbeit einen Anforderungskatalog, der als Basis für eine Evaluierung existieren-
der Sprachen angewandt wird. Im Kern führt diese Arbeit Spracherweiterungen ein, um die
Schwächen existierender Sprachen zu überwinden. Die vorgestellten Erweiterungen adressieren
dabei Modellierung auf konzeptioneller und auf technischer Ebene.

Beim Verlinkungsmodellierungsstil werden Verhaltensabhängigkeiten innerhalb der betei-
ligten Rollen spezifiziert und das Interaktionsverhalten entsteht durch eine Verlinkung der Kom-
munikationsaktivitäten. Diese Arbeit stellt einige “Anti-Pattern” für die Verlinkungsmodel-
lierung vor, welche wiederum Untersuchungen bzgl. Choreographiesprachen des Interaktions-
modellierungsstils motivieren. Hier werden Interaktionen als atomare Blöcke verstanden und
Verhaltensabhängigkeiten werden global definiert. Diese Arbeit führt zwei neue Choreogra-
phiesprachen dieses zweiten Modellierungsstils ein, welche bereits in industrielle Standardi-
sierungsinitiativen eingeflossen sind.

Während auf der einen Seite zahlreiche Fallstricke der Verlinkungsmodellierung umgangen
werden, können in Interaktionsmodellen allerdings neue Anomalien entstehen. Eine Choreogra-
phie kann z.B. “unrealisierbar” sein, d.h. es ist nicht möglich interagierende Rollen zu finden,
die zusammen genommen das spezifizierte Verhalten abbilden. Dieses Phänomen wird in dieser
Arbeit über verschiedene Dimensionen von Realisierbarkeit untersucht.
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Abstract

With the rise of electronic integration between organizations, the need for a precise specifica-
tion of interaction behavior increases. Information systems, replacing interaction previously
carried out by humans via phone, faxes and emails, require a precise specification for handling
all possible situations. Such interaction behavior is described in process choreographies. Chore-
ographies enumerate the roles involved, the allowed interactions, the message contents and the
behavioral dependencies between interactions. Choreographies serve as interaction contract and
are the starting point for adapting existing business processes and systems or for implementing
new software components.

As a thorough analysis and comparison of choreography modeling languages is missing in
the literature, this thesis introduces a requirements framework for choreography languages and
uses it for comparing current choreography languages. Language proposals for overcoming the
limitations are given for choreography modeling on the conceptual and on the technical level.

Using an interconnection modeling style, behavioral dependencies are defined on a per-role
basis and different roles are interconnected using message flow. This thesis reveals a number
of modeling “anti-patterns” for interconnection modeling, motivating further investigations on
choreography languages following the interaction modeling style. Here, interactions are seen as
atomic building blocks and the behavioral dependencies between them are defined globally. Two
novel language proposals are put forward for this modeling style which have already influenced
industrial standardization initiatives.

While avoiding many of the pitfalls of interconnection modeling, new anomalies can arise
in interaction models. A choreography might not be realizable, i.e. there does not exist a set of
interacting roles that collectively realize the specified behavior. This thesis investigates different
dimensions of realizability.
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Chapter 1

Introduction

With the rise of enterprise information systems, significant improvements of business opera-
tions are possible. Central storage of data and access to it from different locations change
the way how business activities are designed. Enterprise information systems such as Enter-
prise Resource Planning systems and Customer Relationship Management systems were intro-
duced [219]. Based on the capabilities of these systems, handover of work between persons and
the distribution of responsibilities within organizations are revisited. Business processes being
collections of business activities performed to realize a business goal, moved into the center of
attention. In a wave of business process reengineering whole organizations were restructured,
business processes were designed and improved performance of business processes was aimed
at, often inspired by the possibility offered by enterprise information systems [121, 63].

While the first wave of information systems focused on the activities within organizations,
a second wave of systems and initiatives target cross-organizational integration. Traditional
means of communication between organizations such as phone calls, letters and faxes are partly
replaced by electronic message exchanges using standard protocols and message formats, such
as Electronic Data Interchange [8]. This avoids delays and reduces human involvement as well
as the number of errors made in the transformation between different media.

Electronic communication is both applied in the area of business-to-business (B2B) integra-
tion and in the business-to-consumer (B2C) area. The latter results in higher availability of the
company and better consumer experience. The former results in huge productivity gains and
innovation in domains such as supply chain management, financial services and logistics [219].

Especially in the case of B2B integration, outsourcing of individual activities or even of
whole business processes becomes easier. The creation of distributed value chains – where
different organizations contribute only those activities for which they provide the highest quality,
productivity and innovation – can be done faster and with less cost in a world of electronic
integration.

Moving away from human interactions as realization of cross-organizational integration im-
poses new challenges. While previously only a rough understanding of the business processes
involved were needed (any ambiguities could be resolved by the employees involved), electronic
interaction requires a much more careful design of the interaction protocols used. The informa-
tion systems need to be configured to be able to also react correctly in exceptional cases.

1
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To facilitate a high degree of automation, it has to be decided where information exchange
between the organizations is required. Then, in turn, information exchange needs to be further
refined to come to a message exchange level, where documents with defined business meaning
and defined message format come into play [94]. This is due to the fact that machines need
much more precise definitions of what they are supposed to do than humans.

Furthermore, the desired order of message exchanges and especially reactions to cancellation
at different points during the interaction must be agreed upon by all interacting organizations
before actually carrying out the interaction.

Process choreographies are a means to represent and manage cross-organizational interac-
tion, even in multi-lateral settings. Choreographies are models that enumerate the organizations
involved, the overall business goal to be achieved and finally the messages exchanged together
with the obligations and constraints the organizations have to obey to. As it is stated in the W3C
Glossary: “A choreography defines the sequence and conditions under which multiple cooperat-
ing independent agents exchange messages in order to perform a task to achieve a goal state.”
[2]. Choreographies serve as contract between the organizations and can be used as starting
point for the individual information systems’ configurations. Once interaction is carried out,
they can be used for verifying whether all organizations behave correctly [95].

With the uptake of Business Process Management (BPM) and Service-oriented Architec-
tures (SOA), choreographies and choreography modeling, i.e. the creation of choreographies,
have recently moved into the center of attention of academic research and industry initiatives.
This thesis aims at providing a consolidated view on the state-of-the-art in choreographies and
addresses a number of novel issues that are crucial for the adoption of choreography modeling
also in industrial practice. Therefore, this thesis not only answers conceptual questions around
choreographies but also gives an overview of the challenges behind choreography modeling.
This thesis concentrates on behavioral aspects of choreographies on the one hand. On the other
hand, it investigates the relationship between choreographies and business processes that are
internal to individual organizations.

In order to facilitate the discussion of the different concepts covered, the next section will
introduce an example. It will be used for illustration throughout this thesis. The most important
choreography terminology will be introduced in Section 1.2. It provides the vocabulary for this
thesis. Section 1.3 describes the problem statement. Finally, the contributions of this thesis will
be pointed out and the outline of this thesis will be presented in Sections 1.4 and 1.5.

1.1 Motivating Example

Auctioning brings together a seller and a buyer. The seller owns a certain good or offers a
certain service. There are a number of potential buyers interested in the same item offered. The
auctioning mechanism determines the actual buyer by allowing bidders (the potential buyers) to
place bids. The auction has a predefined timeframe, e.g. several days. Only during the auction,
the bidders are allowed to place their bids. The seller might define a minimum bid and there
might be a fixed bidding increment depending on the currently highest bid and the policies of
the auctioning service. Once the auction is over, the bidder who has placed the highest bid wins
and follow-up activities such as payment and delivery are initiated.
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Online auctioning is a very popular and efficient realization for the auctioning mechanism.
Here, a software system coordinates the auctioning process. The platform allows to upload the
description of an item and offers search functionality for people interested in a certain item. The
seller and the bidder are typically people who access the auctioning platform through their web
browser and use the offered functionality for creating auctions, placing bids and finally complet-
ing the payment. Alternatively, software systems might also realize (parts of) the behavior of
sellers and bidders. This increases the efficiency for high-volume sellers or bidders.

For most auctions, there is no human involvement necessary from the platform provider’s
side. For these cases, all functionality is implemented as software systems running 24 hours a
day. In addition to the regular cases, exceptions might occur before, during or after auctions.
Some exceptions require human involvement, others are also handled by software systems. Sell-
ers might offer items that are not allowed to be traded, e.g. human organs, child pornography
or Nazi propaganda material. In addition, the platform provider might not accept certain items,
such as designer bags, as the danger of replicas would be too high. Companies might request
auctions to be canceled if they detect fraudulent offers regarding their own products.

Other exceptions involve problems between sellers and buyers after the acceptance of the
contract of sale. E.g. the buyer has transferred the specified amount of money to the seller but
the seller does not send the purchased item. In this and other cases, buyers and sellers make use
of the platform provider’s customer support services. While some requests can be handled in a
fully automatic way, many requests need to be handled by one of the customer support agents.

In addition to sellers, bidders and the auctioning service there might be further participants
involved. For instance, the selling part can be outsourced. Such offerings might be interesting
for those sellers who are unexperienced with online auctions or simply do not have the time to
care about it. Another group of parties involved are shippers who take care of the delivery of the
goods. Also the usage of external payment services is very common for online auctions.

This thesis will mainly concentrate on the core auctioning process, where three roles are
involved: seller, bidder and auctioning service. Four main phases can be distinguished. First,
the auction setup phase takes place. Then, the actual auction phase happens where bidders can
place their bids. Finally, payment and shipment are carried out.

Each phase can be further refined into message exchanges. For instance, a bid message, a
bid acknowledgment message and finally notification messages telling each bidder whether she
has won the auction or not and giving details about the buyer to the seller.

1.2 Choreography Terminology

In order to stick to a consistent terminology throughout this thesis, this section introduces the
general concepts of choreographies and puts them into relation. The auctioning domain will be
used to illustrate the terms.

Real-world organizations, persons, information systems or software services that interact
with other organizations, persons, systems or services are called participants. Examples would
be Gero Decker, ebay Inc, the server addressed by 141.89.225.120 or the web service hosted
at http://example.com/MyService. Roles are models of participants, each describing a set of
participants that show a certain similarity in the context of the domain under consideration. For
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instance, “auctioning service” could be the corresponding role for the participants ebay Inc and
Christie’s Inc or the role “seller” for the participant Gero Decker.
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Figure 1.1: Choreography Terms

Two participants interact using message exchanges. For instance, Gero Decker sends an
email to ebay Inc. The counterpart on the model level is an elementary interaction between two
roles, e.g. a message creation request sent by a seller to an auctioning service. Complex inter-
actions are composed of a set of interactions, e.g. the collection of requests and responses sent
between the seller and the auctioning service until an auction is created. In the other direction,
complex interactions can be refined into elementary interactions.

Concrete actions performed by participants are called activity instances. They can be fur-
ther divided into internal activity instances and communication activity instances. The latter
are related to message exchanges while the former are not observable by other participants.
Gero Decker opening his word processing program would be an internal activity instance, while
Gero Decker hitting the submit button of his email program would be a communication activ-
ity instance (provided that the computer and the programs installed on it are not considered as
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participants in the domain of consideration).
Activities, also divided into internal activities and communication activities, are located on

the model level. For instance, the act of sending an auction creation request performed by a seller
is a communication activity, while storing the request would be an internal activity performed
by an auctioning service.

Choreographies are complex interactions with behavioral dependencies between the con-
tained interactions. At least two roles are involved in one choreography. Conversations are
choreography instances, i.e. sequences of message exchanges. The allowed sequences of mes-
sage exchanges in a conversation are constrained through the corresponding choreography.

Collections of activity instances performed by the same participant are grouped into pro-
cess instances. On the model level, orchestrations consist of activities performed by the same
role, together with behavioral dependencies between the activities. Again, the allowed execu-
tion orders of activity instances in a process instance are constrained through the corresponding
orchestration.

Hierarchy of roles is largely ignored in the context of choreographies. For instance, the fact
that a seller could be partitioned into a warehouse, a logistics department and a sales department
is not considered. The focus of attention lies on the seller’s interaction with the environment.
A role is qualified through the decision that its interaction behavior regarding an environment
is of interest for the specific choreography modeling purpose. In contrast to this, hierarchy of
roles is an important aspect in orchestrations. Here, organizational units, job types, individual
employees or subsystems are considered.

The main difference between choreographies and orchestrations is that choreographies focus
on interactions between roles, while orchestrations focus on the central coordination of activities.
A choreography is not executed by a central coordinator. It is rather a specification of the inter-
action behavior among a set of independent roles. An orchestration, in contrast, can be executed
and controlled by a central orchestrator. The question of whether a model is a choreography
or an orchestration can be answered best through an execution perspective. If the coordination
among all activities contained in the model is carried out by a central machine or person, the
model is an orchestration. If the model contains a number of roles that act independently, the
model is a choreography. Thus, a modeling language might allow to represent orchestrations as
well as choreographies. However, a good indication that a model is a choreography is whenever
there exists a clear distinction between behavioral dependencies within a role on the one hand
and interactions between roles on the other hand.

An observable behavior model can be seen as intersection between a choreography and
an orchestration: It contains communication activities related to the same role and therefore
describes the observable behavior of that role.

Figure 1.1 illustrates these terms and their relationships using the UML class diagram no-
tation [5]. Choreography (and orchestration) languages would reside on a third level, the meta-
model level, defining the rules for combining interactions and roles into choreographies (or for
combining activities into orchestrations).

In the literature, global model or conversation model is sometimes used as synonym for
choreography and local model or interface process as synonym for observable behavior model.
[95] elaborates on these different viewpoints and establishes a relationship between them. A



6 Design and Analysis of Process Choreographies

similar distinction between orchestrations and choreographies like presented in this section can
also be found in [214].

1.3 Problem Statement

The motivating example showed that complex interaction behavior between multiple roles must
be considered. While the description in Section 1.1 remained on a high level of abstraction, it is
easy to see that a huge number of interactions will appear during refinement and that they will
be related by complex dependencies.

Textual descriptions of complex interaction behavior are not sufficient. Text cannot properly
reflect the design decisions that have to be made for electronic integration of different partners.
A number of questions regarding the example remain. Should the payment only be carried out
after the goods have arrived? Or should it be the other way round? Are bidders allowed to place
several bids or just one? What kind of documents need to be exchanged in the course of an
auction? Can an auction be canceled? What happens if no bidder is interested in the good – does
the seller still need to pay for the auctioning service? Is every bidder going to be notified about
the outcome of the auction? When does the seller first get into contact with the successful bid-
der? Informal descriptions leave ambiguities. Only models with a precise meaning avoid these
ambiguities. Modeling languages provide a common vocabulary to facilitate communication.

Despite its significant overlap with modeling orchestrations, choreography modeling comes
with a number of specifics that deserve special attention. The additional dimension of interaction
between different partners poses new challenges.

Question 1: What is a suitable choreography language? While orchestration languages
have been studied extensively in the literature, the field of choreography modeling only recently
enjoys attention by the academic community. Industry projects have a pressing demand for
suitable choreography languages. Three basic requirements for choreography languages can be
identified.

1. Expressiveness. The previous section has already presented a number of concepts from
the choreography domain. It must be possible to express typical conversations using a
choreography language. Furthermore, the constructs of the language need unambiguous
semantics, in order to avoid misunderstanding and confusion.

2. Ease of use. In addition to the mere expressiveness, it should only require few modeling
elements to express the most common scenarios. This is important for modeling speed
and for the readability of models. On top of that, a choreography language should be
designed in such a way that modeling errors are unlikely and that typical decision making
processes are supported through the language.

3. Ease of adoption. Human modelers are confronted with a wide range of modeling lan-
guages. The adoption of a choreography language highly depends on how close it is to
existing languages in terms of concepts / semantics supported and notational elements
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used. A choreography language ideally does not deviate much from existing and widely
used modeling languages.

The design of choreography languages is one important pillar for enabling choreography
modeling. A second pillar centers around model quality. Within this area, ensuring the absence
of modeling errors is of key importantance. While modeling errors in orchestrations have been
studied extensively, the focus on interactions, as it is present in choreographies, imposes novel
challenges.

Question 2: Which choreographies can be implemented by a set of participants? A funda-
mental difference between choreographies and orchestrations is that we do not assume a central
coordinator in the case of choreographies. All interacting participants are autonomous. They
know their internal state and can only make assumptions about the other participants’ states
through the messages sent and received. This might result in situations where the behavior
specified in choreographies cannot be realized by interacting participants.

Furthermore, the interplay between several process instances in a conversation might lead
to anomalies that are not present in orchestrations. Instead of centralized execution control, the
realization of choreographies relies on inter-related message exchanges. In this context, missing
isolation between conversations might in turn lead to undesired behavior, i.e. behavior that is not
allowed by the choreography. On the quest for techniques that verify that a given choreography
can be implemented properly, we see the following two requirements.

1. Automatic verification and location of errors. If a choreography with defined semantics is
provided, it must be possible to perform fully automatic verification. This is important as
choreographies easily grow very complex and manual verification becomes cumbersome
and error-prone. Furthermore, it is not sufficient to detect that a choreography is not
correct. Errors must be located so that the modeler gets a hint about where changes need
to be applied to the model.

2. Reuse of existing formalisms. Automatic verification requires a formal model and in or-
der to apply formal models, translations of the choreography languages must be present.
Therefore, reuse of existing formal models is desirable as it allows to reuse/extend existing
translation approaches as well as existing tools and proofs.

1.4 Scientific Contribution

According to the two questions identified in the previous section, this thesis centers around suit-
ability and design of choreography languages on the one hand and formal verification regarding
correctness of choreographies on the other.

A thorough analysis and comparison of choreography languages is missing in the litera-
ture. Therefore, this thesis puts forward a set of requirements for choreography languages. A
distinction is made between choreography modeling on the conceptual level and choreography
modeling on the technical level. The requirements framework helps to answer the question
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of expressiveness for existing choreography languages. It also incorporates requirements de-
rived from common choreography design methods, revealing abstraction mechanisms needed
for properly reflecting and relating the modeling decisions made in a choreography project. By
applying this requirements framework to existing choreography languages, open issues are iden-
tified and directions for improvement are highlighted.

Based on the results from this assessment, four proposals regarding language extensions and
novel choreography languages are made. Two proposals follow a conservative approach, adding
as little extensions to existing languages as possible.

1. BPMN extensions. By refining the data object concept of the Business Process Modeling
Notation (BPMN [9]) and introducing multiplicity of roles and complex message flow,
open issues in current BPMN can be overcome and a broader range of conversations can
be reflected properly.

2. BPEL4Chor. The Business Process Execution Language (BPEL [108]) is an orchestration
language. In this thesis, BPEL is extended with a topology concept and direct support for
participant sets, shifting it to a choreography language.

The two other proposals follow a more radical approach.

1. Let’s Dance. Based on recurring conversations in real-world scenarios, which also form
an important part of the requirements framework, are used as input for designing an en-
tirely new choreography language. New notational elements and novel semantics are in-
troduced.

2. iBPMN is a compromise between novel semantics as present in Let’s Dance and known
notational elements from BPMN. Atomic interactions form the basic building blocks and
behavioral constraints are defined between them from a global perspective, as it is the case
in Let’s Dance. In contrast to this, the constructs for expressing the behavioral dependen-
cies are taken from BPMN.

Integration between the different approaches is investigated and first practical insights into
the adoption of the proposals are reported. Some of the ideas developed in the context of this the-
sis have already made their way into standards proposals, especially version 2.0 of the Business
Process Modeling Notation (BPMN [164]) which will be released through the Object Manage-
ment Group (OMG)1. It contains a dedicated choreography profile which was inspired by Let’s
Dance and iBPMN as presented in this thesis.

A survey of existing choreography formalisms and correctness criteria reveals that a wide
range of issues have already been tackled in the literature, specifically ensuring the absence of
deadlocks in choreographies (compatibility, controllability) and ensuring that a refinement of a
specification will interact successfully with other participants (conformance). These are useful
techniques when checking whether a choreography can be implemented properly by a set of
interacting participants.

1 See http://www.omg.org/

http://www.omg.org/
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However, it turns out that most techniques only consider individual conversations. The addi-
tional anomalies occurring in the case of multiple concurrent conversations has been neglected
so far. Therefore, this thesis proposes a novel correctness criterion for choreography, namely
instance isolation. Based on a formal model inheriting concepts of place/transition nets and
π-calculus, this technique ensures that multiple process instances of the same role will not inter-
fere.

In the course of this thesis, a distinction between between the interconnection modeling style
and the interaction modeling style is made. While interconnection models distinguish send and
receive activities and define behavioral constraints on a per-role basis, interaction models consist
of atomic interactions that are related through global behavioral constraints. The behavioral
constraints are global in the sense that they are not explicitly assigned to any role by the modeler.
This allows to represent constraints that are not enforceable by any of the roles involved.

The notion of realizability helps do detect whether there exists a set of interacting partici-
pants that respect all behavioral constraints defined in an interaction model. This thesis reveals
multiple dimensions of the realizability notion, leading to the correctness criteria full realiz-
ability, local enforceability and desynchronizability. While having a thorough mathematical
background, the results are practically applicable as they ultimately allow to detect and locate
modeling errors in choreographies.

1.5 Outline of this Thesis

This thesis is divided into seven chapters. This first chapter has motivated the need for choreog-
raphy modeling in general and suitable choreography languages in particular. The next chapter
reports on related work. It introduces the areas of Business Process Management (BPM) and
Service-oriented Architectures (SOA). Furthermore, existing choreography languages, choreog-
raphy formalisms and correctness criteria for choreographies are presented.

Chapter 3 evaluates the related work. Especially, the choreography languages are assessed
based on a requirements framework for choreography languages that is derived from existing
choreography design approaches, the motivating example from Section 1.1 and existing com-
parison frameworks. It distinguishes choreography modeling on the conceptual level and chore-
ography modeling on the technical level. The assessment of the choreography languages along
this framework leads to the identification of open issues. In this context, the distinction be-
tween an interconnection modeling style and an interaction modeling style is made, providing
the structure of the two main chapters of this thesis.

Chapter 4 investigates the interconnection modeling style and presents BPMN extensions as
improved choreography language for the conceptual level and BPEL4Chor as novel choreogra-
phy language for the technical level. The issue of proper correlation configurations in chore-
ographies is investigated, leading to the property of instance isolation. This property ensures
that two process instances of the same orchestration are not involved in the same conversation.
Instance isolation checking is based on a special class of Petri nets, so called ν∗-nets, which
incorporate name passing and name creation capabilities.

Chapter 5 addresses the interaction modeling style. A formal model based on Petri nets
is established and Let’s Dance and iBPMN are presented as novel choreography languages for
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the conceptual level. Formal semantics is provided for both languages using a transformational
approach. Several correctness notions of realizability are introduced, including full realizability,
local enforceability and desynchronizability.

Chapter 6 reports on practical validation of the approaches presented in this thesis through
software implementation. A tool suite based on the Open Source platform Oryx2 implements
choreography modeling capabilities for the different language proposals, as well as formal veri-
fication regarding the novel choreography properties.

Finally, Chapter 7 concludes this thesis. The limitations of the contributions are discussed
and open issues are pointed to.

1.6 Publications

Many of the contributions of this thesis have already been published in national and international
conferences and workshops as well as in international journals.

General introductions to choreographies were published in the Informatik Spektrum journal
[65] and in the it – Information Technology journal [73].

Section 2 contains results that were published in the following papers. The applicability
of π-calculus and colored Petri nets for formalizing the Service Interaction Patterns was in-
vestigated in [85], which was presented at the International Conference on Business Process
Management (BPM). A formal mapping of the Business Process Execution Language (BPEL)
to π-calculus was presented in [213] at the Asia-Pacific Services Computing Conference (AP-
SCC). Executability of high-level Petri nets was studied in [78] and presented at the Workshop on
Web Services and Formal Methods (WS-FM). Different correctness notions for choreographies
were surveyed and compared in [88], a paper that was presented at the International Conference
on Advanced Information Systems Engineering (CAiSE). A verification approach for business
process models was presented in [30] at the International Conference on Business Process Man-
agement (BPM). Bottom-up choreography design approaches were investigated in [87], joint
work with the University of Hamburg that was presented at the International Conference on
Business Information Systems (BIS). A top-down choreography design approach was presented
in [34] at the Workshop on Software Engineering Methods for Service Oriented Architecture
(SEMSOA), resulting from a close collaboration with SAP Research and the Queensland Uni-
versity of Technology.

An evaluation of the Web Services Choreography Description Language (WS-CDL) regard-
ing its suitability for choreography modeling was investigated in [83] which was presented at
the EMISA workshop. An in-depth survey and assessment of existing choreography languages
is also part of [75]. These results were integrated into Section 3. A more detailed elaboration
on one of the Service Interaction Patterns can be found in [37], which was presented at the
Workshop on Trends in Enterprise Architecture Research (TEAR). The relationship between
the Business Process Modeling Notation (BPMN) and BPEL was investigated in [212] and pre-
sented at the International Conference on Cooperative Information Systems (CoopIS). BPMN’s
relationship to YAWL was investigated in [70] and presented at the Demo Session of the Inter-

2 See http://code.google.com/p/oryx-editor/

http://code.google.com/p/oryx-editor/
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national Conference on Business Process Management (BPM). Further investigations on BPMN
1.1 can be found in [86].

Section 4 is based on the following papers. The BPMN extensions from Section 4.1 have
been published in [84] at the International Conference on Cooperative Information Systems
(CoopIS). BPEL4Chor resulted from a close collaboration with the University of Stuttgart and
was first presented in [75] at the International Conference on Web Services (ICWS). An ex-
tended paper [76] was published in the Data & Knowledge Engineering journal (DKE). Further
investigations on BPEL4Chor have been published in [77] at the European Young Researchers
Workshop on Service Oriented Computing (YR-SOC), in [176] at the International Workshop on
Engineering Service-oriented Applications: Analysis, Design and Composition (WESOA) and
in [74] at the International Conference on Advanced Information Systems Engineering (CAiSE).
Typical correlation scenarios in business processes have been investigated in [35] and were pre-
sented at the International Conference on Fundamental Approaches to Software Engineering
(FASE). Instance isolation analysis was presented in [90] at the International Conference on
Services Computing (SCC). The work on correlation also relates to investigations on instantia-
tion semantics for business process models as presented in [79] at the International Conference
on Business Process Management (BPM) and an extended version in [80] which appeared in the
Data & Knowledge Engineering journal (DKE). The work on process instantiation resulted from
a collaboration with the Humboldt University of Berlin.

Several papers have presented and investigated the choreography language Let’s Dance. The
language resulted from joint efforts with the Queensland University of Technology and SAP Re-
search and was first introduced in [220] at the International Conference on Enterprise Distributed
Object Computing (EDOC). Formal semantics was presented in [91] at the Workshop on Web
Services and Formal Methods (WS-FM) and a graphical editor and analysis tool for Let’s Dance
in [72] at the Demo Session of the 4th International Conference on Business Process Manage-
ment (BPM). A journal paper on Let’s Dance, including investigations on local enforceability
and a mapping to BPEL appeared in the IEEE Transactions on Systems, Man, and Cybernet-
ics, Part C [221]. iBPMN, jointly developed with SAP Research, was first presented in [68]
at the International Workshop on Collaborative Business Processes (CBP). The issue of realiz-
ability and local enforceability of choreographies was studied in [89] and was presented at the
International Conference on Business Process Management (BPM). The notion of desynchro-
nizability, a result of joint work with the University of Rostock and SAP, was presented in [69]
at the International Conference on Service Oriented Computing (ICSOC). An overarching paper
on realizability of interaction models with its different dimensions was presented in [66] at the
Central European Workshop on Services and their Composition (ZEUS).

Oryx served as basis for the prototypical implementation for the approaches presented in
this thesis and was described in several papers. Among them are [81] at the Demo Session of the
International Conference on Business Process Management (BPM), [82] at the Demo Session
of the International Conference on Conceptual Modeling (ER), [71] at the EMISA workshop,
[145] at the EPK workshop and [67] in the Computer Zeitung journal.
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Chapter 2

Related Work

As shown in the motivating example and the choreography terminology section, choreographies
center around the notions of roles, interactions and behavioral dependencies.

Behavioral dependencies are heavily studied in the area of Business Process Management
(BPM). Business process models describe how a business goal is achieved through a number
of activities. In most cases, business process models are orchestrations, where all activities are
carried out within the same organization. BPM is at the same time a management discipline
and an enabling technology to realize a process-oriented view on organizations. Section 2.1 will
introduce BPM in more detail.

Interactions between independent systems are at the center of attention in Service-oriented
Architectures (SOA). From a technical perspective, SOA is an architectural style for intercon-
nected software systems with a strong focus on message exchanges. The internals of the software
services are irrelevant as long as they behave as specified in the observable behavioral models.
Section 2.2 will introduce the main concepts of SOA. BPM and SOA are heavily used in prac-
tical settings. Therefore, process choreographies are not only a topic studied in the academic
arena. They have high relevance for practical challenges.

A number of modeling languages have been proposed in the academic literature and by
standardization initiatives in the BPM and SOA space. Section 2.3 presents the most prominent
languages supporting the concepts of roles, interactions and behavioral dependencies.

In order to allow rigor and avoid ambiguities, formal models provide a solid basis for dis-
cussing the semantics of choreographies. Section 2.4 gives an overview of existing formal mod-
els. Based on that, typical correctness criteria for observable behavior models and choreogra-
phies are highlighted in Section 2.5.

2.1 Business Process Management

Business processes are in place since humans do business. Products or services are offered
to customers in exchange for other products, services or money. Several activities need to be
performed in order to create the products or to provide the service. In this context, distribution
of labor is a central aspect. The insight that different people have different talents and skill sets
provides the basis for assigning different activities to different people.

13
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Figure 2.1: Simple orchestration

As simple example you could imagine a family selling old child clothes through an online
auctioning platform. The goal is to sell the clothes for the highest possible price. As one of
the activities, somebody needs to create a product description including a photo and a textual
description. The mother is very good at taking a nice picture and writing an attractive text. The
son knows the auctioning platform very well and is the fastest to set up the auction. The father
finally takes care of packaging the clothes and taking them to the local post office.

In this example you already find some of the dimensions of business processes. (1) The
functional dimension describes all activities that are to be performed in a business process. (2)
The control flow dimension covers the behavioral dependencies between the activities. E.g. the
product description has to be created before the auction can be set up. (3) The organizational
dimension introduces the people, roles or organizational units involved. (4) Different tools or
machines might be available for supporting the activities. E.g. the availability of a camera is
essential for taking a picture. These tools, including software systems, are mentioned in the
technical dimension. (5) In some business processes a fifth dimension comes into play: The
data flow dimension. Here, it is described which information is being produced or consumed by
an activity. E.g. the product description is used during the auction setup activity.

The explicit documentation of business processes helps to uncover weaknesses in the current
organization of activities and serve as starting point for process optimization initiatives. On the
other hand, process documentation serves educational purposes—new employees entering the
organization can quickly take up how things are done or, during organizational change programs,
it can be shown how activities should be carried out in the new way.

Figure 2.1 depicts the example using the Business Process Modeling Notation (BPMN [6]).
BPMN is the de-facto standard for graphical business process modeling. It comes with a rich
set of constructs for expressing concepts from all five dimensions. A more in-depth introduction
of and discussion on BPMN can be found in Chapter 3. Other prominent process modeling
languages are Event-driven Process Chains (EPC [137, 192]) and UML Activity Diagrams [102].

Business Process Management (BPM) as a management discipline provides a process-
oriented view on organizations. Important business processes are explicitly documented and
are subject to continuous improvement. The process perspective allows to monitor and optimize
business processes from end-to-end, meaning that value creation and process performance are
considered across departments and functions rather than considering departments or functions
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individually. That way, a global optimum is targeted rather than a number of local optima (that
might even contradict each other).

With the rise of BPM as a management discipline in the 80ies and early 90ies, software
systems supporting BPM initiatives have emerged. First, process modeling tools appeared that
were later extended to process analysis tools. In a second step, more sophisticated information
systems emerged that support the actual execution of business processes.

Especially information-centric activities can be supported by information systems. In the
simplest form, they take care of managing the data produced and consumed by these activities.
Other activities might not require human involvement and are fully automated.

Information systems might also help to organize the individuals’ tasks and remind them of
work to be finished. They suggest which activities should be performed as follow-up for some
completed work. In the strongest form, information systems take care of process coordination—
assigning the different work items to employees and constantly tracking the status of the process
execution. The latter are called workflow management systems. These systems not only include
a business process model repository and execution engine but also consist of worklist clients,
adapters to other information systems and monitoring tools. The workflow reference model re-
leased by the Workflow Management Coalition (WfMC 1) defines the components of a workflow
management system [128].

Workflow management systems are the main enabler for the “Third Wave” of Business Pro-
cess Management [199]. In the first wave of BPM, which already began in the 1920ies, work
procedures for manual activities were formally documented. The second wave, beginning in the
late 1980ies, centered around information-system-driven business process optimization. Busi-
ness process models served as requirements specifications for software development, leading to
software systems directly executing (parts of) the business process. In the third wave, business
engineering, i.e. business process change, is to be decoupled from software engineering. This
is only possible through workflow management systems that are generic software systems in-
terpreting orchestrations. The main idea is to give more control of the systems to the process
experts, the domain experts engineering the business. This gives organizations the chance to
adapt to changing business environments more quickly and to innovate in shorter cycles.

Business process models, and orchestrations in particular, are the most important artifacts
in Business Process Management. Different phases can be identified when working with these
models—especially when they are to be executed by workflow management systems. During
the design phase the orchestration is created, covering the five dimensions. It is important to
verify and validate the orchestration. Verification checks for certain anomalies in the model.
E.g. the control flow might be specified in such a way that situations can be reached, where a
required synchronization of activities will never happen. Such situations are called deadlocks.
Validation, on the other hand, ensures that the model actually represents what it was meant to
represent.

During the deployment phase the individual information systems involved in the business
process execution must be set up. This includes the workflow management system as well as in-
formation systems supporting individual activities or automatically carrying out activities. The
technical dimension of the business process needs to be specified. Finally, the now fully con-

1 See http://wfmc.org/

http://wfmc.org/
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figured orchestration is fed into the workflow management system. In parallel to these software
configuration tasks, the new business process must be implemented in the organization, i.e. em-
ployees need to be trained and new organizational dependencies need to be established.

Business process operation takes place in the execution phase. Here, process instantiation
happens. Many process instances might be executed in parallel for the same orchestration. Mon-
itoring functionality is available during execution. Statistics such as “how many auctions have
completed today?” and “what is the average delay between completion of the auction and pay-
ment?” might be provided by the system. It might also be possible to zoom into individual
process instances, e.g. a call center agent might handle a call from a customer who complains
about a certain incident.

During the evaluation phase the execution history of the process instances is examined and
requirements for process changes are gathered. Certain bottlenecks might have emerged or
initially defined performance objectives were not met. In other settings, where workflow man-
agement systems are not in place, execution logs of information systems might be used for
discovering the orchestration a posteriori. This field of research is called process mining and
details can be found in [19]. The results of this fourth phase are fed back into a new design
phase.

The orchestration lifecycle and its four phases are illustrated in Figure 2.2. It is a slightly
adapted version from [15].

2.2 Service-oriented Architecture

The term “service” has been around in the business world for many years and has been adopted in
the software world. In the area of economics a service is “the non-material equivalent of a good”.
A service in the software world has similar characteristics. A software service can be requested
through electronic messages. Services are loosely coupled components described in a uniform
way that can be discovered and composed [2]. They support rapid, low-cost composition of dis-
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Figure 2.3: Roles in a service-oriented architecture [50]

tributed applications. As they may be offered by different enterprises and communicate over the
Internet, they provide a distributed computing infrastructure for both intra- and cross-enterprise
application integration and collaboration [170].

The service-oriented architecture (SOA) is an architectural style for building software sys-
tems based on services. Figure 2.3 depicts the three roles in SOA introduced by Burbeck [50].
A service provider publishes a service description to a service broker. A service requester can
discover a service by querying the service broker (find). The broker passes one or several ser-
vice descriptions back to the requester who can then bind to a service provider and subsequently
interact with it. Furthermore, SOA is a set of architectural principles, patterns, and criteria,
which address characteristics such as modularity, encapsulation, separation of concerns, reuse,
composability, and single implementation [130].

Business Process Management largely benefited from the proliferation of SOA, since the im-
portant feature regarding it, is changing the focus from fine-grained, technology-oriented entities
like database rows or Java objects, focusing instead on business-centric services with business-
level transaction granularity [144].

2.2.1 Web Services

While SOA itself does not prescribe any particular technology for implementation, the web
services platform architecture is the typical realization of it. Here, services are offered as web
services [62]. According to the World Wide Web Consortium (W3C2) a web service is a software
system designed to support interoperable machine-to-machine interaction over a network. It has
an interface described in a machine-processable format, specifically the Web Service Description
Language (WSDL [56]). Other systems interact with the web service in a manner prescribed by
its description using SOAP messages [44], typically conveyed using HTTP [111] with an XML
[210] serialization. This serialization can be described using the XML Schema Definition (XSD
[119]).

WSDL allows to define simple interaction scenarios with a web service involving one-way

2 See http://w3.org/

http://w3.org/
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or two-way message exchanges. The latter are carried out in a synchronous manner: The service
requester sends a request to the web service and blocks until it receives a response from it.
An example could be a stock information service delivering current stock values. In the case
of asynchronous communication the delay between request and response would be too long so
that blocking behavior is not acceptable. Here, polling or callback techniques come into play.
Polling means that the requester regularly checks the status of the previous request. Callback
can be applied if the requester is a web service itself. Here, the service invokes the requester as
soon as the response is available.

Universal Description, Discovery and Integration (UDDI [211]) is a standard for web service
brokers. In addition, there is a variety of web sites providing a list of available web services,
such as www.strikeiron.com or www.remotemethods.com.

2.2.2 Web Service Orchestrations

Web service orchestrations lie at the intersection of SOA and BPM. The basic idea is to compose
individual services to form a higher-value service. Early composition attempts led to techniques
such as data scraping of web sites: information is scraped from the HTML representation of
web sites in regular intervals and the aggregated information is displayed in a different format
on another web site. This technique is extremely fragile, in regards of information consistency
and communication interfaces.

Web service orchestrations are orchestrations, where the basic activities involve message
exchanges with web services. The orchestration engine itself is again a web service. In a typ-
ical scenario a request is sent to the orchestration engine which instantiates the orchestration
for processing that request. During execution several other web services are invoked by the
orchestration engine in a predefined order. Finally, a response is sent back to the requester.

Imagine the auctioning service realized as web service orchestration. The seller acts as
service requester and invokes the auctioning service. The orchestration engine instantiates the
orchestration upon arrival of the order message. Next, the engine invokes a set of internal web
services, e.g. triggering the creation of a web page for the offer and scheduling an auction. Then,
it sends a response back to the seller giving him the confirmation that the auction was created.

Figure 2.4 illustrates an orchestration engine. Incoming requests are mapped to the corre-
sponding process instance. Often, a new process instance is created upon a request, in other
situations messages are routed to existing process instances. In the latter case, correlation in-
formation is included in the messages to determine which process instance it must be routed to.
Process instances in turn can invoke other web services.

The most widely used standard for defining web service orchestrations is the Business Pro-
cess Execution Language (BPEL [108]). It allows to implement long-running web service or-
chestrations including synchronous and asynchronous web service calls. BPEL will be discussed
and assessed in detail in Chapter 3.

www.strikeiron.com
www.remotemethods.com
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Figure 2.4: Web service orchestration engine, process instances and correlation

2.3 Choreography Languages

Just as process modeling is at the heart of Business Process Management, choreography mod-
eling is at the heart of managing cross-organizational interaction. Choreography languages pro-
vide a standardized vocabulary and high-level modeling constructs for easily expressing typical
real-world scenarios. This section enumerates the most prominent languages supporting the
concepts of roles, interactions and behavioral dependencies. The list of languages includes Mes-
sage Sequence Charts (MSC, [131]), the Business Process Modeling Notation (BPMN, [6]),
UML Communication Diagrams [5], the Business Process Schema Specification (BPSS, [57]),
the Web Services Business Process Execution Language (BPEL, [108]) and the Web Services
Choreography Description Language (WS-CDL, [136]). An example from the auctioning do-
main will be presented for each language.

2.3.1 Message Sequence Charts (MSC)

Message Sequence Charts (MSC [131, 189]) originated in the telecommunication domain and
were standardized by the Telecommunication Standardization Sector of the International
Telecommunication Union (ITU-T3). MSCs typically describe sample sequences of messages,
as opposed to fully defining complex interaction behavior including concurrency, alternative
branches and loops. MSCs are therefore suited for requirements engineering and the derivation
of test cases. MSCs qualify as choreography language as multiple roles and interactions be-
tween them can be specified, including behavioral dependencies defining the ordering between
outgoing and incoming messages of each role.

Figure 2.5 shows a message sequence chart illustrating an auctioning scenario. Roles are

3 See http://itu.int/ITU-T/

http://itu.int/ITU-T/
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Figure 2.5: Message Sequence Chart (MSC) example

represented by rectangles with dashed lines (their lifelines). Interactions are represented by ar-
rows. The behavioral dependencies between communication activities are given per role through
the ordering of arrows starting and ending on the lifeline. The diagram illustrates only one con-
versation. In this case, exactly two bidders are involved and each bidder places exactly one bid.
Due to their intuitive visual representation, MSCs are often used for discussing a particular mes-
sage sequence. However, due to their absence of advanced control flow constructs they seldom
represent complete choreographies.

2.3.2 Business Process Modeling Notation (BPMN)

The Business Process Modeling Notation (BPMN, [6]) is a graphical modeling language for
intra- or inter-organizational business processes. BPMN was first released by the Business Pro-
cess Management Initiative4 in May 2004. Since then, BPMN evolved into a widely adopted
language among business analysts. The fact that there are currently more than 50 BPMN tools
available5 underlines its popularity. After the merger of the Business Process Management Ini-
tiative with the Object Management Group (OMG)6 a revised version was created in June 2005
and is now maintained as an OMG Final adopted specification [6]. The current version 1.2 [9]
was released in February 2009.

Figure 2.6 shows the four main categories of modeling constructs in BPMN: swimlanes,
connecting objects, flow objects, and artifacts. Swimlanes are used to separate organizational
units involved in a collaboration or process. Pools are the top-level elements to structure a
business process diagram (BPD) and represent roles or participants. Furthermore, a pool is
structured into a hierarchy of lanes, representing business entities inside the organization of the
pool. If a diagram contains only one pool with one lane, the graphical representation of the pool

4 See http://www.bpmi.org
5 See http://www.bpmn.org/BPMNSupporters.htm
6 See http://www.omg.org

http://www.bpmi.org
http://www.bpmn.org/BPMN Supporters.htm
http://www.omg.org
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Figure 2.6: BPMN language overview

can be omitted.
BPMN specifies the concept of sequence flow (represented as arrow with solid lines) in order

to express behavioral constraints between activities contained in the same pool. Therefore, a
sequence flow is not allowed to cross the border of a pool. If multiple pools interact with each
other the only way to model connections is via message flows (arrows with dashed lines). In case
of an abstract process the message flows are directly connected to the pool. Message exchange
within one pool is not allowed.

Associations can be used to connect artifacts with arbitrary flow objects in the diagram. In
combination with data objects the directed variant is often used to indicate whether read or write
access happens.

There are three categories of flow objects: activities are denoted as rounded rectangles,
events as circles and gateways as diamonds. Each flow object is contained in one lane only and
in doing so it is assigned to the organizational unit responsible for the execution.

A task is an elementary activity and the representation of an atomic piece of work to do.
BPMN lists a number of different task types. Service tasks are used to call a piece of software
in an application. Send and receive tasks have the same semantics as the corresponding message
intermediate events. User tasks are pieces of work, which involve human interaction. Script
tasks are similar to the service tasks, but can be executed directly by the process engine. Manual
tasks do not involve the support of any process engine. Finally, reference tasks can reuse tasks
defined elsewhere. Structured activities are called sub-processes. They can either contain a
regular process or they are marked as ad-hoc and contain a set of tasks without any control
dependency between them.

BPMN distinguishes between two different flavors of events. On the one hand, catching
events are waiting for a trigger to fire. They can start a process as a reaction to a trigger or delay
the flow of the process until the event occurs. On the other hand, throwing events can appear in
the middle or at the end of a flow. In contrast to catching events, they do not wait for a trigger,
but have a result.

Behavioral dependencies in BPMN are not only defined through sequence flow. In addition,
different kinds of gateways allow the specification of advanced branching behavior and concur-
rency in business processes. Artifacts provide additional information and do not directly affect
the behavior of a process. Data objects represent data relevant for the process. Associations
indicate where the data is created, read or modified.
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Figure 2.7: Business Process Modeling Notation (BPMN) example

Especially due to the concepts of pools and message flow, BPMN can be used for choreogra-
phy modeling. The behavioral constraints between the different interactions are implicitly given
through the sequence flow dependencies and gateways relating the communication activities.

Figure 2.7 illustrates an auctioning example with three roles and a number of interactions
involved. It shows how advanced control flow constructs such as loops, multiple-instance activ-
ities and gateways can be combined with message flow between roles.

The suitability of BPMN for modeling typical business process scenarios was studied in
[216] and the actual use of BPMN language constructs in practice was investigated in [223].

2.3.3 Business Process Schema Specification standard (BPSS)

The Business Process Schema Specification standard (BPSS [99]) is used to describe how two
or more roles interact in an ebXML scenario. ebXML is an initiative by the United Nations
Centre for Trade Facilitation and Electronic Business (UN/CEFACT)7 that was introduced as
alternative to heavyweight EDI-solutions for small and mid-sized companies.

7 See http://www.unece.org/cefact/

http://www.unece.org/cefact/
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BPSS is closely related to the UN/CEFACT Modeling Methodology (UMM, [7]) which
mainly describes the different steps to specify choreographies in a technology-independent man-
ner. UMM also provides a meta-model for choreographies, including the business transactional
view, the business service view and business collaboration view. Business transactions serve
as basic building blocks, each involving a request-response interaction plus additional business
signals to synchronize the state of the two business partners involved. It is suggested to describe
these bi-lateral transactions using UML 1.4 Activity Diagrams [1]. Transactions are composed
into a business collaboration protocol, the choreography. Again, it is suggested to describe the
choreography using Activity Diagrams or BPMN, however, an integration with these languages
is not provided. UMM’s business service view finally specifies the services and operations (or
messages) participants must support in order to implement a role.

The specification of business document flow is one of the main strengths of BPSS choreogra-
phies. Another ebXML standard, namely the Core Components Technical Specification (CCTS
[61]), introduces a means to specify business documents in a technology-agnostic way. Infor-
mation interoperability is achieved by agreeing on business semantics for the information. The
so called “core components” represent generic business information that can then be used in the
form of so called “business information entities” in different business contexts. Two different

<BusinessCollaboration name="Delivery and Payment">
<Role name="seller" nameID="s"/>
<Role name="bidder" nameID="b"/>
<TimeToPerform duration="P5D"/>
<Start><ToLink toBusinessStateRef="Delivery"/></Start>
<BusinessTransactionActivity businessTransactionRef="Delivery">
<Performs currentRoleRef="s" performsRoleRef="CCinitiator1"/>
<Performs currentRoleRef="b" performsRoleRef="CCresponder1"/>

<BusinessTransactionActivity/>
<BusinessTransactionActivity businessTransactionRef="Payment">
<Performs currentRoleRef="b" performsRoleRef="CCinitiator1"/>
<Performs currentRoleRef="s" performsRoleRef="CCresponder1"/>

<BusinessTransactionActivity/>
<Transition>
<FromLink fromBusinessStateRef="Delivery"/>
<ToLink toBusinessStateRef="Payment"/>

</Transition>
<Decision>
<FromLink fromBusinessStateRef="Payment"/>
<ToLink toBusinessStateRef="Success">
<ConditionExpression expression="Success"/>

</ToLink>
<ToLink toBusinessStateRef="Failure">
<ConditionExpression expression="Failure"/>

</ToLink>
</Decision>
<Success nameID="Success"/>
<Failure nameID="Failure"/>

</BusinessCollaboration>

Listing 1: Business Process Schema Specification example
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contexts can be given e.g. through different countries or legislations. While a company in Aus-
tralia can be uniquely identified by an ABN (Australian Business Number), a German company
can be identified by its Handelsregisternummer. However, in both cases we deal with the core
component company. Business information entities can be encoded using different syntaxes, e.g.
XML or United Nations/EDI for Administration, Commerce and Transport (UN/EDIFACT).

Listing 1 shows a BPSS example. The choreography contains two interactions, namely de-
livery and payment. The behavioral dependencies are defined using Start, Transition,
Fork, Join and Decision primitives. Successful and unsuccessful completion of conversa-
tions can be distinguished using the Success and Failure constructs.

2.3.4 UML Communication Diagrams

UML Communication Diagrams are part of the Unified Modeling Language (UML) 2.0 stan-
dard [5]. Communication diagrams can be used for modeling interactions among distributed
components without exposing their internal structure. They assume that the order of message
sending and message receipt are the same or are irrelevant to the modeler. Therefore, message
send and message receipt are modeled as atomic unit.

:Seller

b2:Bidder

:Auctioning 
Service

1:creationRequest

2a:bid

2b:bid
3b:notification

3c:notification

b1:Bidder

4:delivery

5:payment

3a:notification

Figure 2.8: UML Communication Diagram example

All behavioral dependencies between interactions are specified using so called sequence
expressions. These textual expressions allow sequences of messages, hierarchy, parallelism,
alternative branches, iterations and multiple instances interactions. Figure 2.8 shows a sample
communication diagram from the auctioning domain. The rectangles, called lifelines, represent
participants of a particular role. One participant of role seller, one of role auctioning service
and two of role bidder are included in the diagram. Therefore, an exemplary conversation is
illustrated rather than a complete choreography.

The sequence expressions specify that first the creation request is sent from the seller to
the auctioning service, then two bids are placed concurrently, before three notifications are sent
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concurrently. Finally, the delivery and payment interactions happen. The numbers indicate a
sequential order and “a” .. “c” indicate parallelism.

2.3.5 Business Process Execution Language (BPEL)

The Business Process Execution Language for Web Services (BPEL4WS, or BPEL for short)
was submitted for standardization to the Web Services BPEL Technical Committee of the Orga-
nization for the Advancement of Structured Information Standards (OASIS)8 in 2002. Version
1.1 was finalized in May 2003 [25]. The current version 2.0 [108] was renamed to Web Ser-
vice Business Process Execution Language (WS-BPEL) to conform to other so called WS-*
specifications.

BPEL has its origins in two process implementation languages developed by the main con-
tributors to the specification, Microsoft and IBM. On the one hand XLANG [203] was developed
by Microsoft, on the other hand the Web Service Flow Language (WSFL) [147] comes from
IBM. Both languages are based upon the Web Services Description Language (WSDL) [56].
Nevertheless, for the description of processes they use fundamentally different paradigms. While
XLANG defines the process with structured nested statements, WSFL uses a graph-structured
paradigm for process modeling. This difference can still be seen in their successor. BPEL is a
mainly block-structured language [167, 10] and activities can be nested in arbitrary ways like in
XLANG. Furthermore, it provides a mechanism to formulate graph-structured process models.

BPEL distinguishes two types of processes. On the one hand, abstract processes model the
interactions between business partners via web services. The process model does not need to be
complete, because it is not intended for execution. On the other hand, executable processes are
not allowed to omit any operational details. They can be executed in a process engine.

The main ingredients of an executable BPEL process in order to provide and consume web
services are partner links and their type definitions, variables, handlers and activities. Regarding
its use to specify processes, it is similar to imperative programming languages, where the steps
to be done are explicitly formulated. For example, the structured activities define the way how
basic activities are executed. Basic activities model the atomic pieces of work to do.

The partner links and partner link types are a lightweight mechanism to link the communica-
tion with business partners on a conceptual layer, with the underlying web service descriptions.
In contrast to partner links, the types are defined inside the actual WSDL file. Each process
must come with a set of related WSDL files, including the used partner link types and further
data description of the services the process should call or provide.

BPEL distinguishes basic and structured activities. Basic activities mainly include commu-
nication activities for message sending and message receipt (invoke, receive, reply, pick, ...)
and internal activities e.g. for data transformations and raising exceptions. Structured activi-
ties are used to describe the control flow, allowing for concurrency, alternatives, loops and even
multiple-instances. An exhaustive assessment of BPEL along the Workflow Patterns [17] can be
found in [217].

Listing 2 shows a BPEL example describing the behavior of the auctioning service. A pro-
cess instance is created upon receipt of an auction creation request message. After that, bids are

8 See http://www.oasis-open.org

http://www.oasis-open.org
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<process name="auctioningService" ...>
<sequence>
<receive operation="requestAuctionCreation" createInstance="yes" .../>
<repeatUntil><condition>...</condition>
<pick>
<onMessage ...>...</onMessage>
<onAlarm><until>...</until>...</onAlarm>

</pick>
</repeatUntil>
<flow>
<invoke .../>
<invoke .../>
<forEach parallel="yes" ...><scope>
<invoke .../>

</scope></forEach>
</flow>

</sequence>
</process>

Listing 2: BPEL example

received repeatedly until a timeout occurs (realized through onAlarm). Notifications are sent
out concurrently within the flow structure.

BPELlight [162] has been introduced as extension of BPEL to decouple BPEL and its tech-
nical details. In essence, it loosens BPEL’s strong dependency on WSDL.

BPEL is a typical orchestration language, mainly focusing on the activities within the service
that is implemented by means of a BPEL process. However, abstract BPEL also allows to focus
on the communication activities and behavioral dependencies between them. Although multiple
roles can be mentioned in a BPEL process through the notion of partner links, BPEL does not
qualify as choreography language as it concentrates on one role only and is meant to be executed
by a central orchestrator.

In contrast to this, WSFL, the predecessor of BPEL, can also be considered a choreogra-
phy language due to its distinction between flow models and a global model. While the flow
models define the behavioral dependencies between activities, the global model provides the
interconnection between the different flow models.

2.3.6 Web Services Choreography Description Language (WS-CDL)

The Web Services Choreography Description Language (WS-CDL [136]) is probably the best
known choreography language in the web services world at the moment. It was released by the
World Wide Web Consortium (W3C)9 as Candidate Recommendation in November 2005. This
indicates that the standard is expected to be stable and that implementation is encouraged.

WS-CDL supersedes its two predecessors Web Services Choreography Interface (WSCI
[28]) and Web Service Conversation Language (WSCL [33]). WSCI has considerable overlap
with the Business Process Modeling Language (BPML [27]), proposed as orchestration lan-

9 See http://www.w3.org/

http://www.w3.org/
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guage by the Business Process Management Initiative. WSCL has its roots in Hewlett-Packard’s
Conversation Definition Language (CDL [146]).

WS-CDL is an XML-based language focusing on interactions and their relationships. Inter-
actions are bi-lateral (between two web services) and involve either one message (request-only
or response-only) or two messages (request-response). Each interaction takes place via a channel
instance identifying the responding service. An important feature of WS-CDL is the possibility
to pass channel instances from one service to another in an interaction. The structure of other
information that can be passed is specified using information types. Role types define what
behaviors (WSDL interfaces in the default case) have to be implemented by a corresponding
service. Relationship types are pairs of role types, services of which can directly interact with
each other. Correlation of interactions is addressed using identity tokens that are to be included
in messages. Interactions can be composed to activities using a range of control flow constructs.
The comparison of WS-CDL and π-calculus in [83] gives a more detailed insight into the se-
mantics of the control flow constructs of WS-CDL.

WS-CDL does not come with a graphical representation. As the name already indicates, WS-
CDL is closely tied to web services architectures. Especially a tight integration with WSDL is
given. Relationships to other web services standards such as WS-Security [4] are mentioned but
not given much attention to. There have been proposals for generating BPEL abstract processes
out of WS-CDL choreographies [159]. The tool pi4soa10 implements generation algorithms.
However, it remains unclear how essential constructs such as blocking work units can be mapped
to BPEL. The WS-CDL specification states that state machines could be generated for every
participant in a WS-CDL choreography.

<choreography>
<sequence>
<interaction name="auctionCreation" channelVariable="tns:broker-channel"

operation="requestAuctionCreation" initiate="true">
<participate relationshipType="tns:SellerASRel"

fromRole="tns:Seller" toRole="tns:Broker"/>
<exchange name="request" informationType="tns:creationReq"

action="request">
<send/>
<receive variable="..." />

</exchange>
<exchange name="response"...>...</exchange>
<timeout time-to-complete="..."/>

</interaction>
<workunit repeat="...">
<interaction name="bid" ... operation="placeBid">...</interaction>

</workunit>
</sequence>

</choreography>

Listing 3: Sample interaction in WS-CDL

Listing 3 shows a WS-CDL example for our auctioning scenario. The auction creation

10 See http://sourceforge.net/projects/pi4soa/

http://sourceforge.net/projects/pi4soa/
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interaction initiates a conversation. After having completed this interaction, a workunit marked
as repetition is enabled. The workunit contains the bid interaction between bidders and the
auctioning service.

2.3.7 Other Choreography Languages

Several industry initiatives have worked towards domain-specific choreography models in order
to enable easier integration between different companies of that domain. Examples for such
initiatives are RosettaNet11 for the supply chain domain, SWIFTNet12 (Society for Worldwide
Interbank Financial Transfer) for financial services or HL713 (Health Level Seven) for health
care services. Due to a lack of choreography modeling languages available, these initiatives have
mostly resorted to textual descriptions of the choreographies. Rather adhoc-notations where
used for illustration. However, both the textual descriptions and the illustrations have many
ambiguities, allowing for different interpretations. When it comes to execution, the current way
is to map the proprietary notations to BPEL by making heavy assumptions about the concrete
semantics. Such a mapping is currently available for RosettaNet only and presented in [138].

WSDL 2.0 Message Exchange Patterns [163] offer means to specify the order of messages
an operation expects and sends back. This ordering is specified using text and not a designated
process description language. It is possible to specify node types, which enables describing
multi-lateral interactions from the view of one participant. However, the specification is limited
to one operation and thus does not cover a whole choreography spanning multiple operations.

The Service Component Architecture (SCA) provides a model for building applications
based on SOA [109, 165]. Implementations of services are wrapped in components. Each
component provides a set of services and requires a set of interfaces. The required services have
to be wired with provided services to form a valid SCA composite. SCA itself does not provide
a specific language for the implementation of components. SCA supports BPEL as a possible
implementation language [166].

Seel et al. [197] present a requirements framework for inter-organizational business pro-
cess models. A distinction is made between interaction points for collaborating employees and
departments and interaction points for information systems. Corresponding extensions to Event-
driven Process Chains (EPC [137]) are introduced.

UML-RT [198] introduces the notions of capsules, ports, connectors, protocol roles and
protocols. Capsules interacts with an environment through ports and they are interconnected
using connectors. A port realizes a protocol role, which in turn collective form a protocol.

Most languages mentioned above are procedural languages, where the approach is to explic-
itly enumerate all interactions possible in a certain situation. As an alternative to these procedural
languages there are also approaches for a declarative style of modeling [14, 173]. Declarative
in this context means that all constraints are enumerated that apply for a set of interactions.
That way, an “empty” choreography would mean that all interaction sequences are allowed,
while adding constraints limits the number of allowed sequences. In procedural languages, an

11 See http://www.rosettanet.org/
12 See http://www.swift.com/
13 See http://www.hl7.org/

http://www.rosettanet.org/
http://www.swift.com/
http://www.hl7.org/
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“empty” choreography would mean that no interaction is allowed and adding constructs en-
larges the set of possible interaction sequences. The goal of declarative languages is to avoid
over-specification, a common phenomenon that can be observed whenever procedural languages
are used. An overview of declarative workflow models is given in [174].

Quartel et al. proposed the Architecture Description Language ISDL and discussed its ap-
plication for service choreography modeling in [183].

2.4 Choreography Formalisms

Formal models allow the unambiguous definition of behavioral dependencies in orchestrations
and choreographies. They provide an abstract syntax with precise execution semantics that also
facilitates automatic reasoning on properties of the choreographies. The abstract syntax and the
semantic definitions of the different formalisms are typically so compact that algorithms can be
defined in a compact way and formal proofs are feasible.

This section lists the most prominent formal approaches used in the choreography space,
including communicating finite state machines, conversation models, open nets and π-calculus.

2.4.1 Communicating Finite State Machines

Finite state machines (also called finite state automata) describe the relationship between states
of a system and the transitions allowed between these states. The number of states is finite
and they can therefore be enumerated and represented individually in a diagram. Finite state
machines are a widely used formalism for describing the behavior of systems [129].

Finite state machines (FSMs) have a distinguished initial state, i.e. the state the system is in
when being started, and a set of final states, i.e. states which it would be allowed for the system
to stop in. Transitions are labeled and indicate what states can be reached next.

Definition 2.1 (Finite State Machine) A finite state machine (FSM) is a tuple (A, S, s0, final,
δ) where A is an alphabet, S is the set of states, s0 ∈ S is the initial state, final ⊆ S is the set
of final states and δ ⊆ S ×A× S is the transition relation. �

Reachability of states can be derived from the transition relation. A state s is reachable, if
there is a path of transitions from the initial state to s. On top of that, the introduction of final
states allows the identification of deadlocks.

Definition 2.2 (Deadlock) Given a finite state machine (A,S, s0, final, δ). A deadlock is a
reachable state s ∈ S without outgoing transitions, i.e. @a, s′ ((s, a, s′) ∈ δ), and s /∈ final. �

Communicating FSMs [154, 64, 45, 172] are a formal model for interconnecting several
independent FSMs through message exchanges. In this context, a FSM can do send or receive
actions or alternatively do internal steps that cannot be observed by the environment. The alpha-
bet used by the communicating FSMs is ({!, ?} ×M) ∪ {τ} where M is the set of messages
and ! and ? indicate sending or receiving. (s, !m, s′) denotes a message send action from role
send(m) to role recv(m) and (s, ?m, s′) a message receive action. (s, τ, s′) denotes an internal,
i.e. silent, transition.
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Figure 2.9: Communicating Finite State Machine example

Figure 2.9 illustrates communicating finite state machines, where the states are depicted by
circles and the transitions by arrows. The initial state is targeted by an arrow without source state
and final states are denoted by double-circles. Each FSM has a queue for incoming messages.

Definition 2.3 (Composition of communicating FSMs) Given a set of communicating FSMs
R = {r1, . . . , rn}. Their composition is a (2n)-tuple of the form (Q1, s1, . . . , Qn, sn) where Qi
denotes the queue contents of role ri and si denotes the state of ri. �

The inclusion of queues allows the representation of both synchronous and asynchronous
communication. In the case of synchronous communication, the message is put into the input
queue and read from it in a single step. In the case of asynchronous communication, a message
is placed into the queue and can be read as soon as the corresponding FSM is ready to receive it.

Different flavors of asynchronous communication are possible: the buffer size might be
either finite or infinite and the order of message delivery might be First-In-First-Out (FIFO) or
any other ordering scheme. There might be one queue per FSM or one queue per message type.
In case of synchronous communication or asynchronous communication with bounded queues,
the behavior of a composition of communicating FSMs can again be described as FSM.

2.4.2 Conversation Models

While communicating FSMs define behavioral dependencies on a per-role level, conversation
models are a formalism where behavioral dependencies between interactions are defined glob-
ally [113]. Conversation models also build on FSMs. The set of messages is again denoted as
M . send(M) denotes the sender of m and recv(m) the receiver of m.

(A,a,B)

(A,b,B)

(A,c,B) (B,d,A)

Figure 2.10: Conversation model example

Figure 2.10 shows a conversation model where an interaction (A, a,B) denotes that a mes-
sage a is sent from A to B. Conversation models can both be applied in synchronous and
asynchronous settings. While in synchronous settings the semantics of the ordering constraints
is intuitive, the constraints only apply to the ordering of send activities in the presence of asyn-
chronous communication. The order in which messages must be received are not specified in
this case.
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2.4.3 Open Nets

Petri nets were introduced by Carl Adam Petri in [175] and are now widely used in the field
of Business Process Management [18, 19]. In contrast to the formalisms from the previous
sections, Petri nets provide direct support for expressing concurrency.

Petri nets are bipartite directed graphs consisting of places and transitions that are connected
through a flow relation. Places can contain tokens and the token flow determines the firing
sequences of the transitions. Upon firing of a transition, some tokens from input places are
removed and some tokens are placed on output places.

The most basic form of Petri nets are place/transition nets. Here, a transition is enabled, i.e.
ready to fire, if there is at least one token in each input place of that transition. Firing of this
transition results in removing one token from each input place and placing one token in each
output place [188].

Definition 2.4 (Petri Net) A Petri net is a tuple (P, T, F,m0) where P and T are disjoint sets
of places and transitions, F ⊆ (P × T ) ∪ (T × P ) is the flow relation connecting places and
transitions and m0 : P → IN is the initial marking. �

As auxiliary notation we denote the input and output places of a transition t with •t and
t•, where •t := {p ∈ P | p F t} and t• := {p ∈ P | t F p}. •p and p• denote the set of
transitions that share p as output and input places, respectively, i.e. •p := {t ∈ T | t F p} and
p• := {t ∈ T | p F t}.

We are going to use an abbreviated notation for markings. [p1, p2] denotes that one token
resides on place p1, one on p2 and all other places are empty. [p1, p1] denotes that two tokens
reside on place p1.

The execution semantics of Petri nets is given by their token flow. Progressing from one
marking to another marking happens through firing of transitions. Firing results in removing
tokens from input places and adding tokens to output places of the transition.

Definition 2.5 (Enablement and Firing) Let (P, T, F,m) be a Petri net. A transition t ∈ T
is enabled iff m(p) > 0 for all p ∈ •t. The reached marking after firing of t is m′, where
m′(p) = m(p) − 1 for all p ∈ •t \ t•, m′(p) = m(p) + 1 for all p ∈ t • \ • t and else
m′(p) = m(p). We denote this as (P, T, F,m) t→ (P, T, F,m′) or m t→ m′ for short. �

When m t→ m′ we say that m′ is reachable from m by firing transition t. Reachability can
be canonically extended to transition sequences.

t
t

t
p1

p3

p2

p1

p3

p2

Figure 2.11: A Petri net before and after firing of transition t
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Figure 2.11 depicts two Petri nets (P, T, F,m1) and (P, T, F,m2), where P = {p1, p2, p3},
T = {t}, F = {(p1, t), (t, p2), (t, p3)}, m1 = [p1] and m2 = [p2, p3]. The places are graph-
ically represented as circles, the transitions as rectangles and the flow relation as arrows. The
marking is represented by small filled circles, the tokens, contained in the places. In case of m1,
transition t is enabled as all input places •t = {p1} contain tokens. Firing of t leads to marking
m2, where the token on p1 was removed and two tokens were produced on places p2 and p3.

Figure 2.12 illustrates a second example from the auctioning domain. It shows the behavior
of a seller. Activities are represented by transitions. By letting the tokens flow through the net,
we see that Set up auction is always followed by Receive confirmation and the payment and
delivery activities can happen concurrently. The marking that is finally reached is [s9].
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Figure 2.12: The seller represented as Petri net

The example shows that Petri nets natively support the notion of concurrency. Therefore,
those cases where different actions can happen in any order (or might even overlap in execution),
can be represented in a much more compact way in Petri nets than it is the case for finite state
machines. Each activity related to payment and delivery is only represented once in the Petri net.

The Petri nets presented so far do not include the notion of communication. Therefore, we
use open nets [151] where internal control flow and communication via message exchanges are
distinguished through two types of places: internal places and communication places.

Definition 2.6 (Open Net) An open net is a tuple (P, PC , T, F,m0, final) where (P, T, F,m0)
is a Petri net, PC ⊆ P is the set of communication places (all other places P \ PC are internal
places) and final ⊆ P → IN is the set of valid final markings. For all communication places
pC ∈ PC it must hold •pC = ∅ ∨ pC• = ∅ and m0(pC) = 0. �

The enabling and firing rules of Petri nets apply to open nets unchanged. The additional
rules for communication places ensure that there must not be any communication place that is
“send” place and “receive” place at the same time and that all communication places are empty
in the initial marking. In analogy to FSMs, the introduction of valid final markings allows the
distinction of desired markings and deadlocks.

Definition 2.7 (Deadlock) A marking m is a deadlock iff no other marking is reachable from
m and m /∈ final. �

Figure 2.13 depicts an open net describing the seller. In addition to the places and transitions
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from Figure 2.12, communication places were added. This is visualized by the dashed rectangle.
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Figure 2.13: The seller represented as open net

An open net defines the internal behavior and interaction behavior of one role. The behavior
of two or more interacting roles is defined through the composition of the open nets to a new
open net. The basic idea of this composition is to merge corresponding communication places.
That way tokens produced on a communication place by one role can be consumed by another
role.

Definition 2.8 (Closed Composition of Open Nets) Two open nets O1 = (P1, PC1, T1, F1,
m01, final1) andO2 = (P2, PC2, T2, F2,m02, final2) are composable iff P1∩P2 = PC1∩PC2

and T1∩T2 = ∅. The closed composition ofO1 andO2, denoted asO1⊕O2, is (P1∪P2, (PC1∪
PC2) \ (PC1 ∩PC2), T1 ∪ T2, F1 ∪F2,m01 ⊕m02, {f1 ⊕ f2 | f1 ∈ final1 ∧ f2 ∈ final2}). �

By abuse of notion, the operator m1 ⊕ m2 also denotes the composition of two markings
of composable open nets, where (m1 ⊕ m2)(p) = m1(p) iff p ∈ P1, and (m1 ⊕ m2)(p) =
m2(p) otherwise. Figure 2.13 depicts the closed composition of two open nets, one taken from
Figure 2.13 and the second one representing parts of an auctioning service. Places c1 and c2 that
were previously communication places are now internal places. Places c3 through c6 remain
communication places.

The composition is closed, as communication places “disappear” during composition. The
underlying assumption is that no other role can access the communication place after the com-
position. This might be intuitive in the case of sending (during composition it is decided that a
message is targeted at a specific role). However, for receive places the assumption that the place
is “locked” and cannot be filled by any other role might be counterintuitive. Furthermore, the
composability of a set of open nets might not be given if multiple open nets send on (or receive
from) the same communication place.

In an open composition all communication places from the original nets remain communi-
cation places. The idea of open composition and a comparison to closed composition can also
be found in [78].

Definition 2.9 (Open Composition of Open Nets) The open composition of two composable
nets O1 and O2, denoted as O1 ⊕open O2, is (P1 ∪ P2, PC1 ∪ PC2, T1 ∪ T2, F1 ∪ F2,m01 ⊕
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Figure 2.14: Closed composition of open nets

m02, {f1 ⊕ f2 | f1 ∈ final1 ∧ f2 ∈ final2}). �

2.4.4 Pi-calculus

The π-calculus is a process algebra for mobile systems, which sees interacting processes as cen-
tral concept. All communication takes place via names. A precondition for two processes to
communicate via such a name is that both processes know this name. While some names might
be known to all processes from the very start of a conversation, there is the possibility to prop-
agate knowledge about names at runtime. This happens by passing names to other processes.
This phenomenon is called link passing mobility. While the scope of a name might be restricted
to one process at the beginning of the conversation, it is extruded as soon as it is passed to the
other process.

S = s(x).x.0
A = s〈b〉.0
B = b.0

SY S = S | A | B

The above example illustrates some of the concepts of π-calculus. We find a system of three
interacting processes S (a seller), A (an auctioning service) and B (a buyer). This example sets
in after an auction has finished and B was selected as the successful bidder by A. At this point
in time, S does not know yet who is going to be the buyer for the goods offered. Therefore, A
has to pass on the reference of B on to S. A knows the names s and b and sends b over s. S also
knows s and receives a name over this channel. x is a place holder for the name to be received.
Upon receipt, x is substituted by the received name—in our case b. Therefore, S evolves to
S′ = b.0. Finally, S′ and B can communicate as b is known to both S′ and B. We call s and b
the free names of A. S has only one free name, namely s, and one bound name: x.



CHAPTER 2. RELATED WORK 35

π-calculus provides direct support for expressing sequences, alternative branching (choices)
and concurrent branching. Synchronization is exclusively done through receive actions. Recur-
sion is supported as well.

Another important feature of π-calculus is the creation of fresh names. Fresh means that the
newly created name does not appear as free name anywhere else in the system. It is possible to
create an infinite number of names by combining name creation with recursion. Name creation
is especially useful for formalizing synchronous request/response-cycles or more complex inter-
action scenarios involving correlation. Before sending the request, the requesting party creates
a fresh name and passes this name on to the other party, who in turn uses this name as response
channel.

The syntax of π-calculus is defined as follows:

P ::= M | P |P ′ | (νz)P | !P
M ::= 0 | π.P |M +M ′

π ::= x〈y〉 | x | x(y) | x | τ

Concurrent execution is denoted as P |P ′, the restriction of the scope of z to P as (νz)P and
an infinite number of concurrent copies of P as !P . Inaction of a process is denoted as 0, a non-
deterministic choice betweenM andM ′ asM+M ′, sending y over x as x〈y〉, sending an empty
message over x as x and receiving an empty message over x as x. The prefix x(y) receives a
name over x and continues as P with y replaced by the received name. τ is the unobservable
action. Communication between two processes can take place in the case of matching send- and
receive-prefixes.

There are two definitions for the execution semantics of a π-process. The reduction seman-
tics prescribes structural rules how to alter π-processes upon interaction or internal activities.
Alternatively, transition system semantics is available. More details on the semantics of π-
calculus can be found in [160].

Puhlmann has investigated the applicability of π-calculus to the area of Business Process
Management and Service-oriented Architectures in [178]. He concludes that it provides an
intuitive representation of many recurring scenarios. As part of that he provides a formalization
of all Workflow Patterns [17] in [179], showing that even advanced workflow patterns such as
multiple instances with a-priori runtime knowledge can be expressed using π-calculus. Only
few tools are available for π-calculus, e.g. the Advanced Bisimulation Checker [47] and the
Mobility Workbench [209].

2.4.5 Other Formalisms

The previous section has presented a number of prominent formalisms in the choreography
space. However, there has been much work presenting alternative approaches. Su et al. provide
a survey on different formalisms in [200]. It categorizes the formalisms along the underlying
communication model and whether ordering constraints are provided on a per-role level or on a
global level.

Reo is a formalism based on mobile channels [26]. Channels can be composed to more
complex connectors, which in turn allow the specification of choreographies. Therefore, Reo
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focuses on interaction behavior between software components while hiding all internal behav-
ior of components. The SENSORIA reference modeling language (SRML, [134]) also allows
specification of interaction protocols between services. So called modules with provides- and
requires-interfaces are connected through wires. The behavioral dependencies between interac-
tions are given as doubly-labeled transition system.

Carbone et al. provide a formal model following the interaction modeling style in [54],
which was strongly inspired by WS-CDL. Berardi et al. present Colombo, a formal model that
also includes data handling in service compositions [40]. Busi et al. present their own process
algebra for describing synchronous interconnection models [52]. Qiu et al. present a process
algebra for interconnection models [182], including the concept of a dominant role for choices
and loops.

As Petri nets cannot properly represent value passing and the distinction between different
process instances, colored Petri nets were introduced [133]. The basic idea is that each token car-
ries a value, e.g. representing the contents of a business document or a message. The enablement
of transitions can be restricted in such a way that a certain combination of values is required.
In addition, functional dependencies between input values and output values of a transition are
defined.

Engels et al. present SOCCA (Specification of Coordinated and Cooperative Activities,
[103]) as language for describing the behavior of interconnected components. Subprocesses
define the behavior of components, including so called traps, i.e. states which need to be reached
before a different subprocess is activated for a component. The transitions between subprocesses
are defined through a manager process, relating subprocesses and traps for different threads in a
statechart-like manner.

2.4.6 Choreography Language Formalizations

Much work on transforming choreography languages to formal models has been reported in the
literature. The motivation behind this is twofold. (i) On the one hand, a formalization defines the
exact semantics of the language and therefore unambiguities in a textual definition of a language
can be overcome. This reduces misunderstandings regarding the semantics. (ii) On the other
hand, formalizations provide the necessary abstraction to enable reasoning on the original model
or to make a verification problem decidable that was undecidable before [126]. This section lists
a number of formalization approaches for the choreography languages from Section 2.3.

MSCs have been studied using communicating finite state machines by Alur et al [23, 24, 22]
and by Ben-Abdallah et al. [39].

Different formalizations are available for BPMN. A special class of Petri nets, namely work-
flow nets [18], were used by Dijkman et al. [96]. Grosskopf has presented a mapping of an
extended version of BPMN to colored Petri nets [116]. A mapping of BPMN to Communicating
Sequential Processes [124] was defined by Wong and Gibbons [218]. Abstract State Machines
[120] were used as formal model by Börger and Thalheim [43]. A mapping of BPMN to YAWL
[16], a process definition language that is very close to reset nets [100], can be found in [70].

UML Communication Diagrams were studied using communicating finite state machines by
Bultan and Fu [48, 49].
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BPEL has undergone many formalization initiatives. Lohmann’s mapping to Petri nets [148]
handles a very large number of BPEL constructs. A comparison with other Petri-net-based
approaches can be found in [153]. A mapping to π-calculus was provided by Weidlich et al.
[213], to a dialect of π-calculus by Mazzari and Lucchi [158], to abstract state machines by
Fahland and Reisig [107], to REO by Tasharofi et al. [202] and to SRML by Bocchi et al. [42].

Carbone et al. present a formalization for WS-CDL based on their global calculus [54].

2.5 Correctness of Choreographies

With an unambiguous definition of choreographies at hand, a number of properties of a chore-
ography can be checked. The most basic question in interconnection models is that of com-
patibility, i.e. whether a set of interconnected roles can interact “successfully”. The follow-up
question then is whether for a given role r there exist roles that are compatible with r. This
question boils down to controllability of roles. Furthermore, conformance answers the question
whether a participant is a valid implementation for a given observable behavior description. Re-
alizability answers the question whether for a given choreography there exist a set of interacting
roles that show the specified behavior.

Techniques for answering these questions resort to the formal models presented in the pre-
vious section. While it is feasible to carry out formal verification manually for small models,
bigger models and state spaces can only be dealt with using software tools.

The main category of software tools in this area are model checkers [32]. These model
checkers typically explore the state space of a given model and check certain properties of it.
For instance, it might be checked whether a valid final state can be reached from every reachable
state. If a certain requirement is not met a model checker usually produces counter examples.

In addition to state space exploration techniques, Petri net theory provides additional tech-
niques that take advantage of the net structure [92, 106]. This results in lower computational
complexity for certain scenarios. Also, statements about a model in the presence of infinite state
spaces can be made, which is not the case for classical model checking.

2.5.1 Compatibility

Compatibility addresses the question of whether a set of interconnected roles can interact “suc-
cessfully”. Unsuccessful interaction behavior could arise e.g., if different message formats are
used in the collaboration and one role does not understand the message content sent by other
roles. We call this structural incompatibility. Another source of incompatibility, which we will
mainly focus on, is behavioral incompatibility. Imagine that a role expects a notification at some
point in a process before it can proceed and none of the other roles ever sends such a notification.
We call this situation a deadlock (see also Definition 2.7). A similar distinction under the names
of syntactic consistency and semantic consistency can be found in [104].

We will again use an example from the auctioning domain for illustrating different notions
of compatibility. Figure 2.15 shows an auctioning scenario with three roles. In this setting, a
potential bidder must be accepted for participation before she can place her bid. Therefore, the
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Figure 2.15: Auctioning scenario

bidder sends a participation request to the auctioning service. As a response, the auctioning ser-
vice can send an acceptance or a rejection notification to the bidder. Sometimes, the seller needs
to do the final decision whether a bidder should be accepted or not. The auctioning service can
forward the request or already give a recommendation whether to accept the bidder or not. The
seller can send a notification about his decision back to the auctioning service.

Structural Compatibility Figure 2.15 does not show any behavioral dependencies between the
different message exchanges. Nevertheless, we can already judge the structural compatibility
of this setting. In the case of structural compatibility, we analyze whether messages that can be
sent or received by a role correspond to what the other roles can send or receive. The example
in Figure 2.15 illustrates the case of strong structural compatibility: for every message that can
be sent, the corresponding interaction partner is able to receive it and for every message that can
be received we find a role who can send such a message.

Such a perfect structural match between roles is rather seldom. The occurrence of weak
structural compatibility is more likely. In this case, all messages sent can be received. However,
it is not required that for every message that can be received there is a role who can send such a
message. E.g. the auctioning service always simply forwards the participation request although
the seller could also process recommendations.

As another level of compatibility we can detect minimal structural compatibility. This can
be applied where even weak structural soundness is too restrictive: Consider middleware plat-
forms that are configurable in such a way that unprocessable messages are simply ignored. E.g.
the auctioning service sends a notification to the seller that the bidder was informed about the
decision although the seller cannot process such a message. Therefore, minimal structural com-
patibility merely demands that there is at least one potential message send with a corresponding
message receive by another role.

Behavioral Compatibility In contrast to structural compatibility, behavioral compatibility con-
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siders behavioral dependencies, i.e. control flow, between different message exchanges within
one conversation. Therefore, the processes of the interacting partners are interconnected and
the resulting global process is analyzed. Petri nets are used in several compatibility checking
approaches. E.g. Martens bases his compatibility notion on interconnected “workflow modules”
[155], a special class of Petri nets that are workflow nets with additional communication places.
Workflow nets have exactly one input place and one output place and every transition is on a
path from the input to the output place [18]. Workflow modules are a subclass of open nets.
Figure 2.16 shows workflow modules for the roles Auctioning Service and Supplier.
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Figure 2.16: Open nets as basis for compatibility checking

Martens requires strong structural compatibility of the workflow modules. Therefore, there
are corresponding places for all communication places in each module. These places are merged
and a global initial place and a global final place are added. The composition is a workflow net
and hence the classical soundness definition [18] can be applied. Martens uses “weak sound-
ness”, requiring that the final marking must always be reachable – while not all transitions need
to be reachable. This ensures that the global process is free of deadlocks and livelocks [155].

Another correctness notion often used for checking compatibility is weak termination re-
quiring that a valid final marking must be reachable from every reachable marking [152]. While
the absence of deadlocks and livelocks can be checked using weak termination, it is allowed that
other markings are reachable from a valid final marking.

The composition of the open nets from Figure 2.16 contains a deadlock: If the auctioning
service sends an acceptance recommendation, it expects that the supplier acknowledges this by
returning an acceptance message. However, the supplier has the choice to send a rejectance
message instead. The auctioning service would wait infinitely in this case.

Canal et al. have also defined a compatibility notion for interacting π-processes [53]. Since
interactions are atomic in the case of π-calculus, i.e. sending and receiving of messages happen
at the same time, it is not possible that one process sends a message which is not consumed by
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the other. The compatibility notion by Canal et al. requires that both processes complete, i.e.
that no more sending or receiving action is left to be performed. A major drawback of the given
compatibility notion is that it is defined for bi-lateral settings only.

Interaction soundness by Puhlmann et al. [180] is based on “lazy soundness” [181] of the
global process. It is required that the process always completes, while some activities are still
allowed to run even after completion. Considering these “lazy activities” is essential for coping
with advanced control flow constructs such as Discrimators (cf. [17]) but leads to the fact that
livelocks cannot be detected in some situations. Interaction soundness is defined for a combi-
nation of a service and its environment. We find a mixture of strong and minimal structural
compatibility between the service and its environment: The environment must be able to send
and receive all those kind of messages that the service can receive or send. Therefore, there must
be strong structural compatibility in one direction. However, the service is not required to send
and receive all those kind of messages that the environment is able to receive or send. Interaction
soundness is defined on π-calculus.

2.5.2 Operating Guidelines and Controllability

Compatibility checking is an important technique when selecting interaction partners. Espe-
cially in service-oriented environments, where provided services can be discovered and bound
at runtime, we have to ensure compatibility before starting to interact. Typically, the observ-
able behavior model of the provided service is published to the broker and the service requester
submits a query to the broker containing the desired observable behavior model. For enabling
behavioral compatibility checking in such an environment, the service provider typically has
to publish his observable behavior model to the broker. The requester then includes his own
observable behavior model in the query and the broker selects a service the observable behav-
ior model of which is compatible with the requester’s one. This approach is illustrated on the
left-hand side in Figure 2.17.
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Figure 2.17: Alternative approaches for discovering interaction partners

The main problem of this approach is the computational complexity of compatibility check-
ing. Therefore, an alternative approach was suggested by Massuthe et al. [152, 157], namely to
publish operating guidelines. In this case reasoning does not take place on observable behavior
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models. The operating guidelines of a service include all valid interaction behavior for potential
interaction partners. If the consuming service respects the operating guidelines, the absence of
deadlocks and livelocks is guaranteed.

Operating guidelines are annotated state machines and represent the most permissive inter-
action behavior for the interaction partners. The observable behavior models of the partners
(also given as state machines) must then be sub state machines of the most permissive behavior.

Based on the observation that a set of roles might be compatible or incompatible the question
arises whether there exist a set of roles a given role is compatible with. Controllability is the
basis for the generation of operating guidelines. Only in case an operating guideline can be
constructed for a role, this role is controllable [194].

At every moment of the construction of a controller a hypothesis about the state of a partic-
ipant is made. Therefore, a hypothesis equals a set of states the participant can be in. To allow
the participant to move to another state, messages can be sent or received by the controller. If it
is not possible to move the participant to a valid final state, there does not exist any controller
that would be compatible with the given role, i.e. the role is not controllable.

2.5.3 Conformance

The notion of conformance relates observable behavior descriptions, the specifications, with
actual process implementations. The basic question addressed is whether an implementation
is valid with respect to its specification. Figure 2.18 presents an example that will be used to
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Figure 2.18: Auctioning scenario

illustrate the issue of conformance: A seller uses an auctioning service to sell goods to the
highest bidder. This time, liability checks have to be carried out before a bidder is allowed to
enter an auction. The liability check, in turn, is outsourced to a financial institution.
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Different combinations of participants of the different roles must be able to interact success-
fully, i.e. they must be compatible. In order to avoid incompatibility, the participants agree on
a certain desired interaction behavior. This choreography and the observable behavior models
that can be derived from it are then used as contractual basis.

Figure 2.19 depicts a part of the choreography where bidders can request permission to the
auction. We see that the roles bidder, auctioning service and financial institution take part in this
sub-choreography. For each of these roles an observable behavior model is given in the form of
an open net.

The bidder places a participation request at the auctioning service. The service then requests
a liability check from the financial institution. Based on the track record of the bidder, the
financial institution can recommend to accept or reject the bidder. The auctioning service is not
bound to this recommendation and can freely chose whether to accept or reject the bidder.
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Figure 2.19: Observable behavior models: Getting a participation permission

This specification does not tell the individual participants how their internal behavior should
look like. The financial institution could, for instance, lookup historical data about the supplier
before coming up with a recommendation or again outsource the decision to another financial
institution. Or it could have an internal decision making process possibly spanning different
organizational units. No matter how the internal processes look like, we are concerned that
the different participants successfully interact, i.e. that the implementations are compatible.
Ensuring compatibility is a challenging and cumbersome task when dealing with a large number
of participants in this auctioning scenario, involving e.g., 100 bidders, 20 sellers, 5 auctioning
services and 20 financial institutions.
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A remedy for this situation is the notion of conformance between observable behavior mod-
els and process implementations. The observable behavior models are the specifications for the
different roles. Conformance between an observable behavior model and the actual process im-
plementation should ensure that the given participant can interact with implementations for the
other roles (provided that they in turn conform to their respective specification). That way, we
can locally check whether or not a participant should be allowed to be involved in the interaction
scenario. Compatibility between different implementations does not need to be checked any
more.
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Figure 2.20: Alternative implementations for the auctioning service

Figure 2.20 presents two alternative process implementations for the auctioning service in
our auctioning example. AS1 always follows the recommendation of the financial institution,
whileAS2 always accepts the bidder. We see that internal actions were added in both cases (e.g.
“Add to blacklist” and “Store decision”). AS1 is structurally equivalent to the specification in
Figure 2.19 but has a different control flow structure. AS2 is structurally different as a reject
message is never sent. The question now is whether any of these implementations conforms to
the specification.

Basten et al. introduce the notion of process inheritance in [38, 11]. The term “inheritance”
refers to the object-oriented world, where a sub-class inherits attributes and behavior from a
super-class and typically adds new attributes and functionality. In the case of process inheritance,
it is investigated whether the process implementation inherits the behavior from the specification.
Therefore, internal activities in a process implementation are not considered. At the core of this
approach, bi-simulation is used to compare the two process definitions. The main idea behind bi-
simulation is that a process A can simulate the behavior of process B and vice-versa. Therefore,
if A is capable of doing some action then B must also be capable of doing that action and again
vice-versa.

Also rooted in the object-oriented world, Ebert and Engels present an approach for relating
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behavior of subclasses and superclasses [101]. The approach operates on traces. A distinction
is made between observable behavior, requiring that all projected traces of a subclass are con-
tained in the set of traces of the superclass, and invocable behavior, requiring that all traces of a
superclass must be invocable on the subclass.

A set of structural rules for refining specifications into implementations were used in the
Public-to-Private approach by van der Aalst and Weske [20]. While operating on the control
flow structure level only, these rules ensure process inheritance. However, Basten’s approach
and the P2P approach do not specifically take asynchronous communication into account. In an
asynchronous world, the order of sending messages becomes irrelevant as they can be buffered
and overtake each other. Therefore, Lohmann et al. have extended the refinement rules [12].

In our example we see that AS1 is not bi-simulation related to the specification. AS1 can-
not simulate the case that the financial institution sends an accept message after a rejectance
recommendation has been received. AS2 is not bi-simulation related to the specification, either,
as not all message receives and sends the specification is capable of can be found in these two
implementations.

We see that bi-simulation is too restrictive for conformance checking. Therefore, Martens
has presented an alternative relation in [156]. His technique demands that the process implemen-
tation must accept at least those messages specified in the behavioral interface and only needs to
produce some of the messages specified. Using his conformance relation AS1 and AS2 would
be valid implementations.

Other examples for (bi-)simulation relations are weak open (bi-)simulation for π-calculus by
Sangiorgi [190] and branching bi-simulation by van Glabbeek and Weijland [205]. Busi et al.
have introduced their own calculi for choreographies and orchestrations in [51, 52]. Consistency
between orchestration and the specified behavior, which is given in the choreography, is shown
through a bi-simulation-like relation, which is also defined by the authors. Operating guidelines
can also be seen as conformance approach [152, 157]. This approach is less restrictive than
bi-simulation-based approaches and even allows asynchronous communication.

As alternative name for conformance, vertical consistency can be found in the literature
[105], as opposed to horizontal consistency (compatibility).

2.5.4 Realizability

Conversation models as presented in Section 2.4.2 impose the question of realizability of chore-
ographies: Do a set of interacting roles exist such that they collectively realize the behavior
described in the choreography? Due to the global ordering constraints of conversation models
it is possible to specify behavioral dependencies that are not realizable. Figure 2.21 shows an
example. Here, the choreography specifies that C is only allowed to interact with D after the
interaction between A and B has happened. The intuitive reason for the unrealizability of this
choreography is that C and D cannot know whether the first interaction has already happened
or not.

Fu et al. have investigated realizability of conversation models in [113] and have identified
three conditions for realizable choreographies.

• Synchronous compatible condition. The conversation model is projected to the different
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(A,x,B)
(C,y,D)

Figure 2.21: Unrealizable conversation model

roles, which are then interconnected under the assumption of synchronous communication
(called the syn-configuration). The condition for each state in the syn-configuration is that
whenever a role is ready to send a message there must be another role that is ready to
receive this message.

• Autonomous condition. It is demanded for each role projection that there is no state where
the role is ready to send and to receive a message. Rather, in each state the role projection
is either ready to send one out of a set of messages or ready to receive one out of a set of
messages. Also, it must not be possible to send or receive messages in a final state.

• Lossless join condition. The join of the role projections must show exactly the same
behavior as the original conversation model.

As the approach uses minimal deterministic finite state machines for role projections and as
it is based on traces, branching structures in the choreography are ignored. As shown in [123]
and [205], ignoring branching structures leads to ignoring the moment of choice and therefore
also ignoring the ownership of choice. Furthermore, realizability requires that the roles jointly
do all behavior of the choreography. In many settings only a subset of the behavior would
already be sufficient.

Realizability checking is related to conformance checking: The question of whether the joint
behavior of interacting roles realizes the choreography equals the question of conformance be-
tween an implementation and a specification. The additional challenge of realizability originates
from the fact that the potential role behaviors must be identified from an infinite set of behaviors.

Realizability will be studied in greater detail in Section 5.4, where different notions of real-
izability will be distinguished and the issue of branching structures will be investigated.
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Chapter 3

Evaluation of Choreography
Languages

The previous chapter has presented prominent choreography languages, choreography forma-
lisms and correctness notions. This chapter relates this related work to the requirements and
research questions from Section 1.3.

The three choreography language requirements expressiveness, ease of use and ease of adop-
tion were described in a very abstract manner. Therefore, we are going to introduce more con-
crete requirements in this chapter to enable an assessment. These requirements are derived from
the motivating example (cf. Section 1.1), choreography design approaches and existing compar-
ison frameworks.

Business processes are typically considered on two different levels. On the one hand, con-
ceptual process models are used for identifying process improvement potential, for mere docu-
mentation purposes or for doing analysis such as cost calculations. On the other hand, technical
(or implementation-centric) process models can directly be interpreted by process execution en-
gines. These two levels must also be distinguished in the choreography space. Choreography
models on a conceptual level mainly support and reflect choreography design decisions. While
enumerating roles, interactions and behavioral dependencies between them, the models are not
necessarily used for information system implementation later on. Technical concerns are not
the main focus of these models. Meaningful English names for interactions are often sufficient.
Sometimes, interactions are not even broken down to elementary interactions and stay on the
level of complex interactions. In contrast to this, choreography models on a technical level
mainly target elementary interactions and their dependencies without considering higher levels
of abstraction. Links to the implementation level of information systems, especially in the form
of software services, are essential.

These two levels must also be distinguished when comparing the suitability of choreogra-
phy languages. Due to their different target user groups and concerns, requirements are slightly
different between the two types. Therefore, we will distinguish three kinds of requirements
for choreography languages: those that apply to conceptual choreography modeling only (Sec-
tion 3.1), those that are essential for both conceptual and technical choreography modeling (Sec-
tion 3.2) and those that only apply to technical choreography modeling (Section 3.3). While the
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first category is mostly motivated through choreography design approaches, the requirements of
the second category are derived from real-world choreography examples as presented in Sec-
tion 1.1. The third category deals with technical details that need to be agreed upon before
configuring information systems. The requirements were identified in and validated through
industry projects carried out at SAP Research.

Section 3.4 carries out the assessment using the three groups of requirements. It identifies
the white spots of these languages that will serve as starting point for the remainder of this thesis.

The problem statement from Section 1.3 also put up a research question regarding the formal
verification of choreographies. Section 3.5 will investigate in how far existing correctness no-
tions and choreography formalisms can be used to answer the question “Which choreographies
can be implemented by a set of participants?” As this question is rather abstract, we are going
to further refine it in this chapter.

3.1 Requirements for Conceptual Choreography Modeling

Choreography modeling on the conceptual level should allow designers to focus on the essence
of choreography models, which are thereby free of implementation- (or technology-) specific
details. In this way, a choreography language enables the functionality of choreography models
to be understood and validated against their intended business requirements, without that task
being compromised by implementation details or choices. The risk of the language not being
based on the conceptual level, and driven by implementation concerns, is that it loses its currency
at the design stage where it is crucial that the scenarios are carefully captured and communicated
by business analysts rather than technicians.

Since a model at the conceptual level is intended for communication with business analysts,
a choreography language must be endowed with graphical constructs. Usability of the language
must be given through a simple and elegant set of first-class constructs, and on the other hand
not awkwardly visualizing specification details that would be more suitable in text form. For
example, branching conditions are suitably expressed through textual constraints, while enable-
ment or disablement dependencies between interactions should be graphically expressed.

C1. Graphical notation. A choreography language on the conceptual level must have a graph-
ical notation for representing the notions of roles, interactions and enablement/disablement de-
pendencies, while allowing to define branching and repetition conditions in textual form.

Many choreographies involve many roles and a large number of interactions. Here, we
run into the problem that choreographies become very complex and hard to manage. Especially
reaching agreement among all participants makes choreography design a challenging task. Many
choreography approaches acknowledge this complexity and propose means to cope with it. We
can distinguish between (i) viewpoints and abstraction concepts and (ii) design methods. The
first category follows a separation of concerns [201] and divide and conquer [59] strategy to
break choreographies into manageable pieces and provide a framework to relate the different
pieces. The second category deals with the process of creating choreographies, i.e. the order of
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modeling decisions and modeling steps.

Viewpoints and Abstraction Concepts

Achieving separation of concerns by using different viewpoints is a common strategy in the
areas of information systems and BPM in particular. For instance, ARIS includes the following
viewpoints: functional (enumerating activities), organizational, data, service and process, while
the latter serves as glue between the former [191]. Different viewpoints are also advocated in
the Fundamental Modeling Concepts framework (FMC [141]) and in the Reference Model of
Open Distributed Processing (RM-ODP [132]).

Especially the structural view, or role-based view, is a viewpoint that is used in many chore-
ography approaches. The different roles are identified as well as their interconnection. Role-
based models help to find the right scope of a choreography and serve as initial big picture.

C2. Structural view. Choreography languages on the conceptual level must support the repre-
sentation of a structural view, where only roles and how they are interlinked are shown. There-
fore, a choreography language must allow models that do not contain behavioral dependencies.

Typically, additional abstraction layers are introduced to manage the complexity. With dif-
ferent levels of granularity at hand, the involved participants can agree on individual artifacts
and subsequently refine them in a step-by-step manner.

In this context, high-level behavioral models are often used. As the collaboration between
different roles specified in a choreography is related to reaching a certain goal, several steps can
be identified leading to the goal. E.g. the final goal of a bidding scenario is that the offered goods
are sold, paid for and delivered to the bidder with the highest bid. As intermediate steps we can
distinguish between the initial setup of the auction, the actual bidding phase, the delivery phase
and the payment phase. These sub-choreographies collectively realize the overall choreography.

Since steps might not be clearly separated and therefore overlap, we might alternatively
concentrate on the outcome of these steps. Outcomes such as “auction is set up” or “bidding
phase is over” are sub-goals or milestones, showing the path to the final goal. Similarly, we can
define the dependencies between milestones: The auction has to be set up before the bidding
process can be finished.

At the lowest level of abstraction, the detailed choreography model can be found. Here, the
elementary interactions that are needed to proceed from one milestone to another or to realize
a certain sub-choreography are related. That way, the overall choreography is partitioned into
different scenario models. One or several scenario models show the interactions and their de-
pendencies that need to happen between two milestones.

C3. Modularity of choreographies. In order to manage large choreographies, a choreography
language on the conceptual level must support to partition a model into manageable pieces.
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Design Methods

The motivation behind many choreography languages is to enable a model-driven approach for
service design and implementation. These top-down approaches, like presented in [95] and
advocated in [136], propose choreographies as a starting point for generating observable be-
havior models for each service which are then the skeletons for implementing new services or
for adapting existing services [135]. This top-down approach is also applied to the creation of
choreography models. For instance, Colombo et al [58] propose a methodology for service com-
position that starts with the definition of so-called social models that capture business entities
and their dependencies. In the second phase of the methodology, a process model capturing the
behavior of a service composition is constructed. This model is derived from a set of ECA rules
and it is encoded as a finite state machine.

A number of approaches see the investigation of commercial transactions and the business
semantics behind them as starting point for choreography modeling. The Design and Engineer-
ing Methodology for Organizations (DEMO [94, 93]) follows this approach and proposes the
hierarchical decomposition of commercial transactions as preparation for the following process
modeling step. The speech act theory [29, 196] relates information exchanges and intentions of
the roles. By considering the semantics of the information exchanges, only certain refinements
into more detailed information exchanges and finally message exchanges can be allowed. This
strategy is applied in [122], where the Semantic Object Model (SOM [110]) is used in the con-
text of choreography modeling. Through the refinement steps and the semantics of the message
exchanges, a certain order of message exchanges can be identified. Detailed modeling of the
behavioral constraints must then be done on a lower level.

It turns out that some application scenarios cannot be covered using top-down approaches
[87]. Existing services and processes might be the starting point for identifying already existing
choreographies or for creating to-be choreographies. The following three use cases require a
bottom-up method for choreography design:

1. In the case of choreography identification, different participants have working process
implementations and already use them to collaborate with each other. However, every
participant only knows about the interactions he is directly involved in. Therefore, the
goal is to identify the overall interaction behavior, i.e. the choreography, the participants
already engage in so that everybody has a global view of the collaboration. This use
case requires that the actual choreography is extracted from the existing collaborating
processes. This can be done either based on the process implementations or based on the
observable runtime behavior of the systems involved.

2. In the case of choreography context expansion, choreographies that are limited to a certain
business context need to be extended. This can broaden the reach of the choreography, i.e.
make the choreography applicable to a broader context.

3. In the case of collaboration unification, different observable choreographies exist for the
same domain. A typical reason for the evolution of such “islands of collaboration” is
that there are disjoint groups of collaborators each of which has its own history for the
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interaction protocol. Now the goal is to enable the collaboration between participants
from different islands through a unified choreography for all participants.

Dorn et al. present a comprehensive survey on approaches in the area of B2B integration
[98]. The approaches are classified using the Open-EDI reference model [3] and distinguish
business models, process models and artifacts that are ready for deployment.

All top-down choreography design approaches include the step-wise refinement of complex
interactions into finer-grained interactions with dependencies between them until finally a mes-
sage level is reached. While such refinement takes place in top-down approaches, bottom-up
approaches aggregate individual interactions into more complex interactions.

C4. Decomposition of interactions. Choreography languages on the conceptual level must
support to reflect hierarchies of interactions.

During choreography design it might turn out that some parts of a choreography have been
agreed upon before in a different setting and can be reused unchanged. While an integration of
behavioral dependencies of different models is typically well understood, an integration on the
role level is often rudimentary. The payment phase in the auctioning example can illustrate this
case: Payment between the roles payer and payee is a well understood complex interaction that
can be reused in many different contexts. In an auctioning scenario, the payer role is played by
the bidder and the payee role by the seller. In another context, the seller becomes the payer and
the auctioning service the payee, e.g. if the seller needs to pay for using the auctioning service.

C5. Reusability of choreographies. Choreography languages on the conceptual level must sup-
port the reuse of subchoreographies in different choreographies, including means for integrating
the behavioral dependencies as well as the roles.

3.2 Requirements Derived from Choreography Examples

Key aspects of choreography languages, as for all modeling languages, are expressiveness and
suitability [139]. Expressiveness refers to the mere ability to express certain situations using the
language, while suitability refers to how easy it is to express typical real-world scenarios.

With the rise of choreography languages in the early 2000s, a growing need for comparability
of them was identified. This resulted in several initiatives, each producing a set of recurring sce-
narios, or patterns, that can be used to assess languages and systems. The idea of pattern-based
assessment of languages was already used in the Workflow Patterns initiative [17]. However, the
Workflow Patterns only concentrate on control flow structures within process models and do not
capture scenarios where two or more participants engage in complex interactions.

This gap gave rise to the Enterprise Integration Patterns by Hohpe and Woolf [127] and the
Service Interaction Patterns by Barros et al. [36]. The Enterprise Integration Patterns operate
on a rather technical level. They enumerate typical practical solutions for system integration
styles, messaging systems and channels, message construction, routing and transformation and
messaging endpoints. The pattern catalog by Aldred et al. [21] has a similarly technical focus.
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The Service Interaction Patterns are a catalog of choreography patterns. There is some over-
lap between these patterns and the Workflow Patterns. Often, a Service Interaction Pattern re-
quires a certain Workflow Pattern, while adding aspects that are specific to choreographies. The
catalog of patterns consists of four categories. The distinction is based on the number of par-
ticipants involved (bi-lateral vs. multi-lateral interactions), the number of messages exchanged
(single-transmission vs. multi-transmission interactions) and if in the case of two-way inter-
actions the receiver of a response is necessarily the same as the sender of the request (round-
trip vs. routed interactions). The resulting categories therefore are: (1) Single-transmission
bilateral interaction patterns, (2) single-transmission multi-lateral interaction patterns, (3) multi-
transmission interaction patterns and (4) routing patterns.

All patterns can be found in the auctioning domain. Therefore, we are going to use corre-
sponding examples to illustrate the patterns. A BPMN representation will be given for these
examples. In some illustrations three dots are used to represent an unknown number of pools.
The three dots are not part of BPMN and the deficiencies of BPMN regarding unknown number
of participants in a conversation will be addressed later in more detail (cf. 2.3.2).

Single-transmission bilateral interaction patterns

Pattern 1: Send In the case of Send a one-way message exchange between two participants
is considered from the perspective of the sender. There are different flavors of this patterns,
considering e.g. the moment when the sender selects the receiver: Either the receiver is already
known at design-time of the choreography or only during the execution of a conversation.

Figure 3.1(a) illustrates an example where the auctioning service sends an auction comple-
tion notification to the seller as soon as the auction has successfully finished.
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Figure 3.1: Patterns 1, 2 and 4

Pattern 2: Receive This pattern also describes a one-way interaction between two partic-
ipants, but this time seen from the perspective of the receiver. In terms of message buffering
behavior of the receiver, we can distinguish two cases. Either messages that are not waited for
are discarded or they are stored until consumption (or timeout).
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In the example in Figure 3.1(b) the auctioning service receives a complaint from the seller.
E.g. the seller’s offer has been removed and the seller now wants to know why.

Pattern 3: Send/receive A participant sends a request to another participant who then sends
a response back. Both messages belong to the same conversation. Since there could be several
Send/receive message exchanges happening in parallel, corresponding requests and responses
need to be correlated.

Imagine a seller requesting auction creations for different items. The different request/re-
sponse pairs belong to different conversations. In this situation the seller must be able to tell
which acknowledgement belongs to which request. Therefore, correlation information must be
placed inside the messages. E.g. the request could carry a request ID which is then also contained
inside the response.

Single-transmission multi-lateral interaction patterns

Pattern 4: Racing incoming messages A participant is waiting for a message to arrive. Dif-
ferent other participants have the chance to send a message. The first message arriving will be
processed. The type of the message sent or the category the sending participant belongs to de-
termines how the receiver processes the message. The remaining messages may be discarded or
kept for later consumption.

Figure 3.1(c) shows a scenario where an item is offered in an auction and as fixed price offer
at the same time. Users interested in that item can choose whether to buy it straight away or
participate in the auction. However, once the first bid has been placed, the fixed price offer is
not available any longer.

Pattern 5: One-to-many send A participant sends out several messages to different other
participants in parallel. It might be the case that the list of recipients is already known at design-
time of the choreography or alternatively selection takes place in the course of the conversation.

An example for this pattern is shown in Figure 3.2(a): Once an auction is over, all those
bidders who have not placed the highest bid are notified that they did not purchase the item.
References to similar items might be included in the messages so that the bidders can try again
in a different auction.

Pattern 6: One-from-many receive A participant waits for messages to arrive from several
other participants. Typically, the receiver does not know the number of messages that will arrive
and stops waiting as soon as a certain number of messages has arrived or a timeout occurs.

Figure 3.2(b) illustrates a core part of auctions: Different bidders can place bids for a partic-
ular item until the auction is over.

Pattern 7: One-to-many send/receive A participant sends out requests to other participants
and waits for responses. Typically, not all responses need to be waited for. The requester rather
waits for a certain time or stops waiting as soon as enough responses have arrived.

After an auction is over and the buyer has been identified from the set of bidders, the seller
selects a shipper for delivering the item to the buyer. Depending on where the buyer is located
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Figure 3.2: Patterns 5 and 6

(e.g. rural area vs. metropolitan area, same country vs. another European country vs. outside
of Europe), the shipper charges different prices. The seller therefore sends price requests to all
shippers available and waits for price quotes to be returned.

Multi-transmission interaction patterns

Pattern 8: Multi-responses A participant sends a request to another participant who sends
multiple messages back. An important question in this scenario is how the requester knows that
there are no more messages to be expected. One option is that the messages contain information
about whether there will be more messages or not. Another option is that the last message is of
a special type. Finally, also a timeout could be used to stop waiting for further messages.

Once the shipment of the purchased item has been initiated, a buyer can register for notifi-
cations for the current delivery. The shipper sends status updates. Finally, a delivery notification
is sent once the item has reached its final destination.

Pattern 9: Contingent requests A participant sends a request to another participant. If
this participant does not answer within a given time, the request is sent to a second participant.
Again, if no response comes back, a third participant is contacted and so on. Delayed responses,
i.e. responses arriving after the timeout has already occurred, might be discarded or not.

Imagine an example where an auction has finished and the buyer of the item turns out not to
be able to purchase the item. E.g. the buyer has become insolvent. As special offer for the seller,
the auctioning service finds an alternative buyer for the item. As the other bidders have already
shown interest in that item by placing bids, they are subsequently asked whether they want to
purchase the item for the auction’s final price. If the bidder with the second-highest bid rejects
or does not answer in time, the bidder with the third-highest bid is asked and so on.
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Pattern 10: Atomic multicast notification A participants sends out notifications to several
other participants who have to accept the notification. Sometimes only one participant is required
to accept it, sometimes some of the participants and sometimes all of the participants are required
to accept it.

Imagine a seller frequently offers a combination of items in a single auction. The seller
acts as single point of contact to the auctioning service and the buyer. However, before the
auction is actually created the seller notifies all subcontractors. As soon as a certain number
of subcontractors have accepted this notification, the seller actually starts interacting with the
auctioning service.

Routing patterns

Pattern 11: Request with referral A participant A sends a message to another participant B
containing a reference to participant C. Although B does not need to know C in advance, B can
now interact with C. This pattern describes the concept of link passing mobility.

Figure 3.3(a) shows the integration of an external payment service. The seller selects a pay-
ment service and sends the service’s reference to the buyer. The buyer, who previously might
not have known the service, directly interacts with it. Finally, the payment service sends the
confirmation that the payment was successfully completed to the seller.
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Figure 3.3: Patterns 11 and 12

Pattern 12: Relayed request A participant A sends a request to another participant B who
forwards it to a third participant C who will actually interact with A. However, B always gets
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copies of the messages exchanged in order to be able to observe the conversation.
Figure 3.3(b) depicts an example where the auctioning service outsources customer support

activities to an external customer support service. As soon as a request from the seller comes in,
the auctioning service forwards the request to the external service. For all responses sent by the
external service to the seller, the auctioning service receives a copy of that response. That way,
the auctioning service can monitor the quality of the responses as well as the response times for
different requests.

Pattern 13: Dynamic routing A routing order is attached to a message. This order deter-
mines where the message needs to be sent to next by the recipient of the message. However, the
recipient might change this routing order by adding further recipients or changing the order in
which participants get the message.

As an example we consider how complex customer complaints are processed. If the cus-
tomer support agent first assigned to a certain complaint is not sure what to do with the com-
plaint, she might forward it to another agent. She might as well attach a number of agents to the
complaint if it touches various aspects and an expert for every aspect needs to be involved.

The original description of this pattern in [36] is quite imprecise: “A request is required to
be routed to several parties based on a routing condition. The routing order is flexible and more
than one party can be activated to receive a request. When the parties that were issued the re-
quest have completed, the next set of parties are passed the request. Routing can be subject to
dynamic conditions based on data contained in the original request or obtained in one of the ‘in-
termediate steps’.” E.g. the term “dynamic condition” remains unclear. This pattern is unsuited
for assessing languages and will not be considered in the remainder of this thesis.

As many of the patterns have considerable overlap, we are not going to use the full set of
patterns in our requirements framework. A number of key concepts can be extracted that must
be supported by choreography languages both on a conceptual and a technical level.

R1. Multiple roles. More than two roles can be involved in a choreography. The higher the
number of roles, the more important the choreography becomes and the more challenging it be-
comes to capture the complex interaction dependencies. A choreography language must support
an unlimited number of roles in one choreography. This requirement relates to the Service In-
teraction Patterns 4–7 and 9–12.

R2. Ownership of choices. Alternative branches are a common scenario in choreographies. In
our auctioning example, the bidder only enters into the payment and delivery phase in case she
has placed the highest bid. Otherwise, the conversation ends for the bidder. Decision points in
a conversation can be decided by one participant only or a number of participants decide based
on previous information exchanged in the conversation. An example for the first case is that the
auctioning service decides which bidder wins. An example for the second case would be the
decision about whether another bid can be placed or not: All participants involved know when
the auction stops and can act accordingly – provided that they have a similar understanding of
time. We can conclude that a choreography language must supporting branching and the notion
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of decision ownership. This relates to the Service Interaction Pattern 4 and the Workflow Pat-
terns Explicit Choice and Deferred Choice [17].

R3. Multiple participants per role. Multiple bidders can be involved in one auction. Here, the
number of bidders in one auction is even unlimited and therefore not known at the design time
of the choreography. While the role concept itself allows different participants filling the same
role in different conversations, e.g. different sellers in different auctions, this is not sufficient
to fulfill this requirement. It demands that a choreography language must support a (potentially
unknown) number of participants of the same role in one conversation. This requirement relates
to the Service Interaction Patterns 5–7.

R4. Participant reference passing. The selection of participants is often done at design-time
of choreographies, e.g. an auctioning choreography might be bound to one particular auctioning
service implementation. In other cases, selection is done at runtime. In both cases it must be
ensured that other participants are made aware of the selection if they are to interact with these
participants as well. In our example the auctioning service has to pass on the reference of the
successful bidder to the seller. Otherwise, the seller would not know where to send the payment
details to. A choreography language must support the notion of participant reference passing.
This requirement refers to the Service Interaction Pattern 11.

R5. Cancellation. Choreographies not only include the “happy flow” of interactions but also
contain the desired behavior in case a participant changes his mind and wants to cancel certain
parts of a choreography. This builds on the Cancel Activity pattern [17] and the Reroute pattern
[169]. In simple cases, a cancellation can be stated as alternative to a confirmation or accep-
tance message (cf. Service Interaction Pattern 4). In more advanced cases, cancellation must be
supported while a conversation has already continued. An example would be that the auctioning
service cancels an auction during the bidding phase.

R6. Time constraints. As most important non-functional aspect, time constraints must be prop-
erly reflected in choreographies. For instance, offers might only be valid for a certain time period
or a response is expected within a certain timeframe. It must be possible to express desired re-
actions to timeouts.

Another set of patterns was collected by van der Aalst et al. [13], concentrating on differ-
ent types of sending and receiving, also in the presence of concurrency, decision making and
correlation configurations.

3.3 Requirements for Technical Choreography Modeling

Choreography modeling on a technical level comes with an additional set of requirements. Even
if all roles have already been identified, interactions have been refined down to the message
level and behavioral dependencies have been set between them, a choreography is not ready to
be used for actual electronic integration. A number of technical configurations have to be made
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to guarantee interoperability of the information systems involved. These most importantly in-
clude the specification of message formats, correlation and exception handling.

T1. Message formats. Choreography initiatives such as RosettaNet show that it is possible and
fundamental to agree on the format of messages exchanged. Message formats not only specify
the desired content of messages but also the concrete syntax or data formats that are to be used.
A choreography language must allow to define the message formats expected for an interaction.

T2. Correlation. It cannot be expected that each participant is involved in at most one conversa-
tion at a time. It must be possible to distinguish different conversations and to relate an incoming
message to the messages previously sent or received. Such correlation is typically realized by
placing correlation information into messages. In the auctioning example, correlation informa-
tion could be an auction id or a bid id. In general, the service providers must agree on where in
the message such information can be found and who is responsible to generate which identifier.
By checking the equality of an id included in a message and an expected id, correlation is carried
out. A choreography language must support the definition of such correlation configurations.

T3. Exception handling. There might be purely technical reasons why messages are not sent on
time or contain the wrong content. For these cases, control flow handling faults and exceptions
must be defined. Reactions in the form of cancellation messages or a simple termination of a
conversation might be necessary. Therefore, a choreography language must allow the definition
of exception handling.

Setting up a fully specified technical choreography is a challenging task. In order to take
advantage of the work previously done in changing technical environments, it must be possible
to reuse technical decisions while replacing others. This mostly applies to message formats.
When tightly integrating message format specifications into choreographies, the reusability of
the choreography is limited.

Currently, the Web Service Description Language (WSDL, [56]) is a widely used standard
to describe the structural interface (“port type” as a collection of “operations”) of a web service.
A WSDL definition includes the definition of message formats, usually using XML Schema,
as well as the information needed to interact with a physically deployed service—on the wire
manifestation of messages and the transport protocols (“binding”) as well as the physical end-
points (“ports”) [62]. Standards such as RosettaNet show that it is possible to standardize the
exchanged messages, but that it is not possible to standardize the interfaces to be used. There-
fore, WSDL’s ability to standardize messages definitions is important in choreography design,
whereas the description of operations in an interface as well as port and binding information are
not needed, because their use would force the choreography adopters to follow these technical
realizations.

T4. Interchangeability of technical configurations. Changes in port type or operation names
should not require changing the choreography. Also other technical details, e.g. whether a ser-
vice is realized using one port type or two port types or whether two messages are exchanged



CHAPTER 3. EVALUATION OF CHOREOGRAPHY LANGUAGES 59

in a synchronous request/response cycle or asynchronously, should not require major changes
in the choreography. Sometimes it is not possible to agree on one message format for a par-
ticular interaction. In these cases, message mediation is necessary. There should at least be an
extension point to plug in corresponding configurations. A choreography language must support
interchangeability of technical configurations.

BPEL is the de-facto standard to implement business processes based on web services.
Round-tripping between specifications given in the form of choreographies and implementa-
tions in the form of BPEL processes must be facilitated through an integration between the
choreography language with BPEL.

T5. Integration with web service orchestration languages. Choreography languages must
allow an integration with BPEL, including easy generation of BPEL processes out of choreogra-
phies and extracting choreographies out of existing interacting BPEL processes.

3.4 Assessment of Choreography Languages

Each language presented in Section 2.3 can be evaluated along the requirements catalog from
the previous sections. This section presents this evaluation. It will be distinguished whether
there is full support for a requirement, partial support or no support. This rating scheme is taken
from the Workflow Patterns initiative1 and analogously applied in this section. Full support
means that there is an explicit modeling construct realizing a requirement or that a combination
of only a few constructs are necessary to realize it. No support means that either the language
does not include the concept demanded in the requirement at all or that difficult workarounds
would be necessary to realize the requirement. Partial support indicates that only certain parts
of a requirement are fully supported while others are not.

Message Sequence Charts (MSC)

Due to its standardized graphical notation, MSCs support requirement C1. However, a struc-
tural view is not supported (C2), nor are modularity of choreographies (C3), decomposition of
messages (C4) and reusability of choreographies (C5).

MSCs have very limited expressiveness for many choreography concepts. While roles and
interactions are present, only simple sequences of communication activities are defined in an
MSC. MSCs provide direct support for expressing the Service Interaction Patterns Send, Receive
and Send/receive. All other patterns are not supported by MSCs as they lack constructs for
expressing branching, repetitions as well as multiple participants of the same type (where the
number of participants is only known at runtime). Therefore, only requirement R1 is supported.
All other requirements are not supported.

1 See http://workflowpatterns.com/

http://workflowpatterns.com/
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Business Process Modeling Notation (BPMN)

Having a strong focus on an intuitive graphical notation, BPMN supports requirement C1. By
collapsing pools and only showing message flow between them, structural views can be modeled
in BPMN (C2). BPMN offers two mechanisms for relating different models: isolated subpro-
cesses that are specified in a separate diagram and link events connecting multiple diagrams.
Therefore, modularity can be achieved (C3). However, while there is reusability on the activity
level, there is no reusability on the role level (C5). While BPMN includes decomposition facil-
ities for activities, this is not the case for message flow (C4). Only one level of abstraction of
messages can be specified in a BPMN model.

Involvement of two or more participants can be represented by a corresponding number of
pools (R1). Branching structures can be reflected in BPMN through decision gateways. The
distinction between data-based XOR gateways and event-based XOR gateways allows to prop-
erly reflect ownership of choices (R2). In contrast to this, BPMN does not allow the distinction
between at most one and potentially many participants per role (R3). BPMN’s capabilities for
data flow are also not sufficient to reflect participant reference passing (R4). The notion of can-
cellation is natively supported through intermediate events that can be attached to subprocesses
(R5). Timing is also supported in BPMN, namely through timer events (R6).

As BPMN is a modeling language that rather operates on the conceptual level, many of the
technical requirements are not met. However, there are attributes for defining concrete message
formats (T1). Correlation configurations, in turn, cannot be set (T2). Again, exception handling
is supported via error events (T3). Interchangeability of technical configurations is not given
(T4). An integration with existing service orchestration languages is given through the extensive
work on mapping BPMN to BPEL [168, 167]. While mapping in both directions is possible
for a large number of constructs, different coverage of concepts and semantic differences be-
tween corresponding constructs do not allow for complete round-tripping [212]. Therefore, we
conclude that there is only partial support for requirement T5.

Business Process Schema Specification (BPSS)

BPSS does not a have graphical notation (C1). As the roles and their interactions could be listed
without giving any behavioral dependencies, BPSS supports requirement C2. Modularity and
reusability of choreographies are not given (C3 and C5). Decomposition of interactions is not
possible, either (C4).

In contrast to earlier versions of BPSS, the current version 2.0.4 supports multi-lateral chore-
ographies (R1). Although choices can be specified in a BPSS choreography, it remains unclear
who is responsible for evaluating the conditions (R2). Multiple participants per role are not sup-
ported, either (R3), nor is participant reference passing (R4). Cancellation is not supported (R5).
However, timing issues can be specified in detail in BPSS (R6).

While BPSS is technology-independent, WSDL files can be referenced in the Collaboration
Profile Agreement (T1). Exception handling can also be specified (T3). Correlation configura-
tions and interchangeability are not given (T2, T4).

There has been a mapping of individual business transactions to executable BPEL code
[125]. However, as business collaborations are not covered, we conclude that there is no support
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for an integration with orchestration languages (T5).

UML Communication Diagrams

Although UML communication diagrams come with a graphical notation, behavioral dependen-
cies are represented textually. Therefore, requirement C1 which also demands that enablement
and disablement of interactions can be modeled graphically is only partially supported. When
omitting the sequence expressions, communication diagrams act as structural views (C2). Se-
quence expressions are of a block-structured nature. However, decomposition is not supported
as complex interactions cannot be modeled (C4). Modularity and reusability are not given (C3
and C5).

An arbitrary number of roles can be present in one communication diagram (R1). Alternative
branches are realized using guard conditions and the evaluator of the condition is not explicitly
specified (R2). Participants and roles are distinguished in communication diagrams and multi-
ple participants of the same role can take part in one conversation. However, as the number of
participants must be known at design-time, requirement R3 is only partially supported. Partic-
ipant reference passing is not supported at all (R4). Only simple cases of cancellation can be
represented using communication diagrams, canceling a whole choreography regions through a
cancellation message cannot be modeled (R5). Time constraints cannot be modeled at all (R6).

Communication diagrams inherit many of the attributes available in the UML meta-model.
However, binding concrete message formats, for instance specified in WSDL, to interactions
is not possible (T1). Correlation configurations and exception handling cannot be defined, ei-
ther (T2 and T3). Technical configurations cannot be set (T4) and an integration with common
orchestration languages is not given (T5).

Business Process Execution Language (BPEL)

BPEL does not come with a standardized graphical notation (C1). BPMN is often advocated
as graphical frontend for BPEL, but an integration is challenging, as Section 4.3 will detail. A
structural view is not available in BPEL (C2). In many cases, it is also impossible to derive such
a view, since discovery information does not form a part of BPEL. BPEL refers to port types, not
to ports. Therefore, a given set of BPEL processes with matching port types does not guarantee
that these BPEL processes are actually interconnected.

Modularity is partially given due to the recursive nature of BPEL processes: BPEL processes
implement web services that can in turn be invoked by other BPEL processes. However, in this
scenario one role would be implemented by different processes. This is counterintuitive in the
choreography context where roles are a very central concept. Reusability and modularity can
also be achieved through WS-BPEL 2.0 Extensions for Sub-Processes (BPEL-SPE [140]). All
in all, we conclude that BPEL only partially supports C3 and C5. BPEL does not include the
notion of complex interactions and therefore decomposition is not supported C4.

The role concept is realized through partner links in BPEL. Ownership of choices is realized
through the distinction of if and pick in BPEL (R2), in analogy to data-based and event-based
gateways in BPMN. Multiple participants per role, i.e. multiple services per partner link, are
possible in BPEL since version 2.0 [108] (R3). Here, partner links can be defined within scopes.
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In combination with the parallel forEach construct, a partner link can be used with multi-
ple services concurrently in the same process instance. Endpoint reference sets can be handled
through corresponding XML schema types. Therefore, realizing the “One-to-many send/re-
ceive” pattern [36] is possible. However, relying on external type systems, sets or lists are not
first-class citizens in BPEL and therefore working with endpoint reference sets is cumbersome.

Service endpoints references can be stored in BPEL variables. This storage allows to receive
endpoint references from other services or sending endpoint references to other services. Since
an assign activity can be used to assign an endpoint reference to a partner link, it is possible
to interact with a service described by an endpoint reference (R4).

Cancellation is fully supported in BPEL through event handling and exception handling
facilities (R5). Also, BPEL has built-in timing capabilities (R6). Timers can be attached to
scopes and can be put into regular control flow, defining the maximum time that should be spent
waiting. Furthermore, delays can be realized through wait activities.

BPEL is tightly integrated with WSDL, where message formats are specified and thus make
BPEL supporting Requirement T1. The variables used at send and receive activities have to
match the used operation in the expected data structure. Partner link types are configured with
WSDL port types and BPEL’s communication activities depend on WSDL operations. This
makes BPEL rigid in terms of interchangeable technical configurations (T4): changes on the
WSDL side often require changes in the BPEL process.

In BPEL, correlation sets are used to define which process instance an incoming message
should be routed to. These correlation sets can be initialized by the BPEL engine and correlation
information is included into the messages exchanged. The so called properties define where
exactly in the message correlation information can be found. BPEL supports Requirement T2.
BPEL also offers a variety of possibilities to react to erroneous situations (T3). Exceptions can
be handled and completed activities can be compensated if necessary.

The integration between executable BPEL and abstract BPEL is already described in the
specification. Although issues like conformance checking lie outside the scope of the BPEL
specification, it is defined what elements must be used and what attributes must be set in either
of the two BPEL flavors. As the elements and attributes available do not significantly differ from
abstract BPEL to executable BPEL, we conclude that Requirement T5 is supported.

BPELlight introduces the new activity type interactionActivity, which replaces
BPEL’s communication activities. Instead of using WSDL artifacts, each interaction activity
is assigned to a conversation. To enable the usage of BPELlight processes in a web service
environment, the concept of “assignment” is introduced. There, each conversation is as-
signed to a partner link and each activity is assigned to a WSDL operation. This makes BPELlight

fulfill requirement T4.

Web Services Choreography Description Language (WS-CDL)

WS-CDL does not have a graphical notation (C1). As all role types are enumerated in a WS-
CDL choreography and behavioral dependencies could be omitted, a structural view is present
(C2). However, the number of services per role is unspecified. The language does not include
the notion of complex interactions that can be refined (C4). While the concept of invoking
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subchoreographies allows a certain degree of modularity, modularity and reusability across dif-
ferent WS-CDL choreographies is not possible. Therefore, it only partially supports modularity
of choreographies (C3) and does not support reusability of choreographies (C5).

WS-CDL supports multi-lateral choreographies (R1). However, ownership of choice can-
not be represented in WS-CDL (R2). As concrete services are identified by channel instances,
there can be potentially many services involved in one choreography of a particular role type.
However, there is no control flow construct allowing multiple branches to be executed in parallel
where the number of branches is only known at runtime. Therefore, WS-CDL does not support
“Multiple instances with a priori runtime knowledge” [17], nor does it fully support “One-to-
many send/receive” [36], where the exact number of services might only be known at runtime.
We conclude that there is only partial support for R3.

The notion of reference passing (R4) is directly integrated into WS-CDL. Only simple cases
of cancellation can be represented using WS-CDL, canceling a whole choreography region
through a cancellation message cannot be modeled (R5). Timing is represented through built-in
features of WS-CDL (R6).

While WS-CDL focuses on the behavioral aspects of a choreography, it relies on WSDL
for the specification of message formats. Therefore, it supports requirement T1. However,
as a drawback of this integration with WSDL, the WSDL-configurations heavily influence the
way the choreography looks like. Changes in WSDL files often require changes in the WS-
CDL choreography. For instance, splitting a port type into several port types requires major
refactoring of the choreography. Therefore, WS-CDL does not support T4.

Correlation of interactions is addressed using identity tokens that are included in messages
(T2). The so called token locators are a mechanism to retrieve tokens from messages: an XPath
expression defines where in the message the correlation information is placed. This is an ex-
ample of how tightly WS-CDL is linked to WSDL. Whenever the message format changes, the
token locators have to be adapted to the new format. This direct influence of message format
changes to the choreography definition is not desired.

There is a variety of exception types available to cover message transmission exceptions,
security failures and application failures (T3).

There have been proposals to generate abstract BPEL processes out of WS-CDL choreogra-
phies [159]. However, it remains unclear how constructs like blocking work units can be realized
in BPEL. WS-CDL also allows the specification of mixed choices on a global level, i.e. choices
between send and receive activities. Mixed choices on a global level are a major challenge when
trying to properly translate them to interacting BPEL processes. Here, sophisticated synchro-
nization mechanisms might need to be applied. Furthermore, round-tripping between WS-CDL
and BPEL seems unrealistic given e.g. the fact that BPEL includes a forEach construct which
does not have a correspondence in WS-CDL. Actually, the main criticism regarding WS-CDL
centers around the missing alignment between WS-CDL and BPEL or other orchestration lan-
guages (T5).

Summary of the Evaluation

Two types of choreography languages can be distinguished: those following the interconnection
modeling style and those following the interaction modeling style. Interconnection models have
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Figure 3.4: Classification of languages

communication activities as basic building blocks and behavioral dependencies are defined be-
tween them on a per-role basis. I.e. each dependency is assigned to one role only. Interaction
models, in contrast, have interactions as their basic building blocks and behavioral dependencies
are defined between them. This implies that the dependencies are truly global in the sense that
they are not assigned to any of the roles involved.

Figure 3.4 shows a classification of the abovementioned languages. MSCs, BPMN and
BPEL fall into the category of interconnection modeling. Here, message send and receive ac-
tivities are distinguished. Control flow is defined on a per-role basis. In contrast to this, UML
communication diagrams, BPSS and WS-CDL fall into the category of interaction modeling.
Here, control flow dependencies are not assigned to individual roles. A second separation is
made between languages on a conceptual level and those on a technical level.

Table 3.1 gives an overview of the assessment of the different languages. Among the lan-
guages with a graphical notation, we see that BPMN outperforms MSCs and UML Collaboration
Diagrams regarding many requirements.

BPEL scores best among the technical languages. However, BPEL is not a choreography
language. WS-CDL, when compared to BPEL, scores worse regarding the representation of
ownership of choices, multiple participants per role, cancellation and interchangeability of tech-
nical configurations. Especially the fact that WS-CDL is not well aligned with orchestration
languages leaves service choreographies and service implementation disconnected.

The assessment shows that none of the languages is perfectly suited for choreography model-
ing – either on the conceptual or on the technical level. Introducing a completely new language
to overcome the limitations is not desirable, as this would hamper reuse of existing tools and
techniques. Regarding the conceptual level, it is obvious that BPMN should be the language
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C1. Graphical notation + + – +/– – –
C2. Structural view – + + + – +
C3. Modularity of choreographies – + – – +/– +/–
C4. Decomposition of interactions – – – – – –
C5. Reusability of choreographies – – – – +/– –
R1. Multiple roles + + + + + +
R2. Ownership of choices – + – – + –
R3. Multiple participants per role – – – +/– + +/–
R4. Participant reference passing – – – – + +
R5. Cancellation – + – – + –
R6. Time constraints – + + – + +
T1. Message formats – + + – + +
T2. Correlation – – – – + +
T3. Exception handling – + + – + +
T4. Interchangeability of techn. configs – – – – – –
T5. Integration with orchestration languages – +/– – – + –

Table 3.1: Evaluation Summary

of choice – requiring a number of enhancements to fully support the requirements though. Re-
garding the technical level, the introduction of choreography extensions for BPEL, providing a
structural view, a loose link between behavioral definitions and technical configurations as well
as service sets as first-class citizens is the direction of choice.

3.5 Assessment of Correctness Criteria

The choreography design approaches highlighted in Section 3.1 give a good indication of the
steps followed until a detailed specification is reached. Bottom-up approaches most often boil
down to interconnecting existing participants and analyzing the resulting interaction behavior.
The most common anomaly that can occur is a deadlock. Compatibility checking as presented
in Section 2.5.1 deals with this issue.

In top-down approaches the choreography is put first and refined in a step-wise manner.
Here, we need to ask the question of which choreographies can be implemented by participants.
Again, the most obvious anomaly is a deadlock, the absence of which is checked through com-
patibility checking. Furthermore, individual interactions might not be reachable, this can be
verified using standard reachability analysis e.g. for transitions in open nets.

An interesting observation regarding all choreography verification techniques is that they



66 Design and Analysis of Process Choreographies

tend to focus on individual conversations only. This approach is directly taken from verification
of orchestrations. Due to the centralized execution and coordination of orchestrations, isolation
between different process instances can easily be achieved. The engine controlling the execu-
tion can simply use a process instance identifier to distinguish the instances. In choreographies
this isolation between conversations is not straightforward. The usage of a single conversation
identifier is very uncommon. Rather, the participants introduce their own identifiers, requiring
the other participants to include this identifier into response messages. No verification technique
is available that acknowledges this fact. Therefore, extensions to existing techniques or novel
techniques need to be introduced for considering multiple concurrent conversations.

Open nets are a widely used formalism for which many translation approaches from chore-
ography languages exist, especially BPEL and BPMN. On the other hand, open nets do not
include the notion of value passing and therefore only have limited suitability for distinguishing
different messages of the same type. We have seen that colored Petri nets overcome this lim-
itation. However, the syntax and semantics are very complex, making formal verification also
very complex. On the other hand, π-calculus also provides intuitive support for value passing.
It even incorporates the notion of fresh names, i.e. the creation of values that are not yet present
in a system. This ensures uniqueness of values. In contrast to this, colored Petri nets rather
operate with functional dependencies between inputs and outputs of a transition. Here, ensuring
unique values is a lot harder. A hybrid approach between open nets and π-calculus seems very
promising for tackling the issue of checking isolation of conversations.

While compatibility checking and instance isolation checking can ensure proper interaction
between participants, these techniques do not guarantee that there exist participants that can
actually collectively behave as specified in the choreography. This might be due to assumptions
underlying the choreography model. This is especially true in case the choreography follows the
interaction modeling style, where the specification of global control flow dependencies assumes
a central observer in the first place, which does not exist in reality.

As the previous chapter pointed out, the issue of realizability has already been identified in
the literature. Most notably, Fu et al. discussed realizability of conversation models together with
a verification approach based on trace-based equivalence notions [113]. This is an important first
step for tackling the realizability issue. However, it turns out that there are many subtle notions
of realizability that need to be addressed. Along the three dimensions communication model,
complete vs. subset of behavior and behavioral equivalence notions we can identify several
flavors of realizability that need to be addressed individually. From a theoretical perspective,
proper treatment of branching structures, i.e. location and moment of choice, increases the
challenge.

In this discussion, not only the location of realizability problems but also resolution strategies
are of interest. Here, many alternatives for repairing a choreography might be available. It is
not a mere theoretical problem which alternative to choose but even more important the business
impact of such a resolution decision needs to be taken into account. As we are dealing with
autonomous participants, most often legally independent organizations with their own interests
and goals, repairing a choreography in one direction or the other can have huge influence on the
business semantics behind the choreography.



Chapter 4

Interconnection Models

The previous chapter has compared a number of prominent choreography languages and has
highlighted their limitations with regards to the requirements framework. This chapter is going
to tackle some of the open issues by proposing extensions for existing languages. Most parts of
these languages are reused unchanged in order to ease adoption of the extensions among human
modelers. By increasing the expressiveness of these languages the support for the requirements
is broadened. As second major contribution of this chapter, instance isolation is introduced as
novel quality criterion for choreographies.

On the conceptual level, BPMN turned out to be a promising choreography language. Defi-
ciencies can be observed when it comes to decomposition of interactions, reusability of chore-
ographies, representing multiple participants per role and participant reference passing. Sec-
tion 4.1 introduces additional modeling constructs in order to overcome these limitations.

On the technical level, BPEL scored best regarding the requirements framework. Being a
classical orchestration language, it concentrates on individual roles only. Therefore, the main
challenge is to lift BPEL to a choreography language. Section 4.2 introduces BPEL4Chor as
thin choreography layer on top of BPEL. BPEL4Chor was designed in close collaboration with
researchers from the University of Stuttgart.

The integration between choreography and orchestration languages is of key importance
in order to facilitate round-tripping between specifications and implementations. Section 4.3
investigates this issue. Mapping extended BPMN to BPEL4Chor will be discussed as well as
the opposite direction of generating extended BPMN from BPEL processes.

As shown in Section 2.5 a number of verification techniques, such as compatibility and
conformance checking, are already in place for interconnection models. However, the issue of
proper correlation configurations was neglected in the literature. Section 4.4 presents the notion
of instance isolation which ensures that one process instance cannot participate in multiple con-
versations. So called ν∗-nets are introduced as formal model for this purpose, extending open
nets with the capabilities of name passing and name creation, as it is known from π-calculus.

Section 4.5 reports on practical experience with interconnection modeling and discusses a
number of modeling anti-patterns.

67
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4.1 BPMN Extensions

While BPMN already provides support for many choreography concepts, extensions are neces-
sary to reach broader support for the requirements listed in Chapter 3. To that end, this section
introduces extensions that allow the representation of multiple participants, reference passing
and complex interactions.

4.1.1 Extensions Overview

Participant Sets

Roles are represented as pools in BPMN. We need to distinguish those cases where at most one
participant of a particular role is involved in one conversation or if there can be potentially many
participants involved. In our auctioning example, there is exactly one seller and one auctioning
service involved in one conversation. However, we have potentially many bidders involved.

With current BPMN, a modeler has two options. Either one pool is used and labeled “bid-
ders” or two pools are used and labeled “bidder 1” and “bidder n”. In the former case, only the
label indicates that there are potentially many bidders involved in one auction. In the latter case,
the behavior of role bidder needs to be duplicated and still only the label indicates that there
might be many bidders. We argue that multiple participants of the same role should be a first
class citizen of a choreography language, just like multiple instances activities are a first class
citizen of BPMN.

For representing multiple participants we introduce pools with three bars as new notational
element, shown in figure 4.1(a). A set of participants of the same type involved in the same con-
versation is called a participant set. The three bars are reused from multiple instances activities
and should therefore be intuitively understood by BPMN modelers.
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Figure 4.1: Participant sets, references and reference sets

References

The main challenge with participant sets is that we need to distinguish individual participants
out of this set. We do this via references as shown in figure 4.1(b). A reference is a special data
object enhanced with 〈ref〉. A reference can be connected to a flow object via associations. We
give the following semantics to the different connection directions:
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• A reference can be written by a flow object (represented by an association from the flow
object to the reference). (i) If the flow object is a receive activity, e.g. an intermediate
message event or an activity with incoming message flow, the reference will point to the
message’s sender upon message receipt. If the reference already pointed to a participant,
the reference will simply be overwritten. (ii) If the flow object is not a receive activity, it
is not specified what participant the reference will point to. Consider the selection of the
buyer in our example.

• A reference can be read by a flow object (represented by an association from the reference
to the flow object). (i) If the flow object is a send activity, the message will be sent to
the participant the reference points to. In our example the auctioning service sends a
completion notification to exactly that bidder out of the bidder set, who was selected to
have won the auction. (ii) If the flow object is a receive activity, then a message is only
awaited from the defined participant. E.g. the seller only waits for payment from the
buyer. (iii) If the flow object is neither a send nor a receive activity, it is not specified what
happens with that reference inside the activity.

References cover those cases where an individual participant needs to be identified. How-
ever, we might need to select subsets of the participants involved in one conversation. In our
example, this is the case for those bidders who did not win the auction. We need to send a sorry
message to all of them—but we must not send this message to the winning bidder. We introduce
reference sets as shown in figure 4.1(c) with the following semantics:

• A reference set can be modified by a flow object (represented through an association from
the flow object to the reference set). (i) If the flow object is a receive activity, a reference
to the sender of the message will be added to the reference set if such a reference is not
already contained in the set. In our example we find a “receive bids” activity where bids
from different bidders are received. In case a bidder who has already placed a bid in the
same auction places another bid, no reference will be added to the set. However, if a new
bidder takes part, a reference will be added. (ii) If the flow object is not a receive activity,
it is not specified, what exactly happens with the set. It might be overwritten completely
or references might be added, removed or changed.

• A reference set can be read by a flow object. (i) If the activity is a looped activity, i.e. a
sequential loop or a multiple-instances activity, the reference set determines the number
of repetitions or instances. This requires that at most one reference set serves as input
for a looped activity. A special case is a looped send activity. Here, a message is sent
to every of the referenced participants. In those cases, where the looped activity is a
complex activity, a reference can be placed inside this activity which will represent the
selected reference out of the set for a particular instance or repetition. (ii) If the activity
is not a looped activity, it is not specified how the reference set is used within the activity.
In our example, the “select buyer” activity takes the reference set as input and selects the
winning bidder.
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Reference Passing

References can be passed to other participants as shown in figure 4.2(a). The reference is con-
nected to a message flow with an undirected association. The passed reference can be connected
to other flow objects with directed associations. In figure 4.2(a), the passed reference is used in
the task.

Task

name

<ref>

(a) Reference passing

Y
X

(b) Involving two roles

Y
X

Z

(c) Involving three roles

Figure 4.2: Reference passing and complex message flow

Complex Message Flow

BPMN only considers interactions on the message-level, i.e. elementary interactions. In order
to overcome the missing abstraction mechanism for decomposition of interactions, we introduce
the complex message flow construct. The main difference to BPMN’s standard message flow is
that complex message flow is not directed and can involve more than two roles.

Figure 4.2(b) illustrates complex message flow between two roles (represented by dashed
lines with circles at the end). The number of corresponding message flows is not specified for a
complex message flow. Potentially many but at least one message will be exchanged if a complex
message flow is executed. Figure 4.2(c) illustrates complex message flow between three roles.
Here, again, it is left unspecified what concrete elementary interactions between the roles apply.

4.1.2 Example

Figure 4.3 shows an example including some of the proposed extensions. First of all, three bars
were added to the pool of the bidder to represent a participant set.

The “receive bid” task of the auctioning service collects the references of the different bid-
ders into a reference set. The reference set is forwarded to the “select buyer” task. Inside this
task, the successful bidder is selected and placed into a new reference, denoted as buyer. The
remaining references of the bidders reference set are placed into the “others” reference set. The
others reference set is used as an input to the “send sorry message” task. Here, an instance is
created for each element of the set. Hence, all unsuccessful bidders are notified.

The buyer reference is forwarded to the “send completion notification” task, where it deter-
mines the instance of the bidder that should be contacted. Furthermore, it is passed to the seller,
where it is used as an input for the reception of the payment as well as determining the reference
of the bidder’s instance to which the product should be sent.
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Figure 4.3: The auctioning scenario represented using extended BPMN
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Finally, a reference of the seller is passed to the successful bidder. This reference is acquired
via the initial interaction between the seller and the auctioning service. Two data objects are
used for this purpose where both carry the same label. According to standard BPMN semantics,
both elements refer to the same data object at runtime.

4.1.3 Validation

The proposed extensions broaden BPMN’s support for the Service Interaction Patterns [36]. Es-
pecially the additional capabilities of references and participant sets allows to describe scenarios
with potentially many participants of the same role in the same conversation (requirement R3).
Figure 4.4 illustrates the patterns Send, Receive and Send/Receive.

X

A

Y

y

<ref>

(a) Send to Reference

X

A

Y

y

<ref>

(b) Receive from Reference

X

A

Y

y

<ref>

(c) Receive Reference

Figure 4.4: Single transmission bilateral interaction patterns

In the Receive pattern, the receiver automatically gains knowledge about the reference of
the requester. If the message should be received from a particular instance of a participant set,
a reference according to figure 4.4(b) has to be used. If a message is received from an un-
specified instance of the participant set, the corresponding reference can be collected, shown in
figure 4.4(c). The representation of the single transmission multilateral interaction patterns are

X

A

Y

y
<ref>

(a) One-to-many send

X A

Y

y
<ref>

(b) One-from-many receive

X
Y

A B
y

<ref> y’

<ref>

(c) One-to-many send/receive

Figure 4.5: Single transmission multilateral interaction patterns

equally influenced by the novel constructs participant sets and references (cf. Figure 4.5).
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<ref>

Figure 4.6: Request with Referral

Reference passing (Requirement R4), as present in the Request with referral pattern, can
be achieved using standard data flow mechanisms. The additional typing of data objects in the
direction of references makes this possible. The realization of the pattern is shown in Figure 4.6.
The instances of Z that should receive the follow-up responses are passed on using the reference
set.

Correlation (T2) and interchangeability of technical configurations (T4) were not addressed.
These are requirements for choreography languages on the technical level and therefore do not
apply to the extended BPMN, as it operates on the conceptual level.

Another drawback of plain BPMN is the missing support for decomposition of interactions
(C4). Although the extensions come with a complex message flow construct, the relationship
between such a complex message flow and elementary interactions, i.e. regular message flow,
cannot be made graphically. Reusability of subchoreographies (C5) was not addressed, either.

4.1.4 Discussion

The proposal makes heavy use of refined data objects. A major problem with BPMN data objects
is that their semantics is not clearly defined in the BPMN specification. E.g. it is unclear what
it means if different activities write on the same data object. Here, we simply assume that if
an activity has write-access to a data object, it (might) overwrite the entire content of the data
object upon completion. BPMN does not have the notion of collections or buffers, as they are
present in UML Activity Diagrams [5]. Therefore, we introduced a distinction between simple
data objects and data object sets, where we assume that write-access to a data object set typically
means that the activity (might) add an object to the set. We do not require that data objects are
only placed within pools or only accessed from within one pool.

References express correlation in those cases where receive activities read references. This
defines whom messages are to be received from. However, this notion of correlation only cov-
ers a limited set of scenarios. Imagine settings, where the same pair of participants engage in
different concurrent conversations. Here, our notion of references is not sufficient to distinguish
the different conversations. Furthermore, it might be important to specify what message parts
correlation is actually based on. E.g. a customer id or a shipment invoice number might be used
as concrete correlation identifiers. There might be even more sophisticated correlation mech-
anisms needed, such as ranges of values or time-based correlation of messages. [35] provides
a set of correlation patterns that could serve as starting point for further refinements regarding



74 Design and Analysis of Process Choreographies

correlation support.
While complex message flow allows to model interactions on different levels of abstraction,

a clean decomposition mechanism is still not present. This is caused by the the fact that message
flow is represented using lines in BPMN. Decomposition of lines is hard to integrate into a visual
notation. As a direct implication, integrating reusability into BPMN is not easy. Without a clean
decomposition concept, reusability cannot be realized. Heavy use of textual attributes could
have been chosen as workaround. In order to keep a clean language targeted at a conceptual
level, we decided not to integrate this.

4.2 BPEL4Chor

BPEL already supports a wide range of requirements from Chapter 3. The main issue is that
BPEL is an orchestration language and not a choreography language. The specification of ob-
servable behavior models is already supported through abstract BPEL. In order to allow chore-
ography modeling, it must be possible to describe the behavior of multiple services.

The second challenge that needs to be overcome is that of interchangeability of technical
configurations. The tight integration between BPEL and WSDL needs to be relaxed as de-
manded by requirement T4. Therefore, BPEL4Chor decouples the “heart” of choreographies,
i.e. the communication activities, their behavioral dependencies and their interconnection, from
technical configuration, e.g. the definition of WSDL port types. That way, a higher degree of
reusability of the choreography models is achieved.

Participant
Topology

Structural Aspects

Participant Behavior 
Descriptions (PBDs)

Observable Behavior

Participant Grounding

Technical Configuration

Participant Declaration

List of Participants

Message Links

Connecting PBDs

Figure 4.7: BPEL4Chor artifacts

BPEL4Chor is a collection of three different artifact types. Each artifact type is represented
as a rectangle in Fig. 4.7 and the dashed arrows between the rectangles symbolize that there exist
references from artifacts of one type to artifacts of the other type.

1. A participant topology defines the structural aspects of a choreography by specifying
participant types, participant references, and message links.
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2. Participant behavior descriptions define the control flow and data flow dependencies be-
tween activities, in particular between communication activities, at a given participant.
By assigning a message link to a communication activity, participant behavior descrip-
tions plug into the topology.

3. Participant groundings define the actual technical configuration of the choreography. Here,
the choreography becomes web-service-specific and the link to WSDL definitions and
XSD types is established. We use the term “grounding” similar to the Semantic Web ter-
minology, where “grounding” denotes that the semantically described service is bound to
a concrete technical configuration.

Participant
Topology

Participant 
Behavior 

Descriptions

Participant 
Grounding

BPEL4Chor Description

WSDL
Definitions

Automatic
Transformation Executable BPEL 

Processes

Manual
Refinement

Abstract BPEL 
Processes with 
References to 

WSDL Definitions

Figure 4.8: Getting from a BPEL4Chor choreography to executable BPEL processes

It is possible to get an executable process from each participant behavior description as
shown in Figure 4.8. First of all, all technical configurations of each participant have to be
specified in the participant grounding. This serves as input for a transformation that can be
run. This transformation transforms each participant behavior description into a BPEL process,
where the technical details given in the participant grounding are included. However, internal
activities, such as data manipulation or calling other services are missing. These have to be added
manually afterwards. The details of the transformation itself are described in Section 4.2.6.

The following sections are going to introduce the artifact types of BPEL4Chor. Correspond-
ing code snippets are given for the example from Section 1.1.

4.2.1 Participant Topology

The participant topology describes the structural aspects of a choreography. As most important
aspect, the participant topology enumerates different participant types. BPEL4Chor supports
the following three cases: (i) there is only one participant of a certain type in one conversation.
As an example, an individual seller and a single auctioning service involved in a specific auction
can be imagined. (ii) Several participants of a certain type appear in one conversation and the
number of participants is known at design-time. As an example imagine a scenario where two
shippers are involved in one conversation. (iii) An unbounded number of participants is involved
and the exact number might only be determined at runtime. Imagine a large number of bidders
involved in our sample scenario.

Participant types are not sufficient to support cases (ii) and (iii), as we need to distinguish
between different participants of the same type. E.g. we need to distinguish between a bidder
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who has won the auction from a bidder who has not. Therefore, the notions of participant
reference and participant set are introduced. A participant reference describes an instance of a
participant type, e.g. one particular bidder, while a participant set describes a set of participant
references, e.g. the set of all unsuccessful bidders.

Cardinality of participant types is implicitly given through the participant reference and par-
ticipant set declarations. (i) If there is only one participant reference for a given participant type,
we can conclude that there will be at most one participant of that type involved in a conversa-
tion. (ii) If there are several participant references but no participant set for a given type, then
the maximum number of participants in one conversation is limited by the number of references.
(iii) If there is a participant set declared for a given type, then the number of participants is not
defined at design-time.

<topology name="topology" targetNamespace="urn:auction"
xmlns:sns="urn:auction:seller">

<participantTypes>
<participantType name="Seller" participantBehaviorDescription="sns:seller"

/>
<participantType name="AuctioningService" ... />
<participantType name="Bidder" ... />

</participantTypes>
<participants>
<participant name="seller" type="Seller" selects="auctioningService" />
<participant name="auctioningService" type="AuctioningService" />
<participantSet name="bidders" type="Bidder">
<participant name="bidder" selects="auctioningService" />
<participant name="successfulBidder" />

</participantSet>
<participantSet name="unsuccessfulBidders" type="Bidder"
forEach="as:notifyUnsuccesfulBidders">
<participant name="currentBidder" forEach="as:notifyUnsuccesfulBidders"

/>
</participantSet>

</participants>...
</topology>

Listing 4: Participants in the participant topology

Listing 4 shows the participants in the participant topology for the auctioning scenario. Three
participant types, namely seller, auctioning service and bidder, are listed along with a participant
reference for a seller and an auctioning service, respectively. A participant set for the bidders
is also given. The participant reference currentBidder contained in the set will be used as
iterator on the set later on. successfulBidder is one particular participant from the set of
bidders. In general, the semantics of a reference p contained in a set s is that if a sender p is not
contained in s, then this new sender is added to the set. Using different participant references
does not guarantee that the referenced participants are different at runtime. The same applies to
sets, which may overlap in terms of referenced participants.

In Listing 4, the declaration of the seller declares a selects attribute that refers to the
auctioning service. This indicates that the seller chooses which auctioning service she actually
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wants to use. This in turn implies that there are potentially many auctioning services available.
The selection of participants might happen at runtime or already at design-time. The topology
in Listing 4 does not exclude the case that every seller has exactly one auctioning service she
always goes to.

The attribute forEach on the set of unsuccessful bidders denotes that the forEach activ-
ity having the name notifyUnsuccesfulBidders at the auctioning service should iterate
over that set. The attribute forEach at the nested participant currentBidder denotes that
this participant reference should store the current value of the iterator. A forEach may only
iterate on one set. Thus, we require that for each forEach there is at most one participant set
and at most one participant reference pointing to it.

<topology name="topology" targetNamespace="urn:auction" ...> ...
<messageLinks>
<messageLink name="auctionRequestLink"
sender="seller" sendActivity="sendAuctionCreationRequest"
bindSenderTo="seller"
receiver="auctioningService"
receiveActivity="receiveAuctionCreationRequest"
messageName="auctionCreationRequest" />
...
<messageLink name="bidLink"
senders="bidders" sendActivity="sendBid"
bindSenderTo="bidder"
receiver="auctioningService" receiveActivity="receiveBid"
messageName="bid" />
<messageLink name="bidAckLink"
sender="auctioningService" sendActivity="sendBidAck"
receiver="bidder" receiveActivity="receiveBidAck" />
...
<messageLink name="completionNotificationLink"
sender="auctioningService" sendActivity="sendCompletionNotification"
receiver="seller" receiveActivity="completionNotification"
messageName="notification"
participantRefs="successfulBidder" />
<messageLink name="unsuccessfulBidLink">
sender="auctioningService" sendActivity="sendUnsuccessfulBid"
receiver="currentBidder" receiveActivity="receiveUnsuccessfulBid"
messageName="notification" />
</messageLink> ...

</messageLinks>
</topology>

Listing 5: Message links in the participant topology

Listing 5 shows the message links in the participant topology for the auctioning scenario.
Message links state which participant can potentially communicate with which other partici-
pants. However, the topology does not include any constraint about ordering sequences or the
cardinality of message exchanges. BPEL4Chor is based on a closed world assumption. In partic-
ular, message links only connect participants listed in the topology. I.e. the sender and receiver
attributes must always be set.
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Some of the message links in Listing 5 also contain the attribute participantRefs.
This attribute realizes link passing mobility in BPEL4Chor: as part of the exchanged business
documents, participant references are passed from one participant to another. E.g. consider
the message link completionNotificationLink. Here, the reference to the successful
bidder is passed from the auctioning service to the seller. This enables the seller to directly
communicate with this bidder later on.

Reference passing must also happen whenever the attribute bindSenderTo is set for a
message link. In contrast to participantRefs, where a reference to a third participant is
passed, bindSenderTo implies that the sender of the message must include a reference to
herself in the message. As knowledge about participants is local, the usage of bindSenderTo
is required even in those scenarios where only one participant of a type is involved. Take
auctionRequestLink. Here, the seller sends a reference pointing to herself, enabling the
auctioning service to reply later on.

Selection and reference passing lead to the binding of concrete participants to participant
references. In the case of reference passing, rebinding occurs if a participant was already bound
to a reference. The reference is simply overwritten. If a referenced participant should be bound
to a different participant reference, the attribute copyParticipantRefsTo is used.

Special semantics applies if binding occurs for a participant reference contained in a partici-
pant set. Here, the reference must be added to the set upon binding, provided that a reference to
that participant is not yet contained in the set.

The listing also shows that either the attribute sender or senders is used in a message
link. sender is used if one participant reference applies, senders is used if any participant
out of a set can be the sender.

Topologies by themselves only describe the structural aspects of a choreography. However,
the typical usage for topologies is to glue together participant behavior descriptions. There-
fore, one already finds connections to constructs from participant behavior descriptions in the
topology. These attributes are explained in the next section.

4.2.2 Participant Behavior Descriptions

Participant behavior descriptions (PBDs) cover the behavioral aspects of a choreography. Con-
trol flow dependencies between communication activities are defined per participant type. These
dependencies determine the ordering sequences of message exchanges the different participants
have to adhere to. Furthermore, participant behavior descriptions also cover data flow aspects.
It is important to specify what data can be expected by the receiver of a message and how this
data relates to data previously exchanged.

Abstract BPEL is used as basis for participant behavior descriptions. It already provides
most constructs that are needed. In contrast to executable BPEL, some language constructs do
not need to occur and some attributes do not need to be set. BPEL profiles force or forbid
the usage of certain attributes in abstract BPEL process. Therefore, we introduce the Abstract
Process Profile for Participant Behavior Descriptions stating the requirements for the definition
of the behavior of one participant. This profile inherits all constraints of the Abstract Process
Profile for Observable Behavior from the BPEL specification. This allows to add e.g. opaque
activities into a PBD, which is useful for documentation purposes.
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Communication activities Message send and receive activities are at the center of atten-
tion in choreographies. BPEL uses invoke and reply as send activities and receive and
onMessage as receive activities. These activities are reused in BPEL4Chor.

The usage of partnerLink, portType and operation attributes at the communica-
tion activities of BPEL link the BPEL process tightly to WSDL operations. The communication
activities are linked together using message links in the topology as described in the last section.
Thus, a linkage to WSDL artifacts is obsolete. Therefore, we forbid the usage of the attributes
partnerLink, portType and operation at communication activities.

In the topology, a message link references two communication activities. To enable proper
referencing, we need an identifier for each communication activity in a participant behavior
description. Since onMessage branches do not offer an attribute name, we introduce the
attribute wsu:id having the type xsd:id as new attribute for communication activities and
onMessage branches. To simplify reading, the wsu:id attribute defaults to the attribute
name of the BPEL activity. Typically, one message link references exactly one send and one
receive activity. However, there are scenarios, where one message link references several send
and/or receive activities. E.g. several send activities can have the same target activity or several
receive activities refer to the same message type.

BPEL directly adopts some of the WSDL interaction styles. BPEL distinguishes between
one-way interaction and request/response interactions. We argue that the choice of the inter-
action style is a configuration issue and should normally happen in the phase of the technical
configuration. Nevertheless, we allow that both interaction styles can be used in the participant
behavior descriptions. This allows higher similarity between participant behavior descriptions
and orchestrations. Especially in a bottom-up approach where existing BPEL files are the start-
ing point, we do not want to force the modeler having to split e.g. a request/response activity into
two activities in the BPEL code. In this context, we force the attribute messageExchange
to be present in order to relate pairs of receive and reply activities. This constraint is nec-
essary, because corresponding pairs can no longer be determined by matching portType and
operation values.

Control flow BPEL comes with a rich set of control flow constructs, which are used unchanged
in BPEL4Chor. This enables the reuse of existing BPEL tools to model choreographies. As
examples if, pick, flow and forEach are available to model branching structures and con-
currency. BPEL’s facilities to model time constraints, namely wait and event handlers with
onAlarm, are also reused unchanged.

Support for participant sets Scenarios where a number of participants of the same type are
involved in one conversation are recurrent in the choreography world. BPEL supports parallel
instances the number of which might only be known at runtime through the forEach construct.
Therefore, there is sufficient support for participant sets from the control flow side. However,
data sets are not natively supported in BPEL. Special XSD types have to be used for this pur-
pose. As a realization for the iteration on participant sets, the attribute forEach can be set for
participant references and participant sets in the participant topology. The semantics is that the
corresponding set determines the number of branches spawned and the participant reference is
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used as iterator.

Data flow It should be specified in a choreography what contents can be expected by the
receiver of a message. As an example the quantity of ordered products in an order message and
the quantity in an order acknowledgment message must not differ. Furthermore, data values can
determine branching behavior in choreographies. E.g. a seller might need to be ready to provide
further details when the goods offered have a certain value.

BPEL offers a rich set of constructs to model data access and data manipulation. Variables
are used as output of receive activities and input of send activities. Data “flows” from one activity
to another by using one variable as output variable for the first activity and input variable of the
other, provided that no other activity overwrites the variable in between.

In the general case, it should be possible to leave variables untyped to offer a greater flexibil-
ity to the business user. This is in line with the Abstract Process Profile for Observable Behavior,
which does not require the specification of a type for each variable. However, typed variables
are necessary to define data-based decisions in detail. Otherwise, branching conditions can only
be formulated as plain text.

For documentation purposes it is sometimes useful to add hints about dependencies between
data values. E.g. it could be specified that the decision about who is the successful bidder in
an auction should be based on the height of the bid. Assign activities with opaque from or to
parts can be used in this context.

<process name="auctioningService"
targetNamespace="urn:auction:auctioningService"

abstractProcessProfile="urn:HPI_IAAS:choreography:profile:2006/12">
<sequence>
<receive name="receiveAuctionCreationRequest" createInstance="yes" /> ...
<scope>
<eventHandlers><onAlarm .../></eventHandlers>
<sequence>
<receive name="receiveBid" />
<invoke name="sendBidAck" />

</sequence>
</scope>
<flow>
<invoke name="sendCompletionNotification" />
<forEach name="notifyUnsuccesfulBidders">
<scope><invoke name="sendUnsuccessfulBid" /></scope>

</forEach>
<invoke name="sendSuccessfulBid" />

</flow>
</sequence></process>

Listing 6: Participant behavior description for the auctioning service

Message correlation BPEL comes with a built-in handling of message correlation. Since
BPEL4Chor choreographies depend on BPEL and should not introduce any implementation de-
pendencies, the correlation mechanism of BPEL is used unchanged: correlation may be specified
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in the participant behavior description. We allow the usage of the attribute correlationSet,
but use the QNames of the properties specified for a correlation set as names. Thus, the names
of properties change to NCNames and therefore have no connection to property aliases. Hence,
in contrast to BPEL, properties can be left untyped and are not bound to WSDL. Actual typing
will happen in the participant grounding.

Listing 6 shows the participant behavior description (PBD) for the auctioning service in the
example given in Section 1.1. The abstract BPEL profile for participant behavior descriptions is
referenced.

4.2.3 Participant Grounding

While the participant topology and the participant behavior descriptions are free of technical
configuration details, the participant grounding introduces the mapping to web-service-specific
configurations. So far, port types and operations are left out and XML schema types for messages
are not mandatory. In the participant grounding, these aspects are brought in. The participant
grounding is specific to the target platform. While we use BPEL as target platform, it is possible
to replace the participant grounding by a participant grounding specific to other target platforms,
such as BPEL4SWS [161], to enable a semantic-based execution of each participant.

After a process is grounded, the participant behavior descriptions can be transformed to
abstract BPEL processes, where partner links, port types and operations are defined (cf. Sec-
tion 4.2.6). Since BPEL depends on WSDL 1.1 [56], message links, participant references and
properties have to be assigned to WSDL artifacts in a participant grounding.

Message links are targeted at one or more receive activities. A message link models the send-
ing and consumption of one message and does not model multicast. Therefore, one message link
is grounded to one WSDL operation. This allows for realizing one participant through differ-
ent port types. The attributes participantRefs and bindSenderTo enable link passing
mobility in BPEL4Chor choreographies. In the case of executable BPEL, service references
are passed in messages. The mapping of participant references to concrete service references is
done by grounding a participant reference to a WSDL property. A WSDL property states where
a certain element is located in different message types. Using that property, a BPEL process
can extract the concrete service reference out of an incoming message regardless of the type of
the incoming message. In that way, the service reference of a passed participant reference can
be located in different messages. For correlation, we allow untyped correlation sets. With the
participant grounding, these sets get typed.

Listing 7 presents the participant grounding for the auctioning example. Each message link is
grounded to a WSDL operation and each participant reference is grounded to a WSDL property.

4.2.4 Consistency between BPEL4Chor Artifacts

This section will introduce a number of constraints. These constraints are used to ensure consis-
tency between BPEL4Chor artifacts.
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<grounding topology="auc:topology" xmlns:top="urn:auction" ...>
<messageLinks>
<messageLink name="auctionRequestLink"
portType="auc:auction_pt" operation="auctionRequest" />
<messageLink name="bidLink"
portType="auc:auction_pt" operation="bid" />
<messageLink name="bidAckLink"
portType="bid:bidder_pt" operation="bidAck" />
...

</messageLinks>
<participantRefs>
<participantRef name="seller" WSDLproperty="msgs:sellerProp" />
<participantRef name="bidder" WSDLproperty="msgs:bidderProp" />

</participantRefs>
</grounding>

Listing 7: Participant grounding

Participant references and message links If there are several senders in a message link and
the attribute bindSenderTo is set, all senders must be of the same type as the participant ref-
erence defined in the attribute. If the attribute copyParticipantRefsTo is set, the list must
match the participantRefs list in terms of length, participant types and cardinality. A par-
ticipant set having an attribute forEach must contain exactly one participant with a matching
attribute forEach for every forEach listed.

Message links and communication activities For every invoke and reply (receive and
onMessage) activity there must be at least one message link in which this activity is a send
(receive) activity. In the other direction, the send (receive) activities given in a message link
must be invoke or reply (receive, onMessage or invoke) activities. If senders is
specified in a message link l and the receiving activity is connected to a reply activity through
an attribute messageExchange, bindSenderTo has to be specified in the link l.

Synchronism issues If the output variable is specified for an invoke activity, it must appear
as receiveActivity in a message link. The synchronous call must be matched on the
receiving side by receive activities with corresponding reply activities. On the other hand,
each pair of receive / reply activities must be matched by a corresponding invoke activity.

Completeness of participant grounding All passed participant references, used message
properties and message links must be grounded. If variable types are defined for a send or
receive activity, the variable type must match the type of the expected port type. Furthermore,
references passed via a message link must be grounded in a WSDL property. This applies to the
two attributes participantRefs and bindSenderTo. Conflicting groundings of message
links can occur especially in choreographies with synchronous interactions. The corresponding
message links must be grounded in one WSDL request-response operation.
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Further consistency issues The consistency constraints mentioned above can be detected eas-
ily in a BPEL4Chor choreography on a syntactical level. However, anomalies such as behavioral
incompatibility require behavioral analysis. An approach for checking the absence of deadlocks
and proper termination of BPEL4Chor choreographies was presented by Lohmann et al. [150],
where the participant behavior descriptions are translated to Petri nets [148] and connected via
communication places as it can be derived from the topology. This approach abstracts from data
flow. Data-based decisions are treated as non-deterministic choices.

Another challenge is the verification of proper reference passing. In scenarios where dy-
namic binding is used, it must be ensured that the selection of participants is properly propagated
to the corresponding participants. This aspect will be investigated further in Section 4.4.

When multiple participants of the same type are involved, it may occur that some of the
combinations of communication activities and participant references are not used in message
links. For example, the receive activity receiveUnsuccessfulBid is contained in the
participant behavior description for the participant type Bidder. Concrete participants for
this type are bidder, successfulBidder and currentBidder. The message link
unsuccessfulBidLink is only one message link targeting receiveUnsuccessful-
Bid. This message link specifies currentBidder as receiver. Thus, the activity receive-
UnsuccessfulBid of the participants successfulBidder and currentBidder will
never be used. In the example process, this does not cause a problem, since this activity is only
reached for unsuccessful bidders. In order to decide reachability for particular participants, the
overall behavior has to be considered.

4.2.5 Validation

We can use the requirements from Chapter 3 to assess BPEL4Chor. This section concentrates
on BPEL’s white spots and how BPEL4Chor addresses them.

The main issue regarding BPEL was that it is not a choreography language. BPEL4Chor
overcomes this limitation by introducing the topology as additional artifact interrelating the par-
ticipant behavior descriptions which in turn are given as BPEL processes. At the same time the
topology serves as structural view of the choreography (Requirement C2).

The usability as choreography language on the technical level can be traced back to a
number of improvements over BPEL. Participant sets were introduced as first-class citizen in
BPEL4Chor, allowing for easily expressing situations with potentially many participants of the
same role involved in the same conversation. We can take the realization of the Service Interac-
tion Patterns One-to-many-send and One-from-many-receive as examples.

Listings 8 and 9 show the topology and the participant behavior description for the sender
role, jointly realizing One-to-many-send. A sender s sends a message to a number of recipients.
The participant set receivers is used in combination with the <forEach> construct. The
number of recipients does not need to be known at design-time. The sender is responsible
for selecting the recipients. This obligation is specified using the selects attribute at the
declaration of the sender s.

The realization of the One-from-many-receive pattern resorts to a <while> construct, the
repetition in which the messages are collected (cf. Listing 10 and 11). The participant set
senders represents the set of all possible senders. The second set mySenders contains all
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<participants>
<participant name="s" type="Sender" selects="receivers" />
<participantSet name="receivers" type="Receiver" forEach="s:fe1">
<participant name="r" forEach="s:fe1" />

</participantSet>
</participants>
<messageLinks>
<messageLink sender="s" sendActivity="sendDocument" receiver="r"

receiveActivity="receiveDocument" messageName="document" />
</messageLinks>

Listing 8: Participant topology for the One-to-many send pattern

<forEach name="fe1" parallel="yes"><scope>
<invoke name="sendDocument" />

</scope></forEach>

Listing 9: Participant behavior description for participant type Sender

participants whose messages are actually received. Within the <while> structure we find a
scope which the participant reference s is limited to. This means that every time the scope
is entered, no participant is bound to s and a message from any sender can be received. The
containment relationship between s and mySenders has the semantics that if a sender not
contained in mySenders is bound to s, then this new sender is added to the set. This particular
semantics of BPEL4Chor participant sets makes it very easy to express such scenarios.

<participants>
<participant name="r" type="Receiver" />
<participantSet name="senders" type="Sender" />
<participantSet name="mySenders" type="Sender">
<participant name="s" scope="rcvScope" />

</participantSet>
</participants>
<messageLinks>
<messageLink senders="senders" sendActivity="sendDoc"

bindSenderTo="s" receiver="r" receiveActivity="receiveDoc"
messageName="document" />

</messageLinks>

Listing 10: Participant topology for the One-from-many receive pattern

<while><condition />
<scope name="rcvScope"><receive name="receiveDoc" /></scope>

</while>

Listing 11: Participant behavior description for participant type Receiver

Along with the capability of selecting participants, the concrete participants involved in a
conversation are not necessarily known to all participants right from the start of the conversation.
Therefore, the notion of link passing mobility plays a vital role in many scenarios. It also
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occurs in the Request with referral pattern. Introducing the participantRefs attribute of
the <messageLink> element, BPEL4Chor makes it even easier than BPEL to express link
passing mobility. Since participant sets can also be used as values for that attribute, the number
of passed references does not need to be known at design-time in BPEL4Chor. Listing 12 shows
the topology.

<participants>
<participant name="a" type="A" selects="b c"/>
<participant name="b" type="B" />
<participant name="c" type="C"/>

</participants>
<messageLinks>
<messageLink sender="a" sendActivity="sendMsg1" receiver="b"

receiveActivity="receiveMsg1" messageName="msg1"
participantRefs="c" />

<messageLink sender="b" sendActivity="sendMsg2" receiver="c"
receiveActivity="receiveMsg2" messageName="msg2" />

</messageLinks>

Listing 12: Participant topology for the Request with referral pattern

Another weakness of BPEL regarding the requirements framework was the inability to inter-
change technical configurations. This issue was resolved by introducing the notion of technical
groundings, containing all the technical details such as port type and operation configurations
and concrete data types.

The integration with BPEL was not hampered in BPEL4Chor. The following section will
show how executable BPEL can be generated out of fully grounded BPEL4Chor.

4.2.6 From BPEL4Chor to Executable BPEL

While choreographies serve as interaction contract between business partners, they are not meant
to be executed by themselves. However, they can serve as blueprint for actual business process
implementation for the different partners. As the usage of executable BPEL for process imple-
mentation is a typical case, we discuss the transformation of BPEL4Chor to executable BPEL in
this section. An overview of the transformation has been given at the beginning of this section.
Recall BPEL offers both, the definition of abstract BPEL processes and executable BPEL pro-
cesses. Executable BPEL are processes which can be deployed and run in a BPEL engine. The
intended usage of abstract processes is defined by a so-called “profile”. The BPEL specification
defines a profile for process templates and a profile for observable behavior. The profile for
observable behavior ensures that the interactions between the participants will not be changed
during an executable completion of an abstract BPEL process. “Executable completion” is de-
fined in the BPEL specification [108] and describes constraints on the manual actions taken to
advance from an abstract BPEL process to an executable BPEL process.

When advancing from BPEL4Chor to executable BPEL two typical scenarios can be distin-
guished. (i) A BPEL4Chor choreography was set up and agreed upon by a set of business part-
ners. This choreography not only includes the topology and the participant behavior descriptions
but also a complete participant grounding. A complete participant grounding includes port types
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and operations that are defined for all message links. Imagine there is one auctioning service dic-
tating the participant grounding. Now each partner uses his generated abstract BPEL process as
starting point for internal refinement. (ii) A BPEL4Chor choreography is set up. This time, the
choreography is used with different participant groundings. For example, there still is only one
auctioning service but some of the very important sellers require different participant ground-
ings. The internal process of the auctioning service stays unchanged for different sellers. In this
case, the auctioning service refines the BPEL4Chor choreography by adding internal activities
and variables. Then an executable BPEL process is generated for each participant grounding
and directly fed into an execution engine.

In both scenarios there is a transformation step, where—combined with the topology and
participant grounding—a participant behavior description is mapped to a BPEL process follow-
ing the Abstract Process Profile for Observable Behavior (observable BPEL for short). The
transformation from a participant behavior description to observable BPEL processes is an auto-
matic step. While most aspects are copied unchanged from the participant behavior description
to the observable BPEL process, four challenges are to be tackled:

• Generation of partner link types and partner links. Partner links are excluded in
BPEL4Chor, but required in the observable BPEL to specify the partner to interact with.
Therefore, partner link types and partner links have to be generated.

• Realization of BPEL4Chor binding semantics. Participants are bound if their reference is
passed over a message link. The pendant for participant references are service references
in BPEL. Thus, participant references have to be mapped to service references.

• Realization of participant sets. A participant set contains multiple participant references.
Since the BPEL specification is not aware of a set of service references, we have to intro-
duce them.

• Inclusion of participant grounding details. A participant behavior description leaves out
port types and operations. If it comes to the BPEL processes following the “Abstract
Process Profile for Observable Behavior”, these technical details have to be put into com-
munication constructs, such as invoke or receive.

Generation of Partner Link Types and Partner Links

BPEL uses the notion of partner link types to connect two services. A partner link is an instance
of a partner link type and is declared in a BPEL process. A partner link denotes which port type
is used to send a message and which port type is offered to receive a message. The semantics of
partner links is that a partner link holds service references at runtime and denotes the port type to
be used. The BPEL specification does not introduce any other runtime semantics at the atomic
service level. The concept of partner links is specified in the BPEL specification and added
as an extension to WSDL. At the participant grounding, we use WSDL without BPEL specific
extensions. Therefore, we generate partner links out of the port types given in the participant
grounding.
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There may be more than one partner link for a participant if the participant is realized by
multiple port types: for example, the participant grounding of the auctioning scenario (Listing 7)
shows two different port types for two message links targeting at the bidder.

In general, for each participant reference and message link, a partner link type and a partner
link are generated. A partner link is reused, if it is visible at the current activity and if the
message link belongs to the same participant reference and the message link is grounded to the
same port type. The grounded port type is set to myRole if the message link is inbound and the
port type is put as partnerRole if the message link is outbound.

Realization of BPEL4Chor Binding Semantics

In the context of BPEL, partner links and correlation sets are the artifacts used to realize binding
semantics: if a service reference is copied to a partner link, the participant belonging to the port
type is bound. As soon as a reference is passed over a message link, the reference is copied to the
partner link. In the case of correlation sets, the correlation set has to be defined and the content of
the message has to match it. As a next step, the message is passed to the receiving activity. The
port to which the message is sent to may be bound at deployment time or at runtime. At runtime,
the port may be bound at process instantiation or at the first usage of the port. If correlation
sets are used to realize BPEL4Chor binding semantics, the implementer has to ensure that the
correlation sets are properly used. The last moment when this may happen is when an executable
completion of the abstract BPEL process is made.

In the presented auctioning scenario, references are passed over the message link, since
arbitrary sellers can register at the auctioning service and the bidders are unknown at modeling
time. The seller has to send his service reference to the auctioning service, which in turn uses
this service reference to communicate with the seller. The message link auctionRequest
specifies bindSenderTo. Therefore, the auctioning service can use the grounded WSDL
property to fetch the service reference out of the received message. That service reference is
then copied to the partner link used to send messages to the seller. If there are multiple partner
links used for the seller, the service reference has to be a virtual service reference. A virtual
service reference can be used by an Enterprise Service Bus (ESB) to determine the endpoint of
the service [55]. An endpoint is the concrete point, where a service can be reached.

The participant reference of the successful bidder is passed to the seller in the message link
completionNotificationLink using the attribute participantRefs. Similar to a
reference being passed using bindSenderTo, each passed reference is copied to the respective
partner link. If a participant set is passed, the set is copied to the variable representing the set.

Realization of Participant Sets

A participant set is a set of participant references. The BPEL specification does not specify the
XML type of a set of service references. Therefore, we define sref:service-references
to be a sequence of sref:service-reference elements.

The forEach of BPEL may only iterate over numbers. Therefore, forEach activities
iterating over participant sets are mapped to forEach activities iterating over a number and a
nested assign activity copying the current service reference to a partner link.
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Inclusion of Participant Grounding Details

In the participant behavior description, communication activities have no partner link and no
operation assigned. With the participant grounding and the generation of partner links, part-
ner links and operations are generated for each communication activity. Thus, the attributes
partnerLink and operation are written upon mapping the activities.

More details on generating BPEL processes out of grounded BPEL4Chor choreographies
can be found in [187].

4.3 Integration of BPMN and BPEL4Chor

There are two strategies for realizing a seamless integration between choreography modeling on
the conceptual level and choreography modeling on the technical level. (1) The same choreogra-
phy language is used on both levels. This demands that the language supports the requirements
of both levels. (2) Different choreography languages are used on the different levels. In this case,
transformations between choreographies must be possible, covering a bidirectional alignment.
If changes are made to the model on one level, it must be possible to propagate these changes to
the other level, often called round-trip-engineering.

We have discussed extended BPMN and BPEL4Chor as choreography languages follow-
ing the interconnection modeling style. Given their support for a wide range of requirements,
it is natural to consider these two languages in the discussion. Applying strategy (1) would
mean that either BPMN is further extended with all the technical configuration possibilities or
that BPEL4Chor is equipped with a graphical notation. Extending BPMN to an executable
language has been pursued by Grosskopf [116] and Schreiter [195]. However, technical con-
figurations as demanded by the requirements framework were largely neglected. On the other
hand, BPEL4Chor could be equipped with a graphical notation. Tools such as NetBeans1 or
Active BPEL Designer2 offer graphical editing of BPEL processes using proprietary notations.
This is one of the reasons why BPMN was introduced. Strategy (2) would at least include trans-
formations from BPMN to BPEL4Chor and from BPEL4Chor to BPMN. On top of that, change
propagation would be needed.

In this section we are going to investigate the second strategy. Section 4.3.1 and 4.3.2 present
the two directions of transformations and Section 4.3.3 discusses the results.

4.3.1 Mapping BPMN to BPEL4Chor

Transformations from BPMN to BPEL have been studied extensively in the literature. White
[215] presented initial ideas on such a transformation without providing a concrete mapping
definition. The BPMN specification [9] also outlines a BPMN-to-BPEL mapping. However,
these approaches focus on high-level alignment and do not dive into semantic details. From an

1 See http://www.netbeans.org/
2 See http://www.active-endpoints.com/active-bpel-designer.htm

http://www.netbeans.org/
http://www.active-endpoints.com/active-bpel-designer.htm
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academic perspective, especially issues resulting from the incompatibility of block- and graph-
structured languages were studied. A notable mapping has been published by Ouyang et al.
[168]. Albeit restricted to a subset, the authors specify a formal mapping of BPMN models into
BPEL processes and implemented it in a tool3. Their approach realizes discovery of certain
process patterns, which, in turn, are mapped on structured activities in BPEL.

In [168] three classes of BPMN diagrams are distinguished: (i) those that can be translated
using block-structured constructs only, (ii) those that require the use of control links and finally
(iii) those that require event handlers, fault handlers and message passing within one process
instance for realizing control flow dependencies. For instance, the occurrence of the workflow
patterns arbitrary cycles and multi merge [17] make a diagram be of category (iii), as there is no
direct support for these two workflow patterns in BPEL. We argue that the BPEL code result-
ing from (iii) is not usable as starting point for further refining it to process implementations.
Therefore, we do not transform these kind of diagrams. Other than that, we use this algorithm as
basis for extensions towards mapping extended BPMN to BPEL4Chor. This mapping involves
additional challenges that will be tackled in this section.

Participant references and participant sets were introduced in Section 4.1 in order to dis-
tinguish different participants in a conversation. The direction of the associations connecting
these specialized data objects with communication activities indicate the semantics. The fol-
lowing examples are going to show how these BPMN extensions relate to their counterparts in
BPEL4Chor.

Figure 4.9 illustrates that an association from a participant reference data object leading to
a sending task denotes that a message is sent to this participant. If an association leads to a
receiving flow object (message event, invoke task), a message from this participant is expected.
A participant set data object association with a multiple instance task or sub-process denotes that
the loop will iterate over that participant set.

X

send 
request

...

...

<messageLink 
sender=“sender“ 
receiver=“receiver“ … />

BPEL4Chor

Y

receiver

<ref>

sender

<ref>

Figure 4.9: Sender and receiver

A directed association from a participant reference data object to a multiple instance sub-
process denotes that the participant reference acts as loop counter.

Figure 4.10 shows an association from a receiving flow object to a participant set data object.
This association denotes that a message is expected from an arbitrary participant and a reference
to the sender of the message will be stored in the associated set. The actual participant reference
in the set is represented by the participant reference data object associated with the flow object.

3 See http://www.bpm.fit.qut.edu.au/projects/babel/tools/

http://www.bpm.fit.qut.edu.au/projects/babel/tools/
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Figure 4.10: Storing the sender in a participant set
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Figure 4.11: Passing a participant reference over the message flow

Besides communication activities, participant reference data objects and participant set data
objects can be associated with message flows as presented in Figure 4.11. This realizes link
passing mobility: The associated participant data objects are references passed over message
flow.

Although the extended BPMN presented in Section 4.1 and BPEL4Chor have a large over-
lap in concepts covered, not all diagrams can be transformed to BPEL4Chor. The following
BPMN elements cannot be mapped to BPEL4Chor: complex gateways, ad-hoc and transac-
tional subprocesses, link, rule and multiple start events, all end events except the non-triggered
ones, cancel, rule, link, multiple or non-triggered intermediate events and user, script, abstract,
manual or reference activities.

General Approach. We largely base our transformation on the approach presented in [168]
where a subset of BPMN is transformed to BPEL. This approach is based on the identification
of patterns in the diagram that can be mapped onto BPEL blocks. One pattern is folded into a
new activity, which is associated with the generated BPEL code. We extend these patterns with
the elements used in the extended BPMN described above. Hence, we can use that transforma-
tion for transforming processes located in a pool, pool set or subprocess to their BPEL4Chor
representation. Furthermore, we loosen certain restrictions as explained in the next subsection.

Multiple start and end events. In [168] it is assumed that there is only one start event and
one end event in each process. We loosen this restriction and allow certain combinations of start
events as well as multiple end events. If e.g. two start events are followed by a XOR-gateway,
we fold this pattern to a BPEL pick element, where the attribute createInstance is set to “yes”.
This scenario is captured by a generalized pick-pattern. Multiple end events are resolved by
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merging the different branches into an inclusive gateway.
Inclusive gateways. We allow inclusive gateways if they occur in certain combinations with

other elements and can be rewritten to AND- and XOR-gateways. In order to capture these
combinations, the well-structured and quasi-structured patterns from [168] are extended. This
means that our transformation can handle inclusive gateways in block-structured settings only.

<invoke />

<invoke />

<invoke />
<flow>
 <invoke />
 <invoke />
</flow>

<invoke />

<if>
 <condition />
 <flow>
  <invoke />
  <invoke />
 </flow>
 <elseif>
  <condition />
  <invoke />
 </elseif />
</if>
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A
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Figure 4.12: Dealing with inclusive gateways

Figure 4.12 illustrates an example. It exhibits two steps to transform a BPMN diagram
involving multiple invoke activities to the corresponding BPEL representation. In the first step,
an AND split gateway is translated to a BPEL flow, representing concurrent invocations of A
and B. In the second step, the XOR split gateway is translated to an if construct in BPEL, so that
either invocations of A and B are performed concurrently or C is invoked.

Other constructs. Each pool and pool set is mapped to a participant type. For a simple
pool a participant reference with its corresponding type can be generated directly. Additional
references are generated from participant reference data objects. The mapping of message flows
to message links depends on the connected activities, the participant reference and participant
data objects associated with these activities and the message data objects associated with the
message flows. As the extended transformation removes elements from the model during the
folding of the patterns, the topology has to be created beforehand.

The following pseudo code illustrates the overall approach.

1. Generate participant types in the topology from pools and pool sets

2. Generate participant references and participant sets from the participant reference and
participant set data objects

3. Generate message links from the message flow, the associated participant reference and
message data objects

4. Transform the processes within the pools and pool sets

4.1. Generate the variables from the variable data objects

4.2. Apply the extended transformation starting with the pattern for attached events

The approach has been implemented in the context of the Oryx project. All implementations
are discussed in Chapter 6.
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4.3.2 Mapping BPEL4Chor to BPMN

Despite the pressing demand for a mapping from BPEL to BPMN, it has not been tackled by re-
cent research. It is assumed that such a ‘transformation is relatively straight-forward’ [114] and
‘that arbitrary BPEL processes can be mapped to BPMN using the flattening or the hierarchy-
maximization strategy’ [185]. In fact, this assumption proves to be correct for numerous con-
cepts. Essential BPEL activities can be mapped to BPMN directly and existing BPMN-to-BPEL
mappings are bidirectional for many concepts. Nonetheless, there are a number of pitfalls in a
BPEL-to-BPMN mapping. This section presents some of these issues.

There are a few activities that cannot be mapped at all, e.g. termination handlers and the
validate activity. The concept of non-interruptive event handling, realized in BPEL through
event handlers, it not present in BPMN, either. The majority of BPEL constructs can only be
mapped partially.

Message-based Interactions. While the reception of messages can be realized in BPMN, a
mapping of reply activities is not straight-forward. In particular, the question of a relation be-
tween message receiving and corresponding message sending constructs is not addressed in
BPMN. The absence of a counterpart for BPEL message exchanges represents a pitfall in the
mapping of message handling activities.

Exception Handling. In general, the exception handling framework of BPEL can be mapped
to BPMN. Exception throwing activities correspond to error end events. A mapping to inter-
mediate error events is no longer possible, as these events have been removed from the BPMN
specification with version 1.1, due to their ambiguous semantics.

Another pitfall is the lack of a well-defined semantics for the propagation of exceptions in
BPMN. In particular, it remains unclear, how exceptions in concurrent instances of an activity
are treated. Please refer to [96] for a discussion of this issue.

Compensation Handling. BPMN’s compensation activities are the counterparts for BPEL’s
compensation handlers. Moreover, the compensation order equals the one defined for BPEL.
Nevertheless, semantics in case of invalid compensation triggers and the execution context of
compensation activities is underspecified in BPMN.

In BPMN, compensation is triggered by compensation events. It might be reasonable to
represent BPEL throw or rethrow activities by error events in BPMN. A similar approach is not
feasible for compensation activities. In BPMN, control flow is directly passed to downstream
activities after compensation has been triggered by a compensation intermediate event, while
BPEL’s compensate and compensate scope activities block the control flow until compensation
has finished.

Dead Path Elimination. Dead path elimination (DPE) can be realized in BPEL using a flow
activity, enabling parallel execution, and named control links (links, for short), which are ap-
plied to specify execution dependencies. Links always connect two activities and might assume
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three different states: ‘unset’ (the initial state), ‘true’, or ‘false’. In the case an activity with in-
coming links is enabled, the execution is delayed until all links are set to either ‘true’ or ‘false’.
Afterwards the join condition is evaluated and according to the result, the activity is executed
or skipped. Subsequently, all outgoing links are set, either according to the transition condi-
tion (if the activity has been executed) or to ‘false’ (if the activity has been skipped). Links
have to create an acyclic graph of dependencies and must not cross the boundary of repeatable
constructs.

In order to realize DPE in BPMN the different states of a link have to be expressed. Two
approaches seem to be reasonable. Two separate sequence flows represent both link states, ‘true’
and ‘false’ and a token is sent exclusively on one of these flows. Alternatively, one sequence
flow represents the link. This approach would require non-local semantics to distinguish the
states ‘false’ and ‘unset’ of the according link.

In any case, parallel gateways realize the parallel execution and the activation of sequence
flows representing links in scenarios without transition conditions and join conditions. The acti-
vation of sequence flows representing links with transition conditions is modeled using inclusive
gateways.

Moreover, a mapping of the join condition is not straight-forward. In order to activate out-
going sequence flows based on the activation of incoming sequence flows, we have to apply a
complex gateway. All other gateway types require a clear separation of splitting and merging
behavior. The BPMN specification allows for referencing the names of incoming branches in
the incoming condition of the complex gateway. Although it remains unclear in the BPMN spec-
ification, we assume that this condition is evaluated, whenever a token arrives at the gateway.
In addition, BPMN does not specify, whether tokens not satisfying the incoming condition are
collected (they may satisfy the condition together with tokens arriving later) or discarded. A rea-
sonable interpretation of semantics of the complex gateway would be to wait for synchronization
of all incoming sequence flows and then activate the outgoing sequence flows according to the
assigned conditions. Besides the fact that multiple outgoing sequence flows with different con-
ditions cannot be modeled according to the BPMN specification, the notion of synchronization
of the complex gateway is an open issue.

We summarize that BPEL processes involving transition conditions or join conditions cannot
be mapped to BPMN, due to the ambiguous definitions of both, the inclusive gateway (merging
semantics) and the complex gateway.

Process Instantiation. A classification of process instantiation mechanisms and an evaluation
of BPEL and BPMN has been presented in [79]. In general, BPEL processes are always instan-
tiated through a single message, received by a receive activity or by a pick activity. We refer
to these activities as start activities, if they have been configured for instantiation purposes via
the Boolean attribute create instance. With respect to multiple start activities, BPEL allows for
a variety of different scenarios. According to [79], subscriptions are established either for all
of the remaining start activities (multiple receive activities), or only for reachable start activi-
ties (after one onMessage branch has been triggered, subscriptions for the remaining onMessage
branches are discarded). Further on, BPEL enables precise definition of expiration for these sub-
scriptions. Timer-based (event handlers) or message-based (pick activity) triggers might remove
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subscriptions, while they might also reside until message consumption or process termination.
In line with BPEL, BPMN processes are also instantiated by the reception of messages. In

fact, simple BPEL processes can directly be mapped to BPMN, as receive activities and pick
activities applied to instantiate the process have their counterparts in message start events and
the event-based gateway (configured via its attribute instantiate).

However, process instantiation mechanisms of BPEL and BPMN are compatible only at a
first glance. The analysis in [79] reveals fundamental differences with respect to the conjunction
of multiple start events. In particular, there is no means to issue subscriptions for message events
in the course of process instantiation. Therefore, there is only one way to model scenarios that
require multiple start events to occur. That is, multiple start events are directly connected to an
activity, which furthermore is configured via a dedicated attribute. In this case, it is waited for
the occurrence of all events before the process instance is created. Please note that the actual
configuration of the activity remains unclear, as there is no such attribute in the BPMN meta-
model. The attribute start quantity is inapplicable in this context, as it does not relate to process
instantiation.

Owing to the lack of a subscription mechanism, BPEL scenarios involving multiple start
activities followed by different activities cannot be expressed in BPMN. Obviously, scenarios
with complex dependencies between these subscriptions cannot be modeled in BPMN either.
The Listing 13 shows an exemplary BPEL scenario that cannot be mapped to BPMN.

<sequence><flow>
<sequence>
<receive ... createInstance=’yes’>
<correlations> <correlation set=’c’ initiate=’join’ /> </correlations>

</receive> ...
</sequence>
<sequence>
<receive ... createInstance=’yes’>
<correlations> <correlation set=’c’ initiate=’join’ /> </correlations>

</receive> ...
</sequence> ...

</flow> ... </sequence>

Listing 13: Exemplary BPEL process instantiation scenario

Data Variables. BPEL defines variables, which belong to a certain scope (or the whole pro-
cess, respectively). Further on, a scope enforces constraints with respect to data visibility —
a variable is visible inside the scope containing its definition and all of its enclosed scopes. In
addition, BPEL enforces lexical scoping of variables. In other words, variables of outer scopes
can be hidden by introducing variables of the same name in an inner scope.

Data scoping is not addressed in BPMN, neither on the level of properties, nor for data ob-
jects. While the notion of input and output sets might be applied to clarify data visibility for
activities, there is no way to restrict the set of data objects (or properties) accessed by expres-
sions of sequence flows or gates. Therefore, especially the mapping of multiple BPEL variables
with the same name is cumbersome. All constraints resulting from the lexical scoping of these
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variables have to be implemented manually in BPMN at the expense of additional data objects.

4.3.3 Summary

In order to approach a feature-complete BPEL4Chor-to-BPMN mapping, BPMN semantics
would need to be clarified (for instance for the complex gateway) and additional constructs
would be necessary (for instance non-interruptive event-handling). It is foreseeable that these
issues complicate BPEL4Chor-BPMN-round-tripping significantly. Despite the distinct goals of
both languages, the vision of BPEL4Chor-BPMN-round-tripping requires all information to be
mapped from BPEL4Chor to BPMN, even the low-level configuration. If any information is lost
during transformation, it would have to be added again during the generation of BPEL4Chor
choreographies out of the BPMN model. Nevertheless, it is reasonable to hide most of the
configuration in attributes of the BPMN model, as it is done with information about message
correlation.

The Business Process Modeler by eClarus4 promises enabling of round-trip-engineering for
BPMN and BPEL. The implemented mapping algorithm has been sketched by Gao [114]. It po-
tentially involves restructuring of the BPMN process flow in order to create BPEL-isomorphic
processes. However, this tool does not solve the abovementioned challenges in the two transfor-
mation directions.

We can conclude that full round-trip-engineering regarding BPMN and BPEL4Chor is not
possible. By defining subsets of the languages (e.g. excluding compensation handling, event
handling, complex gateways and other constructs), however, the two transformation directions
could be realized.

4.4 Correlation Issues

When a participant engages in multiple conversations concurrently, it must be possible to re-
late an incoming message to other messages that were previously sent or received. It must be
possible to relate such a message to the corresponding process instance. There are a number
of mechanisms for implementing such correlation. For example, a correlation token such as a
conversation identifier could be included in the message. Alternatively, and which is also most
commonly used, a participant generates an identifier that has meaning to him, e.g. a purchase
order id, and requires the other participants to include this identifier in the response messages as
well. More advanced techniques are not based on mere equality of values but rather use value
ranges, others use time-intervals or even moving time-windows to correlate incoming messages.
A comprehensive catalog of correlation mechanisms can be found in [35].

This section focuses on the usage of identifiers for correlation only. It will be shown that
using an extension to open nets, so called ν∗-nets, formal verification regarding proper correla-
tion configurations can be carried out. ν∗-nets include the concepts of name creation and name
passing as it is known from π-calculus [160]. The notion of instance isolation is defined, guaran-
teeing that two process instances of the same role will not participate in the same conversation.

4 See http://www.eclarus.com/products_soa.html

http://www.eclarus.com/products_soa.html
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4.4.1 Correlation Architecture

We will use a simple procurement example throughout this section: Buyers place orders at
sellers who in turn respond with an order acknowledgement. As a third message exchange in the
conversation, the buyer sends payment to the seller. This might be done e.g. through the transfer
of credit card information.

While individual conversations are always bilateral in this example, we assume a number of
buyers and sellers in the overall setting. All interaction is carried out through electronic message
exchanges between the different organizations’ information systems. Each information system
has three ports for communicating with the outside world. There is one port for each message
type: order, order acknowledgement and payment.

<<component>>
Buyer A’s 

system

<<component>>
Buyer B’s 

system

<<component>>
Seller S’s system

<<component>>
Correlation engine

<<component>>
Process instance 

agent 1

<<component>>
Process instance 

agent n

Figure 4.13: Architectural overview: Correlation engine and process instance agents

When looking into the internal structure of seller S’s system, we see a set of process instance
agents. The different process instances refer to the orders that are being processed concurrently.
However, as the same ports must be used for different process instances, a correlation engine is
necessary as additional component. We modeled that all communication between the process
instance agents and the outside world must go through the correlation engine. We introduced
message send and receive interfaces for the communication between the correlation engine and
the process instance agents. Upon arrival of a message from outside S’s system, this message
is forwarded to the correlation engine, which in turn checks which process instance agent is
subscribed to it. Depending on this, it forwards it to the corresponding process instance agent.
Upon arrival of a new order, a new process instance agent is created. Figure 4.13 depicts these
components and their dependencies using the UML notation [5].

Although correlation mechanisms are offered in state-of-the-art information systems, the
correlation configuration of implementations is often not properly set. A possible outcome
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could be that a message is routed to the wrong process instance agent or that subscription is
already forbidden in the first place. BPEL defines different exceptions occurring in the context
of erroneous correlation configuration. If correlation sets are not properly initiated before being
used, a correlationViolation exception is thrown. Furthermore, two process instances must not
subscribe to the same set of messages. Here, a conflictingReceive exception applies. Finally, if
an incoming message can be matched for two process instances with different subscriptions, an
ambiguousReceive exception is thrown. Especially the latter two exceptions only occur when
dealing with concurrent conversations.

4.4.2 Formal Model

In open nets (cf. Section 2.4), two tokens located at the same place cannot be distinguished from
each other. Therefore, two messages represented by tokens residing on the same place cannot
be distinguished from each other.

po

ro sa

ra sp

rp

Place order Receive ack Send payment

Rcv order Send ack Rcv paymentS
el

le
r

B
uy

er

Figure 4.14: Composition of two open nets

Figure 4.14 describes the sample choreography from section 4.4.1 as composition of open
nets representing the seller and the buyer. The three ports for orders, order acknowledgements
and payments are modeled as places. There is only one firing sequence allowed: ‘Place order’,
‘Rcv order’, ‘Send ack’, ‘Rcv ack’, ‘Send payment’, ‘Rcv payment’.

Buyer 1 Buyer 2

Seller

ro

po1 ra1

sa

po2 ra2

rp

sp1 sp2

Figure 4.15: Concurrent conversations

Figure 4.15 shows a variation of the first composition. Now, we introduced a second buyer
and more tokens. This represents concurrent conversations between the buyers and the seller.
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However, we cannot distinguish which buyer will get which acknowledgement. Such correlation
information is not included in this representation.

ν∗-Nets

We introduce ν∗-nets for representing correlation information. They are an extension for open
nets with name creation and name passing. Name creation and passing has been extensively
studied in process algebras such as π-calculus. However, there is a subtle difference between the
usage of names in π-calculus and ν∗-nets: π-calculus works with name substitution. In contrast
to this, we distinguish names and variables in ν∗-nets. Tokens flowing through the net carry
names, while the unmarked net is labeled with variables. Upon firing, to each variable a name
is assigned. We denote the (infinite) set of names with Id and the set of variables with V ar.
Name creation leads to the introduction of fresh names into the marking. A special variable ν is
reserved for this purpose (ν ∈ V ar).

The flow connections between places and transitions are labeled with vectors of variables
that can have zero or more components. We introduce V ar∗ as the set of all variable vectors.
We are going to use the symbols ∈ and || for denoting the containment of a value in a vector and
the length of a vector. E.g. b ∈ (a, b, c) and |(a, b, c)| = 3.

Definition 4.1 (ν∗-net) A ν∗-net N is a tuple N = (P , PC , T , F , m0) where

• P and T are disjoint sets of places and transitions,

• PC ⊆ P is the set of communication places,

• F : (P × T ) ∪ (T × P ) → V ar∗ is a partial function where to each flow connection
between places and transitions a variable vector is assigned and

• m0 : P → MS(Id∗) is the initial marking where to each place a multi sets of name
vectors is assigned.

�

We introduce the auxiliary functions pre, post : T → V ar for denoting input and output
variables of a transition, where pre(t) := {v ∈ V ar | ∃p ∈ P (v ∈ F (p, t))} and post(t) :=
{v ∈ V ar | ∃p ∈ P (v ∈ F (t, p))}. We also introduce var(F ) as the set of all variables in the
net, i.e. var(F ) := {v ∈ V ar | ∃(o1, o2) ∈ dom(F ) (v ∈ F (o1, o2))}. We assume all ν∗-nets
to satisfy the following conditions:

• For every place p all variable vectors assigned to flow connections originating in p or
targeting p have the same length, i.e. ∀p ∈ P [∃n (∀(o1, o2) ∈ dom(F ) [p ∈ {o1, o2} ⇒
|F (o1, o2)| = n])].

• ν does not occur in variable vectors assigned to flow connections targeting transitions, i.e.
∀t ∈ T [ν /∈ pre(t)].

• All variables occurring in variable vectors assigned to flow connections originating in
transitions occur in at least one of the variable vectors assigned to a flow connection
targeting that transition, i.e. ∀t ∈ T [post(t) \ {ν} ⊆ pre(t)].
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• No variable may be contained twice in the same variable vector.

Tokens flowing through ν∗-nets are colored. They represent vectors of names, where Id∗

is the set of (potentially empty) name vectors. We denote the set of names in a marking m as
S(m), where S(m) :=

⋃
p∈P {id ∈ ids | ids ∈ m(p)}.

We assume that a ν∗-net satisfies the following condition: Each name vector contained in a
marking has the same number of components as the variable vectors assigned to incoming and
outgoing flow connections to that place.

We introduce modes as assignment of names to input and output variables of a transition,
σ : (pre(t) ∪ post(t)) → Id. For every mode σ we introduce a corresponding vector mode
σ∗ : V ar∗ → Id∗ assigning name vectors to variable vectors, where σ∗((v1, . . . , vn)) =
(σ(v1), . . . , σ(vn)) and σ∗(()) = ().

Definition 4.2 (Enablement and Firing) Let (P, PC , T, F,m0) be a ν∗-net and m a marking.
A transition t ∈ T is enabled with mode σ if σ(ν) /∈ S(m) and ∀p ∈ P [(p, t) ∈ dom(F ) ⇒
σ∗(F (p, t)) ∈ m(p)]. The reached marking after firing of t is m′, where m′(p) := m(p) −
{σ∗(F (p, t))} + {σ∗(F (t, p))}. We denote this as (P, PC , T, F,m)

t(σ)→ (P, PC , T, F,m′) or
m

t→ m′ for short. �

t
x

(x, y) (y, x)

(a, b)

a (a, )

t
(x, z)

z(y, x)

t ( )

(a, b)

a (a, )

Figure 4.16: Sample ν∗-net and firing of t

Figure 4.16 shows a ν∗-net on the left. Here, transition t is enabled with mode σ, where
σ(a) = x, σ(b) = y and σ(ν) = z. Firing of t with mode σ leads to the marking depicted on the
right. As Figure 4.16 shows, we omit inscriptions of flow connections and token descriptions in
the diagram whenever the corresponding variable and name vectors have zero components.

In order to describe choreographies with ν∗-nets, we can reuse open composition of open
nets in the context of ν∗-nets. Furthermore, open composition of two nets can canonically be
extended to composition of a set of nets.

Figure 4.17 depicts the open composition of ν∗-nets for the example of section 4.4.1. Two
correlation identifiers were used in the model. A fresh name is created upon firing of transition
po. Note that the two tokens produced on the output places of po will carry the same name. In
the following, variable o is used to pass this name through the net. Although such a consistent
naming of variables in a ν∗-net is not mandatory, it increases the readability of the model. The
most important use of variables o is at transition ra: Here, both input tokens have to carry the
same name. I.e. synchronization only takes place if the message sent by the seller is awaited for
by the buyer.
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Figure 4.17: Open composition of ν∗-nets

Another interesting situation already occurs at transition ro. While the token produced by
po carries a name, the second token consumed does not carry any name. The seller accepts any
message from the buyer and passes on the received name for later use.

A second fresh name is created upon firing of transition sa. For properly correlating the
different messages in the conversation the creation of one fresh name would have been enough.
However, using different correlation identifiers is quite common in real-world settings. While
the first part of the conversation makes use of an order identifier o, a switch towards using a
payment identifier p is made during the conversation. In addition to different phases as reason
for different correlation identifiers, the different participants typically want to define their own
correlation identifier.

4.4.3 Instance Isolation

This section is going to introduce the notion of instance isolation for compositions of ν∗-nets.
These compositions typically represent (all possible paths of) exactly one conversation. As a
participant of a particular role might be involved in several conversations at the same time, it
must be checked whether the conversations are isolated from each other. We want to ensure that
two process instances for the same ν∗-net cannot participate in the same conversation. In the
remainder of this section we will present how this can be checked. A process instance must not
compete for the same message with another process instance. By competition (or conflict) we
mean that two different process instances are able to consume exactly the same message. This
can be checked by analyzing two concurrent conversations.

A process instance joins a conversation as initiator or follower. As initiator it sends a mes-
sage prior to receiving a message. As follower it is the other way round. In the case of a
follower, it often occurs that the message received can be consumed by any process instance.
I.e. in this particular case, it should be allowed that different process instances compete for the
same message. However, once a message was sent or received, there should be no competition
for messages with other process instances any longer. This must be considered in the instance
isolation analysis.

Figure 4.17 from the previous section illustrates the distinction between initiators and fol-
lowers. Here, the seller acts as follower and the incoming purchase order might be processed by
any process instance. More details on initiators and followers can be found in [35], where a set
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Figure 4.18: Representing two concurrent conversations

of common correlation scenarios are listed.

For instance isolation analysis, we are going to represent two concurrent conversations by
duplicating the ν∗-nets. Figure 4.18 illustrates this for our example. At the heart of the analysis,
we need to identify those situations where two receive transitions belonging to the same role are
enabled for the same message in different conversations.

The basic idea is to use reachability of markings for detecting these situations. We need to
find those markings where two competing receive transitions are enabled for the same token on
a shared communication place.

Definition 4.3 (Competition marking) Let (P, PC , T, F,m0) be the open composition of the
ν∗-nets N1, . . . , Nn. A marking m is a competition marking regarding Ni and Nj iff i 6= j
and there exist transitions t1 ∈ Ti, t2 ∈ Tj that share a communication place as input place,
i.e. P ′C = •t1 ∩ •t2 6= ∅, and that are enabled in m with modes σ1 and σ2 and σ∗1(F (p, t1)) =
σ∗2(F (p, t2)) for some p ∈ P ′C . �

Figure 4.19 shows the marking [b2, b5, c1, s1, s5]. ro1 and ro2 share the communication
place c1, i.e. P ′C = {c1}. The token residing on place c1 could be consumed by either transition
ro1 or transition ro2, due to σ∗1(F (c1, ro1)) = σ∗2(F (c1, ro2)) = (x). We can conclude that the
marking [b2, b5, c1, s1, s5] is a competition marking.

In this marking, however, competition should actually be allowed as the two sellers have not
entered the conversations yet. The assignment whether buyer 1 talks to seller 1 or seller 2 has
not been decided yet. Therefore, we must distinguish between situations where competition is
allowed and situations where a message was already sent or received by the respective process
instance. This can be detected by checking whether there is a transition sequence that leads to
the marking and contains a corresponding communication transition. If this is the case, we say
that the respective process instance is conversation-engaged in that marking.

Definition 4.4 (Conversation-engagement) Let (P, PC , T, F,m0) be the open composition
of ν∗-nets N1, . . . , Nn. Ni is conversation-engaged in marking m iff there exists a transition
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Figure 4.19: Competition marking

sequence from m0 to m containing a transition t ∈ Ti for that holds (•t ∪ t•) ∩ PC1 6= ∅. �

As already mentioned above, the strategy of instance isolation is to duplicate the ν∗-nets
and then check for competing receive transitions. Duplications of ν∗-nets are straightforward:
All transitions, all places (except communication places), all flow relationship and the initial
marking are copied.

Definition 4.5 (k-composition) LetN1, . . . , Nn be ν∗-nets andDi1, . . . , Dik the k duplications
of Ni. Then the k-composition is the open composition of D11, . . . , Dnk. �

Finally, we are able to define instance isolation based on k-composition, competition mark-
ings and conversation-engagement.

Definition 4.6 (Isolation regarding k instances) Let N1, . . . , Nn be ν∗-nets. Isolation regard-
ing k instances is given for the k-composition iff there is no competition marking m regarding
Dia and Dib in which Dia or Dib are conversation-engaged. �

Definition 4.7 (Complete Instance Isolation) Let N1, . . . , Nn be ν∗-nets. Complete instance
isolation is given iff for every k ≥ 2 isolation regarding k instances is given. �

While it is possible to check isolation regarding k instances for a given k, we are not able
to check complete instance isolation directly. We will show that checking isolation regarding 2
instances has implications for k instances under certain conditions.

Theorem 4.1 Isolation regarding 2 instances in the presence of reachability of all transitions
in the 1-composition implies complete instance isolation.

This theorem can be proven by assuming a choreography where all transitions in the 1-
composition are reachable, isolation regarding 2 instances is given and isolation regarding k
instances (for some k > 2) is not given. We will show that this leads to a contradiction.

As isolation regarding k instances is not given, we know that there is a competition marking
m with “problematic” messages on one (or several) communication places. This implies that
either these message do not carry any distinguishing identifier or this identifier is ignored by the
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process instances. We know that at least one of the process instances is conversation-engaged in
m and receive transition t belonging to this process instance is enabled.

All transitions in the 1-composition are reachable, including transition t. Therefore, suffi-
cient messages are produced onto the communication places for t to fire in the 1-composition.
Furthermore, it must be possible that the process instance is conversation-engaged when t is
enabled. We can conclude that if it is possible to enable transition t in the 1-composition, it is
also possible to reach a marking m′ in the 2-composition where both t and the copied transition
t′ of the second process instance are enabled for the same messages. m′ must be a competition
marking then and therefore isolation regarding 2 instances is not given, q.e.d.
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Figure 4.20: One process instance interacts with two other instances in the 2-composition

Figure 4.20 shows a 1-composition and the corresponding 2-composition. In this example,
isolation regarding 2 instances is given although no fresh name is used. The lower left process
instance can first receive a message from transition c1 and then a message from transition b2.
That way, it interacts with two process instances. Furthermore, no marking is reachable where f1

and f2 are both enabled. When adding a third process instance, it becomes obvious that isolation
regarding 3 instances (and higher) is not guaranteed any longer. The third process instance could
produce a second message on z2, leading to a competition marking.

4.4.4 Discussion

Missing correlation configuration is the typical reason for non-isolation of process instances.
However, we need to distinguish between synchronous and asynchronous communication. Of-
ten, request/response interactions are carried out synchronously. In this case, there are corre-
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lation mechanisms in place in a lower level of the protocol stack. E.g. a TCP connection is
exclusively used for exchanging request and response. Synchronous invocations can be properly
modeled by creating a fresh name and passing it along with the two messages. A discussion
about how name creation and passing can be used to formally model such scenarios was already
reported in [85], where π-calculus was employed.

As an alternative to using one channel and including correlation information as part of the
message contents (as it is the case in WS-style correlation), a different approach is advocated by
the architectural style Representational State Transfer (REST [112]). As discussed in [222], a
dedicated channel instance (in the form of a URI) is created for an expected response message.
Such a URI corresponds to the names used in ν∗-nets and in π-calculus. Therefore, ν∗-nets and
π-calculus can be used to reflect both a REST-style correlation mechanism as well as a WS-style
mechanism. However, one might argue that π-calculus more closely resembles the REST-style
while ν∗-nets more closely resemble the WS-style due to the presence of communication places.

One might also argue that a human modeler can easily detect missing or erroneous cor-
relation configuration in choreographies and that hence automatic checking of this property is
not needed. However, it must be considered that choreographies representing real-world sce-
narios can easily contain hundreds of communication places, where manual model verification
becomes error-prone.

The definition of instance isolation presented in this section assumes that every role, repre-
sented by a ν∗-net, is executed at most once in a conversation. However, there might be scenarios
where the same role is instantiated multiple times. Imagine a procurement scenario where a ship-
per has to be selected among a set of shippers. As part of that, prices and shipping conditions
need to be requested from all shippers. In this scenario there would be one role representing
all shippers and the technique presented in this section would only check isolation of a set of
process instances involved in one conversation regarding a set involved in another conversation.

In terms of computational complexity, the proposed technique suffers the usual drawbacks
of reachability analysis in the presence of concurrency. The duplication of conversations in our
technique worsens this situation as it significantly increases the number of reachable markings.

Correlation is a well-known concept especially in enterprise systems, where long-running
conversations are a frequent phenomenon. Hohpe and Woolf documented a set of architectural
patterns for such systems in [127] also including message correlation. Several web services
standards introduce correlation identifiers as first-class citizens. BPEL [108] includes correla-
tion sets and the Web Services Choreography Description Language (WS-CDL [136]) includes
identity tokens. WS-Addressing [118] is an extension to the SOAP messaging format introduc-
ing a replyTo and faultTo field into the message header. An overview over recurrent correlation
use cases can be found in [35]. The same paper uses these correlation patterns to assess BPEL
and WS-CDL.

De Pauw et al. present a technique for mining conversations from message logs in [171]. As
part of that, correlation identifiers are identified using heuristics.

The formal model used in this section extends ν-nets as presented in [208]. Here, each token
carries one name. Name matching is applied upon synchronization, i.e. in case a transition has
more than one input place. ν-nets are actually a subclass of ν∗-nets where each name vector and
variable vector is of length 1.
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ν∗-nets have the interesting property that reachability implications based on corresponding
open nets are possible. As exactly one token is consumed from each input place and exactly
one token is produced on each output place, ν∗-nets are merely more restrictive than open nets
regarding enablement of transitions. Therefore, we can conclude that if a certain transition or
marking in the corresponding open net is not reachable, then the corresponding transition or
marking is not reachable in the ν∗-net, either. Furthermore, if the open net is bounded, then the
ν∗-net will also be bounded.

The observation that a criterion might hold for a case k = 2 but does not hold for some other
k, has extensively been studied in the case of k-soundness [206, 207], a correctness criterion for
workflow nets that is a natural extension to the classical soundness (or 1-soundness) notion [18].
In this context, generalized soundness means that k-soundness is given for any k. k-soundness
is different to instance isolation as the same net structure is shared by all instances and therefore
the influence of the instances on each other is much higher. In the case of instance isolation, only
a small portion of the net structure is jointly used by all instances, namely the communication
places. Furthermore, the notion of conversation-engagement further adds to the decoupling
of the instances. Instance isolation checking cannot be mapped to k-soundness checking as the
underlying formal model for instance isolation heavily relies on name creation and name passing
capabilities which are not present in workflow nets.

4.5 Discussion and Summary

In addition to the introduction of the notion of instance isolation, this chapter has shown that
slim extensions to existing languages are sufficient to broaden their support for the requirements
from chapter 3. While these extensions seem promising at a first glance, practical insights into
the usage of these languages have already revealed major drawbacks when it comes to modeling
complex choreographies. We will use extended BPMN as basis for further discussions, although
similar issues also apply to BPEL4Chor.

4.5.1 Redundancy

Choreography modeling on the conceptual level centers around models that evolve and become
more complex over time. A good modeling language allows the modeler to reflect decisions in
the model without much effort. The number of changes needed should be minimal.

The nature of interconnection modeling requires all control-flow- and data-flow-related de-
cisions to be reflected on a per-role basis. If a modeler wants to define that the auctioning phase
finishes before payment and delivery, she has to reflect this decision for the seller role and the
buyer role, as both roles are involved in all complex interactions. Also the decision that pay-
ment should be realized through two messages, corresponding communication activities and the
control flow must again be added to both roles. It becomes even worse when introducing more
complex branching structures and loops into the model. Here, modelers need to carefully think
about how it affects the different roles.

A better suited choreography language avoids redundancy. It would only require to reflect
each decision once. Redundancy, in contrast, leads to inconsistencies within one model, which
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in turn often leads to modeling errors.

4.5.2 Over-Specification

On the way to a refined choreography model, the modeling language imposes certain syntac-
tic restrictions on which models are to be considered valid and which not. These restrictions
therefore reflect the necessary modeling decisions that have to be made. An example for an
essential modeling decision is the ownership of choices. If several alternative options exist, the
modeler needs to at least specify who is responsible for that decision or if there can be a shared
understanding among the different participants which alternative to take.

On the other hand, those restrictions that require an unimportant modeling decision need to
be avoided. For instance, BPMN supports to specify the conditions for creating a new process
instance. So called start events can have a defined trigger. This forces the modeler to decide
whether a new process instance should be created in the course of a conversation or whether
previously created process instances might become involved in a conversation. BPMN even
goes one step further and allows the definition of multiple process models per role involved in
the same choreography. For instance, each bidding message exchange initiated by a buyer could
be done in a separate process instance.

We argue that the decision about process instance boundaries and process instantiation
should be left open to each individual participant. Boundaries of process instances are not to
be decided on in a choreography. Choreographies should rather only focus on allowed conver-
sations.

4.5.3 Choreography Modeling Anti-patterns

In addition to the issues identified in the previous section, there are a number of anti-patterns that
can be observed in a large number of interconnection models, often leading to modeling errors.
Anti-patterns are parts of interconnection models that should be avoided during choreography
modeling. The list of anti-patterns presented in this section was collected by observing students
modeling BPMN. However, they are expected to be common also for other modeling languages
following the interconnected modeling style.

We can distinguish three categories of anti-patterns: those related to decision-making (D),
to ordering constraints (O) and to process instance creation and termination (I).

D1. Incompatible branching behavior. Two types of choices can be distinguished: Data-
based choices (or exclusive choice [17]) and choices driven by the environment (deferred choice
[17]). The fundamental difference between them is the ownership of the choice. While a data-
based choice is decided within a process instance based on the process data, an environment-
driven choice is based on external triggers.

Imagine two interconnected roles as illustrated in Figure 4.21. As both observable behavior
models contain a data-based choice, it can be decided for each participant individually which
branch to take. If the bidder decides to take the upper branch (credit card payment) and the
seller takes the lower branch (payment by bank transfer), the conversation will deadlock as the
seller will wait infinitely for the bank transfer payment message to arrive.
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Figure 4.21: D1. Incompatible branching
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Figure 4.22: D1. Incompatible branching be-
havior (loops)

BPMN offers a popular shortcut notation for representing loops. Instead of using XOR gate-
ways, subprocesses with a loop marker can be used. Figure 4.22 shows an example where the
seller first sends an auction creation request and then the auctioning service keeps on requesting
further details before finally sending a creation confirmation. In this example, the auctioning
service controls the loop in the sense that it decides whether to execute the communication ac-
tivities within the loop subprocess again. In contrast to this, the seller depends on the auctioning
service’s choice and has to react depending on whether another detail request comes in or a
creation confirmation comes is.

The corrected models for Figure 4.21 and Figure 4.22 can be found in Figure 4.23 and
Figure 4.24. In both cases, the event-based XOR gateway was used to properly reflect that
the decision is made by the environment. Especially the correct representation of loops where
the environment decides whether to stay in the loop or leave it seems to be difficult for human
modelers. Based on the modeling decision whether a choice is data-based or event-based the
resulting models look very different. This is counter-intuitive for many modelers.

Assuming individual decisions, an interesting situation arises in the presence of non- observ-
able decisions, as in Figure 4.21. As the decision made by the seller cannot be observed by the
bidder, the bidder cannot know which message is expected. Non-observable choices often lead
to uncontrollable models, where no models exist that are compatible with it (cf. Section 2.5.2).

This only holds true if the choices are actually independent from each other. If there is a
shared understanding of which branch to take, this problem does not arise. E.g. if credit card
payment has to be chosen for all items above a certain price or if the payment type was already
agreed upon earlier in the conversation, both participants come to the same decision.

D2. Impossible data-based decisions. In many cases, data-based decisions are used with
conditions that actually cannot be evaluated by the respective role. The data the decision is
based on might simply not be available to that role. Figure 4.25 depicts an example, where a
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Figure 4.24: Corrected model for Figure 4.22

bidder decides whether she has won the auction. We assume that the bidder cannot know who
won the auction and needs to wait for the notification by the auctioning service.
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Figure 4.25: D2. Impossible data-based deci-
sions
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error)

D3. Mixed choices. Mixed choices appear in those scenarios in which there is a choice be-
tween a message send activity and a message receive activity in such a way that the receive
alternative can only be chosen if an incoming message is actually present. Figure 4.26 shows an
example where a modeler tried to express that a seller can alter the configuration of an auction
as long as it has not been started by the auctioning service (which is indicated by a notification
message).

The BPMN diagram in Figure 4.26 is syntactically not correct. An event-based gateway
must only be followed by catching intermediate events or message receive tasks. That way,
BPMN does not support modeling mixed choices. In contrast to this, many cancellation or
update interactions actually require something at least close to mixed choices. Modeling this in
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BPMN correctly is very challenging and even experienced modelers have difficulties doing so.
While mixed choices cannot be represented directly in BPMN and other interconnection

modeling languages, different workarounds are possible, e.g. involving intermediate timer
events. The main challenge is that both participants in a mixed choice can send messages at
the same time. There are a number of strategies for resolving such situations. Section 5.4.5 will
discuss a number of these strategies in more detail.

Now we look at two anti-patterns regarding ordering of interactions.

O1. Contradicting sequence flow. Interconnection modeling requires redundant modeling of
ordering constraints between interactions. That way, modelers come up with models where se-
quence flow relationships defined for different roles contradict each other. Figure 4.27 illustrates
an example where the seller waits for the payment before sending out the goods and the bidder
waits for the goods before issuing the payment. This is a classical deadlock situation where both
participants would wait infinitely for the respective message to arrive.
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Figure 4.28: O2. Incomplete sequence flow

O2. Incomplete sequence flow. Some modelers simply omit sequence flow dependencies
as illustrated in Figure 4.28. The rationale behind this is that the dependencies between the
communication activities are implicitly given through their counterparts within the opposite role.
While this assumption is partly valid, the resulting models are often wrong (as it is the case for
Figure 4.28). Due to the missing sequence flows the diagram now contains two separate process
models for the seller. The two receive activities serve as entry points into the second model. The
model would therefore be expanded with two start events and the semantics for this is that the
execution of any of these two start events triggers a new process instance. Therefore, the second
process model would deadlock.

O3. Uni-lateral sequentialization. Some modelers come up with models, where the ordering
constraints for the different roles are not equally permissive. Figure 4.29 shows that the seller
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can handle payment and delivery in parallel while the bidder first completes the payment before
awaiting the goods. The observable behavior model for the seller is more permissive than that
of the bidder as it allows to handle the delivery before the payment has been completed.
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Figure 4.29: O3. Uni-lateral sequentialization

This anti-pattern does not cause a deadlock. However, the modeling decision of first han-
dling the payment is only reflected in the seller’s model.

Two anti-patterns regarding process instance creation and termination can be identified.

I1. Optional participation. Languages such as BPMN allow the specification of when to
create a process instance. In the context of choreographies, incoming messages are a typical
trigger for process instantiation. In contrast to this, a plain start event represents that it is left
unspecified when a process instance is created and that instantiation will eventually happen
“magically”. In the presence of optional participation of a role, as illustrated in Figure 4.30, this
becomes problematic. Here, the financial institution will deadlock if it is not involved in the
conversation.
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Figure 4.30: I1. Optional participation
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Figure 4.31: I2. Not-guaranteed termination
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I2. Not-guaranteed termination. A typical anti-pattern related to the termination of process
instances can also be seen in the context of optional participation in a certain part of a chore-
ography. Figure 4.31 illustrates an example, where a bidder deadlocks if the auctioning service
does not send a feedback request. The bidder cannot know whether the conversation has already
ended or not.

Further anti-patterns have been described by van der Aalst et al. in [13], covering some of
the anti-patterns that have been presented in this section.

4.5.4 Conclusion

The choreography anti-patterns from the previous section have shown that obviously it is not
easy to create correct choreographies using interconnection modeling languages such as BPMN.
It is an interesting question what the reason for these difficulties are. Different explanations
could be put forward. (1) The BPMN users are not trained well enough. Otherwise they would
be aware of the pitfalls in choreography modeling and would have avoided them. (2) The BPMN
tools do not support the modelers well enough. They would have suggested the correct repre-
sentation. (3) There is something wrong with the modeling language. A good language would
simply not have these pitfalls and directly support modelers in the creation of correct models.

(1) The anti-patterns were distilled from models created by undergraduate and postgraduate
students that previously had intensive training in BPMN and other modeling languages. They
knew the workflow patterns such as explicit choice and deferred choice in detail and had exten-
sive experience with BPMN’s execution semantics. Still they created erroneous models.

(2) While most students use simple drawing tools such as Microsoft Visio5 that do not pro-
vide any BPMN-specific support, others use more sophisticated BPMN tools such as Oryx6 that
include step-through-simulation and deadlock detection mechanisms. Obviously, these addi-
tional functions were not sufficient for getting around the pitfalls.

(3) It seems obvious that alternatives to interconnection modeling must be investigated fur-
ther. Such an alternative would need to avoid redundancy regarding ordering constraints, provide
easier means to specify proper branching structures and deal with instantiation and termination
elegantly.

In chapter 3 we have seen that the interaction modeling style is an alternative to the inter-
connection modeling style. The main difference is that interactions are seen as atomic building
blocks that are related using global dependencies. The following chapter will investigate how
interaction modeling helps to avoid the anti-patterns presented in this section.

5 See http://office.microsoft.com/visio/
6 See http://oryx-project.org

http://office.microsoft.com/visio/
http://oryx-project.org
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Chapter 5

Interaction Models

UML Communication Diagrams, BPSS and WS-CDL follow the interaction modeling style
(cf. Section 4.5). UML Communication Diagrams use textual annotations for expressing the
behavioral dependencies between the interactions. Through notational convention, sequences,
alternatives, parallelism and iterations can be represented, always leading to block structures.
BPSS follows a graph-based approach allowing alternative branches as well as concurrency in
choreographies. WS-CDL comes with a set of control flow constructs also covering sequences,
alternatives, parallelism and iterations. Section 4.5 has revealed the limitations of these three
languages. All lack the support for decomposition of interactions, reusability of choreographies
and proper reflection of the ownership of choices.

Modeling choreographies on the conceptual level deserves special attention. This is due to
the fact that the pitfalls discussed in the previous chapter especially hamper conceptual mod-
eling. We need to come up with a more suited choreography language for the early phases
of choreography design. The assessment of the existing languages has shown that both UML
Communication Diagrams and BPSS lack support for a wide range of requirements. That is the
reason why, unlike in the previous chapter, simply extending these languages is not an option.
The fact that none of the two languages fully supports the requirement of a graphical notation
underlines this argument.

Therefore, we are going to introduce new language proposals for interaction modeling on
the conceptual level. Before actually diving into the languages, Section 5.1 will present a formal
model that will be used throughout this chapter. The formal model is based on a special kind of
labeled Petri nets.

Section 5.2 introduces Let’s Dance, a novel choreography language inspired through the
Service Interaction Pattern initiative. The different abstraction levels and modeling constructs
are explained and the formal semantics is given through a mapping to interaction Petri nets.
Finally, Let’s Dance is validated and the generation of observable behavior models is studied.

Section 5.3 introduces iBPMN as extension to BPMN for interaction modeling. While
reusing much of BPMN’s notation, iBPMN’s semantics is significantly different to that of clas-
sical BPMN. Again, a language overview is given, the formal semantics is provided based on
interaction Petri nets and the generation of observable behavior models is discussed.

While interaction modeling comes with a number of advantages over interconnection model-

113
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ing, new anomalies arise that need to be tackled. It is possible to specify choreographies where
there does not exist a set of roles that collectively realize the behavior specified in the chore-
ography. The corresponding beauty criterion for choreographies is called realizability and the
different dimensions of it are investigated in Section 5.4.

This chapter concludes with Section 5.5 where the results are discussed. The anti-patterns
from the previous chapter are also re-discussed in the context of interaction modeling.

5.1 Formal Model

This section introduces interaction Petri nets as formal model for interaction models. This en-
ables unambiguous interpretation of choreographies and serves as basis for formal verification.
Interaction Petri nets are an extension to Petri nets (cf. Section 2.4.3). They are labeled Petri
nets, realizing the choreography-specific semantics through special labeling of transitions. The
labeling also allows to relate choreographies to conversations. Interaction Petri nets are inspired
by conversation models as presented in Section 2.4.2, considering interactions as one atomic
step. Interaction Petri nets go beyond conversation models as they natively support the notion
of concurrency. This is important as all choreography languages also support concurrency (cf.
Section 2.3). Consequently, a more intuitive formal representation is possible using interaction
Petri nets.

5.1.1 Basic Definitions

Interaction Petri nets consist of places and transitions that are connected through a flow relation.
Places can contain tokens, which in turn are needed to enable transitions. Once a transition fires,
tokens are consumed and produced. That way tokens flow through the net.

There are three different interpretations for transitions. They are either interpreted as (i)
interactions, firing of which relates to a message exchange in a conversation, (ii) silent steps that
are controlled by one or several roles, or (iii) silent steps that are not controlled by any particular
role. Silent steps do not relate to message exchanges in a conversation.

Message types are first-class constructs in interaction Petri nets, allowing the distinction be-
tween, for example, acceptance and rejection messages. In the following definitions, we denote
the set of all roles by R. A participant involved in a conversation plays one or several roles, for
example, “bidder” or “seller”. The set of message types is denoted by MT .

Definition 5.1 (Interaction Petri Net) An Interaction Petri net is a tuple (P, T, F,m0,final , λ)
where

• (P, T, F,m0) is a Petri net,

• final is a finite set of valid final markings,

• T is partitioned into a set of interactions TI , the set of controlled silent transitions TC and
the set of uncontrolled silent transitions TU , and
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• λ : (TI → (R×R×MT ))∪(TC → ℘(R))∪(TU → {τ}) is a labeling function where to
each interaction a sender role, a receiver role and a message type is assigned and to each
controlled silent transition a set of roles.
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Figure 5.1: Sample interaction Petri net

Figure 5.1 depicts a sample interaction Petri net that alludes to our example from Section 1.1.
The visual representation of interaction Petri nets is explained by the legend at the bottom of the
figure. Places are represented by circles and interactions are represented by rectangles with
three compartments, indicating the sending role (upper left corner), the receiving role (upper
right corner) and the message type (bottom label). Controlled silent transitions are represented
by rectangles labeled with the controlling roles, uncontrolled silent transitions are represented
by empty rectangles and flow arcs are represented by arrows.

In this example, the three roles S, AS and B are involved. Transition t1 is an interac-
tion with λ(t1) = (S,AS,’Creation req.’). Transition t6 is a controlled silent transition with
λ(t6) = {AS,B} and transition t8 is an uncontrolled silent transition with λ(t6) = τ . The
initial marking is [p1], meaning that place p1 contains one token and all other places are empty.
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The final marking is assumed to be [p19, p20]. In the initial marking, only t1 is enabled. After
firing of t1 the marking [p2] is reached.

Definition 5.2 (Interaction Trace) An interaction trace is the sub-sequence of a transition
sequence for a given interaction Petri net from the initial marking to a final marking that only
contains the interactions of that sequence. �

A sample interaction trace for Figure 5.1 could be 〈t1, t2, t4, t5, t4, t5, . . .〉. Silent transi-
tions do not appear in an interaction trace. The set of interaction traces for an interaction Petri
net specifies all allowed sequences of interactions, while abstracting from the silent transitions.
Interaction traces operate on the model level. Therefore, we are now going to introduce the
instance level to relate choreographies and conversations.

Message exchanges happen between two participants, one acting as sender and the other as
receiver of a message. We denote the set of all participants by A and the set of all messages by
M . Therefore, a message exchange is a triple me = (sender, receiver,message) ∈ A× A×
M . Each message is of a particular type, given by the function type : M →MT .

In order to relate choreographies and conversations, a mapping of roles to participants must
be given (map : R→ A). As several roles might be played by the same participant, map is not
necessarily injective.

Definition 5.3 (Conversation / Valid Conversation) Let a conversation conv be a sequence
of message exchanges 〈me1, . . . ,men〉. conv is a valid conversation for an interaction Petri
net and a partial function map : R → A iff there exists an interaction trace 〈t1, . . . , tn〉 for
the interaction Petri net and for each mei = (sme, rme,mme) and λ(ti) = (st, rt,mt) holds
sme = map(st), rme = map(rt) and type(mme) = mt, for all 1 ≤ i ≤ n. �

As the definition of valid conversations is based on interaction traces, a final marking must
eventually be reached. Therefore, an interaction Petri net is not just interpreted as collection of
interaction constraints, where an empty conversation or simply terminating a conversation after
a few interactions would be allowed. For instance, aborting an auctioning conversation after a
creation request message exchange would not be allowed. That way, interaction Petri nets are
also interpreted as interaction obligations. Participants are obliged to eventually interact until
the end of a conversation is reached.

5.1.2 Composition

Interaction Petri nets are mainly used for representing choreographies. However, they can also
represent observable behavior models for a role r. In this case, r must be involved in every
interaction. Observable behavior models of different roles can be composed to a new interaction
Petri net.

Definition 5.4 (Composability) Let N1 = (P1, T1, F1,m01, final1, λ1) and N2 = (P2, T2,
F2, m02, final2, λ2) be two disjoint interaction Petri nets representing the observable behavior
models of roles r1 and r2. N1 and N2 are composable iff for each transition t1 ∈ T1 where r2 is
involved there is a t2 ∈ T2 such that λ1(t1) = λ2(t2) and for each transition t2 ∈ T2 where r1 is
involved there is a corresponding t1 ∈ T1 such that λ1(t1) = λ2(t2). �
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We distinguish the synchronous composition and the asynchronous composition of observ-
able behavior models. During the synchronous composition, for every pair of corresponding
interactions a new interaction is created in the resulting net. The places are simply copied, the
flow relationships are set accordingly and the initial marking and the valid final markings are
derived.

Definition 5.5 (Synchronous composition) Let N1 = (P1, T1, F1,m01, final1, λ1) and N2 =
(P2, T2, F2,m02, final2, λ2) be the observable behavior models for roles r1 and r2 that are
composable. The synchronous composition of N1 and N2, denoted as N1 ⊕sync N2, is (P1 ∪
P2, Tnew, Fnew,m01 ⊕ m02, {m1 ⊕ m2 | m1 ∈ final1 ∧ m2 ∈ final2}), where Tnew =
TC1 ∪ TU1 ∪ TC2 ∪ TU2 ∪ {t(t1,t2) | t1 ∈ TI1 ∧ t2 ∈ TI2 ∧ λ1(t1) = λ2(t2)} and Fnew =
(F1 ∩ (P1 ∪ TC1 ∪ TU1)2) ∪ (F2 ∩ (P2 ∪ TC2 ∪ TU2)2) ∪ {(p, t(t1,t2)) | (p, t1) ∈ F1 ∨ (p, t2) ∈
F2} ∪ {(t(t1,t2), p) | (t1, p) ∈ F1 ∨ (t2, p) ∈ F2}. �
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Figure 5.2: Composing three observable behavior models to a choreography

Figure 5.2(d) illustrates the composition of three observable behavior models. The valid final
markings of the observable behavior models, which are not displayed in the figure, are {[s2]} for
role S, {[b1]} for B and {[a6]} for AS. The resulting valid final markings for the synchronous
composition are {[s2, a6, b1]}.

The synchronous composition reflects atomic interactions in the sense that message sending
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and receiving must happen at the same time. Message sending is only possible if a corresponding
message receive can happen in another role. In order to reflect asynchronous communication,
we can expand interaction Petri nets to open nets. A communication place and corresponding
flow relationships are introduced for every label (s, r,mt) in an observable behavior model. The
initial marking and the final marking can be reused as is. Finally, the open composition of open
nets can be applied (cf. Section 2.4.3).

5.1.3 Role Projection

An observable behavior model must be derived from the choreography for every role. This calls
for role projection, where those interactions are removed where the role under investigation is
not involved in. In order to approach this issue, we will first use conversation models (cf. 2.4.2)
and then shift the results to interaction Petri nets.

We extend the conversation models from [113] with silent transitions. A silent transition is
always performed by one role only and is most commonly used for representing the decision
ownership of a role. (A, τ) denotes a silent transition performed by role A.

Role projection is straightforward if the branching structures of the choreographies are not
of importance. In this case, the irrelevant interactions can simply be removed and the remaining
transitions set accordingly. Furthermore, the derivation of a minimal deterministic state machine
would then guarantee that the desired traces can be produced. This approach is followed in [113].
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(A,y,B)

(b) Deterministic role projection for A

(A,x,B)

(A,y,B)

(c) Deterministic role pro-
jection for B

Figure 5.3: Deterministic role projections

Figure 5.3(a) illustrates an example where role A does an internal choice. In an interaction
Petri net this would correspond to silent transitions controlled by A. Depending on this internal
choice, A will either send a message x or a message y to B. A role projection producing a de-
terministic state machine would look as shown in Figure 5.3(b). The information that A decides
first and then sends a message, i.e. it is A who decides what message is sent and not B, gets
lost. After the role projections (and under the assumption of a synchronous composition), both
A and B have equal influence on what message will be sent.

We argue that the ownership of choice is essential in choreographies. It makes a big differ-
ence whetherA decides alone or ifA andB have equal influence. This argumentation goes along
with the requirement R2 from Section 3.2. Therefore, we are going to present role projection
that preserves branching structures and hence respects the moment and location of choice.
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We construct the role behavior for a role r in a similar way like the operating guidelines
approach calculates a most permissive partner [152]. The states of an observable behavior model
can be derived by identifying all possible states in the choreography that can be reached without
involvement of r. Every time an observable transition happens, it can be derived what knowledge
about the current choreography state r has. Those situations are particularly interesting where r
takes part in an interaction but cannot be sure about what state the choreography is in.
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(A,x,B)

(A,x,B)

s1

s2 s4

s5 s7

(A,y,B)
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(a) Conversation model

s1 
s2 s5

s3 s6(A,x,B)

s4

s7

(A,y,B)

(A,z,B)

(b) Role projection for B

Figure 5.4: Role projection respecting branching structures

Figure 5.4(a) illustrates an example where B cannot know the choreography state when
receiving message x from role A, it could be either s3 or s6. Only after the receipt of the second
message y or z, B knows whether s4 or s7 was reached.

The following recursive algorithm defines role projection for a role r and a conversation
model with states S, initial state s0, final states final and transition relation δ. A conversation
model with new states will be created. We denote the set of all new states withN . The functions
entry, reach : N → ℘(S) will be used in the algorithm. As auxiliary notation we use s ∗→ s′

for denoting that there exists a (potentially empty) sequence of transitions without involvement
of r from s to s′.

1. Initialize entry := ∅ and reach := ∅.

2. Create new state n and set entry(n) := {s0}.

3. Determine the set of states that are reachable from some s ∈ entry(n) without involve-
ment of r, i.e. reach(n) := {s′ | ∃s ∈ entry(n) (s ∗→ s′)}.

4. For every messagemwhere r ∈ {send(m), recv(m)} determine all states {s1, . . . , sn} ⊆
reach(n) where there exists a state s′i such that (si,m, s′i) ∈ δ.

(a) For every {s′1, . . . , s′n} such that (si,m, s′i) ∈ δ for all i find a state n′ such that
entry(n′) = {s′1, . . . , s′n}. If such a state exists then add transition (n,m, n′). Oth-
erwise create a new state n′, set entry(n′) := {s′1, . . . , s′n}, add transition (n,m, n′)
and recursively proceed with step 3 where n := n′.

5. Determine the initial state n0 where entry(n0) = {s0}. Determine all final states nwhere
final ∩ reach(n) 6= ∅.
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Figure 5.5: Conversation model and role projection for A

The conversation model in Figure 5.4(b) results from applying the role projection algorithm
on the conversation model in Figure 5.4(a) for role B. Figure 5.5(a) illustrates a more com-
plex choreography and Figure 5.5(b) the role projection for role A. First, state n1 is created.
entry(n1) is set to {s1}. reach(n1) equals entry(n1) as no other state is reachable from s1
without involvement of A. States n2 and n6 are produced as s2 and s8 serve as s′1 in step 4(a) of
the algorithm. In state n3, A cannot know whether the overall choreography is in state s3, s4 or
s6 (entry(n3) = {s3} and reach(n3) = {s3, s4, s6}). Only after the next interaction with B,
A knows what final state was reached. Similarly, A knows in n7 that the overall choreography
must be in state s9, s10 or s11.
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Figure 5.6: Role projection for B

The role projection for role B looks a bit more complicated. Already in the start state n1, B
does not know whether the overall choreography is in state s1, s2 or s8 as B cannot observe the
choice made by A. After having received message x from A, B still does not know which path
was taken by A. Even worse, B can now make a decision himself. However, when starting from
s3, either s4 or s6 could be reached. When starting from s9, either s10 or s11 could be reached.
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Therefore, all possible combinations are enumerated in the state space. When reaching n5, the
next interaction with A brings clarity about the state of the overall choreography. When starting
from n8, only a z message can be sent. When starting from n3 it is particularly interesting to see
that B cannot know whether s1 or s5 was reached in the overall choreography and whether the
end of the choreography was reached or not.

The algorithm for role projection produces new states N that are not present in the original
set of states S. Sometimes, however, it is possible to reuse S, i.e. N ⊆ S. This is the case
if entry(n) contains at most one state s for each n ∈ N . Here, s could be reused as n. The
necessary and sufficient condition for |start(n)| ≤ 1 is that for all reachable s1, s2, s′2, s3, s

′
3 ∈

S and t ∈ T for which holds s2 6= s3, s1
∗→ s′2

t→ s2 and s1
∗→ s′3

t→ s3 this implies that
s′2 = s′3. Informally speaking, if two states s2 and s3 are reachable from s1 via sequences of
non-observable transitions and one observable transition t this implies that the role can choose
(and therefore know) whether it is in s2 or s3 due to the fact that the role “owns” the branching
decision.

This special case is interesting as the role projection can be done via pure structural rewrit-
ing of the conversation model. Any sequence s1

∗→ s′2
t→ s3 can be replaced by s1

t→ s2.
Figure 5.5(b) shows an example where such structural rewriting equals performing the role pro-
jection. The example from Figure 5.6 shows an example where this is not the case due to the
decision made by A which is not immediately communicated to B. As decisions are immedi-
ately communicated in most choreographies, structural rewriting can be applied for a wide range
of choreographies.

So far, we have only considered role projection in conversation models. In order to shift
this approach back to interaction Petri nets, one could follow the following strategy: (1) Given a
bounded interaction Petri net, the corresponding conversation model is computed. (2) The role
projections are generated. (3) The role projections are translated back to interaction Petri nets.

Step (3) would produce interaction Petri nets where there is exactly one token in every reach-
able marking. As an optimization, tools such as Petrify [60] could be used to reconstruct con-
currency. However, this approach often does not preserve the initial Petri net structure. The
resulting net might look completely different to the original net. Therefore, we are now going
to investigate a transformational approach where the original Petri net structure is preserved to
a larger extent.

Preserving structure is especially easy in those cases where role projection can be done
through structural rewriting. We have seen that we simply need to replace pairs of transitions by
one transition. In an interaction Petri net we need to introduce transitions that behave like firing
the two original transitions in a direct sequence.

Definition 5.6 (Transition aggregation) Given an interaction Petri net (P, T, F,m0,final , λ)
and two transitions t1, t2 ∈ T , then the transition aggregation of t1 and t2 is a new transition
t1,2 where •t1,2 = •t1 ∪ (•t2 \ t1•) and t1,2• = t2 • ∪(t1 • \ • t2). �

Figure 5.7 illustrates the definition. Here, t1 and t2 are aggregated and t3 is created.
Interaction Petri nets do not have the concept of arc weights that would allow to consume
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Figure 5.7: Transition aggregation

multiple tokens from one place or producing multiple tokens onto one place. A sufficient (but
not necessary) structural criterion for transition aggregation to work properly is •t1 ∩ •t2 ⊆ t1•
and t1•∩t2• ⊆ •t2. This guarantees that at most one token must be consumed from or produced
onto each place.

Due to the concept of concurrency it might be the case that one transition in an interaction
Petri net corresponds to multiple transitions in the conversation model. Figures 5.8(a) and 5.8(b)
illustrate this.
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Figure 5.8: Concurrency in interaction Petri nets and conversation models

The definition of transition aggregation respects the notion of concurrency to a large extent.
Only places that are input or output of the affected transitions are touched. All flow relation-
ships concerning other places are unaffected by the transition aggregation. Therefore, transition
aggregation for the example from Figure 5.8(a) results in the interaction Petri net displayed in
Figure 5.8(c). Here, place p3 has already been removed as it is never marked.

While transition aggregation already keeps the original structure to a large extent, it might
lead to undesirable results in certain scenarios. Figure 5.9(a) illustrates an example, where
transition aggregation leads to duplicate transitions in the resulting interaction Petri net (Fig-
ure 5.9(b)). The interaction Petri net in Figure 5.9(c) consists of less nodes and shows equivalent
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Figure 5.9: Optimized results through the place aggregation strategy

behavior with the previous result. The result from Figure 5.9(c) can be achieved when applying
a place aggregation strategy. Instead of creating additional transitions, places are replaced by
new places.

Definition 5.7 (Place aggregation) Given an interaction Petri net (P, T, F,m0,final , λ) and
a transition t ∈ T , then the place aggregation for t results in new places pi,j that are created
for each pair pi ∈ •t, pj ∈ t• and flow relationships (pi,j , t′) for all (pi, t′), (pj , t′) ∈ F and
(t′, pi,j) for all (t′, pi), (t′, pj) ∈ F . t and places •t ∪ t• are removed. �

A structural condition for applying place aggregation for a transition t is that •t∩ t• = ∅ and
either there is no t′ 6= t sharing an input place with t or there is no t′′ 6= t sharing an output place
with t. This is a sufficient condition for ensuring that place aggregation does not allow transition
sequences that were not possible in the original interaction Petri net. Figure 5.10 illustrates three
examples.

The two aggregation rules with their structural constraints can be used for generating role
projections of choreographies given as interaction Petri nets. However, merely operating on the
structural level and applying the rules as long as no non-observable interactions are left in the
net entails the danger of non-termination of the algorithm. It must be considered that if two
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Figure 5.10: Optimized results through the place aggregation strategy

reachable transitions t1, t2, where some output place of t1 is an input place of t2, does not
imply that there exists a reachable marking m such that m t1→ m′

t2→ m′′. Therefore, a newly
introduced transition t1,2 would not be reachable. In some cyclic nets an infinite number of
unreachable transitions could be generated.

5.2 Let’s Dance

Given the poor support for many Service Interaction Patterns by the interaction modeling lan-
guages UML Communication Diagrams and BPSS, as well as the lack of graphical notation
in the case of WS-CDL, Let’s Dance is introduced as novel language targeted at choreography
modeling on the conceptual level. It was first introduced by Zaha et al. [220] and further devel-
oped in the course of a joint choreography project between SAP Research and the Queensland
University of Technology in 2006. Let’s Dance is specifically designed to support a wide range
of Workflow and Service Interaction Patterns. Being a conceptual language, message formats
and data flow are neglected. Specification of behavioral dependencies is the main focus of Let’s
Dance. However, Let’s Dance comes with a second diagram type, called role-based view.

5.2.1 High-level Choreographies

We can distinguish between role-based views on choreographies and milestone views. Let’s
Dance directly supports both of these views. First, we are going to take a look at how Let’s
Dance can be used to model roles, participants and their relationships. Figure 5.11 gives an
overview of the different language constructs that are available for this purpose.

At the center of attention we find collaborating roles (depicted as boxes). We normally
assume that there is at most one participant involved in a choreography per role. If potentially
multiple participants of the same role, e.g. logistics companies in the role “Shipper”, take part
in a choreography, overlaid boxes are used to represent such multiplicity (e.g. role B).
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Figure 5.11: Language constructs for role-based views in Let’s Dance

Channels (depicted as small circles on lines) represent interaction dependencies between
different roles, e.g. between A and B. The meaning of such a channel is that participants of roles
that are connected through channels might interact. If there is no channel between roles “Buyer”
and “Seller” then a buyer cannot interact with a seller.

Containment of boxes depicts role hierarchies, e.g. between sub-roles C and D and super-
role E. Such hierarchies can have one of the following meanings: (1) One role is part of another
role. In this case a participant of the sub-role is part of the participant of the super-role. Imagine
e.g. a car manufacturer that can be decomposed into different production sites, warehouses and
inventory management. In terms of interaction behavior, an interaction assigned to the super-
role would be assigned to one or several out of the sub-roles in a refinement step. For instance, a
second company interacting with the car manufacturer might in fact interact with the inventory
management only. (2) A sub-role could also be a specialization of the super-role. The sub-roles
therefore inherit the interaction behavior of the super-role. If an interaction is possible with a
participant of the super-role then such interaction must also be possible with participants of all
sub-roles. As an example for role specialization we could deal with a super-role “Carrier” and
its specializations “Land Carrier” and “Air Carrier”.

Channels can be refined into message links. While channels are not directed, message links
describe the flow of a message from a sender to a receiver, e.g. from role F to G. Message names
need to be specified for every link, e.g. msg1 in Figure 5.11. As an example, imagine a channel
representing that a seller interacts with an auctioning service. Different message links could then
refine this channel into an auction creation request link from the seller to the auctioning service
and a creation confirmation flowing back.

Seller Bidder

Auctioning 
Service

Seller Bidder

Auctioning 
Service

Creation 
confirm.

Payment ack

Delivery ack

Bid ack

BidCreation req

Figure 5.12: Role-based view in Let’s Dance

Figure 5.12 shows the role-based view of our auctioning scenario. The three roles Seller,
Bidder and Auctioning Service are interconnected through channels (in the left diagram). Fur-
thermore, it is represented that at most one seller, at most one auctioning service and potentially
many sellers participate in a conversation. The right diagram shows the refinement: the channels
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Figure 5.13: Language constructs for milestone views in Let’s Dance

are refined through message links.
As a second artifact type for high-level choreographies, milestone models are available.

While role-based models only capture structural aspects of a choreography, milestone models
show high-level behavioral dependencies. Figure 5.13 introduces all language constructs and
shapes for milestone models.

As central concept we find milestones (depicted as diamonds). They represent goals and
sub-goals that are to be reached during the choreography. Different control flow constructs
show the dependencies between the milestones. At this point we will only explain the semantics
of Precedes relationships. The other relationship types will be introduced in section 5.2.2. If
a milestone m1 precedes a second milestone m2 then m1 has to be reached before m2 can be
reached. However, there is no guarantee that m2 will eventually be reached if m1 was reached.

Auction is 
set up

Bidding 
phase is 

over

Payment is 
completed

Goods are 
delivered

Auction has 
finished 
successfully

Figure 5.14: Milestone view in Let’s Dance

Figure 5.14 shows a milestone diagram for the auctioning scenario. The different milestones
are connected through Precedes relationships. This indicates that e.g. the bidding phase must
be over before the payment can be completed. However, it is not said that the payment must
eventually be completed if the bidding phase has finished.

5.2.2 Interaction Modeling

The main focus of Let’s Dance is to capture interactions and their behavioral dependencies.
An elementary interaction is a combination of a send activity and a receive activity. An actor
reference belonging to a role is given for every activity. This reference indicates which activity
instances must be performed by the same participant. Typically, there is only one participant per
role involved in a conversation. In these cases the actor reference can be omitted in the diagrams.

Figure 5.15 shows the interactions leading to the “auction is set up” milestone in the auc-
tion example. As already seen in the milestone example, Precedes relationships between two
interactions indicate that an instance of the target interaction can only happen if the instance



CHAPTER 5. INTERACTION MODELS 127

Auction creation 
request

Seller Auctioning 
Service

Account creation 
request

Auctioning 
Service Seller

Seller not registered

Seller Auctioning 
Service

Registration info Registration 
confirmation

Auctioning 
Service Seller

Auction creation 
confirmation

Auctioning 
Service Seller

Auction is 
set up

Figure 5.15: Interaction modeling in Let’s Dance
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Figure 5.16: Basic control flow constructs in Let’s Dance

of the source interaction has already happened. Imagine a logistics example where a delivery
acknowledgment should only be sent after a delivery notification. An Inhibits relationship in-
dicates that an instance of the target interaction can only happen if no instance of the source
interaction has happened yet. In an order example an invoice should not be sent after an order
cancellation by the buyer. Scenarios where two interactions inhibit each other, i.e. an instance
of either one or the other interaction can complete, are very common. Consider e.g. a travel
agency that either receives a confirmation from the customer or a cancellation from the airline
when the reserved seats become unavailable. Therefore, a special notational element for Vice-
Versa-Inhibits is introduced. A WeakPrecedes relationship means that an instance of the target
interaction can only happen after the instance of the source interaction has already completed
or was skipped. Imagine a project management scenario where the project leader expects status
updates from a subcontractor that are merged into a status report for the employer. However, in
special cases the project leader and the subcontractors can agree that no status update is needed.
The three examples for the different relationship types are depicted in Figure 5.16.

initialized

enabled

skipped

completed
enable

skip

skip

terminate

Figure 5.17: Interaction instance life cycle in Let’s Dance

Interaction instances can be in the states initialized, enabled, completed and skipped (cf.
Figure 5.17). An interaction instance becomes skipped if any of the inhibiting instances has



128 Design and Analysis of Process Choreographies

completed. An interaction instance becomes enabled if there are no Precedes and WeakPrecedes
relationships targeting the corresponding interaction or all preceding instances are completed
and all weakly preceding instances are completed or skipped. An instance must only execute,
i.e. the actual message exchange occurs, if it is enabled. After the execution the instance is in
the state completed. In the case of skipping, we find “dead path elimination” execution seman-
tics. This means that following instances are skipped along the Precedes relationships. This
semantics is the reason why Precedes and WeakPrecedes relationships must not occur in cycles.

A B B C B D

Composition

A B B C B D
If cond X [B]

Guarded Interactions

A x x A

For each x in {B, C, D, E} do [A]

Repeated Interactions

Figure 5.18: Advanced control flow constructs in Let’s Dance

In addition to the three relationship types, there are further control flow constructs in Let’s
Dance. Several interactions can belong to a composite interaction. None of the contained in-
teraction instances can become enabled before the enclosing composite interaction instance has
become enabled and the composite interaction instance can only complete after all contained
interaction instances have completed or have been skipped. Interactions can also be guarded,
i.e. at the moment an interaction instance could become enabled, a certain constraint must be
fulfilled. If this constraint is not fulfilled the instance is skipped. Finally, repetitions and parallel
branching with an unbounded number of branches are modeled through repeated interactions.
There are four types of repeated interactions in Let’s Dance: “while”, “repeat”, “for each (se-
quential)” and “for each (concurrent)”. “For each” repetitions have an expression attached that
determines a collection over which the repetition is performed. The knowledge about how many
instances are to be created for this interaction might be available at design-time or might only
be known at runtime. Repetitions can have stop conditions attached to it. E.g. a repeated re-
ceive interaction should be stopped as soon as answers from 10 participants have arrived. The
expressions attached to guarded and repeated interactions can be written in plain English, as
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Let’s Dance is not tied to any specific expression language. However, it must be defined which
actor is going to check whether a condition evaluates to true or to which collection results from
a repetition expression.

Order
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Cancel Order
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Cancel Order Resp.

Supplier Buyer

Payment Notice

Buyer Supplier

Reject Cancel Order

Supplier Buyer

For each item (seq) [S] able to cancel [S] not able to cancel [S]

Figure 5.19: Sample interaction model in Let’s Dance

Figure 5.19 shows a sample interaction model from the order management domain in Let’s
Dance. After a buyer has submitted her order to a supplier, the supplier sends back an order
response for every item in the order. As soon as all responses have been sent, the order cannot
be canceled by the buyer any longer. This is expressed through the Inhibits relationship from
“Order Response” to “Cancel Order”. If a cancellation is issued by the buyer on time, the
supplier can decide whether it can still be canceled or not. If cancellation is still possible, the
remaining order responses are skipped and the buyer does not need to pay. In the case where
cancellation is not possible, a corresponding rejection notice is sent to the buyer and the buyer
has to pay for the order. The buyer notifies the supplier through a payment notice.

5.2.3 Formal Semantics

This section first presents the meta-model for Let’s Dance models. The execution semantics of
interaction models will then be given through a translation to interaction Petri nets.
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* receivers
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parent

child *

0,1

MessageType

*
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name: String
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Figure 5.20: Meta-model for role-based models
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Roles have a multiplicity attribute indicating whether at most one participant of that role is
involved or whether potentially many participants can take part in the same conversation. Roles
have parent / child relationships and they are connected through channels. Each channel has
at most one message type assigned. Figure 5.20 illustrates this using the UML class diagram
notation [5].

We introduce a unified meta-model for milestone, scenario and interaction models. It is
illustrated in Figure 5.21. Interactions and milestones are flow objects that are connected through
relationships of types Precedes, WeakPrecedes or Inhibits. Interactions can be repeated
and can have a guard condition attached. We distinguish elementary interactions and complex
interactions. Elementary interactions have a sender role, a receiver role and a message type
defined. A complex interaction can contain flow objects.
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Figure 5.21: Meta-model for interaction models

Certain syntactic constraints have to be met.

• No relation that starts inside a repeated (composite) interaction crosses the boundary of
this interaction.

• There are no precedence, i.e. Precedes orWeakPrecedes, relationships between ances-
tors and descendants.

• There are no cyclic precedence dependencies.

All Let’s Dance choreographies without for-each constructs can be mapped to 1-safe inter-
action Petri nets. 1-safe means that in any reachable state there is at most one token in each
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place. Concurrent for-each cannot be represented properly in interaction Petri nets. The general
idea behind the mapping can be described as follows:

• Each interaction gets an “interface” consisting of a number of places tokens can be con-
sumed from and tokens can be produced to. The tokens residing on the input interface
places determine the enablement of the interaction. In this context, each Precedes re-
lationship pr is represented by two places, p(pr,do) for positive enablement (the previous
interaction completed successfully) and p(pr,skip) for negative enablement (the previous
interaction was skipped). Each WeakPrecedes relationship wp is represented by one
place p(wp,do). Each Inhibits relationship inh is represented by two places p(inh,nok) and
p(inh,ok). Here, at any point in time there is one token on one of the two places. p(inh,nok)

represents that the interaction was inhibited and p(inh,ok) that is was not inhibited.

Regarding the output places, successful completion of an interaction leads to the produc-
tion of tokens onto p(pr,do) and p(wp,do). Should there be outgoing Inhibits relationships,
it is ensured that p(inh,nok) is marked. Therefore, n2 transitions are needed where n is the
number of outgoing Inhibits relationships.

• Skipping of interactions is done through skip transitions. There are different scenarios
where skipping applies. (i) At least one of the p(pr,skip) places contains a token. (ii)
p(inh,nok) contains a token. (iii) The guard condition evaluates to false.

Figure 5.22(a) shows an interaction with two incoming Precedes relationships, one out-
going Precedes and one outgoing WeakPrecedes relationship. In Figure 5.22(b), the
interaction transition is only enabled if both p(pr1,do) and p(pr2,do) are marked. p(pr1,skip)

or p(pr2,skip) being marked leads to skipping the interaction.

Figure 5.22(c) shows an interaction with an incoming WeakPrecedes, an incoming
Precedes, an incoming Inhibits and an outgoing Precedes relationship. In Figure
5.22(d), the interaction transition is only enabled if p(wp1,do), p(pr1,do) and p(inh1,ok) are
marked. If p(inh1,nok) is marked the upper skip transition will fire, or if p(pr1,skip) is
marked the lower skip transition will fire.

Figure 5.22(e) shows an interaction with an outgoing Inhibits relationship and a guard
condition attached. In Figure 5.22(f), two interaction transitions are used for distinguish-
ing the case that p(inh1,ok) is marked from the case that p(inh1,nok) is marked. In the first
case, place p(inh1,nok) will be marked, otherwise p(inh1,nok) remains marked.

• All interactions that are not contained in a complex interaction and do not have incom-
ing Precedes or WeakPrecedes relationships are enabled from the start. This must be
considered in the initial marking.

• Complex interactions are represented using a start transition enabling all interactions with-
out incoming Precedes or WeakPrecedes relationships and an end transition that is
enabled as soon as all interactions have completed or have been skipped.

Figure 5.22(g) illustrates a complex interaction containing two elementary interactions.
The corresponding interaction Petri net mapping in Figure 5.22(h) shows that the suc-
ceeding interactions are enabled even if the contained interactions are all skipped.
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Figure 5.22: Let’s Dance models and their interaction Petri net counterparts
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• Repetitions have the special challenge that all places representing Inhibits relationships
must be reset to the initial marking, i.e. all p(inh,nok) contained in a complex interaction
must be emptied and all p(inh,ok) must be marked.

• Inhibits relationships targeting complex interactions have the notion of cancellation.
This is realized by reading from places p(inh,ok) and p(inh,nok) for every elementary inter-
action contained in the complex interaction and corresponding skip transitions.

pr1 A B

m1

B A

m2 pr2

inh1

(a)

p(wp1,do) p(pr2,do)

p(pr2,skip)p(pr1,skip)

A B

m1

B A

m2

p(inh1,nok) p(inh1,ok)

(b)

Figure 5.23: Canceling nature of Inhibits relationships

Figure 5.23(a) illustrates a complex interaction with an incoming Inhibits relationship.
In Figure 5.23(b), the two interaction transitions also read from p(inh1,ok) for ensuring that
they can only fire as long as the surrounding complex interaction was not inhibited.

5.2.4 Validation

Let’s Dance was designed by the same research group who previously identified the Service
Interaction Patterns. Therefore, it is no surprise that most patterns are directly supported in this
language. Many of the requirements from Chapter 3 are supported, too. A graphical notation
is present (Requirement C1). A structural view is provided through a separate diagram type
(C2). Decomposition of interactions is supported through complex interactions (C4). However,
modularity is not given as there is no mechanism for referring to elements in other diagrams
(C3). That way, reusability of subchoreographies is also hampered (C5).

An unlimited number of roles can be present in one choreography (R1). Ownership of
choices can be defined (R2) and multiplicity of roles is also supported (R3). Participant reference
passing was mentioned in different publications presenting the language, but always neglected
in formal semantics (R4). Cancellation is possible through the Inhibits relationship (R5). Time
constraints could be realized through a special interactions that are interpreted as arm timer and
expiration (R6). Again, this feature was never followed up on in detail and largely neglected in
this section as well.
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5.2.5 Generating Observable Behavior Models

For every role in a choreography an observable behavior model can be generated. The basic
idea is to reduce the choreography until no interaction is left, where the role in question is not
involved in. These interactions are marked as τ -interactions and then reduction rules apply to
the choreography. Figure 5.24 illustrates the rules.

i τ j i j

if ... if ...

i τ j i j

if ...

i τ j i j

if ...

i τ j i j

if ... if ...

i τ j i j

if ... if ...

i τ j i j

if ... if ...

1)

2)

3)

4)

5)

6)

Figure 5.24: Reduction as part of the generation of observable behavior models

A combination of two Precedes relationships is reduced by a new Precedes relationship.
A combination of a Precedes and a WeakPrecedes relationship or a combination of two
WeakPrecedes relationships is reduced by a newWeakPrecedes relationship. A combination
of an Inhibits and a Precedes relationship is reduced by a new Inhibits relationship. The full
formal description of the algorithm for generating observable behavior models can be found
in [220].

5.3 iBPMN

Let’s Dance can be considered a first academic proposal for a graphical language for modeling
choreographies on the conceptual level. While covering more Service Interaction Patterns than
any choreography language before, Let’s Dance did not succeed to be adopted in practice. The
language was used in several research projects. However, its notation did not enjoy much accep-
tance. The general approach of Let’s Dance to first enumerate all interactions in a choreography
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and then subsequently add restrictions, such as Precedence and Inhibits relationships, is similar
to the modeling paradigm pursued by declarative languages, e.g. Declare [173].

While this declarative paradigm seemed attractive and suited for choreographies in the first
place, the modelers involved in the projects were more used to flow-oriented modeling lan-
guages. In these kinds of languages, the set of allowed next steps is enumerated in each situation
in contrast to adding constraints and subsequently restricting the allowed behavior. Especially
explicit choices turned out to be hard to model in Let’s Dance: the vice-versa Inhibits or two
guard conditions with opposite conditions enjoyed less acceptance than explicit decision points
as known from flow-oriented languages such as BPMN oder flow charts. The difference be-
tween Precedes and WeakPrecedes also seemed unintuitive to many modelers. Furthermore, the
question arose why notational elements for loops and multiple instance activities needed to be
reinvented although there were many notations available that already include these concepts.

These observations led to the idea of reusing as much of the popular BPMN notation as pos-
sible. All basic concepts required for a choreography language (roles, interactions, behavioral
dependencies) are present in BPMN. However, a number of changes in semantics needed to be
applied. This section will introduce iBPMN. It will discuss the language constructs, the formal
semantics as well as the generation of BPMN observable behavior models out of iBPMN.

5.3.1 Language Overview

Elementary interactions are the basic building blocks of interaction models. While the commu-
nication activities are not reflected explicitly in iBPMN, interactions are assumed to be pairs of
communication activities belonging to two roles. One activity is typically interpreted as mes-
sage sending and the other as message receipt. There are a number of fundamental differences
between BPMN and iBPMN:

1. Atomicity of interactions. While BPMN distinguishes message sending and message re-
ceipt activities, corresponding communication activity instances of two participants are
assumed to happen at the same time in iBPMN.

2. Decomposition of complex interactions. The line-based representation of interactions in
BPMN hampered the integration of a clean decomposition concept. Interaction are repre-
sented as nodes in iBPMN, allowing for graphical representation of decomposition.

3. Assignment of control flow dependencies. Control flow dependencies in BPMN, such as
sequence flow and gateways, are assigned to the individual roles. Therefore, it is obvious
who is responsible for enforcing the ordering constraint imposed by a control flow con-
struct. In contrast to this, control flow dependencies in iBPMN are not assigned to any
role. It is left unspecified who enforces a particular constraint.

4. Ownership of decisions. Decision gateways are also assigned to individual roles. This
implies that the participant of that role is responsible for doing the choice. There is also
assignment of decision ownership in iBPMN. However, the assignment is syntactically
handled in a different way. One or a number of roles are specified to be responsible for
that choice.
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5. Process instance creation and termination. Process instantiation and termination is explic-
itly represented in BPMN through start events and end events. This indicates the lifespan
of process instances. This information is not provided in the case of iBPMN. Process
instantiation and termination are not defined. The latest moment of instantiation and the
earliest moment of termination of a process instance can be implied.

A
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Complex Interaction 
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Complex Interaction 
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XOR Data-based 
Gateway

XOR Event-based 
Gateway

AND-Gateway
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Interaction

Start 
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[A] [B,C][A]
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Message Flow
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B
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(many participants)

Multi instances Loop

[A] [A]

Figure 5.25: iBPMN language constructs

Figure 5.25 lists all language constructs of iBPMN. Rectangles represent roles and must not
contain further elements. Similar to the extended BPMN presented in Section 4.1, we distinguish
choreographies where at most one participant of a certain role is involved in a conversation from
those where potentially many participants are involved. The latter case is represented using a
rectangle with three bars.

Elementary interactions are represented using a letter symbol. The combination of the black
and white letter alludes to message sending and message receipt in BPMN. The message type
is defined for an elementary interaction using a label. Complex interactions are represented by
rounded rectangles. They are either collapsed, meaning that the refinements of this interaction
are hidden, or expanded, where further elements can be placed within that rectangle. Complex
interactions can also be looped or defined to be multiple instances complex interactions. Again,
the decision owner of how many iterations to perform or of how many instances to spawn must
be defined.

A collapsed complex interaction usually references a subchoreography defined in a separate
diagram. An expanded complex interaction directly contains the subchoreography. In the typi-
cal case, the same roles used in such a subchoreography are already present in the choreography
containing the complex interaction. In this case, reuse of the subchoreography is a mere integra-
tion of the interaction logic into the control flow of this upper choreography. Should different
roles be used, a mapping needs to be defined how the roles from the subchoreography map to
the roles present in the upper choreography. Alternatively, some of them can be defined to be
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additional roles.
Interactions are connected to roles via directed and undirected message flow. Directed mes-

sage flow can only be used for elementary interactions, indicating who is the sender and who the
receiver of a message. Undirected message flow indicates that certain roles (possibly more than
two) are involved in an interaction.

Control flow branching is done through XOR data-based gateways, XOR event-based gate-
ways and AND-gateways. In the case of XOR data-based gateways a branching condition must
be present if used with multiple outgoing sequence flows. In addition, it must be specified who
is the owner of the choice. This could be one role or several roles. In the latter case, the mod-
eler must ensure that all roles are actually able to evaluate the condition. The XOR event-based
gateway also indicates alternative branches. It must be followed by an elementary interaction or
a timer event. Here, the branching condition is not explicitly given and also mixed choices are
supported using this construct. AND-gateways can be used as splits or joins, spawning multiple
threads of control or synchronizing them. Timer events also have owners assigned. Finally, start
events and end events are used exactly like in BPMN.

Figures 5.26 and 5.27 illustrate the example from Section 1.1 in iBPMN. Figure 5.26 shows
a high-level view of the choreography, already specifying that at most one participant of role
seller and auctioning service will be involved in one conversation, while there are typically a
number of bidders involved.

In addition to revealing the overall topology of the choreography, the high-level view also
shows the main interaction phases in the form of complex interactions. First, the auction is set
up, involving the seller and the auctioning service. Next, the auction takes place, before delivery
and payment can be handled concurrently.

The high-level view is refined in Figure 5.27, illustrating how the different interaction sym-
bols are used. A single circle represents start interactions, while the double circle represents
intermediate interactions. Start interactions are entry points, where a corresponding message
exchange would be the start of a conversation. Multiple start interactions can appear in one
choreography, symbolizing alternative entry points into a conversation. While start interactions
are the only nodes without incoming edges in a choreography, start events are the only nodes
without incoming edges within any other complex interaction. A choreography is allowed to
have multiple end events, while any other complex interaction must contain exactly one end
event. XOR event-based gateways must only be followed by intermediate interactions or inter-
mediate timer events.

5.3.2 Formal Semantics

Formal semantics will be provided through a translation to interaction Petri nets. However,
there are a some iBPMN constructs that cannot be reflected properly in interaction Petri nets.
While we distinguish directed and undirected message flow in iBPMN and even allow collapsed
complex interactions, interaction Petri nets only operate on the level of elementary interactions.
Therefore, the mapping will largely ignore collapsed complex interactions and requires all ele-
mentary interactions to be used with directed message flow.

Furthermore, multiple instances complex interactions cannot be properly reflected in the
formal model. While spawning a (potentially infinite) number of threads can be represented in
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place / transition nets, the different threads cannot be distinguished from each other. This could
lead to an undesired lack of synchronization in the presence of AND-gateways within multiple
instance complex interactions. Even worse, the synchronization of different threads is only
possible if the number of threads is known at design-time. The fact that place / transition nets
lack support for the typical multiple instance workflow patterns [17] has already been identified
by van der Aalst et al. [16]. As a workaround, multiple instance complex interactions could be
mapped like looped complex interactions.

The third limitation of the mapping relates to the fact that roles with multiple participants
within the same conversation are not supported by the formal model introduced in the previous
subsection.

Figure 5.28 shows how the different iBPMN constructs are mapped to interaction Petri nets.
For each choreography, a distinguished start place p(start) is created. The mapping ensures that
p(start) is the only place without incoming flow arcs. All transitions have incoming and outgoing
arcs. A place without outgoing flow arcs is created for each end event of the choreography,
collectively denoted by P(end).

Interaction Petri nets require the definition of an initial marking and a set of final mark-
ings. As there is no corresponding concept in iBPMN, the markings have to be derived from
the structure. This is easy for the initial marking. As we have a distinguished start place p(start)

we use [p(start)] as initial marking. Regarding final markings, we assume that it is desirable
that at most one token arrives at every end place and that no tokens remain on non-end places
in any final marking. Therefore, for each non-empty subset of end places P ′(end) ⊆ P(end) we
introduce a final marking mf where mf (p) = 1 for all p ∈ P ′(end) and mf (p) = 0 other-
wise. Assuming Figure 5.1 to be the corresponding interaction Petri net for the iBPMN model
from Figure 5.27, the initial marking of the net would be [p1] and the final markings would be
{[p19], [p20], [p19, p20]}. We see that not all valid final markings are actually reachable.

5.3.3 Validation

This section uses the requirements framework from Chapter 3 to assess iBPMN. As a graphical
notation is present, requirement C1 is supported. An iBPMN choreography can be reduced to a
structural view just by omitting the control flow constructs (C2). Collapsed complex interactions
allow to modularize a diagram (C3) and realize clean decomposition of choreographies at the
same time (C4). Thanks to the possibility to map roles used in a subchoreography to the roles
used in the upper choreography, iBPMN fully supports requirement C5.

Multi-lateral choreographies can be expressed by using more than two roles (R1). Ownership
of choices can be specified for XOR data-based gateways, loops and multi-instance complex
interactions (R2). Multiple participants per role are realized through a dedicated construct in
iBPMN (R3). Time constraints can be expressed through timer events (R6).

Due to the absence of data flow in iBPMN, reference passing is not supported (R4). This
issue will be discussed in the open issues presented in Chapter 7. While simple cancellation
scenarios can be covered through XOR event-based gateways, cancellation of subchoreographies
is not possible in iBPMN. Again, the discussion is postponed until Chapter 7.
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5.3.4 Generating Observable Behavior Models

While deriving observable behavior models for the different roles from classical BPMN chore-
ographies is trivial, deriving these models from iBPMN choreographies is more complex. There-
fore, this section discusses the challenges and presents an algorithm for deriving observable
behavior models in BPMN out of iBPMN models.

A typical approach to generate observable behavior models out of interaction models is
by means of model reduction (cf. [221]). Those interactions where the corresponding role is
involved in are converted into corresponding communication activities. The other interactions
are removed from the model while preserving the control flow dependencies.

The generation approach can be divided into three phases. (i) Interactions and other con-
structs are converted into communication activities and other corresponding constructs. Con-
structs that are not relevant for the observable behavior model of a role are converted into τ -
nodes. (ii) τ -nodes are removed and control flow is rearranged accordingly. Empty complex
interactions are also removed. (iii) Control flow is rearranged in a way that the syntactical con-
straints of BPMN are fulfilled.

(i) As illustrated in Figure 5.29(1a) through 5.29(2c), interactions are converted into corre-
sponding communication activities or into a τ -node (depicted as crossed out rectangle). In the
case of choices, the location of choice needs to be considered carefully. In iBPMN we have
introduced ownership of choices for XOR data-based gateways, allowing to specify who is able
to / responsible for evaluating the branching condition. The same concept also applies to multi
instances and loops. If the observable behavior model is to be created for a role that does not
own the decision, XOR event-based gateways have to be used in BPMN as the role depends on
an external choice. This can easily be done for XOR data-based gateways and also for loops
(which are expanded into a structure containing gateways, cf. Figure 5.29(3b) and 5.29(4b)).
However, in the case of multi instances, sequentialization has to be applied due to a lack of
support for the workflow pattern “multiple instances without apriori knowledge” in BPMN (cf.
Figure 5.29(5b)). It is not possible to specify that parallel instances can be created on the fly
while other instances are still running.

Timer events are handled in a similar way like interactions. They are either converted into
a τ -node (Figure 5.29(6b)) or left as they are (Figure 5.29(6a)). XOR event-based gateways are
converted to XOR data-based gateways if all following nodes are interactions and the current
role is the sender. Otherwise, an observable behavior model cannot be generated. Especially
mixed choices are a major challenge in this context. This issue will be discussed in more detail
under the name of desynchronizability in Section 5.4. All other constructs are kept, including
start events, end events and AND-gateways.

(ii) During the removal phase, all τ -nodes and empty complex interactions are removed.
The latter also applies to those structures that were generated out of loops and multi instance
complex interactions, cf. Figures 5.29(4b) and 5.29(5b).

(iii) During the rearrangement phase we mainly face the BPMN requirement that XOR event-
based gateways must only be followed by (catching) intermediate events. Figure 5.30 highlights
the different situations we might run into. XOR data-based gateways can be handled through
duplication (Figure 5.30(1a) and 5.30(1b)). XOR event-based gateways with multiple incoming
sequence flows also require duplication (Figure 5.30(2a)). AND-splits require duplication and
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sequentialization (Figure 5.30(3b)). If a XOR event-based gateway is followed by a complex
interaction, then this complex interaction needs to be expanded. In the case of a multi instance
complex interaction, sequentialization needs to be applied.

We might also encounter situations that we cannot handle properly and where we cannot
create a valid BPMN model. Such a situation occurs if the succeeding node is an AND-join.
This situation is called non-free-choice in the Petri net world [92] and cannot be expressed in
BPMN. It is illustrated in Figure 5.30(3a). Other problematic situations involve XOR event-
based gateways followed by message send events (Figure 5.30(4)).

Figure 5.30(5) illustrates how end events are handled when directly following a XOR event-
based gateway. Here, the end event is simply removed. This has the effect that the participant of
that role might not be able to know whether a conversation has already ended or not.

Figure 5.31 illustrates the generated result for role seller of our iBPMN example from Fig-
ure 5.27. We see that an AND-gateway appears that has one incoming and one outgoing se-
quence flow. Such unnecessary gateways can be removed from the model using simple reduction
techniques.

Especially the bidder role from our example reveals some of the challenges when generating
observable behavior models. In the original model, a distinction is made between the bidder
winning the auction and the other bidders. The winner gets the success notification and all other
bidders get a notification about having lost the auction. Such a distinction between different sets
of participants cannot be made in iBPMN.
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Figure 5.31: Generated observable behavior model for the seller role

5.4 Realizability

It turns out that interaction models come with a new class of anomalies. In many cases, an
observable behavior model can be found for every role of an interaction model such that they
collectively realize the behavior specified by the interaction model. In contrast to this, it might
occur that it is impossible to find observable behavior models that collectively show this behav-
ior. This is mainly due to the fact that the behavioral dependencies specified in the interaction
model are not directly assigned to a particular role. This global nature of dependencies might
lead to their unrealizability.

We can identify several issues related to the problem of realizability. The examples illus-
trated in Figure 5.32 through 5.35 hint to some of the subtleties.

A B

m1

C D

m2
p1 p2 p3

(a)

A B

m1

C D

m2

p1

p2

p3

(b)

Figure 5.32: Interaction model examples

Figure 5.32(a) shows the example already described in Section 2.5.4. The final marking is
[p3]. It is not possible to find interacting roles that exactly show the specified behavior. The
enablement relationship between the first and the second interaction cannot be realized without
additional interactions asC andD cannot know whetherA andB have already interacted or not.
Nevertheless, it would be possible to find interacting roles that show a subset of the specified
behavior: Imagine two roles A and B that interact and roles C and D simply do nothing. In this
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case, however, a conversation would not terminate properly, as the final state cannot be reached.
Figure 5.32(b) shows a choice between two interactions and valid final markings {[p2], [p3]}.

Similarly to the previous example, A and B cannot know whether C and D have already inter-
acted and vice versa. In contrast to the previous example, we can find roles that collectively
realize at least a subset of the specified behavior with proper termination. Imagine again that
only rolesA andB interact while C andD do nothing. In contrast to this, we are not able to find
a set of roles that realize a subset of the behavior where all interactions from the conversation
model are reachable.
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Figure 5.33: Interaction model examples

Similarly to the first example, the enablement dependency between the AB interaction and
the CD interaction is the problem in Figure 5.33(a). As a solution, C could wait for the message
from B before interacting with D. Once the BC interaction has happened it is clear that the AB
interaction also must have happened. The resulting behavior would be a properly terminating
subset of the initially specified behavior.

Figure 5.33(b) shows an example containing a non-deterministic choice. This conversation
model represents that A should internally be able to decide whether B will interact with C later
on. However, B cannot observe this decision as in any case it will get a message x from A. As
A does not have any control over the BC interaction, the decision whether this interaction takes
place or not will be independent form A’s initial choice. When only considering the possible
traces of the conversation model we could create roles that collectively produce exactly the same
traces. The main difference is that B or C can decide whether the final interaction takes place
or not in the realization. We see that considering the branching structure is crucial whenever the
ownership of (and the moment of) choice is of importance.
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Figure 5.34: Interaction model examples

Figure 5.34(a) shows a cyclic example containing a choice between an AB interaction and
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a CD interaction, similarly to the second example. The difference here is that by expanding the
cycle to a sequence, we can at least find roles that realize a subset of the behavior.

Figure 5.34(b) shows an example that is perfectly realizable in a synchronous world, where
C can block B until it has interacted with A. However, when considering an asynchronous
world, where message sending and receiving do not happen in one step, the order of the send
activities would not conform to the order of interactions in the conversation model.
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Figure 5.35: Interaction model examples

Figure 5.35 also shows an example that is realizable in a synchronous world. Here, a mixed
choice between sending and receiving takes place. In an asynchronous world, it might occur
that A and B send messages concurrently leading to a deadlock as the corresponding response
message will not arrive.

The examples show that we need to distinguish different notions of realizability. The re-
mainder of this section will investigate some of these notions in more detail, especially full
realizability, local enforceability and desynchronizability.

5.4.1 Dimensions of Realizability

We need to consider different communication models, the complete behavior of an interaction
model vs. a subset of behavior and we can consider different equivalence notions for comparing
behavior.

Communication model. One option is to assume synchronous communication, where send-
ing and receiving of messages happens at the same time. Two flavors are possible in this context:
it might be allowed that a sender blocks until the receiver is ready to receive the message. Al-
ternatively, the conversation fails if a role can only send in a given state without any other role
being able to receive the message.

In asynchronous settings, message send and receive do not happen in one step. Here, mes-
sage buffers are introduced for storing the incoming messages. We might assume that there is
only one queue, e.g. with FIFO message delivery, or that there is a buffer where any incoming
message can be received from.

The order of interactions is of central importance. However, especially in the case of asyn-
chronous communication, there are different options of what ordering relationships to consider.
For instance, only the ordering of send transitions might be considered, or the ordering of receive
transitions or the ordering of communication transitions within the individual roles might be of
importance.
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Complete behavior vs. subset of behavior. Choreographies define constraints and obliga-
tions of the roles involved. Constraints apply as the choreography enumerates all allowed inter-
actions in every conversation state. Obligations apply as a final state must be reached, which in
turn is only possible through the execution of the given interactions.

In this context, we can either demand that it must be possible to carry out the complete
behavior specified in the choreography. Or, a subset of the behavior might already be sufficient.
Here, the follow-up question is what a valid subset would be. For instance, proper termination
of conversations might be a basic criterion. Furthermore, reachability of all interactions from
the original choreography might also be demanded.

Equivalence notion. Having agreed on what ordering relationships to consider and how much
of the specified behavior is of relevance, an equivalence notion for comparing the original chore-
ography and the collective behavior of the roles must be chosen. Here, trace-based techniques
can be applied. This is sufficient when dealing with deterministic behavior in the choreography
and the roles. Branching structures are of relevance in the presence of non-determinism. Here,
bisimulation-like techniques can be used. There is a whole range of equivalence notions avail-
able, which are surveyed in [31, 123]. The choice of equivalence notion is highly related to the
notion of conformance between an implementation and a specification.

In order to formally capture the different notions of realizability we introduce the following
abstract concepts. ⊕ is an operator for composing observable behavior models to an interaction
model. ∼ is a binary (and not necessarily symmetric) relation on interaction models comparing
their behavior. Conversation models or interaction Petri nets can be used for describing inter-
action models. In contrast to this, the concepts ⊕ and ∼ remain abstract so far, being some
operator and some beauty relation on choreographies. These concepts are going to be defined
later on, depending on the particular notion of realizability chosen along the three dimensions.
Here, ⊕ heavily depends on the communication model chosen and, in the case of asynchronous
communication, the ordering relationships to be considered. ∼ depends on whether the com-
plete or only a subset of the behavior is demanded and it also depends on the equivalence notion
chosen.

Definition 5.8 (Realizability) A choreography C is realizable, iff there exist observable behav-
ior models P1, . . . , Pn such that P1 ⊕ . . .⊕ Pn ∼ C. �

5.4.2 Full Realizability

The notion of full realizability focuses on synchronous communication and requires the complete
behavior under a bisimulation relation. Therefore, the relation ∼ is based on classical bisimu-
lation, defined as follows. Regarding the operator ⊕ we can directly reuse the synchronous
composition from Definition 5.5.

Definition 5.9 (Bisimulation) A bisimulation is a symmetric, binary relation R on markings
of two interaction Petri nets N1 = (P1, T1, F1,m01, final1, λ1) and N2 = (P2, T2, F2, m02,
final2, λ2) such that (m01,m02) ∈ R and for each pair (m1,m2) ∈ R holds: ifm1

t→ m′1 then
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there must exist a m′2 such that m2
t→ m′2 and (m′1,m

′
2) ∈ R. N1 ∼bisim N2 denotes that N1

and N2 are bisimulation-related. �
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Figure 5.36: Figures 5.36(a) and 5.36(b) are bisimulation-related

Figure 5.36 shows three interaction Petri nets that can be checked for equivalence using
bisimulation. The traces, i.e. the allowed sequences of interactions, of all three interaction
models are identical. Yet, the decision point whether an interaction should happen between B
and C or a second interaction between B and A is decided at a different point in time.

Although Figures 5.36(a) and 5.36(b) have a different structure, they are bi-simulation-
related. The relationR looks as follows for this exampleR = {([a1], [b1]), ([a2], [b2]), ([a3], [b3]),
([a4], [b4]), ([a5], [b5]), ([a4], [b5]), . . .} (the other tuples are given through the symmetry of R).

Having defined bi-simulation and the synchronous join, we can now refine Definition 5.8 to
full realizability:

Definition 5.10 (Full Realizability) An interaction Petri net C is fully realizable iff there exist
observable behavior modelsP1, . . . , Pn such that their synchronous composition is bi-simulation-
related to C. �

The definition of full realizability contains an existential quantifier and the number of possi-
ble observable behavior models is infinite. Therefore, it is not straightforward to actually check
full realizability. Section 5.1.3 has introduced role projection as algorithm for generating observ-
able behavior models out of a given interaction model. The approach from [113] also resorts to
role projection for realizability checking. Full realizability is slightly more challenging than the
approach from [113] because bisimulation requires the branching structures to be reflected prop-
erly. Full realizability for an interaction Petri net C is given iff the synchronous composition of
the role projections πri(C) of all involved roles ri is bisimulation-related to the original net, i.e.
πr1(C)⊕ . . .⊕ πrn(C) ∼bisim C.



CHAPTER 5. INTERACTION MODELS 149

The examples from Figures 5.34(b) and 5.35 are fully realizable.

5.4.3 Local Enforceability

Full realizability demands that the observable behavior models collectively realize the complete
behavior of the interaction model. A special class of interaction models that are not fully re-
alizable are those where at least a certain subset of the interaction model is fully realizable.
Figures 5.33(a) and 5.34(a) are examples for this. In Figure 5.33(a) the second and third inter-
actions could be sequentialized which would result in a fully realizable interaction model. In
Figure 5.34(a) the sequence AB, BC, CD would be fully realizable.

The example from Figure 5.32(a) is not fully realizable, either. Removing the second inter-
action would also result in a fully realizable interaction model. However, we do not consider
this as valid subset because proper termination of the choreography would be hampered. The
final marking could not be reached any longer.

A subset of the interaction model from Figure 5.32(b) would be fully realizable if one of
the alternatives is dropped. We do not consider this case to be a valid subset, either. We argue
that every interaction appearing in the original interaction model should also be present in the
subset. The argumentation behind this is that if there is no chance to reach a certain interaction
in a realization, the interaction model must definitely be erroneous.

In contrast to omitting interactions in a realization, a subset of behavior (guaranteeing proper
termination) might be acceptable as adding further behavioral constraints to the interaction
model would lead to a fully realizable model. We call such interaction models locally enforce-
able as all constraints in the model can actually be enforced by the roles.

We resort to the notion of a termination-preserving subset of behavior for formally defining
local enforceability. An interaction Petri net C ′ is a termination-preserving subset of C if there
is a bijective function map relating all reachable markings in C ′ with a subset of the reachable
markings in C, for all reachable m t→ m′ in C ′ must hold map(m) t→ map(m)′ in C and
from every m where there exists a transition sequence from map(m) to a final marking in C
there must be a transition marking from m to a final marking in C ′. Furthermore, the notion of
interaction-preservation demands that all transitions reachable in C must also be reachable in
C ′.

Definition 5.11 (Local Enforceability) An interaction Petri net C is locally enforceable iff
there exist observable behavior models P1, . . . , Pn such that their synchronous composition is
bisimulation-related to a termination-preserving and interaction-preserving subset of C. �

Figure 5.37 shows the four role projections of the interaction model from Figure 5.33(a). The
reachability graph of the composition of these four interaction models is shown in Figure 5.37(e).
When compared to the reachability graph of the original interaction model in Figure 5.37(f) it
can be seen that the composition includes behavior not allowed by the original interaction model.
The composition includes the case that interaction CD happens first. Therefore, as already
mentioned earlier, the original interaction model is not fully realizable.

Figure 5.38(a) shows a modified observable behavior model for role C, where the two in-
teractions have been sequentialized. When being composed with the other three observable
behavior models, the reachability graph as shown in Figure 5.38(b) appears, which is a valid
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Figure 5.37: The composition of the role projections includes unallowed behavior
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Figure 5.38: A modified observable behavior model for C leads to a valid subset

subset of the original reachability graph.

Checking local enforceability is more challenging than checking full realizability. The ex-
amples from Figure 5.37 hint to a strategy that can be applied for checking local enforceability.
If it turns out that the composition of role projections is not bisimulation related to the interac-
tion Petri net (typically because it allows more behavior), transitions from the reachability graph
of the composition must be removed.

In the example, the first CD interaction must not be possible in the initial state. This can be
achieved by either disallowing CD in the initial state of the observable behavior model for C or
for that of role D. Disallowing it in D’s model would imply that no final state can be reached
(and additionally that the CD interaction will never happen). Therefore, it can only be removed
from C’s observable behavior model. This leads to a sequentialization of interactions BC and
CD. This in turn affects the reachability graph of the composition in a second place: the CD
interaction directly after AB disappears as well. The resulting reachability graph is a subset of
the original reachability graph.

Each state in the reachability graph of the composition can be directly traced back to the
corresponding states in the observable behavior models. In the case of interaction Petri nets, this
is particularly easy: Each place in the composition model originates from exactly one observ-
able model. Therefore, each marking of the composition can be split up to the corresponding
markings of the observable behavior models.
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Cycles pose a special challenge in this transition removal strategy as not only proper termi-
nation but also the reachability of all interactions must be guaranteed by the subset of behavior.
Figure 5.39 shows the role projections of the interaction model from Figure 5.34(a). Again, the
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Figure 5.39: The composition of the role projections includes unallowed behavior

composition of these observable behavior models shows more behavior than the original inter-
action model allows. Specifically, the interaction sequences [AB,CD] and [CD,AB] were not
allowed in the original interaction model. According to the transition removal strategy, the AB
interaction must be disallowed after the CD interaction has happened. This can be achieved by
removing the AB interaction from A’s or B’s observable behavior model. In both cases, this
would remove the AB interaction from the reachability graph altogether.
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Figure 5.40: A modified observable behavior model for C leads to a valid subset

Figure 5.40(a) shows an alternative observable behavior model for role B. Here, a new
reachable state, namely [b3] was introduced and the iteration was removed. The composition
with A’s, C’s and D’s observable behavior models is shown in Figure 5.40(b). It shows a valid
subset of the behavior of the original interaction model. Obviously, duplication of states in
observable behavior models (the original marking [b1] now corresponds to both [b1] and [b3])
can also lead to valid subsets.

As dealing with these state duplications would drastically increase the complexity of the
strategy, only acyclic interaction models are processed in the local enforceability checking strat-
egy. Cyclic interaction models are then covered through a preprocessing step using unfolding
of the model. Here, it is sufficient to only consider those unfoldings where in any transition
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sequence a transition appears at most once. Figure 5.41 shows such an unfolding of the original
interaction model.
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(A,x,B) (C,z,D)

(B,y,C)

Figure 5.41: Unfolding of the acyclic interaction model

Resolving interaction models that are not fully realizable but locally enforceable is already
built into the strategy presented in this section. By constructing observable behavior models
that realize a subset of the behavior of the interaction model, we can derive maximal (acyclic)
compositions of observable behavior models that still enforce the constraints of the interaction
model. Such maximal compositions could be proposed to the modeler as resolved interaction
model.

5.4.4 Desynchronizability

Full realizability and local enforceability only deal with synchronous communication. The fol-
lowing real-world example illustrates the shortcomings of these notions and extends on the ex-
ample of Figure 5.35. This purchase order process looks as follows. A buyer submits an order
to a seller. The seller returns a confirmation message to the buyer. Finally, delivery and payment
are carried out.
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Figure 5.42: Purchase order choreography.

Several situations require a deviation from this simple process. While the seller has not sent
a delivery notification and the buyer has not initiated payment yet, the buyer has the possibility
to issue a change request, e. g. demanding an increased quantity. A change request must be
acknowledged by the seller. The buyer might as well cancel the order which in turn needs to
be confirmed by the seller. On the other hand, there might be a seller initiated change proposal,
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e. g. the previous confirmation is revised by proposing a delay of the delivery date. Figure 5.42
illustrates the choreography as interaction Petri net.

The assumption that message send and receive happen in one atomic step is not valid in
this scenario. The two participants might send messages concurrently. For example, the buyer’s
and seller’s decisions to send change requests or change proposals are decoupled. Messages are
sent concurrently. Therefore, we need to desynchronize the choreography to properly reflect
that message sending and receiving are separate steps. Figure 5.43 shows the corresponding
composed open nets.
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Figure 5.43: Desynchronized purchase order choreography.

The original purchase order model is fully realizable and each conversation eventually ter-
minates in a state where there is one token left on place p8 of the net. The desynchronized
model, on the other hand, contains several problems. For instance, a deadlock occurs if the
buyer decides to cancel the order and the seller proposes a change. Here, the buyer would wait
infinitely for a confirmation of the cancellation and the seller waits infinitely for the response to
his proposal.

The issues presented in this example are not specific to purchase ordering scenarios. Similar
issues can be found in many other areas of enterprise systems. In order to detect and locate such
problems, we introduce the notion of desynchronizability.

An interaction Petri net Ns can be “desynchronized” to a net Na using the role projections
of Ns and the asynchronous composition of the resulting nets. Thereby, we introduce commu-
nication places. Whereas communication is atomic in Ns, the sending and receipt of a message
is x explicitly modeled by two transitions !x and ?x of Na.

The desynchronized net Na usually has more behavior than the original interaction Petri net
Ns: The atomic message transfer in Ns can be mimicked by Na by firing first the sending and
then the receiving transition. Moreover, it might also be possible that Na can fire a transition
in an intermediate state introduced by the decoupling of sender and receiver. If this additional
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behavior does not jeopardize weak termination, Ns is desynchronizable.

Definition 5.12 (Desynchronizability) Let Ns be a weakly terminating and fully realizable
interaction Petri net. Ns is desynchronizable iff the desynchronized net Na for Ns weakly ter-
minates. �
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Figure 5.44: Reachability graphs showing the example’s race problem.

The most frequent reason for non-desynchronizable choreographies are mixed choices, where
there is a conflict between transitions with different senders. As mentioned earlier, the desyn-
chronized example choreography (see Fig. 5.43) contains a deadlock. Thus, the original chore-
ography in Fig. 5.42 is not desynchronizable. This can be detected by analyzing the reachability
graphs of the nets. In Fig. 5.44(a), a part of the reachability graph of the original choreography
is depicted. In the marking [p3] the transitions c and cp are (among others) enabled. The same
situation is depicted in Fig. 5.44(b) for the desynchronized net. Here, the transitions !c and !cp
are enabled in [b3, s3], but can occur concurrently: neither transition disables the other, and a
deadlocking marking [b6, s4, cp, c] is reachable when firing these transitions in either order.

Definition 5.13 (Conflict Transitions) Let Ns be a non-desynchronizable interaction Petri net
and Na the desynchronized net for Ns. Define the set of conflict transitions TC to contain all
transitions t ofNa such that: there exists a markingm withm ∗−→ mf for a markingmf ∈ final ,
and there exists a marking m′ with m t−→ m′ and m′ 6 ∗−→ m′f for any m′f ∈ final . �

The set TC contains all transitions whose firings can make a final marking unreachable.
From Fig. 5.44(b) we can conclude that the transitions !c and !cp are conflict transitions for
the desynchronized net of Fig. 5.43. With state-of-the-art Petri net model checkers such as
LoLA [193], conflict transitions can be detected efficiently even for larger choreographies.

While mixed choices are a typical reason for race problems, not all mixed choices are prob-
lematic (see Fig. 5.45). Here, both roles can send a message before receiving one. However, due
to the follow-up interactions, the desynchronized choreography weakly terminates.

Finally, conflict transitions do not necessarily need to be in a structural conflict, i. e. sharing
common input places. Figure 5.46(a) shows a synchronous choreography that weakly terminates
with final marking [p5]. Here, the choice whether the transition regarding message v or the
transition regarding w fires first influences what transitions will be enabled later on. If the
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Figure 5.45: Structural conflicts do not necessarily lead to deadlocks.
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Figure 5.46: Conflict transitions without structural conflict.

transition involving v fires, the transition involving z will not be enabled any longer.
The definition of conflict transitions also captures those scenarios where individual roles are

able to send messages in a final marking. Figure 5.47(a) shows an example involving three roles
and final marking [p4]. Figure 5.47(b) shows the desynchronized choreography as generated by
the algorithm in [89]. The final markings for the individual role projections are [a1] and [a3]
for A, [b4] for B and [c1] and [c3] for C. This results in the valid final markings [a1, b4, c3],
[a3, b4, c1], [a1, b4, c1], and [a3, b4, c3] for the desynchronized choreography, while only the first
two markings are actually reachable. In marking [a1, b4, c3] role A is ready to fire transition
!v. Firing this transition actually leads to a marking from where no valid final marking can be
reached any more. Therefore, !v is a conflict transition.

Provided that the original interaction Petri net weakly terminates there will at least be one
firing sequence leading to a final state. Therefore, conflict transitions can always be found if the
choreography is not desynchronizable. This guarantees that the modeling errors can be located
in the original interaction model. This in turn is important for the resolution of the issue.
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Figure 5.47: Deadlocks caused by firing transitions in a valid final marking.

5.4.5 Resolution Strategies for Non-Desynchronizability

The definitions from the previous section enable the identification of conflict transitions. There-
fore, modeling errors can already be located and the modeler is made aware of the fact that the
model needs to be modified or extended. As a next step, a strategy has to be chosen to remove
desynchronizability problems from a choreography. Several strategies are applied in real-world
implementations. Each strategy comes with a set of implications on the business level that need
to be carefully considered before applying them. The strategies presented in this section have
been distilled from implementation projects at SAP.

In the remainder of this section we will use the term conflicting messages for a pair of
messages sent by different partners that correspond to a pair of conflict transitions as defined in
the previous section. Both messages must belong to the same conversation.

It could be a possible strategy to resolve the choreography in such a way that conflicting
messages simply cannot occur any longer. For the example, this would mean that there is no
chance of having a delivery notification and a cancel message been sent in the same conversation.
This could be achieved e.g. through total sequentialization of the choreography, where only one
partner is allowed to send messages at a time. However, such a strategy is typically not feasible
in real-world scenarios. It is often desired that conflicting messages are possible—but for the
case that this occurs, a predefined resolution must be in place. Therefore, we are going to list
different strategies applied in practice that follow this approach.

The following strategies can be categorized into two groups. Either (a) there is a predefined
outcome upon conflicting messages, most typically one message is considered and the others
are ignored, or there might be different outcomes possible. Here, we can again distinguish three
types: (b) one partner could be allowed to determine the outcome and tell the other partners his
decision; it could also be defined that (c) each partner decides individually for the outcome, or
that (d) there is a negotiation regarding the desired outcome.



CHAPTER 5. INTERACTION MODELS 157

Precedence

The general idea is to define precedence relationships at design-time, prescribing how partners
have to behave in the case of conflicting messages. Therefore, precedence mostly falls into
category (a). If a partner detects conflicting messages, he knows the outcome of this conflict and
can immediately continue accordingly. He assumes that the other partners will also detect this
conflict sooner or later and also act accordingly.

The definition of precedence relationships must not be seen as pure technicality as it has
direct business impact. Therefore, precedence relationships would need to be part of interaction
contracts. Regarding the definition of precedence relationships we distinguish three different
strategies.

Singular Interaction Partner Precedence. This strategy looks at individual interactions, e. g.
the cancellation interaction in our example, and defines precedence of one partner over the other.
Here, we can distinguish between two settings: (i) the buyer has precedence over the seller or
(ii) the seller has precedence over the buyer.

Case (i) means that if the buyer sends the cancellation, the seller has to accept the buyer’s
cancellation in any case. This means that the buyer can assume that the cancellation message
will have the desired effect, once it has been sent. Therefore, the seller does not need to return
any confirmation message in this case. This corresponds to category (a).

In case (ii) the seller has a veto right regarding cancellation messages sent by the buyer. The
seller can accept this request and return a cancellation confirmation. Only now the buyer can be
sure that cancellation was successful. As an alternative, the seller could also send a cancellation
rejection. Therefore, the seller can decide on the outcome, implying category (b).

Deciding for each interaction for a partner precedence individually does not solve race prob-
lems in the general case. If, for example, we decide that the buyer has precedence regard-
ing buyer initiated cancellation and the seller has precedence regarding seller initiated change
proposals, deadlocks are still possible. Now imagine the opposite setting where the seller has
precedence regarding buyer initiated cancellation and the buyer has precedence regarding seller
initiated change proposals. Here, the partners have veto rights for the corresponding requests. If
the buyer sends a cancellation request and the seller sends a change proposal at the same time,
the buyer will reject the change proposal as it conflicts with the previously sent cancellation re-
quest. The same holds true for the seller reacting to the cancellation request. After both partners
have rejected the respective requests, they can, of course, resend their requests.

Type-based Precedence between Multiple Interactions. While the previous strategy con-
sidered interactions individually, this strategy considers precedence regarding combinations of
interactions. Here, the message types are considered and always a fixed outcome is defined,
therefore category (a). A crucial aspect of this strategy is that no combination of interactions is
forgotten.

A precedence rule could be that a delivery notification has precedence over buyer initiated
cancellation messages and buyer initiated change requests. On the other hand, a buyer initiated
request always has precedence over seller initiated change proposals. Figure 5.48 illustrates a
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resolved desynchronized choreography for this precedence rule. This resolved version weakly
terminates. All transitions that were added to the original Petri net have a striped background.
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Figure 5.48: Resolved purchase order choreography.

A conflict between a seller initiated change proposal and a buyer initiated change request is
resolved in the following way. In addition to being ready to consume an acceptance message for
the change proposal, the seller can also consume a change request or a cancel message instead.
This is manifested through the additional transitions ?cr and ?c. The change proposal message
must finally be consumed by the buyer without having any effect on the buyer. This happens
through the additional ?cp transition.

The proposed solution in Fig. 5.48 is still not optimal from a business point of view. If the
seller sends a change proposal while the buyer sends a change request, the messages conflict and
the seller will receive the change request and accept it. In this situation, the seller assumes that
the buyer will ignore the change proposal. However, the buyer could receive the accept message
first and receive the change proposal afterwards. Now, the buyer cannot know that this change
proposal conflicted with the change request and therefore accepts the proposal. However, the
seller is not able to receive this message and will only remove the remaining token at the end
of the choreography. From a business point of view this behavior is undesired: the buyer has
accepted a change proposal that the seller assumes obsolete.

Another problem might arise when precedences are cyclic: Imagine there are three partners
A, B and C. A can send a message to B (interaction AB), B to C (BC), and C to A (CA).
BC has precedence over AB, CA has precedence over BC, and AB has precedence over CA.
Now a conflict involving all three interactions occurs. Every partner thinks that his message has
precedence over the message received and simply ignores the incoming message. This again
could result in a deadlock.
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Situation-based Precedence between Multiple Interactions. While precedence rules be-
tween different interactions were based on message types, this strategy allows more fine-grained
precedence rules and again falls into category (a).

Imagine a logistics scenario where a customer lets a shipper transport his goods. The shipper
selects different carriers and creates a shipment that he sends to the customer and which needs
to be commented by the customer. At the same time, the customer has the possibility to cancel
his order. While cancellation precedes the shipment plan interaction in the default case, this is
only true for the first two weeks after the initial order. After these two weeks have passed, the
shipment plan interaction precedes the cancellation. This might be due to the fact that cancella-
tion at this point in time would simply involve too much cost. However, while the shipment plan
has not been finalized yet, the customer can still cancel the order.

An underlying assumption of this strategy is that both partners come to the same conclusion
about precedence. As time is the criterion in this example, both need a common understanding
about when the two weeks have passed. Therefore, the arrival time of the message cannot be
used as criterion, as the corresponding sender might not be able to know when this is.

Allowing Individual Decisions

Allowing individual decisions leaves it open to every partner involved to decide for an outcome
individually: category (c). In the case of a buyer initiated cancellation request conflicting with a
seller initiated change request, there are two alternatives for each partner:

• The seller either (S1) rejects the cancellation request and assumes that the change request
has still relevance or (S2) accepts the cancellation request and assumes that the change
request is obsolete.

• The buyer either (B1) rejects the change request and assumes that the cancellation request
has still relevance or (B2) accepts the change request and assumes that the cancellation
request is obsolete.

Out of these possibilities two are ideal outcomes: The combinations (S1)+(B2) and (S2)+(B1)
lead to the acceptance of exactly one request. Even the combination (S1)+(B1) is acceptable,
as the conversation is exactly in the same state as before the two requests and requests can be
issued again. Maybe this time, one of the partner succeeds with his intent.

Only the combination (S2)+(B2) is problematic as both requests were accepted and both
partners assume a wrong situation. However, once an accept message arrives, the conflict is
detected and a resolution can be achieved as described in the other strategies.

Although this strategy does not guarantee a proper resolution in the general case and requires
resorting to other resolution strategies, it is still worth considering as most outcomes are accept-
able. A major challenge of this approach is that the process instances need to be realigned in
case a partner has already continued, assuming his decision led to an acceptable situation. This
might involve compensation and becomes especially difficult if communication to other partners
is involved.
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Negotiation of Outcome

Negotiation is another strategy where the outcome of conflicting messages is not fixed, therefore
category (d). Here, the different partners need to reach agreement about the outcome. Such
negotiation can either happen through human intervention or automatically. Human intervention
could simply involve a phone call or an email exchange. In many cases such human intervention
is actually desirable. For instance, the cost of cancellation might increase depending on what
actions the partner has already performed. Therefore, it could be negotiated whether cancellation
is still desired under the new conditions.

As an alternative, a formal hand-shake to support negotiation could be factored into each
partner’s process. For this, all partners need to agree on conflicting messages requiring negoti-
ation and implement common exception handling logic. This would involve strictly sequential
interactions, as partners arbitrarily reciprocate to resolve the conflict. First, conflicting messages
would be detected by a partner and be broadcast to relevant partners. Each partner’s process
would be required to escalate to its common exception handling logic such that all parts of the
process impacted by the conflict are suspended. The first part of the exception handling logic
would be to determine which partner gets the write token. This remains an open issue although
some basic heuristics could be defined, e. g. the first partner detecting the conflicting messages
gets the write token. Another serious issue is managing multiple conflicts which can arise con-
currently and determining the priority in which they should be handled. These and other issues
have been handled in techniques applied for self-stabilizing systems [97].

5.5 Discussion and Summary

This chapter has introduced interaction Petri nets as formal model for interaction models based
on labeled Petri nets. One of the central differences between interaction Petri nets and conver-
sation models is that interaction Petri nets support the notion of concurrency. It might be argued
that the notion of concurrency does not necessarily need to appear in choreography formalisms.
Plotkin and Pratt even prove that concurrency, more specifically partially ordered multisets, are
unobservable when assuming that the observers are isolated individuals [177].

All choreography languages that have been proposed (cf. Section 2.3) include the notion
of concurrency. The introduction of concurrency also into the formal model eases the mapping
between choreography language and formal model. Therefore, interaction Petri nets proved
valuable for specifying the formal semantics for Let’s Dance and iBPMN. However, due to its
limited expressiveness, some of the constructs could not be mapped properly, e.g. the for each
construct in Let’s Dance and the multi instance subchoreographies in iBPMN.

The investigations on realizability in Section 5.4 are independent of particular choreography
languages. The notions full realizability, local enforceability and desynchronizability apply to
Let’s Dance, iBPMN, as well as to WS-CDL, UML Communication Diagrams and BPSS.

Let’s Dance and iBPMN have been introduced as novel interaction modeling languages.
Both languages have similar suitability for most recurring scenarios (from the perspective of how
many modeling elements are needed to represent the scenario). In contrast to this, first practical
insights into these two languages show a significant difference in the acceptance by human
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modelers. While the training effort needed to teach the two modeling languages to modelers
is similar, the correct usage of the modeling elements differed dramatically in the modeling
projects. The three different edge types in Let’s Dance confused the modelers and Precedes and
WeakPrecedes relationships were seldomly used correctly from the start. Especially the correct
representation of optional interactions in a choreography, which requires the use of guarded
interactions in combination with WeakPrecedes relationships, turned out to be a major challenge.
Or, simply the fact that alternative branches are modeled using a guard condition and the inverted
guard condition, rather than modeling an explicit decision point leading to one or the other
branch, seemed counter-intuitive. Inhibits relationships were hardly used.

iBPMN, in contrast, enjoyed a broad acceptance by the modelers right from the start. Bor-
rowing most of its notation from the Business Process Modeling Notation turned out to bring
much of BPMN’s popularity also to iBPMN. iBPMN also performed well in comparison with
the interconnection modeling style in terms of popularity. When being given the choice whether
to use Let’s Dance, BPMN or iBPMN for choreography modeling exercises, undergraduate stu-
dents following the BPM lectures at the Hasso-Plattner-Institute chose iBPMN in 86% of the
cases and BPMN in 14% of the cases. Let’s Dance was never picked as favorite choice.

The observation of anti-patterns in modeling practice was one of the main motivations be-
hind investigating the interaction modeling style. At this point we can evaluate which of these
anti-patterns can actually be avoided using a language such as iBPMN.

Incompatible branching behavior (D1) stems from the fact that the ownership of choice is not
properly modeled. In contrast to this, iBPMN enables the modeler to first reflect that alternatives
exist at a certain point in a choreography. Only in a second step, the modeler needs to think
about who actually owns the choice or who is able to make the choice. That way, incompatible
branching behavior can be avoided in most cases.

In the case of impossible data-based decisions (D2) the decision owner actually does not
have the possibility to make the decision. This problem cannot be avoided using iBPMN or
other interaction modeling languages.

Mixed choices (D3) can be represented in iBPMN and Let’s Dance. iBPMN offers event-
based gateways for this purpose and Let’s Dance offers vice-versa Inhibits relationships.

Contradicting control flow (O1) cannot occur in interaction models as the control flow is
defined on a global level which avoids redundancy and contradictions. Also the risk of incom-
plete control flow (O2), a common mistake in interconnection models, can largely be avoided
in interaction models. Uni-lateral sequentialization (O3) is not possible in interaction models,
as the control flow is defined globally. Restricting control flow constraints for individual roles
only, as it must be present for this anti-pattern, is not possible.

Optional participation (I1) and not-guaranteed termination (I2) are not an issue in interaction
models. As process instantiation and process instance termination are out of scope, correspond-
ing issues only arise on a lower level.

We can conclude that we do not face many of the anti-patterns in interaction models (D1,
D3, O1, O2, O3). Two anti-patterns are out of scope of interaction models (I1, I2). Only one
anti-pattern, namely D2, remains problematic also when using the interaction modeling style.
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Chapter 6

Implementation

Tooling plays an increasingly important role in the academic business process management com-
munity [204, 186]. There are good reasons for this fact. Firstly, theoretical concepts benefit
from exploration using prototypical implementation of the concepts. By experimentation based
on real-world business processes, concepts can be evaluated and refined. Secondly, the practical
applicability of the research work can be demonstrated, which is important to raise awareness of
academic BPM research to practitioners.

In academic research groups, researchers tend to implement small-scale prototypes that can
do exactly what the particular researcher is interested in. Typically each project is started from
scratch. If results from collaborators are re-used, then re-use is done in a non-structured way,
by copying and pasting program code. As a result, the wheel is re-invented many times, and
valuable resources are wasted. Motivated by this observation, the business process technology
research group at HPI has decided to develop an open and extensible framework for business
process management, called Oryx1.

Oryx supports web-based modeling of business processes using standard web browsers, so
that no additional software installation at the client side is required. Users log on to the Oryx
web site and authenticate by openID2, an Internet authentication standard. They start modeling
processes, share them with collaborators, or make them available to the public.

More technically, each model artifact is identified by a URL, so that models can be shared
by passing references, rather than by exchanging model documents in email attachments. Since
models are created using a browser and models are just “a bookmark away”, contribution and
sharing of process models is eased. Using a plugin mechanism and stencil technology, Oryx
is extensible. Today there are stencil sets for different process modeling languages, including
BPMN, and Event-driven Process Chains (EPC [137]), Petri nets, iBPMN, Let’s Dance and oth-
ers. But the extensibility is not restricted to process languages. The plugin mechanism also
facilitates the development of new functionality, for instance mappings to executable languages,
thereby providing a business process management framework.

Four choreography language proposals and a set of verification techniques have been pro-

1 See http://oryx-project.org
2 See http://openid.net/
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posed in the course of this thesis. A variety of extensions to Oryx have been implemented for
these approaches. The following section presents the architecture and extension mechanisms
of Oryx. The other sections introduce the implementations for the different languages and ap-
proaches presented in this thesis, namely for BPMN, BPEL4Chor, instance isolation checking,
Let’s Dance, iBPMN and realizability checking.

Oryx Architecture and Extension Mechanisms

Oryx is built to support the following three main use cases. (1) Most importantly, there must be
editing functionality for graphical business process models. Different modeling languages are
present in the BPM field. Most prominently, there are the Business Process Modeling Notation
(BPMN [6]) and event-driven process chains (EPC [137]). Here, the corresponding stencil sets
must be available and language-specific constraints on the models must be enforced. E.g. it
must not be possible to connect two events in an EPC or to have incoming sequence flow into a
start event in BPMN.

(2) Once process models have been created, it must be verified if the models are free of
modeling errors. As a precondition for such analysis, elements must be properly connected, for
instance BPMN tasks with preceding or succeeding tasks, or tasks with their parent subprocess
or pool. BPMN comes with a special challenge, namely attached intermediate events, where a
node is directly connected to another node without edges in between.

(3) Process models are subject to transformations. E.g. BPMN models must be transformed
to Petri nets in order to carry out analysis. In other scenarios, high-level models serve as input for
generating stubs for more technical models. As an example, BPMN models can be transformed
to BPEL processes. In order to ease integration with other systems, common interchange formats
must be supported.

Plugins

Browser

User

Oryx Core

Oryx 
Backend

Process
Model

RepositoryLanguage Def.
(Stencil Set)

Plugins

Process Model

Other systems

Figure 6.1: Oryx architecture

Figure 6.1 depicts the Oryx architecture. Oryx Core is a set of JavaScript routines loaded into
a web browser as part of a single document describing the whole model. Models are represented
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in RDF format. Oryx Core provides generic handling of nodes and edges; how to create, read,
and update them; as well as an infrastructure for stencil sets and plugins.

1. Language Support via Stencil Sets. Stencil sets drive the Oryx Core, as they provide
explicit typing, connection rules, visual appearance, and other features differentiating a
model editor from a generic drawing tool. Oryx today has full support for BPMN 1.2. In
addition, there is a stencil set for EPC and Petri nets.

2. Feature Extensions via Plugins. Plugins allow for both generic as well as notation-specific
extensions. E.g. element selection and cut & paste are plugin features, as they are not
needed for an Oryx viewer. More advanced plugins allow for complex model checking
beyond the powers of the stencil set language.

3. Data Portability beyond Oryx. The Oryx Core, with the help of stencil sets and plugins,
allows users to create, edit, and view visual models within a browser. Currently, Oryx does
so by self-modifying the loaded page and sending it back to the server in whole. Being
web-based, Oryx reduces deployment and collaboration to distributing a single bookmark.

More details on Oryx can be found in [81, 82, 145, 71, 67].

BPMN Implementation

BPMN is the main process modeling language supported by Oryx. Graphical editing capabilities
are available for this language and BPMN shapes can be composed to a BPMN diagram. Con-
nection rules ensure that the syntactical constraints of BPMN are ensured. On top of this basic
functionality, called BPMN editor in Figure 6.2, a number of additional software components
have been implemented in the context of this thesis.

BPMN 
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BPMN 
choreography

BPMN 2 
PN

Petri net 
interpreter

BPMN 
step-through

Weak 
termination 

checker

Petri net

BPMN 
checker

Figure 6.2: Tool chain for BPMN

The BPMN to Petri net converter produces Petri nets following the algorithm from [96].
This algorithm does not support the mapping of all BPMN constructs, e.g. complex gateways,
OR gateways and multiple instances activities are ignored.

The resulting Petri net is used as input for a Petri net interpreter that identifies the enabled
transitions in a given marking and fire transitions. This component is used by a BPMN step-
through component that allows the modeler to simulate a BPMN diagram and therefore better
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understand its control flow semantics. The enabled transitions in a given marking are projected
back to the activities, gateways and events in the original BPMN diagram. Upon selection of the
next activity or event to execute, the corresponding transition fires in the Petri net.

The BPMN checker is based on a weak termination checker and ensures the absence of
deadlocks in BPMN diagrams. Weak termination was mentioned in the context of compatibility
and desynchronizability checking (Section 2.5.1) and ensures that a valid final marking is reach-
able from every reachable marking. As valid final states are not defined in a BPMN diagram,
the following workaround was chosen. Every BPMN end event is mapped to a place without
outgoing edges. For each BPMN process it is assumed that it is desirable that at least one place
will eventually contain one token and all places not originating from end events are empty. As a
BPMN process might have multiple end events, the corresponding combinations of places imply
the set of valid final markings.

In case the Petri net does not weakly terminate, this might be due to one of two reasons: (a)
There is a deadlock. We can locate those transitions where at least one input place contains a
token and highlight the corresponding elements in the BPMN diagram (typically AND gateways
or intermediate message events). (b) There is lack of synchronization, i.e. the net is not 1-safe.
Here, we can identify those transitions firing of which leads to unsafeness of the net. Again,
we can highlight the corresponding BPMN element (typically XOR gateways or tasks with two
incoming sequence flows). The software components and their connection are illustrated using
the FMC block diagram notation [141] in Figure 6.2.

BPEL4Chor Implementation

Figure 6.3: Extended BPMN that can be translated to BPEL4Chor

A Diploma thesis jointly supervised by the University of Stuttgart and the Hasso-Plattner-
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Institute centered around the generation of BPEL4Chor out of BPMN choreographies. The main
ideas behind the transformation were already explained in Section 4.3.1. The resulting prototype
includes a stencil set for extended BPMN and the implementation of the transformation.

Figure 6.3 shows a screenshot of the prototype. The BPMN extensions in this implementa-
tion are based on BPMN 1.0 [6]. The transformation component returns a zip-file containing the
topology-file and a set of BPEL-files for the participant behavior descriptions.

Instance Isolation Implementation

A stencil set for ν∗-nets and export functionality producing an extended version of PNML [41]
were implemented. The PNML code can be read by a console tool providing a textual interface
for stepping through ν∗-nets. Instance isolation checking was implemented as well.

<pnml><net>
<place id="P1">
<initialMarking>
<token><name>x</name></token> <token><name>y</name></token>
</initialMarking>
</place>
<transition id="T1" />
<arc id="P1 to T1" source="P1" target="T1">
<inscription><expression><var>a</var></expression></inscription>
</arc>
<arc id="T1 to P1" source="T1" target="P1">
<inscription><expression><new/></expression></inscription>
</arc>
</net></pnml>

Listing 14: PNML code for nu∗-nets

Figure 6.4: Screenshot of the ν∗-editor

Listing 14 shows the XML serialization for the ν∗-net from Figure 6.4. The net contains
a place P1 and a transition T1. P1 contains two tokens carrying different names. The arcs
representing the flow relationships have inscriptions attached with the corresponding variables.
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Let’s Dance Implementation

As Let’s Dance was jointly developed with researchers of the Queensland University of Tech-
nology and SAP Research, the first tool implementation for Let’s Dance was done at SAP in the
form of Maestro for Let’s Dance [72], an extension to the Maestro toolset of SAP Research.
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Figure 6.5: Tool chain for Let’s Dance and iBPMN

A more recent prototype was implemented on top of Oryx, providing a graphical editor, a
Let’s Dance to interaction Petri nets transformator and step-through simulation functionality.
Figure 6.5 shows the corresponding components using the FMC block diagram notation [141].

iBPMN Implementation

Similar functionality as it was already mentioned for Let’s Dance is also available for iBPMN.
Figure 6.5 enumerates the implemented software components. The mapping of iBPMN to inter-
action Petri nets was shown in Section 5.3.2. Figure 6.6 shows a screenshot of the iBPMN-editor.
Including links to other diagrams or web resources is a central feature of Oryx. The collapsed
complex interactions can have a diagram assigned that further refines it. Direct navigation is
provided when clicking on the “+”-symbol. That way, hierarchical decomposition of choreogra-
phies is supported by the iBPMN editor. The shape repository on the left shows that pools, pool
sets, the different kinds of interactions, message flow arcs, gateways, sequence flow arcs and
events are the first-class citizens of iBPMN.

Realizability Implementation

Different flavors of realizability checking have been implemented. Full realizability checking,
local enforceability checking and desynchronizability checking are directly accessible through
the Oryx platform. The algorithms are based on the role projection algorithm as introduced in
Section 5.1.3 and the composition mechanism introduced in the same chapter. Furthermore, full
realizability and local enforceability use bi-simulation checking. Desynchronizability checking
is based on weak termination checking that was already mentioned in Section 6. Figure 6.7
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Figure 6.6: Screenshot of the iBPMN-editor

shows a screenshot of the interaction Petri net editor and the visualization of the desynchroniz-
ability checking functionality. The conflict transitions are highlighted.

Desynchronizability, full realizability and local enforceability checking are implemented as
Java components that run as plugins in the Oryx backend. The serialization of the diagram under
investigation is sent to the backend in RDF format. There, this format is parsed and translated
into Java object structures. The algorithms then operate on these object structures and identify
the conflict transitions in the case of desynchronizability checking. The overlay functionality of
the Oryx Core is used to visualize the conflict transitions.

Figure 6.7: Screenshot of the interaction Petri net editor and desynchronizability checking
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Chapter 7

Conclusion

This thesis has addressed two aspects of choreographies. On the one hand, it has centered around
the suitability of choreography languages. On the other hand, it has investigated correctness
criteria that are specific to choreographies.

Starting from the quest for suitable choreography languages, this thesis has surveyed promi-
nent choreography languages that were put forward by industry initiatives. A set of require-
ments was identified that allows to assess choreography languages on the conceptual and on the
technical level. These requirements were based on insights from existing choreography design
approaches, from industry examples and from real-world system integration scenarios. They
allow to compare the existing choreography languages and to identify white spots. The assess-
ment revealed that BPMN and BPEL are good starting points for extensions. BPEL, being an
orchestration language, needed to be shifted to a choreography language in the first place.

Starting from the assessment, two directions for language design were followed. (1) Minimal
language extensions were applied to BPMN and BPEL, in order to overcome the limitations of
these two languages. The resulting BPMN extensions and BPEL4Chor were validated using the
requirements framework and an integration between these two languages was discussed. It was
concluded that although mappings from one language to the other is possible in many cases, a
complete round-tripping is unrealistic. (2) A more radical approach was followed by introducing
the two novel choreography languages Let’s Dance and iBPMN. The concepts behind Let’s
Dance and the notation used for this language are very different to the existing choreography
languages. This resulted in low acceptance by modeling practitioners. iBPMN can be seen as
compromise between radical change in semantics (shifting from an interconnection modeling
style towards an interaction modeling style) and preserving the well-known notation of BPMN.
The adoption of the notation increased iBPMN’s acceptance.

Practical insights into the usage of interconnection modeling revealed that human modelers
have difficulties with the interconnection modeling style and easily run into modeling errors.
Interaction modeling largely overcomes this issue but introduces the new challenge of unreal-
izable choreographies. This underlines the fact that model quality plays a vital role also in the
choreography space.

Therefore, the second area of investigation of this thesis is formal verification. Many use
cases are already covered by existing verification techniques. Especially the notion of com-
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patibility has been studied extensively in the literature. In contrast to this, the challenges of
concurrent conversations and realizability were identified as focus areas for this thesis.

The notion of instance isolation was introduced as novel correctness criterion for choreogra-
phies, centering around proper correlation configurations. As part of that, ν∗-nets were intro-
duced as formal model, inheriting strengths of open nets and π-calculus. Regarding interaction
modeling, realizability of choreographies was a central theme. Based on interaction Petri nets, a
novel formalism for interaction modeling including concurrency and decision ownership, realiz-
ability was studied in different flavors. These investigations finally led to full realizability, local
enforceability and desynchronizability as novel correctness criteria for choreographies. In this
context, it turned out that resolution strategies can have a big impact on the business semantics
of choreographies and therefore fully automatic repair approaches are not suited.

Finally, prototypical implementations for the new choreography languages and verification
techniques were presented. Especially the graphical editing capabilities of the tools enabled hu-
man modelers to experiment with the languages. This made it possible to more easily discuss
the results with researchers all over the world and get students involved.

This thesis has introduced the explicit distinction between interconnection models and in-
teraction models as a central theme. This distinction has spurred discussions in the academic
community [142, 46]. Several other research groups have picked up the problem of realizability
of interaction models and are currently investigating it further. Realizability is particularly in-
teresting because it operates on a potentially infinite search space. While deadlock analysis, e.g.
in the context of compatibility checking, is usually performed in finite state spaces, the number
of potential participants that can realize a choreography is infinite.

This thesis has also influenced industrial initiatives. In particular, practitioners are adopting
the interaction modeling style. A similar language like iBPMN will be part of the upcoming
BPMN 2.0 standard in addition to the already existing interconnection modeling capabilities
from BPMN 1.2. A dedicated choreography profile makes choreographies an essential part of
BPMN 2.0. Also the role-based models of Let’s Dance will be part of BPMN 2.0 under the name
of “conversation models”. This can be seen as further validation for the proposals made in this
thesis. The advantages of interaction modeling have obviously made their way into industrial
initiatives. The coming years will show how the co-existence of the two modeling styles in one
language will be used in practice.

With the growing demand in cross-organizational integration of business processes and in-
formation systems, choreography modeling will likely increase in importance over the next
years. The requirements framework, the languages and the correctness criteria presented in
this thesis can serve as basis for advancing this field. However, a number of open issues remain
and must be addressed in future work or by other researchers.

Open issues arise in the context of the four choreography language proposals and in the
context of the formal verification techniques. The following sections will briefly discuss some
of the issues.
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Open Issues Regarding Choreography Languages

The BPMN extensions and BPEL4Chor cover large parts of the requirements framework. In
contrast to this, Let’s Dance and iBPMN still leave a number of white spots. Therefore, further
extensions of these languages appear as obvious next step, a step that was not taken yet due to a
number of new challenges that would arise immediately. The following explanations detail this.

As this thesis has rather focused on the language design along functional requirements, prac-
tical insights into the use of these languages also requires an in-depth empirical grounding, going
beyond the results of this thesis.

Cancellation and Exception Handling in Interaction Models

Although cancellation was presented as an important requirement in Chapter 3, iBPMN only
partially supports it. From a notational perspective this could easily be resolved by introducing
attached intermediate events for sub-choreographies. Formal semantics could be defined similar
to those presented in [96].

The main reason behind not integrating such cancellation features into iBPMN was that
it would have caused serious issues regarding realizability. An interaction, a timeout or an
exception that cancels a whole sub-choreography is typically only observable by one participant
or by a subset of participants. That way, cancellation must ensure that interactions that were
previously enabled are not enabled any longer. While in a synchronous and bi-lateral case this
might be fully realizable, most asynchronous or multi-lateral scenarios will be unrealizable, or
even if realizable desynchronizability will likely not be given.

It can be expected that the realizability notions as presented in Section 5.4 turn out to be
too strict for the case of cancellation. It might be acceptable that certain interactions can still be
carried out and their effect is ignored beyond a certain state of a conversation. This strategy is
followed for orchestrations e.g. in the BPEL formalization by Lohmann [148]. However, due to
the decentralized nature of choreographies such strategies are counterintuitive and must likely
be disallowed. It might as well turn out that the autonomicity assumption behind the realizability
notions is simply too demanding for the case of cancellation and that centralized coordination
mechanisms for handling cancellation are needed in particular cases.

Other research groups, e.g. at the University of Stuttgart, are already investigating this issue,
following an infrastructure-centric approach where an enterprise service bus (ESB) is extended
into the direction of centralized exception handling in choreography settings [143].

Data Flow in Interaction Models

Interaction models as discussed in Chapter 5 mostly concentrate on behavioral dependencies,
i.e. control flow. Extending interaction models with data flow capabilities is the consequent
next step. This would also allow to introduce the notion of reference passing into interaction
models. As it is the case with control flow, novel anomalies regarding data flow might arise.
This is caused by the fact that the participants engaging in a conversation might have different
assumptions about the current contents of data objects passed in interactions. Much like it is
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possible to model unrealizable behavioral dependencies, it can likely turn out that it is possible
to model unrealizable data flow dependencies.

Future work must investigate whether and how data flow modeling should be integrated
with choreography modeling, which new anomalies can arise and how they can be detected and
resolved.

Suitability of Languages and Empirical Studies

The requirements framework for choreography language focuses on functional requirements.
However, this is only one ingredient for a “good” modeling language. As the practical experi-
ence with the choreography language Let’s Dance shows, the acceptance of a modeling language
cannot necessarily be traced back to the support of functional requirements.

BPMN, in contrast to Let’s Dance, enjoys a major uptake in practice. This might be due
to the fact that many big vendors are supporting and pushing the standard. Another main rea-
son might be the wide acceptance by process modeling practitioners. This acceptance was not
given in the case of Let’s Dance. Especially the novel modeling constructs such as the Inhibits
relationship were disliked by modelers. Also the fact that alternative branches could only be
modeled implicitly, namely by different guarded interactions with opposing guard conditions,
was disliked.

Measuring acceptance, which in turn might lead to the ultimate success of a language, can
only be done through empirical studies. Also the questions of how well human modelers can
use a modeling language to fulfill given tasks can be answered through empirical investigations.
For instance, Jan Recker has empirically studied BPMN and other modeling languages in his
PhD thesis [184]. In this context, experiments including read and write tests can deliver an
understanding of how well human modelers perform in using one language in comparison to
another [115]. Read tests concentrate on how well humans can answer questions based on a
given model. Write tests focus on how well human modelers can create models using a certain
modeling language.

Such empirical investigations were beyond the scope of this thesis. Future work must reveal
empirical insights into the BPMN extensions, BPEL4Chor, Let’s Dance and iBPMN. This is
especially important for BPEL4Chor and iBPMN, as BPEL4Chor is a candidate for inclusion in
standardization initiatives and parts of iBPMN have already been integrated into the BPMN 2.0
proposal [164] to a large extent.

Practical Insights into Incompatibility vs. Unrealizability

One of the motivations behind favoring interaction modeling was to avoid modeling anti-patterns.
While this can actually be achieved through interaction modeling to a large extent, the new issue
of unrealizability arises. It can be argued that being able to create unrealizable choreographies
is not any better than being able to create incompatible choreographies.

By observing students that use both modeling styles it can be concluded that the probability
of running into incompatibility is much higher than running into unrealizability. This is mostly
due to the fact that simple structural rules of thumb such as “the sender of an interaction must
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be the sender or receiver of all directly preceding interactions” can be applied locally and avoid
many of the unrealizability problems.

Empirical evidence for this fact is missing and would need to be found through correspond-
ing investigations. A first argument for the usefulness of the interaction modeling style can be
derived from the fact that interaction modeling was introduced into the BPMN 2.0 proposal.

Open Issues Regarding Formal Verification

There do not only remain open issues regarding the choreography languages. Many further
investigations in the direction of formal verification of choreographies are needed as well. This
thesis is just a starting point for many interesting fields of research.

Investigations on ν∗-nets

Instance isolation checking was introduced in Section 4.4 on the basis of ν∗-nets. This formal
model is very interesting in itself. The reachability and boundedness implications regarding
simple Petri nets is one example. If a corresponding marking (or a transition) in a Petri net is not
reachable then it can be implied that the marking (or transition) in the ν∗-nets is not reachable,
either. If the corresponding Petri net is bounded, we can imply that the ν∗-net will also be
bounded. This is due to the fact that a ν∗-net can be simulated by its corresponding Petri net.

Furthermore, ν∗-nets are likely to have the same expressiveness as π-calculus has. This
could be shown by mapping π-calculus processes to ν∗-nets. Provided that this is possible, ν∗-
nets would be Turing-complete. Therefore, ν∗-nets as simple and yet expressive formal model
are an interesting object to study further.

A Unified Theory for Realizability

The role projection algorithm presented in Section 5.1 is related to the operating guidelines
approach from [152]. This leads to the assumption that the issue of realizability is quite similar
to the issue of controllability. Realizability is a criterion that is specific for interaction models.
Controllability, on the contrary, is a criterion for individual open nets. Therefore, it is not obvious
that these two fundamental criteria are related.

Different notions of controllability are available. Centralized controllability answers the
question of whether one partner exists that can control the given open net. When partitioning the
communication places into different ports, autonomous controllability and decentralized con-
trollability can be distinguished: Autonomous controllability ensures that there exists a set of
partners (one partner per port) that control the open net while not communicating among each
other and not knowing the communication behavior of each other. Decentralized controllability
ensures that there exists a set of partners that control the open net, do not communicate among
each other but agree on the individual communication behavior.

In addition to the asynchronous case of open nets, controllability is also available for syn-
chronous communication. This is important when applying controllability to the realizability
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problem. Consider an interaction model as behavior model of a centralized observer of the in-
teractions happening between the different participants. Each elementary interaction can now be
considered to be an interaction between the sender, the observer and the receiver. Different ports
can be identified based on the labeling of the interactions. Now, we check whether there exists a
set of partners that control the behavior model of the observer. If this is the case, we know that
at least a subset of the choreography can be realized by interacting partners.

Reusing controllability checking techniques for the realizability problem would allow to
reuse a range of proofs and software tools that efficiently synthesize partners.

Future work must investigate the relationship between realizability and controllability in
detail. The different notions available for controllability must be carefully matched with the
different dimensions of realizability. This research work is currently carried out by the research
group at the University of Rostock. First steps in this direction are already reported in [149].
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management mit Ereignisgesteuerten Prozessketten (EPK), volume 167 of CEUR, pages
117–136, Hamburg, Germany, December 2005.

[198] B. Selic. Using UML for Modeling Complex Real-Time Systems. In Proceedings of the
ACM SIGPLAN Workshop on Languages, Compilers, and Tools for Embedded Systems
(LCTES), volume 1474 of LNCS, pages 250–260, London, UK, 1998. Springer Verlag.

[199] H. Smith and P. Fingar. Business Process Management: The Third Wave. Meghan-Kiffer
Press, 2003.

[200] J. Su, T. Bultan, X. Fu, and X. Zhao. Towards a theory of web service choreographies. In
Proceedings 4th International Workshop on Web Services and Formal Methods (WS-FM),
volume 4937 of LNCS, pages 1–16, Brisbane, Australia, Sept 2007. Springer Verlag.

[201] P. Tarr, H. Ossher, W. Harrison, and J. Sutton, Stanley M. N degrees of separation: multi-
dimensional separation of concerns. In Proceedings of the 21st international conference
on Software engineering (ICSE), pages 107–119, New York, NY, USA, 1999. ACM.

[202] S. Tasharofi, M. Vakilian, R. Z. Moghaddam, and M. Sirjani. Modeling Web Service
Interactions Using the Coordination Language Reo. In Proceedings 4th International
Workshop on Web Services and Formal Methods (WS-FM), volume 4937 of LNCS, pages
108–123, Brisbane, Australia, September 2007. Springer Verlag.

[203] S. Thatte. XLANG Web Services for Business Process Design. Technical report, Mi-
crosoft Corporation, 2001.



BIBLIOGRAPHY 193

[204] B. F. van Dongen, A. K. A. de Medeiros, H. M. W. Verbeek, A. J. M. M. Weijters, and
W. M. P. van der Aalst. The ProM Framework: A New Era in Process Mining Tool
Support. In Proceedings of International Conference on the Applications and Theory
of Petri Nets (ICATPN), volume 3536 of LNCS, pages 444–454, Miami, USA, 2005.
Springer Verlag.

[205] R. van Glabbeek and W. Weijland. Branching Time and Abstraction in Bisimulation
Semantics. Journal of the ACM, 43(3):555–600, 1996.

[206] K. M. van Hee, N. Sidorova, and M. Voorhoeve. Soundness and separability of workflow
nets in the stepwise refinement approach. In Proceedings 24th International Conference
on Applications and Theory of Petri Nets (ICATPN), volume 2679 of LNCS, pages 337–
356, Eindhoven, The Netherlands, 2003. Springer Verlag.

[207] K. M. van Hee, N. Sidorova, and M. Voorhoeve. Generalised soundness of workflow nets
is decidable. In Proceedings 25th International Conference on Applications and Theory
of Petri Nets (ICATPN), volume 3099 of LNCS, pages 197–215, Bologna, Italy, 2004.
Springer Verlag.

[208] F. R. Velardo and D. de Frutos-Escrig. Name creation vs. replication in petri net systems.
In Proceedings 28th International Conference on Application and Theory of Petri Nets
and Other Models of Concurrency (Petri Nets), volume 4546 of LNCS, pages 402–422,
Siedlce, Poland, June 2007. Springer Verlag.

[209] B. Victor, F. Moller, M. Dam, and L.-H. Eriksson. The Mobility Workbench, 2005.
http://www.it.uu.se/research/group/mobility/mwb.

[210] W3C. Extensible markup language (xml). http://www.w3.org/XML/.

[211] A. E. Walsh, editor. UDDI, SOAP, and WSDL: The Web Services Specification Reference
Book. Prentice Hall Professional Technical Reference, 2002.

[212] M. Weidlich, G. Decker, A. Grosskopf, and M. Weske. BPEL to BPMN: The Myth of
a Straight-Forward Mapping. In Proceedings 16th International Conference on Cooper-
ative Information Systems (CoopIS), volume 5331 of LNCS, pages 265–282, Monterrey,
Mexico, Nov 2008. Springer Verlag.

[213] M. Weidlich, G. Decker, and M. Weske. Efficient analysis of bpel 2.0 processes using pi-
calculus. In Proceedings of the The 2nd IEEE Asia-Pacific Service Computing Conference
(APSCC), pages 266–274, Washington, DC, USA, 2007. IEEE Computer Society.

[214] M. Weske. Business Process Management: Concepts, Languages, Architectures .
Springer Verlag, 2007.

[215] S. White. Using BPMN to Model a BPEL Process. BPTrends, 3(3):1–18, 2005.

http://www.it.uu.se/research/group/mobility/mwb
http://www.w3.org/XML/


194 Design and Analysis of Process Choreographies

[216] P. Wohed, W. M. van der Aalst, M. Dumas, A. ter Hofstede, and N. Russell. On the
Suitability of BPMN for Business Process Modelling. In Proceedings 4th International
Conference on Business Process Management (BPM), volume 4102 of LNCS, pages 161–
176, Vienna, Austria, 2006. Springer Verlag.

[217] P. Wohed, W. M. P. van der Aalst, M. Dumas, and T. A. H. M. Hofstede. Analysis
of web services composition languages: The case of BPEL4WS. In Proceedings 22nd
International Conference on Conceptual Modeling (ER), volume 2813 of LNCS, pages
200–215, Chicago, Illinois, USA, 2003. Springer Verlag.

[218] P. Y. Wong and J. Gibbons. A Process Semantics for BPMN. In Proceedings of 10th Inter-
national Conference on Formal Engineering Methods (ICFEM), volume 5256 of LNCS,
pages 355–374, Kitakyushu-City, Japan, October 2008. Springer Verlag.

[219] D. Woods. Enterprise Services Architecture. O’Reilly, 2003.

[220] J. M. Zaha, M. Dumas, A. ter Hofstede, A. Barros, and G. Decker. Service Interaction
Modeling: Bridging Global and Local Views. In Proceedings 10th IEEE International
EDOC Conference (EDOC), pages 45–55, Hong Kong, Oct 2006. IEEE Computer Soci-
ety.

[221] J. M. Zaha, M. Dumas, A. H. ter Hofstede, A. Barros, and G. Decker. Bridging Global
and Local Models of Service-oriented Systems. IEEE Transactions on Systems, Man, and
Cybernetics, Part C, 38(3):302–318, 2008.

[222] M. zur Muehlen, J. V. Nickerson, and K. D. Swenson. Developing web services choreog-
raphy standards: the case of REST vs. SOAP. Decis. Support Syst., 40(1):9–29, 2005.

[223] M. zur Muehlen and J. Recker. How Much Language Is Enough? Theoretical and Prac-
tical Use of the Business Process Modeling Notation. In Proceedings 20th International
Conference Advanced Information Systems Engineering (CAiSE), volume 5074 of LNCS,
pages 465–479, Montpellier, France, June 2008. Springer Verlag.

All web links were last followed on 20 June 2009.


	Abstract
	Acknowledgements
	Introduction
	Motivating Example
	Choreography Terminology
	Problem Statement
	Scientific Contribution
	Outline of this Thesis
	Publications

	Related Work
	Business Process Management
	Service-oriented Architecture
	Web Services
	Web Service Orchestrations

	Choreography Languages
	Message Sequence Charts (MSC)
	Business Process Modeling Notation (BPMN)
	Business Process Schema Specification standard (BPSS)
	UML Communication Diagrams
	Business Process Execution Language (BPEL)
	Web Services Choreography Description Language (WS-CDL)
	Other Choreography Languages

	Choreography Formalisms
	Communicating Finite State Machines
	Conversation Models
	Open Nets
	Pi-calculus
	Other Formalisms
	Choreography Language Formalizations

	Correctness of Choreographies
	Compatibility
	Operating Guidelines and Controllability
	Conformance
	Realizability


	Evaluation of Choreography Languages
	Requirements for Conceptual Choreography Modeling
	Requirements Derived from Choreography Examples
	Requirements for Technical Choreography Modeling
	Assessment of Choreography Languages
	Assessment of Correctness Criteria

	Interconnection Models
	BPMN Extensions
	Extensions Overview
	Example
	Validation
	Discussion

	BPEL4Chor
	Participant Topology
	Participant Behavior Descriptions
	Participant Grounding
	Consistency between BPEL4Chor Artifacts
	Validation
	From BPEL4Chor to Executable BPEL

	Integration of BPMN and BPEL4Chor
	Mapping BPMN to BPEL4Chor
	Mapping BPEL4Chor to BPMN
	Summary

	Correlation Issues
	Correlation Architecture
	Formal Model
	Instance Isolation
	Discussion

	Discussion and Summary
	Redundancy
	Over-Specification
	Choreography Modeling Anti-patterns
	Conclusion


	Interaction Models
	Formal Model
	Basic Definitions
	Composition
	Role Projection

	Let's Dance
	High-level Choreographies
	Interaction Modeling
	Formal Semantics
	Validation
	Generating Observable Behavior Models

	iBPMN
	Language Overview
	Formal Semantics
	Validation
	Generating Observable Behavior Models

	Realizability
	Dimensions of Realizability
	Full Realizability
	Local Enforceability
	Desynchronizability
	Resolution Strategies for Non-Desynchronizability

	Discussion and Summary

	Implementation
	Conclusion
	Bibliography

