
Hasso–Plattner–Institut fuer Softwaresystemtechnik
an der Universitaet Potsdam

Temporary Binding for Dynamic Middleware Construction
and Web Services Composition

Dissertation

zur Erlangung des akademischen Grades
”Doctor rerum naturalium”

(Dr. rer. nat.)
am Fachgebiet Internet Technologien und Systeme

eingereicht an der
Mathematisch–Naturwissenschaftlichen Fakultaet

der Universitaet Potsdam

von
Wanjun Huang

Potsdam, July 3, 2006

i

ii

Acknowledgments

First and foremost, I greatly appreciate my supervisor, Prof. Christoph Meinel, not
only for his help to get the financial supporting with which I was able to come to
Germany to start my Ph.D programme, but also for his encouragement and guidance
throughout my studies, from which I learnt the skills to be a researcher and how to
work in a team environment. In addition, special thanks are given to Prof. Christoph
Meinel for his contribution on the education and cooperation with my alma mater.
I still remember the vivid scene when I was receiving the scholarship letter from his
hands in a ceremony of cooperation held in Beijing.

I additionally would like to thank my former colleagues in Institute for Telematics
and University of Trier, and current colleagues in Hasso-Plattner-Institut, for their
helps as well as the many discussions in topics about research and life in general.
Especially, I would further like to thank Dirk for his help to translate the abstract
of my dissertation into German, and thank Debbie, Raveendra, Xinhua and Long for
their helps to read partial chapters of my dissertation.

The special appreciation which should not be forgotten is given to my girlfriend
Min for her love and encouragement. The happy time we spent let me easier and
more relaxed, especially when I was struggling in my hard research work. I should
also express my appreciation to my numerous Chinese colleagues and friends. Lots
of parties we held often gave me a hallucination that I was back in China.

Finally but not least, I would like to thank my family for their loves and continuous
supporting in my studies and life.

iii

iv

Abstract

With increasing number of applications in Internet and mobile environments, dis-
tributed software systems are demanded to be more powerful and flexible, especially
in terms of dynamism and security. This dissertation describes my work concerning
three aspects: dynamic reconfiguration of component software, security control on
middleware applications, and web services dynamic composition.

Firstly, I proposed a technology named Routing Based Workflow (RBW) to model
the execution and management of collaborative components and realize temporary
binding for component instances. The temporary binding means component instances
are temporarily loaded into a created execution environment to execute their func-
tions, and then are released to their repository after executions. The temporary
binding allows to create an idle execution environment for all collaborative compo-
nents, on which the change operations can be immediately carried out. The changes
on execution environment will result in a new collaboration of all involved compo-
nents, and also greatly simplifies the classical issues arising from dynamic changes,
such as consistency preserving etc.

To demonstrate the feasibility of RBW, I created a dynamic secure middleware
system - the Smart Data Server Version 3.0 (SDS3). In SDS3, an open source imple-
mentation of CORBA is adopted and modified as the communication infrastructure,
and three secure components managed by RBW, are created to enhance the security
on the access of deployed applications. SDS3 offers multi-level security control on its
applications from strategy control to application-specific detail control. For the man-
agement by RBW, the strategy control of SDS3 applications could be dynamically
changed by reorganizing the collaboration of the three secure components.

In addition, I created the Dynamic Services Composer (DSC) based on Apache
open source projects, Apache Axis and WSIF. In DSC, RBW is employed to model
the interaction and collaboration of web services and to enable the dynamic changes
on the flow structure of web services.

Finally, overall performance tests were made to evaluate the efficiency of the
developed RBW and SDS3. The results demonstrated that temporary binding of
component instances makes slight impacts on the execution efficiency of components,
and the blackout time arising from dynamic changes can be extremely reduced in any
applications.

v

Zusammenfassung

Heutige Softwareanwendungen fuer das Internet und den mobilen Einsatz erfordern
bezueglich Funktionalitaet und Sicherheit immer leistungsstaerkere verteilte Soft-
waresysteme. Diese Dissertation befasst sich mit der dynamischen Rekonfiguration
von Komponentensoftware, Sicherheitskontrolle von Middlewareanwendungen und
der dynamischen Komposition von Web Services.

Zuerst wird eine Routing Based Workflow (RBW) Technologie vorgestellt, welche
die Ausfuehrung und das Management von kollaborierenden Komponenten modelliert,
sowie fuer die Realisierung einer temporaeren Anbindung von Komponenteninstanzen
zustaendig ist. D.h., Komponenteninstanzen werden zur Ausfuehrung ihrer Funk-
tionalitaet temporaer in eine geschaffene Ausfuehrungsumgebung geladen und nach
Beendigung wieder freigegeben. Die temporaere Anbindung erlaubt das Erstellen
einer Ausfuehrungsumgebung, in der Rekonfigurationen unmittelbar vollzogen wer-
den koennen. Aenderungen der Ausfuehrungsumgebung haben neue Kollaborations-
Beziehungen der Komponenten zufolge und vereinfachen stark die Schwierigkeiten
wie z.B. Konsistenzerhaltung, die mit dynamischen Aenderungen verbunden sind.

Um die Durchfuehrbarkeit von RBW zu demonstrieren, wurde ein dynamisches,
sicheres Middleware System erstellt - der Smart Data Server, Version 3 (SDS3). Bei
SDS3 kommt eine Open Source Softwareimplementierung von CORBA zum Einsatz,
die modifiziert als Kommunikationsinfrasturkutur genutzt wird. Zudem wurden drei
Sicherheitskomponenten erstellt, die von RBW verwaltet werden und die Sicherheit
beim Zugriff auf die eingesetzten Anwendungen erhoehen. SDS3 bietet den An-
wendungen Sicherheitskontrollfunktionen auf verschiedenen Ebenen, angefangen von
einer Strategiekontrolle bis zu anwendungsspezifischen Kontrollfunktionen. Mittels
RBW kann die Strategiekontrolle des SDS3 dynamisch durch Reorganisation von
Kollabortions-Beziehungen zwischen den Sicherheitskomponenten angepasst werden.

Neben diesem System wurde der Dynamic Service Composer (DSC) implemen-
tiert, welcher auf den Apache Open Source Projekten Apache Axis und WSIF basiert.
Im DSC wird RBW eingesetzt, um die Interaktion und Zusammenarbeit von Web
Services zu modellieren sowie dynamische Aenderungen der Flussstruktur von Web
Services zu ermoeglichen.

Nach der Implementierung wurden Performance-Tests bezueglich RBW und SDS3
durchgefuehrt. Die Ergebnisse der Tests zeigen, dass eine temporoere Anbindung
von Komponenteninstanzen nur einen geringen Einfluss auf die Ausfuehrungseffizienz
von Komponeten hat. Ausserdem bestaetigen die Testergebnisse, dass die mit der
dynamischen Rekonfiguration verbundene Ausfallzeit extrem niedrig ist.

vi

Contents

Abstract v

1 Introduction 1
1.1 Dynamic Reconfiguration . 1
1.2 Middleware Security . 3
1.3 Dynamic Services Composition . 6
1.4 Contributions and Organizational Structure 7

2 Concerned Distributed Computing Technologies 11
2.1 Object Oriented Distributed Computing 11

2.1.1 Common Object Request Broker Architecture 11
2.1.2 Microsoft Technologies . 14
2.1.3 Java Technologies . 17

2.2 Web Services Technologies . 20
2.2.1 Web Services Description Language 21
2.2.2 Universal Description, Discovery and Integration 23
2.2.3 Simple Object Access Protocol 24

2.3 Workflow Management . 25
2.3.1 Workflow Reference Model . 26
2.3.2 Workflow Patterns . 27

3 Evolution of Dynamism in Distributed Systems 29
3.1 Issues Introduction . 29
3.2 Configurable Component Systems 30
3.3 Dynamic Reconfigurable Systems . 31
3.4 Reflective Systems . 33
3.5 Multi-Solutions Supported Systems 34

4 Routing Based Workflow 37
4.1 Overview of Routing Based Workflow 37

4.1.1 Definition of Routing . 37
4.1.2 Framework of Routing Based Workflow 38
4.1.3 Three-Layers Modeling . 41

4.2 Routing Structure and Modeling . 42
4.2.1 Routing Structure . 42

vii

CONTENTS

4.2.2 Routing Modeling . 53
4.3 Routing Execution and Management 55

4.3.1 Routing Execution - Temporary Binding 56
4.3.2 Dependency Management . 60

4.4 Routing Dynamic Change . 62
4.4.1 Dynamic Change Procedure 62
4.4.2 Dynamic Capabilities . 64

4.5 XML based RBW Schema . 65
4.5.1 Port Schema . 65
4.5.2 Component and Control Link Schema 66
4.5.3 Routing Schema . 67

4.6 Extension for Distributed Components 68
4.6.1 Extension of Component Delegate 69
4.6.2 Routing for Distributed Components 73

5 Case Study: Smart Data Server Version 3.0 75
5.1 Case Introduction . 75

5.1.1 Dynamism in CORBA . 77
5.1.2 Security in CORBA . 78
5.1.3 Overview of SDS3 . 80

5.2 Communication Infrastructure . 81
5.2.1 Original Communication Infrastructure 81
5.2.2 Wrapper for Dynamic Invocation Interface 82
5.2.3 Wrapper for Object Adapter 83

5.3 Middleware Components . 84
5.3.1 Management by RBW . 85
5.3.2 Component of Authenticator 86
5.3.3 Component of Authorizer . 89
5.3.4 Component of Access Controller 91
5.3.5 Security Centre - Local Security Authority 94

5.4 Analysis on Features and Applications 95

6 Case Study: Dynamic Services Composer 97
6.1 Introduction to Services Composition 97

6.1.1 Process Oriented Composition 97
6.1.2 Semantic Based Composition 99

6.2 Modeling - RBW for Services Composition 100
6.2.1 Basic Service Modeling . 100
6.2.2 Flow Control Modeling . 101
6.2.3 Composite Service Modeling 102

6.3 System - Dynamic Services Composer 103
6.3.1 RBW Integration . 103
6.3.2 Services Invocation . 104
6.3.3 Services Configuration . 105
6.3.4 Services Deployment . 107

viii

CONTENTS

6.3.5 A Practical Example . 108
6.4 Discussion and Analysis . 109

7 Performance Tests and Analysis 111
7.1 Performance Tests . 111

7.1.1 Running Times of Execution Stages 111
7.1.2 Running Times Comparisons 115
7.1.3 Running Times for Dynamic Changes 117

7.2 Performance Analysis . 118
7.2.1 Execution Efficiency Analysis 118
7.2.2 Reconfiguration Time Analysis 119

8 Related Works 121
8.1 Related Works on Dynamic Reconfiguration 121

8.1.1 Programmed Reconfiguration 121
8.1.2 Unplanned Reconfiguration 122
8.1.3 Agent Based Reconfiguration 127
8.1.4 Adaptive Systems . 128
8.1.5 Reflective Systems . 130
8.1.6 Comparison and Evaluation 133

8.2 Related Works on Middleware Security 134
8.3 Related Works on Services Dynamic Composition 137

9 Conclusion and Future Work 141
9.1 Summary of the Advantages . 141
9.2 Summary of the Disadvantages . 143
9.3 Future Work . 143

Bibliography 145

Appendices 153

A Meta-Definition of RBW Schema 154

B RBW Schema Example for SDS3 158

C Policy Example for Access Controller 165

D RBW Schema Example for DSC 168

ix

CONTENTS

x

List of Figures

2.1 Request Invocation of CORBA . 12
2.2 CORBA Architecture . 12
2.3 Structure of Common Language Runtime 16
2.4 E-Commerce Architecture of .NET Platform 17
2.5 Framework of Java RMI . 18
2.6 Enterprise Application Architecture of J2EE Platform 19
2.7 Diagram of Web Services Technologies 21
2.8 Relation Between Elements of WSDL 22
2.9 Structure of SOAP Message . 25
2.10 Workflow Reference Model - Components & Interfaces 26

4.1 Framework of Routing Based Workflow 39
4.2 Three Layers Modeling of Routing Based Workflow 41
4.3 Structure of Routing . 42
4.4 Diagram of General Proxy Pattern 43
4.5 Diagram of Pattern of Object Pool 45
4.6 Component Processor . 46
4.7 Component Container . 48
4.8 Communication In Port and Out Port 49
4.9 Members of Abstract Class of Operation Port 50
4.10 Interface of Operation Port . 50
4.11 Diagram of AND Link . 52
4.12 Diagram of OR Link . 53
4.13 Diagram of XOR Link . 53
4.14 Diagram of MAP Link . 53
4.15 Example of Parallel Routing . 54
4.16 Example of Flow Picking Routing . 55
4.17 Example of Cycled Routing . 55
4.18 Different State of Routing Execution 56
4.19 Virtual Binding of Routing . 57
4.20 Real Binding of Component . 58
4.21 Request Execution Steps . 59
4.22 Methods for Control Dependency . 61
4.23 Control Dependencies of Component 61
4.24 Dynamic Change Steps . 63

xi

LIST OF FIGURES

4.25 Key Operations for Dynamic Change 65
4.26 Port Meta-Data in XML Schema . 66
4.27 Component Meta-Data in XML Schema 67
4.28 Meta-Data of Parameter Element . 67
4.29 Control Link Meta-Data in XML Schema 67
4.30 Routing Meta-Data in XML Schema 68
4.31 Meta-Data of Link Element . 68
4.32 Extension of Component Delegate . 69
4.33 Request/Response Message Format in NOTP 70
4.34 Interaction between Remote and Local Delegates 72
4.35 Routing for Distributed Components 73

5.1 Architecture of Smart Data Server Version 1.0 76
5.2 Architecture of Smart Data Server Version 2.0 76
5.3 Architecture of Secure Middleware - SDS3 80
5.4 Example of a CORBA Request with DII 82
5.5 Example of a SDS3 Request with DII Wrapper 83
5.6 Working Mechanism of Workflow Adapter 85
5.7 Secure Components in RBW . 86
5.8 Data Encryption/Decryption using Public/Private Key 87
5.9 Primary Methods of Class of Signature Certificate 88
5.10 Serialization Format of SC Elements 89
5.11 Work Diagram of Authorizer Component 90
5.12 Access Enforcement of Access Controller 93
5.13 Screenshot of Attribute Certificate Creating 94
5.14 Example of Sub-Policy of Target Access Policy 96

6.1 Working Diagram of BPEL4WS . 98
6.2 Working Diagram of WSCI . 99
6.3 Diagram of Service Component . 100
6.4 Diagram of Composite Service . 102
6.5 Architecture of Dynamic Services Composer 103
6.6 Diagram of RBW Abstract . 104
6.7 Simplified Configuration for Basic Service Activity 106
6.8 Simplified Configuration for Composite Service Activity 107
6.9 Pseudo Code of a Typical Implementation of Composite Services . . . 107
6.10 The Composite Service of Stock Query and Sending 108

7.1 Parsing Times for Different XML Configurations 112
7.2 Instantiation Times for Different Routings 113
7.3 Running Times of Virtual Binding for Different Routings 114
7.4 Running Times of Real Binding for Different Components 114
7.5 Running Times of Real Unbinding for Different Components 115
7.6 Running Time Comparison of Different Execution Stages 116
7.7 Running Time Comparison between Different Solutions 117

xii

LIST OF FIGURES

7.8 Running Time of Change from SDS3-HalfSecurity to SDS3-NoSecurity 117
7.9 Definition of Execution Efficiency . 118
7.10 Definition of Predicted Time for Dynamic Changes 120

8.1 Change Management Model for System Reconfiguration 123
8.2 A Nested Open Binding . 131

xiii

LIST OF FIGURES

xiv

List of Tables

7.1 Execution Efficiency of SDS3 Components 118
7.2 Running Times for Change Operations Tested in SDS3 119

xv

LIST OF TABLES

xvi

Chapter 1

Introduction

The continuous emergence of new requirements for business software calls for the ur-
gent need of developing large scale distributed systems, featured by easy integration,
powerful functionality and high flexibility to adapt to the varying application envi-
ronments. This chapter presents an introduction on three research issues involved in
my work: dynamic reconfiguration on distributed system, security control on mid-
dleware applications and web services dynamic composition. Also covered are the
contributions and the organizational structure of the present research.

1.1 Dynamic Reconfiguration

Dynamic reconfiguration is the ability to change the structure of a software system
whilst the applications continue to be accepted and executed. The change opera-
tions could be, for example, adding a component, removing a component, replacing a
component or reorganizing the collaboration relation of components. There are two
typical application scenarios in which dynamic reconfiguration is strongly demanded.
The first scenario is long-time running distributed system supporting continuous ser-
vices in which a break of services or shutdown of system is not tolerable. So the
dynamic reconfiguration on the software system is compulsory to update new version
of components, add new functional components or remove broken components etc.
Another application scenario demanding dynamic reconfiguration is reactive systems,
such as mobile computing systems, in which different components are demanded to
be flexibly reorganized to adapt to the varying application environment. Considering
an application example of mobile computing, a sale manager is participating a high
quality video conference with his customers using a mobile device in a train. With
the moving of the train the signal bandwidth in new area becomes weak, the high
quality video conference has to be switched to low quality video conference or even
audio conference to enable the conversation continuous. In this case, the mobile ap-
plication server has to detect the changes in its environment and dynamically make
the reconfiguration on the system.

In [25] one kind of dynamic reconfiguration was distinguished as programmed re-
configuration, in which the changes are defined at the design time and are automati-

1

CHAPTER 1 - INTRODUCTION

cally triggered by the system when the defined conditions are met. In this dissertation,
the dynamic reconfiguration is only referred to the unplanned dynamic reconfigura-
tion that is triggered by administrators or third-part programs at unpredictable time
whilst the server is still running. A perfect dynamic reconfiguration should be capable
of completing its execution within an expected short time and make no impact on
the rest part of the system. Namely, all other unchanged components of the system
should be able to function properly during the period of reconfiguration. However,
the affected components may already be in the process of functioning when the change
instruction arrives, so the dynamic reconfiguration is unavoidably an intrusive process
for the whole system. The problems arising from dynamic reconfiguration could be
summarized and classified as follows [66]:

Structure Integrity - Component IO Behaviors

The structure integrity aims to ensure the accuracy of the reconfigured system in
terms of component IO behaviors. The reconfiguration approach has to specify the
correct communication path between the changed components and the rest of the
system so that the reconfigured system can continue seamlessly to provide applica-
tion services. Regarding the replacement or update of components, the structure
integrity is much easier to maintain. The new versions of components just have to
keep the same IO behaviors of old components to keep compatibility. For the change
operations, like adding new components or removing old components etc., a new com-
munication path for each component has to be reestablished between itself and the
surrounding components. The changes in the collaboration relation of components
should always be transparent to the applications deployed in the system, namely the
applications do not have to make any changes during the reconfiguration. However,
the invocation method to access the applications might be changed after the recon-
figuration, indicating a potential demand for reconfiguration. For instance, a secure
component is required to be inserted into a system to enhance the security on the
invocation of its applications.

Consistency Preserving - Change Process

During the period of reconfiguration, the affected components have to deal with two
kinds of tasks: the functional tasks for ongoing application invocations and the re-
configuration tasks to make changes on itself. To guarantee the consistency between
the two kinds of operations, the affected components have to be ensured a smooth
transition between the two states: the state before reconfiguration and the state after
reconfiguration. As a result, the reconfiguration has to start only when the system is
in a safe state, viz no ongoing processing on the affected components. For the system
supporting continuous services, there is no guarantee that the system will automat-
ically go into a safe state when the reconfiguration instruction comes. In this case,
reconfiguration algorithm will act as the role to drive the system into a safe state
for successful reconfiguration. The existing approaches driving the system into a safe
state could be roughly classified into two major categories:

2

CHAPTER 1 - INTRODUCTION

• Consistency through recovery in which all affected components are forced by
reconfiguration algorithm to abort any uncommitted transactions to drive the
system into a safe state. After reconfiguration, the uncommitted transactions
will be restored to complete the corresponding executions by the reconfigured
system with the information recorded during abortions.

• Consistency through avoidance in which the abortion of ongoing processing is
avoided and the affected components are gradually frozen into a safe state before
reconfiguration. when the reconfiguration instruction comes, the reconfiguration
algorithm checks every request and suspends the request whose execution will
involve the affected components. So all affected components are able to go into
a safe state in a limited time after the execution of ongoing request. Once all
affected components reach a safe state, the reconfigurations are carried out and
the suspected requests will be executed by the reconfigured system.

State Transferring - Component Inner State

Many attributes of the affected components, such as safety and aliveness proper-
ties etc., are rather conditional and critical to the smooth running of the system,
which might call for a revision in its invariants in the subsequent requests execu-
tions. For example, there is an invariant used to record the frequency of requested
execution. But after replacement, the invariant might be zeroed and thus leads to
improper subsequent request executions. All kind of such cases have to be considered
in reconfiguration. Therefore, reconfiguration algorithm much be able to identify the
invariants affected and restore them.

Minimum Disruption - Change Performance

Disruption is a common phenomenon after dynamic reconfiguration, resulted from
the temporary loss of efficiency of affected components. System disruption during
reconfiguration can not completely be exempted as the influence of reconfiguration
on the executions of components is ineluctable. An obvious solution of reducing
system disruption is to minimize the time of execution of change to the smallest
amount. This could be realized via an efficient reconfiguration algorithm to guarantee
a seamless change: well preserved consistency and successful state transfer. During
dynamic reconfiguration the time of reconfiguration is usually not equal to the time
of disruption which is also called blackout time. In most cases, the blackout time is
less than the reconfiguration time, since the affected components might still be in the
process of request execution before a change operation is actually made.

1.2 Middleware Security

Secure middleware systems integrate security services into their platforms to provide a
framework that enables users to easily create distributed applications and protect the
sensitive applications from illegal accessing. Most security solutions for distributed

3

CHAPTER 1 - INTRODUCTION

applications can be integrated into middleware systems. Typical security issues which
are also closely related to my work, are introduced here and classified as follows:

Confidentiality and Integrity

In an enterprise application system, the sensitive data needs to be protected through
a mechanism that prevents them from being read by intruder, called confidentiality,
and being tampered during transit, called integrity.

Encryption is a widely used technique for data confidentiality. The modern en-
cryption algorithms can be classified into two categories: symmetric key encryption
in which the sender and the receiver of message share one key to encrypt and decrypt
the message, and asymmetric key encryption, based on a pair of keys - a private key to
encrypt data and a public key to decrypt data. Symmetric key ciphers are used exten-
sively and ideal in connection-based situations where systems connect and exchange
data and then disconnect. While the asymmetric encryption allows people with no
pre-existing security arrangement to exchange message securely with the public key
open to all people. Most commonly adopted symmetric encryption algorithms include
Data Encryption Standard (DES), Advanced Encryption Standard (AES), etc.

The technology of checksum is probably the most basic form of integrity protection
which produces a number based on the sum of all the bits to be compared against the
target. Another prevalent tamper-detection technique is digital signature, which is
based on an asymmetric algorithm. The digital signature is a scramble data encrypted
with private key on the digest extracted from its original message. The well known
algorithms are Digital Signature Algorithm (DSA), Message Digest 5 (MD5) etc.

Authentication

Many daily applications currently in use have taken the measurement of authentica-
tion to ensure proper usage, such as logining into a computer and checking emails
etc.

The most commonly used technique for authentication is user ID/password pair.
However, it is the least secure mechanism because of its simplicity. Another widely
used technique is challenge/response protocol in which one entity proves its identity
to another (the verifier) by demonstrating the knowledge of a secret known to both
entities, without revealing the secret itself to the verifier.

The latest technology for authentication is X.509 Public Key Infrastructure (PKI)
[61], based on the asymmetric algorithm. In PKI based systems, users ask for the Cer-
tificate Authority (CA) to acquire their private key and public key, already embedded
into a certificate stored in a public repository. Anyone can verify a user by encrypting
his signed certificate with the public key stored in the public repository. PKI based
authentication technology is widely combined into the web oriented security protocol,
such as SSL, SSH, etc.

4

CHAPTER 1 - INTRODUCTION

Authorization

For sensitive applications it is not sufficient to identify a user and then give him a
right to access all resources. A more effective means is to provide different level of
services for different users, called authorization or privilege management.

The typical technique to manage privileges is to group users according to their
levels. Group eases the task of privilege management since certain privileges could be
assigned automatically to each user of the corresponding group. Typical application
of grouping is the privilege management in Unix or Windows operating system.

Role based privilege management is another recently developed technique adopted
in all kinds of applications. Different from grouping, role technique is intended to
combine a collection of users and a collection of permissions. It is more reasonable
and easier to manage the permission assigned to one role, and assign different roles
to individuals. The example of permission could be a series of operations on certain
object, like read, write, execute, delete etc.

Access Control

Access control strategies are often integrated with authorization management systems
to provide a framework to control the access restriction of users on different resources.
The earlier access control strategy employed in operating systems is Access Control
List (ACL), which consists of a set of ACL entries each of which specifies the access
right of individual user or group to a specific system object. Two other control mech-
anisms based on group are Discretionary Access Control (DAC) which permits user to
grant or revoke access right to any of the objects under their control, and Mandatory
Access Control (MAC) in which the protections are done by system administrators to
restrict the access to objects according to the sensitivity of the information contained
in the objects. The new appeared technology for access control is Role Based Access
Control (RBAC) that provides administrators a more flexible way to regulate who
can perform what actions, when, from where, in which order, and in some cases under
what relational circumstances. The RBAC system enables users to carry out a broad
range of authorized operations in wide applications. System administrators can con-
trol access at a level of abstraction which is reasonable to the way that enterprises
typically conduct business.

In the popular middleware systems, such as CORBA, RMI/J2EE and DCOM/.NET
etc., rich functionalities concerning security are provided to develop secure applica-
tions. CORBA integrates wide variety of security models to enable comprehensive
security capabilities. As a meta-model, CORBA security specification has no imple-
mentation. The open source and commercial implementations of CORBA also realize
partial security capabilities and features. Another two counterparts: .NET and J2EE
have the similar architecture and security framework. .NET has the fundamental
execution environment - Common Language Runtime (CRL) which has security sys-
tem and policy setting to ensure the running time secure code verification. J2EE has
the Java Virtual Machine (JVM) which has a security manager to ensure the secure
invocation of applications. In addition, both .NET and J2EE provide a rich set of

5

CHAPTER 1 - INTRODUCTION

security Application Programming Interfaces (APIs) for flexible and powerful security
control on distributed applications. However, security solutions offered by traditional
middleware systems are not flexible to be easily changed to meet the varying require-
ments. In addition, they are too complex and not suitable for the small or middle
scale applications which also need powerful security controls.

1.3 Dynamic Services Composition

Service-Oriented Computing (SOC) is becoming a prominent computing paradigm
that utilizes services as fundamental elements for distributed enterprise applications.
Web service is a practical technology to fulfill the architecture of SOC. Web service
is widely accepted and appears as a new distributed computing technology for it en-
ables interoperability among all kinds of different traditional computing platforms,
such as CORBA, DCOM and J2EE etc., and to easily wrap the large number of legacy
projects. There are a set of closely related standards and specifications proposed as
the core technologies to fulfill web services computing. Web Services Description
Language (WSDL) is an XML format to describe web services as collections of net-
work endpoints. Simple Object Access Protocol (SOAP) is a protocol for exchange
of message information in a decentralized environment. Universal Description Dis-
covery and Integration (UDDI) is a specification for technical model and standard
interfaces for web service registries from which companies can publish their offered
services and customers can look up their demanded services. On top of above core
web service technologies, web services composition is explored to provide an open,
standards-based approach for integrating web services to create more powerful com-
posite services. Currently most of the plenty research works concerning web services
composition can be categorized into the following aspects:

Composition Language

The composition language is a formal specification to define the service activities and
specify how the services interaction is processed to reach the complete execution of a
global composite service. Most work of composition language focuses on:

• The definition of basic service activities and relevant contexts to ensure the
correct invocation and matching of web services;

• The regulation for service interaction and error handling to ensure correct ser-
vice processes.

There are two kinds of composition languages or specifications. One is proposed
and pushed forward by industrial companies, such as Web Service Flow Language
(WSFL) proposed by IBM, XLANG proposed by Microsoft, Web Service Choreog-
raphy Interface (WSCI) proposed by Sun, SAP et al, and BPEL4WS proposed by
Microsoft, IBM et al etc. The other is spurred by non-profit international organi-
zation, such as OWL-S: Semantic Markup for Web Services which is proposed by
academic researchers and submitted to W3C.

6

CHAPTER 1 - INTRODUCTION

Services Enactment

The software system of web service enactment is responsible for managing the services
process, among which the main issues focus on the following sub-items:

• Infrastructure which is constructed to compose an application server or integra-
tion server to enable effective enactment of web services processes.

• Reliability : for web services are loosely coupled, reliable process of services
enactment is especially important for the applications in enterprise business.

• Security : web services are open to the Internet,so security mechanism are de-
manded to restrict the access of services to the authorized clients, which is
indispensable for sensitive or business service applications.

• Transaction: the execution of a composite service succeeds only if all constituted
sub-services are invoked successfully. Transaction mechanism is demanded to
ensure all the sub-services successful or failed.

Automatic and Dynamic Composition

One key academic research effect on service composition is automatic discovery, se-
lection and dynamic composition of web services. The dynamism of composition
focuses on the dynamically selecting and changing the service providers, or dynami-
cally changing the flow structure of composite services. The automatic and dynamic
capabilities are related to the representation in composite language, but they depend
more on the infrastructure and the framework of service enactment. Currently there
are two kinds of approaches to reach flexible services processes: workflow technology
based business services process and semantic web based services composition.

Performance Simulation and Monitor

The performance simulation, predication, evaluation and monitor on the web services
execution is a quite new research field in which only few research work has been done.
However, it has gained more and more attentions from the researchers as web services
are currently applied in many practical enterprise applications. As constituted parts
of composite services, web services may come from different departments, or even
from different companies and organizations, which pose much challenges and enor-
mous costs for estimating and testing a new business application based on composite
services. This calls for a simulation system for composite services execution to model,
simulate and even predict the performance of web services.

1.4 Contributions and Organizational Structure

Dissertation Contributions

The most important contribution of this dissertation lies in the proposal of a novel ap-
proach - Routing Based Workflow (RBW) for dynamic reconfiguration on component

7

CHAPTER 1 - INTRODUCTION

software. The RBW models the collaborative components from schema specification
to running state and realizes a concept of temporary binding for component instances.
The temporary binding means the component instances are temporarily loaded into
a created execution environment to execute their functions, and then released to
their repository after executions. In comparison with other approaches for dynamic
reconfiguration, the two prominent advantages of RBW lies in that:

1. It greatly simplifies the classical issues arising from dynamic changes, like con-
sistency preserving. Based on the experimental data tested in advance, the
reconfiguration time becomes predictable, and the blackout time could always
be limited in an extremely small value in any applications.

2. It supports multi-solutions synchronously, which can be employed to develop
software systems that provide personalized services.

The second contribution is a secure, dynamic middleware system - Smart Data
Server Version 3.0 (SDS3) created on top of CORBA. The SDS3 not only demonstrates
the feasibility of RBW, but also provides a secure framework to enable multi-level
security control on its deployed applications. The detail control allows to specify
the application-specific or operation level access control by policy configuration. The
strategy control allows to specify application-independent security strategy by reor-
ganizing the secure components managed by RBW. For the dynamism inherited from
RBW, the security strategy of the system is able to be dynamically changed during
runtime.

The third contribution is the Dynamic Services Composer (DSC) which is created
on top of Apache Axis and employs the technology of Apache WSIF and our proposed
RBW. The DSC demonstrates that the RBW can also be used to compose web services
to easily create more powerful business services. A distinctive advantage of DSC is
that it enables the dynamic change of the flow structure of composite services.

Organizational Structure

This dissertation is organized as follows:

• In chapter 1 I introduce three research issues involved in this dissertation: dy-
namic reconfiguration on distributed systems, security control on middleware
applications and web services dynamic composition.

• In chapter 2 the basic distributed technologies involved in my research work are
introduced: object oriented distributed computing, web services technologies,
and workflow management.

• Chapter 3 presents the introduction and analysis of the evolution of dynamism
in component oriented software system from configuration to dynamic reconfigu-
ration and computational reflection. Also presented is a more flexible capability
that is realized in my work: multi-solutions synchronously supporting.

8

CHAPTER 1 - INTRODUCTION

• Chapter 4 presents the focus of this dissertation: Routing Based Workflow
(RBW) covering its structure, modeling, execution, management, schema, and
extension for distributed components.

• Chapter 5 gives the first case study of RBW: Smart Data Server Version 3.0
(SDS3) covering topics of how to create SDS3 on top of CORBA and how to
design the secure components managed by RBW.

• Chapter 6 gives the second case study of RBW: Dynamic Services Composer
(DSC). Firstly I explain how the RBW is used to model service composition,
and then introduce the system architecture which is based on the Apache Axis
and WSIF.

• Chapter 7 presents an overall performance tests of the developed RBW and
SDS3. Also presented is an analysis on the execution efficiency and reconfigu-
ration time.

• Chapter 8 is an introduction of the related works concerning three issues. In
addition to a summary of different approaches, evaluation and comparison be-
tween them are also provided.

• Chapter 9, the conclusion chapter, presents a summary and analysis of the
present work together with a profile of perspective future work.

9

CHAPTER 1 - INTRODUCTION

10

Chapter 2

Concerned Distributed Computing
Technologies

In this chapter, the distributed computing technologies which are closely related to
my work are presented. The first parts are object oriented distributed computing
technologies which are involved in my first case study, a middleware system. The
second parts are web service technologies which are the fundamental technologies
for web service composition. The third parts of introduction go to the workflow
management which is related with the core of my work, routing based workflow.

2.1 Object Oriented Distributed Computing

Like Remote Procedure Call(RPC), object oriented distributed computing offers syn-
chronous, typed communication between components of distributed program. The
widely accepted solutions are CORBA from OMG, DCOM/.NET from Microsoft,
and Java RMI/J2EE from Sun etc., which are introduced as follows.

2.1.1 Common Object Request Broker Architecture

The Common Object Request Broker Architecture (CORBA) is an open distrib-
uted object computing infrastructure being standardized by the Object Management
Group (OMG) [40]. CORBA automates many common network programming tasks
such as object registration and activation; request de-multiplexing, framing and error-
handling; parameter marshalling and de-marshalling; and operation dispatching etc.
Using the standard protocol IIOP, a CORBA-based program from any vendor, on al-
most any computer, operating system, programming language can interoperate with
another CORBA-based program from the same or another vendor, on the same or
another computer, operating system and network.

CORBA applications are composed of objects, individual units of running software
that combine functionality and data. Typically there are many instances of an object
of a single type. For each object type, it is defined in the form of interface. The
interface is the syntax part of the contract that the server object offers to the clients.

11

CHAPTER 2 - CONCERNED DISTRIBUTED COMPUTING TECHNOLOGIES

Client
Object

Implementation

Object Request Broker

Common
Facilities

CORBA
Services

Stub Skeleton

Request

Figure 2.1: Request Invocation of CORBA

As illustrated in Figure 2.1, any client that wants to invoke an operation on the object
must use this interface to specify the operation it wants to perform, and use its stub
to marshal the arguments that it sends. When the invocation reaches the target
object, the same interface definition is used there by its skeleton to un-marshal the
arguments so that the object can perform the requested operation. The separation
of interface from implementation is the essence of CORBA to enable interoperability.
The interface to each object is defined very strictly. In contrast, the implementation
of an object, its executable code and data, is hidden from the rest of system and
behind a boundary that client may not cross. In CORBA, every object instance has
its own unique object reference with which clients direct their invocations.

CORBA Architecture

The Figure 2.2 illustrates the architecture of CORBA, in which the individual core
components are explained further as follows:

Core ORB Core ORB GIOP/IIOP

Client Application Object Implementation

Dynamic
Invocation
Interface

IDL
Stub

ORB
Interface

Dynamic
Skeleton
Interface

IDL
Skeleton

Object
Adaptor

Figure 2.2: CORBA Architecture

12

CHAPTER 2 - CONCERNED DISTRIBUTED COMPUTING TECHNOLOGIES

Client Application This is the program entity that invokes an operation on an
object implementation. Ordinarily, a client calls a routine in its program that
performs the invocation and returns when the operation is complete.

Dynamic Invocation Interface (DII) The Dynamic Invocation Interface (DII)
allows dynamic creation and invocation of request to objects. Using the DII
mechanism, an object is accessed by a call to the ORB in which the object,
method and parameters are specified. It is the client’s responsibility to specify
the types of the parameters and the expected results.

IDL Stub and Skeleton IDL stubs and skeletons serve as the ”glue” between clients
and server applications. This is the static invocation interface, representing a
language mapping between the client language and the ORB implementation.
The transformation between CORBA IDL definitions and the target program-
ming language is automated by an IDL compiler.

Core Object Request Broker (ORB) The ORB provides a mechanism for trans-
parently communicating client requests to target object implementations. The
ORB simplifies decoupling the clients from the details of the method invoca-
tions. When a client invoke an operation, the ORB is responsible for finding
the object implementation, delivering the request to the object, and returning
any response to the caller.

GIOP/IIOP CORBA uses the General Inter-ORB Protocol (GIOP)to define the
format of messages and uses the Internet Inter-ORB Protocol (IIOP) to map
GIOP messages to TCP/IP messages. IIOP allows ORBs to communicate with
each other and enables them to use the Internet protocols for communication
of distributed objects.

ORB Interface The ORB interface allows functions of the ORB to be accessed
directly by the client code. This interface provides only a few operations, such
as stringifying an object reference, that are shared by both the client side and
the implementation side of CORBA architecture.

Dynamic Skeleton Interface (DSI) This is the server side’s analogue to the client
side’s DII. The DSI allows an ORB to deliver requests to an object implemen-
tation without the compile-time knowledge of the type of the object. The client
invoking a request has no idea whether the implementation is using the type-
specific IDL skeleton or is using the dynamic skeleton.

Object Adapter This assists the ORB delivering requests to the object and acti-
vating the object. More importantly, an object adapter associates object im-
plementations with the ORB. The Object Adapter sits on top of the ORB Core
communication services, accepting request for service on behalf of the server’s
object. The object implementation accesses most ORB services through the
Object Adapter. CORBA specifies two candidate adapters called the Basic
Object Adapter (BOA) and Portable Object Adapter (POA).

13

CHAPTER 2 - CONCERNED DISTRIBUTED COMPUTING TECHNOLOGIES

Object Implementation An object implementation provides the actual state and
functionality of an object. Besides defining the method for the operations them-
selves, an implementation will usually define procedures for activating and de-
activating objects and will use other object or non-object facilities to make the
object state persistent.

2.1.2 Microsoft Technologies

Distributed Component Object Model

The Microsoft Distributed Component Object Model (DCOM) [24] is a protocol that
enables software components to communicate directly over a network. DCOM ex-
tends the Component Object Model (COM) [13] to support communication among
objects on different computers. The communication protocol of DCOM, Object Re-
mote Procedure Call (ORPC), is based on Open Software Foundation’s DCE-RPC
specification. With DCOM, business applications can be distributed at any locations
that make the most sense to customers and application provider can focus on the real
business instead of low level details of network protocol. Key features of DCOM are
introduced in more detail as follows:

Component Interoperability and Reusability The DCOM is designed to allow
two or more components to easily cooperate with one another, even if they
were written by different vendors in different programming languages, or if they
are deployed on different machines running different operating system. The
COM defines a completely standardized mechanism for creating objects and
for clients and objects to communicate. These mechanisms are independent of
application and the programming language, and the key technology is a binary
interoperability standard. DCOM makes distinctly separation for the interface
from its implementation. Interface is a semantic contractual way for component
to expose its service behavior. The reusability of component depends upon the
interface and not the exact implementation.

Location Independence DCOM completely hides the location of a component, the
client software don’t care about whether server is in the same process as the
client or in a machine halfway around the world. In all cases, the way the
client connects to a component and calls the component’s method is identical.
Not only does DCOM require no changes to the source code, it does not even
require the recompilation of program. Behind the unique invocation way of
client, DCOM server components can be classified into three types: in-process,
local process and remote process. In-process component is based on Dynamic
Link Library (DLL), can be loaded and accessed directly. Local process and
remote process components are implemented as stand-alone executable module
that can be accessed via proxy and stub.

Language Neutrality DCOM is completely a binary and language independent
specification. Virtually any language can be used to create COM components,

14

CHAPTER 2 - CONCERNED DISTRIBUTED COMPUTING TECHNOLOGIES

and those components can be used for even more language, such as Java, Mi-
crosoft Visual C++, Microsoft Basic, Delphi etc. In the language neutrality
COM Interface Definition Language (IDL) plays a fundamental role to specify
the interface behavior of component and separate interface from its implemen-
tation. When a designer creates an interface, that designer usually defines it
using an IDL. From this definition an IDL compiler can generate header files
for programming languages such that application can use that interface create
proxy and stub object to enable object oriented RPC across network.

Uniform Data Transfer DCOM provides interfaces for dealing with uniform stor-
age of object which enable to data exchange between applications. The per-
sistent storage technology on top of COM is Uniform Data Transfer, which
provides the functionality to represent all data transfers. Just as the meaning
of the name ”Uniform”, this technology separates all the common exchange op-
eration from what is called transfer protocol. This uniformity not only reduces
the code necessary to source or consume data, but also greatly simplifies the
code needed to work with the protocol itself.

.NET Platform

.NET is the Microsoft web services strategy to connect information, people, system
and device through software [22]. .NET connected solution enables business to inte-
grate their systems more rapidly and in a more agile manner and help them realize the
promise the promise of information anytime, anywhere, on any device. The funda-
mental infrastructure of .NET platform is .NET framework [86] which constructs the
general runtime environment closely associated with the operating system. Microsoft
also provides a serial of tools and servers to build and deploy enterprise application,
such as Visual Studio.NET to build application, Internet Information Server (IIS)and
Application Centre Server to manage and deploy the business applications etc. The
.NET framework is an integral windows component for building and running the next
generation of software applications and web services. It includes the Common Lan-
guage Runtime (CRL) environment, a just-in-time compiler and a set of operating
system libraries packaged with .NET components model.

Common Language Runtime The most important component of the .NET frame-
work is the Common Language Runtime (CRL). The CLR manages and executes code
written in .NET languages and is the basis of the .NET architecture, similar to Java
Virtual Machine (JVM) of J2EE platform. The CLR is the engine that drives the
execution of every .NET application. It activates objects, performs security checks
on them, lays them out in memory, and execute them. As illustrated in Figure 2.3,
the CLR consists of the Just-In-Time compiler (JIT) that compiles Common Inter-
mediate Language (CIL) to native object code, the garbage collector, the Common
Type System (CTS) and the exception handling machinery.

The CLR is language neutral, which means it can run code written in C#, Visual
Basic.NET, or any other language as long as the language can be firstly compiled to

15

CHAPTER 2 - CONCERNED DISTRIBUTED COMPUTING TECHNOLOGIES

Class Loader

Verifier

.NET PE File
 (Metadata and IL)

JIT Compiler

Execution Support and Management
Garbage collector, security engine, code manager,

exception manager, thread support etc

Figure 2.3: Structure of Common Language Runtime

the byte stream format that the CLR expects. When compiling to managed code,
the language-specific compiler translates the source code into Microsoft Intermedi-
ate Language (MSIL), which is a CPU-independent set of instructions that can be
efficiently converted to native code. MSIL includes abstract instructions for loading,
storing, initializing, and invoking methods on objects, as well as abstract instructions
for arithmetic, control flow, direct memory access, exception handling and other op-
erations. The compiled MSIL is placed into an EXE or DLL file, called a Portable
Executable (PE) file. Before code can be run, the MSIL in the PE must be converted
to CPU-specific code, usually by a JIT compiler. During execution, managed code re-
ceives services such as garbage collection, security, cross language debugging support
and enhanced deployment from CLR.

Enterprise Application Development The general model of distributed enter-
prise application with .NET platform is depicted in Figure 2.4. The technologies
concerning enterprise applications developing and deploying can be classified into
three tiers: presentation tier, business tier and database tier.

ASP.NET takes charge of the task of presentation tier in .NET platform. It is a
technology for creating dynamic web applications and web services that can be easily
accessed via web browser or .NET client systems.

Business tier assembles core technologies of .NET platform where VisualStu-
dio.NET provide a integrated developing environment to build application and ser-
vices, and COM+ is used to model the business services. Additionally, a series of
.NET enterprise servers, such as Application Centre Server, Host Integration Server,
BizTalk Server etc, are offered to deploy and manage the middle tier applications.

For the third tier of database, .NET provides a high performance enterprise data-
base SQL Server to store enterprise data, and ADO.NET provides a rich set of API
for conveniently accessing SQL Server or ADO compatible database.

16

CHAPTER 2 - CONCERNED DISTRIBUTED COMPUTING TECHNOLOGIES

Database Tier

HTTP

HTML

DCOM, MSMQ,
or SOAP

F
ir

ew
al

l

F
ir

ew
al

l

ADO.NET

Presentation Tier Business Tier

COM+,
VisualStudio.NET

.NET Client
Systems

SQLServer or ADO
compatible DB

.NET Enterprise
Servers

.NET Building
Block Services

UDDI

ASP.NET

Figure 2.4: E-Commerce Architecture of .NET Platform

2.1.3 Java Technologies

Java Remote Method Invocation

Java Remote Method Invocation (RMI) is an object oriented distributed computing
technology provided by Sun Microsystems [63]. RMI allows applications to call object
methods located remotely. Unlike other systems for remote execution which require
that only simple data types or defined structures be passed to and from methods,
RMI allows any Java object type to be used and allows new object types to be
loaded dynamically as required. Java RMI is not language neutral, but a Java-only
distributed object solution where objects have to be implemented in Java. For RMI
is built into the core Java environment since the release of JDK version 1.1, there is
no need to install any other software or tools to enable the execution of RMI based
application in Java environment, and the integration of remote object facilities into
Java application is almost seamless.

Framework As indicated in Figure 2.5, the framework of Java RMI gives an overview
that how the remote object can be invoked. There are three layers that comprise the
basic remote object communication facilities in RMI:

1. Stub/Skeleton Layer, which provides the interface that client and server appli-
cation use to interact with each other, and delegates the invocation operations;

2. Remote Reference Layer, which handles the creation and management of remote
object references;

3. Transport Protocol Layer, which is the binary data protocol that sends remote
object request and response over the wire;

In RMI based environment, a client makes a request of a remote object by call-
ing a method on a stub object that shares the same interface of remote object. If

17

CHAPTER 2 - CONCERNED DISTRIBUTED COMPUTING TECHNOLOGIES

Client Process

Client Object

Stub

Remote Reference
Manager

Server Process

Server Object

Skeleton

Remote Reference
Manager

RMI Transport Layer

Remote Reference Layer

Stub/Skeleton Layer

Figure 2.5: Framework of Java RMI

the marshalling of method argument succeeds, the remote reference layer converts
the client request into low level communication oriented bytes stream that will be
transported to server via wire communication protocol. On the server, the server
side remote reference layer receives the transport level request and converts it into
a request for the skeleton. The Skeleton then delegate the task of invocation, and
enable the invocation seems to come from remote client.

Client Stubs and Server Skeletons Stub and Skeleton are respectively the proxy
of remote object in client side and server host. The Stub delegates the client request
to server and retrieve invocation result through transport protocol (JRMP or IIOP
over RMI), and the Skeleton intercepts the request to enable the invocation on object
implementation. With client Stubs and server Skeletons, the invocation on remote
object over distributed network looks invocation on local object. Once the object
interface is defined and derived by a server implementation, the client Stub and
server Skeleton can created by RMI compiler, rmic. In Java 2 Platform, the Skeleton
for specific object is not necessary for the general skeleton can be created via Java
reflection technology.

The RMI Registry In RMI the registry serves the role of the Object Manager
and Naming Service for the distributed object system. The registry is only required
to be running on the server of a remote object, and clients of the object use the RMI
package to communicate with remote registry to look up objects on the server. Once
the registry is running on the server, the object implementation can be registered
by name using Naming interface, java.rmi.Naming. A registered object can then be
located by a client using lookup method on Naming services.

18

CHAPTER 2 - CONCERNED DISTRIBUTED COMPUTING TECHNOLOGIES

J2EE Platform

The Java 2 Platform of Enterprise Edition (J2EE) [64] defines the standard for devel-
oping multi-tiers enterprise applications. The J2EE simplifies enterprise applications
by standardized, modular components, by providing a complete set of services and
by handling many details of application behavior automatically. The primary J2EE
technology components for creating enterprise applications are Java Servlet, Java
Server Page (JSP) and Enterprise JavaBean (EJB). Additionally, a series of services
or servers are also provided to support application development and deployment:
Java Database Connectivity (JDBC) for platform and vendor independent accessing
to SQL compliant database, Java Message Service (JMS) to provides a Java API for
message queuing, publishing and subscribing, Java Transaction API (JTA) for distrib-
uted transaction management, Java Naming and Directory Interface (JNDI) etc. As
shown in Figure 2.6, a J2EE enterprise application can be divided in four tiers: client
application, Servlet and JSP based presentation, EJB based business logic and JDBC
based database. Beside of Sun, another two companies provides commercial imple-
mentation for J2EE specifications: Websphere from IBM Corporation and Weblogic
from BEA System.

Java Servlets
Java Server Pages

Java Application
Server

HTML

HTTP
Presentation Tier

F
ire

w
a

ll

J2SE Platform

F
ire

w
al

l

RMI/IIOP

Business Tier

J2SE Platform

JDBC

Database Tier

JDBC compatible DB

Java Message
Server

Enterprise JavaBean

Java Client

Figure 2.6: Enterprise Application Architecture of J2EE Platform

Java Servlet and JavaServer Pages The Sevelet is protocol and platform in-
dependent server side components, written in Java, which dynamically extend Java
enabled servers. It provides a general framework for services built using the request-
response paradigm. Its general use is to provide secure web-based access to data
which is presented using HTML web page, interactively viewed or modified using
dynamic web page generation techniques.

The JavaServer Page (JSP) technology provides a simplified, fast way to create
web pages that display dynamically generated content. To eases and speeds the
developing of dynamic web pages, a number of mechanisms are employed:

1. Separating content generation from presentation: JSP use HTML or XML tags

19

CHAPTER 2 - CONCERNED DISTRIBUTED COMPUTING TECHNOLOGIES

to design and format the results page, and use JSP tags or scriptlets to generate
the dynamic content;

2. Emphasizing reusable components : JSP pages exploit reusable, cross-platform
components, such as servlet, to perform the complex application processing;

3. Simplifying page development with tags : JSP technology encapsulates much of
the functionality for dynamic content generation in easy-to-use, JSP-specific
XML tags.

Enterprise JavaBeans Enterprise JavaBeans (EJB) is a specification for creating
Java based, server side and reusable component framework for distributed applica-
tions [62]. The basic EJB architecture is composed of an EJB client, EJB server, EJB
container and EJB. The client does not directly invoke methods of the EJB, and the
container acts as an intermediary between the EJB and the client. EJB servers are
analogous to the ORB in CORBA, and provide the system services, such as multi-
processing, load balancing, naming and transaction services etc. EJB run in a special
environment called EJB container that manages every aspect of an enterprise bean
at runtime, including remote accessing to the bean, security, persistence, transaction
and pooling of resources. The enterprise bean focuses only on business logics and
rules, while the container takes care of everything else.

The EJB specification defines three distinct types of enterprise beans: session
beans, entity beans and message-driven beans. A session bean represents a business
conversation with a single client and is not shared across clients. An entity bean is
intended to represent the business logic for an entity existing in persistent storage, and
allow shared access by multiple clients. A message driven bean is used for application
to handle messages asynchronously, and act as a message listener in EJB container
when it is instantiated.

2.2 Web Services Technologies

In the section 2.1 the classical solutions for distributed computing, such as CORBA,
Java RMI etc., are introduced. However, those approaches have yielded the systems
where the coupling between various components in a system is too tight to be effective
for low-overhead, ubiquitous enterprise e-business over the Internet. The concept of
Web Services is the next generation of e-business architecture web-oriented. The web
services architecture [12], [5] describes principles for creating dynamic, loosely coupled
systems based on services, and promotes significant decoupling and dynamic binding
of components. All components in a system are services, in which they encapsulate
functional behavior and publish a messaging API to other collaborating components
on the network.

Web services architecture involves many layered and interrelated technology fam-
ilies, as depicted in Figure 2.7. The eXtensible Markup Language (XML) is the
cornerstone of all web services technologies. The XML technology families involved
in web services consist of XML specification, XML Schema description language and

20

CHAPTER 2 - CONCERNED DISTRIBUTED COMPUTING TECHNOLOGIES

XML Base specification. The basic standards of web services technologies are Simple
Object Access Protocol (SOAP) that sends and receives messages over the network
in a standard format, Web Services Description Language (WSDL) that describes
the provided functionalities of services and how these services can be accessed and
invoked, Universal Description, Discovery and Integration (UDDI) that describes an
online electronic registry to serves as electronic yellow pages and to provide an in-
formation structure where various business vendors register their services. More ad-
vanced processing models and specifications of web services are being continuously
proposed, such as Web Services Addressing (WS-Addressing) provides a transport -
neutral mechanisms to enables messaging systems to support message transmission
through networks, the specification of Web Services Choreography models business
process that involves multiple different organizations and enables the information
exchanging among these business services if they are properly coordinated.

Communications
HTTP, SMTP, FTP, JMS, IIOP

B
ase T

echnologies: X
M

L, S
chem

a

B
ase T

echnologies: X
M

L, S
chem

a

Messages

Process and Management
Choreography …

Descriptions and Discovery
WSDL, UDDI …

SOAP Extension
Reliability, Addressing, Security, Transactions...

SOAP
(Simple Object Access Protocol)

Figure 2.7: Diagram of Web Services Technologies

2.2.1 Web Services Description Language

Web Services Description Language (WSDL) [11] is an XML formatted language
used to describe web services as collections of communication endpoints capable of
exchanging messages that contains either document oriented or procedure oriented
information. Currently, the version 1.1 is considered as the de-facto standard that
gets industry-wide support. However, a new version 2.0 is being worked to be a
recommendation endorsed by the W3C.

WSDL separate the description of the abstract functionality offered by a service
from concrete details of service description that contains protocol binding and message

21

CHAPTER 2 - CONCERNED DISTRIBUTED COMPUTING TECHNOLOGIES

formats required to interact with the services listed in its directory. This separation
supports the reuse of abstract definitions of WSDL elements that may be bound to
multiple concrete protocols.

Abstract Definition

In WSDL the abstract definition gives a protocol and network address independent
description for the provided functionalities, Operations, and the relevant invocation
way, Messages. The abstract elements of WSDL are explained as follows:

• Types - a container for data type definitions using XML Schema based data
type system.

• Message - an abstract, typed definition of the data being communicated and
invocation way defined by message pattern.

• Operation - an abstract description of an action supported by the service.

• Port Type - an abstract set of operations supported by one or more endpoints,
also called Interface in version 2.0

 Messages

Web Service

Interface

Operation
Operation
Operation

Interface

Operation
Operation
Operation

URL

Binding

URL URL

TCP HTTP MIME

Endpoint Endpoint Endpoint

Messages

…

Type

…

Messages

…

Type

…

Resource

Figure 2.8: Relation Between Elements of WSDL

Concrete Definition

The concrete definitions of WSDL elements binding the abstract services to the spe-
cific protocol, such as SOAP, HTTP GET/POST, MIME etc, so that other web
services know how to interact with them. The elements for concrete definition are:
Binding, Port and Service.

22

CHAPTER 2 - CONCERNED DISTRIBUTED COMPUTING TECHNOLOGIES

• Binding - a concrete protocol and data format specification for a particular port
type.

• Port - a single endpoint defined as a combination of binding and a network
address.

• Service - a collection of related endpoints.

2.2.2 Universal Description, Discovery and Integration

The Universal Description, Discovery and Integration (UDDI) project is originally an
industry initiative, the first truly cross-industry effort driven by all major platform
and software vendors and e-business leaders [72], [71]. The UDDI specification defines
a framework for describing services, discovering business and integrating business
services using Internet. In another words, UDDI is a web-based distributed directory
that enables businesses to list themselves on the Internet and discover each other,
similar to a traditional phone book’s yellow pages. UDDI specification is based on
a set of industry internet standards, such as XML, WSDL and SOAP etc. Key
technologies and functionalities offered by UDDI are introduced as the follows:

UDDI Data

UDDI presents an information model composed of instances of persistent data struc-
ture called entities. The key entity types are:

• Business Entity : Describes a business or organization that provides web ser-
vices. Each entity contains its name, description, contact information, cate-
gories, identifier and an URL pointing to more information about the business.

• Business Service: Describes a collection of related web services offered by an
organization. Each business entry contains name, description, categories and a
list of references related to the service.

• Binding Template: Describe the technical information, such as web service URL
etc, necessary to access a particular web service.

• Technical Model : Represents a reusable meta-data, such as a web service type,
a protocol used by web services or a category system.

UDDI Services and API Sets

The specification presents services and API sets that standardize behavior and com-
munication with or between implementations of UDDI for the purposes of manipu-
lating UDDI data stored within those implementations. The API sets grouped into
UDDI Node are UDDI Inquiry, Publication, Security, Custody Transfer, Subscription
and Replication.

23

CHAPTER 2 - CONCERNED DISTRIBUTED COMPUTING TECHNOLOGIES

UDDI Nodes

A set of web services supporting at least one of the Node API sets is referred as a
UDDI node. A UDDI node is a member of exactly one UDDI registry and supports
interaction with UDDI data through one or more UDDI API sets. A UDDI node
conceptually has access to and manipulates a complete logical copy of the UDDI data
managed by the registry. Typically, UDDI replication occurs between UDDI nodes
which reside on different systems in order to manifest this logical copy in the node.

UDDI Registries

One or more UDDI nodes may be combined to form a UDDI registry. The nodes in a
UDDI registry collectively manage a particular set of UDDI data. A UDDI Registry
is comprised of one or more UDDI nodes that collectively manage a well-defined set of
UDDI data, which is typically supported by the use of UDDI replication. A registry
must make a policy decision for each policy decision point. It may also be chosen to
delegate policy decision to nodes.

2.2.3 Simple Object Access Protocol

The Simple Object Access Protocol (SOAP) is an XML based protocol that provides
a simple and lightweight mechanism for exchanging structured and typed information
between systems in a decentralized and distributed environment [65]. SOAP is plat-
form and language independent and was originally intended and defined for use on
top of HTTP to make SOAP more easily incorporated into Web-based applications,
and other transport protocols, such as SMTP, MIME etc., can also be used. SOAP
consists of three parts:

• The SOAP envelope construct defines an overall framework for expressing what
is in a message, who should deal with it, how to process it and whether it is
optional or mandatory.

• The SAOP encoding rules defines a serialization mechanism that can be used
to exchange instances of application defined data types.

• The SOAP RPC representation defines a convention that can be used to repre-
sent remote procedure calls and responses.

SOAP messages are often combined to implement pattern of request/response.
All SOAP messages are encoded in the form of XML document that consists of a
mandatory SOAP envelope, an optional SOAP header and a mandatory SOAP body,
as shown in Figure 2.9:

• SOAP Envelope is the top element of the XML document that represents the
SOAP message. XML namespaces are used to disambiguate SOAP identifiers
from application specific identifiers.

24

CHAPTER 2 - CONCERNED DISTRIBUTED COMPUTING TECHNOLOGIES

SOAP Message

Transport Binding

SOAP Envelope

SOAP Headers

SOAP Body

Message Data

Transport header info:
HTTP, SMTP, MIME etc

Header Blocks:
WS Addressing Block,
WS Reliable Messages,
WS Security Block,
WS Transaction Block…

 Request: method, parameters
 Response: result …

Figure 2.9: Structure of SOAP Message

• SOAP Header is an optional element that contains application specific infor-
mation, like reliability and security blocks etc. If the header element is present,
it must be the first child element of the envelope element.

• SOAP Body contains the actual SOAP information intended for the ultimate
endpoint of the message. The body are a couple of XML element constructed
in the pattern of request/response to realize the RPC functionality.

• SOAP Transport Binding specifies a concrete internet protocol to exchange
SOAP message over Internet. HTTP is recommended for its popular acceptance,
and other protocols are accepted, such as SMTP, MIME etc.

2.3 Workflow Management

Workflow management systems are software systems that support the definition, cre-
ation and execution of workflows in an organization. According to the Workflow
Management Coalition (WfMC) [93], a non-profit international organization of work-
flow vendors, analysts and research group, workflow is defined as ”the automation of
a business process, in whole or part, during which documents, information or tasks
are passed from one participant to another for action, according to a set of proce-
dural rules.” Workflow normally comprises a number of logical steps, each of which
is known as an activity that involve interaction with a user or workflow participant.
The first idea of workflow originates to speed the time and improve the efficiency of
office task processing. As the development workflow has evolved into different appli-
cations, such as production workflow to manage large numbers of similar tasks and
to optimize productivity, administrative workflow to easily and flexibly define the
process, collaborative workflow focusing on teams working together towards common
goals and ad-hoc workflow to quickly and easily create and modify process definitions

25

CHAPTER 2 - CONCERNED DISTRIBUTED COMPUTING TECHNOLOGIES

as necessary. Nowadays workflow is also employed into services oriented computing
to enable the integration and collaboration of business services [88].

2.3.1 Workflow Reference Model

Through years of work, WfMC reaches a common appreciation on the definition of
workflow and develops a generalized target architecture driving the development of
most production workflow solution. The reference model [42] defines a generic work-
flow application structure by identifying the interface within this structure to provide
a standard for interoperability among the major workflow subsystems. Figure 2.10
illustrates the architecture of workflow reference model that contains the following
major components and interfaces.

Workflow API and Interchange

Workflow Enactment Service

Workflow
Engines

Other Workflow
Enactment Service

Workflow
Engines

Process
Definition

Administration &
Monitoring Tools

Workflow
Client

Application

Invoked
Applications

Figure 2.10: Workflow Reference Model - Components & Interfaces

Workflow Enactment Services

The workflow enactment service provides the run-time environment in which process
instantiation and activation occurs, utilizing one or more workflow management en-
gines and responsible for interpreting and activating the process definition. The
primary component within enactment service is workflow engine which provides the
run time execution environment for a workflow instance. A workflow enactment ser-
vice comprises one or more compatible workflow engines with defined set of process
definition attributes. The mechanisms of dispatching process execution are organized
across the various workflow engines, protocols and specific interchange formats.

26

CHAPTER 2 - CONCERNED DISTRIBUTED COMPUTING TECHNOLOGIES

Process Definition

A variety of tools that may vary from the informal to sophisticated and highly for-
malized are used to analyze, model, describe and document a business process. To
support the exchange of process definition information over a variety of interchange
media, some interfaces concerning interchange formats are defined. These are process
definition import/export interface which function between the modeling and defini-
tion tools and runtime workflow management software.

Administration and Monitoring

Reference model defines a common interface which enables several workflow services
to share a range of common administration and system monitoring functions. These
interfaces are intended to allow a complete view of the status of work flowing through
the organization and present a comprehensive function set for administration pur-
poses, including specific consideration of security, control and authorization.

Workflow Client Functions

In the reference model interaction occurs between the client application and the work-
flow engine through a well defined interface embracing the concept of a Work List -
the queue of work items assigned to a particular user by the workflow engine. Acti-
vation of individual work items from the Work List may be under the control of the
workflow client application or the end-user. A range of procedure is defined to enable
new items to be added to or removed from the Work List.

Invoked Application

The concept of Application Agent is used for variety of method invocation behind a
standard interface into the workflow enactment services. In this case application invo-
cation is handled locally to a workflow engine, using information within the process
definition to identify the nature of activity, the type of application and any data
requirement. It is also possible to develop workflow enabled application to interact
directly with a workflow engine.

2.3.2 Workflow Patterns

The application of workflow technology has evolved from business process modelling,
coordination to component framework and business to business interaction. Workflow
reference model proposed by WfMC presents a specification for workflow management
system. However this reference model is only defined for its functionality aspect and
other different control perspectives. The fundamental description and analysis of
workflow are realized by a series of implemented workflow language, and the interpre-
tation of basic constructs of workflow, such as sequence, iteration, split parallelism
etc., is not uniform and clear. Even without formal qualification, the distinctive
features of different workflow languages allude to fundamentally different semantics.

27

CHAPTER 2 - CONCERNED DISTRIBUTED COMPUTING TECHNOLOGIES

A practical and effective approach for defining and describing the existing workflow
processes is workflow pattern. According to [80], a pattern is the abstraction from a
concrete form which keeps recurring in specific non-arbitrary context.

So far there is still no any standard to give a formal definition and categories for
workflow pattern. Aalst et al. have done pioneering work for this [90], and define
the workflow pattern in an abstract and uniform way that contains a description,
synonyms, example, problem and potential implementation strategies [89]. They
categorize most kinds of workflow patterns as follows:

• Basic Control Flow Patterns capture elementary aspects of workflow process
control and closely match the definition of elementary control flow concepts
in WfMC. Examples are Sequence, Parallel Split, Synchronization, Exclusive
Choice and Simple Merge etc.

• Advanced Branching and Synchronization Patterns focus on advanced patterns
for branching and synchronization which appears commonly in real life business
scenarios. Examples are Multi-Choice, Synchronizing Merge, Multi-Merge and
Discriminator etc.

• Structural Patterns illustrate typical restriction imposed on workflow specifi-
cation and their consequences. Examples are Arbitrary Cycles and Implicit
Termination etc.

• Patterns involving Multiple Instances reflect the workflow that an activity in a
workflow graph can have more then one running, active instance at the same
time. Examples are Multiple Instances without Synchronization, Multiple In-
stance with (without) A Priori Design Time Knowledge etc.

• State-based Patterns model workflow where instances are in a state awaiting
processing rather than being processed. Examples are Deferred Choice, Inter-
leaved Parallel Routing and Milestone etc.

• Cancellation Patterns uses a construct where one activity cancels another. Ex-
amples are Cancel Activity and Cancel Case etc.

28

Chapter 3

Evolution of Dynamism in
Distributed Systems

Dynamism is an important feature of component software systems, which allows to
flexibly change or reorganize the components of systems to meet the varying require-
ments of application environments. This chapter presents the evolution of dynamism
in distributed systems from black box mechanism to configuration, dynamic recon-
figuration and computational reflection. Also a more flexible and dynamic feature
is presented: multi-solutions synchronously supporting that is realized in my novel
approach of Routing Based Workflow.

3.1 Issues Introduction

To decrease the development cycle and alleviate the burden of distributed applica-
tion developers from tedious non-business programming, middleware is proposed and
widely applied to establish large scale distributed business applications. Middleware
masks the common and complicated issues of distributed business applications, such
as communication, security, synchronization and transaction etc. For distributed ap-
plication programmers, middleware is taken as a black box - programmers just get
what he wants from middleware APIs or services, and do not need to care about
how these functionalities are implemented. The mechanism of black box had brought
middleware widely utilized in enterprise applications. However, as emergence of new
devices and development of new technologies, the demands and requirements of dis-
tributed applications get increasing and more complicated. Although middleware has
got great success since it had been proposed, there appears a series of problems to
spur the evolution of dynamism, such as:

1. How to make distributed systems modular and extensible? There are always
new functionalities required to be integrated into the systems for the new re-
quirements. The difficult for this integration is to avoid to make impacts to
the legacy systems in terms of functionalities and source codes. Component
oriented software architecture provides a solution direction to develop software

29

CHAPTER 3 - EVOLUTION OF DYNAMISM ON DISTRIBUTED SYSTEMS

system with the capability of modularity, extensibility, easy to integration and
management.

2. How to make distributed systems configurable and customizable for different
application requirements? When designing and implementing a middleware sys-
tem, developers always try to complete the functionalities and services as much
as needed. But if all available components are loaded to run when the server
starts, the fat server will cost much unnecessary resources for some seldom used
components. A configurable system allows to assemble specified components to
provide customized services for different requirements.

3. How to make distributed systems dynamically reconfigurable and adaptive to
varying environments during run time? In some case, it is impracticable or
will produce big loss if systems shut down or restart. But, components often
have to be updated for a new version, or a new component is demanded to
be integrated into a system. In this case, if the system has the capability of
dynamic reconfiguration, the loss could be decreased to minimum.

3.2 Configurable Component Systems

Traditional middleware systems have fixed structure and comprise of fixed compo-
nents to provide fixed services. This kind of middleware has good stability, but
strongly restricts the range of its applications. Later configuration file is used to
customize the components of middleware, and different component can be loaded to
adapt different circumstance when middleware is started. However, the alternative
component always shares the same abstract interfaces for functional behaviors with
that of being replaced one [84]. For instance, there are several candidate commu-
nication protocol components, sharing common communication interface behaviors,
provided in the configuration file. When the middleware system starts, only one
protocol component will be chosen to load into the system to take charge of com-
munication tasks. This mechanism of sharing the same functional abstract interface
does not provide the real configurable ability because all the candidate components
are associated in source level. So we call it half-configurable ability.

Architecture Description Language (ADL) [59] was proposed to support devel-
oping configurable distributed applications. An ADL is a language that provides
features to model a software system’s conceptual architecture which is distinguished
from the system’s implementation. ADL enables component based construction of
large scale software system, and shifts the focus of developers from lines of code to
coarse-grained components and system families. Explicit separation of components
gives developers more flexibility for potential component reuse and substitutability.
Some common referred ADLs are Darwin [57], Wright [76], Rapide [55], ACME [37]
and so on. According to the classification framework for ADLs [59], any ADL should
at least have three modeling elements: components, connectors, architecture config-
uration and a set of supporting tools.

30

CHAPTER 3 - EVOLUTION OF DYNAMISM ON DISTRIBUTED SYSTEMS

• Component is modeled for a unit of computation and data store. It can be
as small as a single procedure, or as large as an entire application. As an in-
dispensable feature of ADL, component has to explicitly specify its interfaces
which are a set of interaction points between the component and external en-
vironment. Some other optional feature may also be specified in a component:
types of component, constraints and non-functional properties etc.

• Connector is modeled as a media to enable the interaction between different
components and should also include some rules to govern these interactions.
A set of interaction points have to be specified for connector’s interface that
enables the communication between connector and components. It’s just the
modeling of connector that keep the component real independent from others
at level of source and thereby reason about architectural configurations.

• Architecture Configuration is modeled to construct the graph of components and
connectors. It determines whether appropriate components are connected, their
interfaces are matched, and connectors is enabled for proper communications
etc.

• Supported Tools are, strictly speaking, not a part of ADL. However, the tools
support architecture design, analysis, evolution, execution and so forth, so it
directly affects the usability of ADL.

3.3 Dynamic Reconfigurable Systems

ADLs typically support only static architecture configuration and do not provide
facilities to dynamically change the architecture. However, small part ADLs also
try to provide a dynamic extension on their existing static specifications to widen
the scopes of their applications. For example, C2-SADL proposed by Medvidovic et
al [60] enables dynamic architecture changes by extending the ADL, C2 style, with
an architecture construction notation (ACN). Darwin [52], [53] enables the feature of
dynamic change by adding a set of meta-level Darwin specification on its original spec-
ification. Dynamic Wright [1] tries to solve the problem of dynamism by extending
the Wright with some additional features. The dynamism provided by the extension
of ADL is termed as programmed reconfiguration [26]. Because all ADLs have to
be compiled into a executable system before they can run, the run-time changes to
those architectures should be interpreted and can be predicted. In this case ADLs
behave as a dynamic programming languages. The difference is that its changes oc-
cur at a level of granularity which is above of programming language statements. In
the implementation, for instance, Darwin allows runtime changes of components via
dynamic instantiation with different parameters, as well as via interpreting language
scripts.

For more large scale distributed applications, the operations of dynamic reconfig-
uration are not unplanned and un-predicated. These change operations include, for
example, updating components with new versions, removing the old component and

31

CHAPTER 3 - EVOLUTION OF DYNAMISM ON DISTRIBUTED SYSTEMS

adding a new component. Some change operations can reach a further deep modifi-
cation, such as updating the method behaviors of a component. Dynamic Reconfigu-
ration can be said successful only if it satisfies the following requirements [66], [2]: 1)
structure integrity to ensure the changed system in a valid state in term of component
functional behavior; 2) consistency preserving to make sure the change processes are
correctly carried out; 3) state transferring to guarantee the inner states of component
are inherited from old one. So far, many approaches for dynamic reconfiguration have
been presented, but there is still no solution to perfectly address above issues. We
argue that the following aspects have to be considered as the important factors when
designing an approach for dynamic reconfiguration:

• Separation of Non-functional Concerns from Component means the source codes
for different concerns are not weaved tightly together which is important for the
system to enable being dynamically changed. This separation permits the for-
mulation of general structural rules for changes without the knowledge of appli-
cation functional states. We have to notice that separation of different concerns
of component does not mean the component has no codes for non-functional
management. Non-functional concerns are just behaved independently.

• Components Execution Model describes how the components interact to each
other. The execution model is greatly affected by the construction of compo-
nents, and at the same time it also poses big impacts on the reconfiguration
management. A more flexible execution model is possible to result in a more
flexible reconfiguration management.

• Reconfiguration Algorithm and Management determines how the changes are
dynamically made on the software system. In one side the reconfiguration man-
agement determines which kinds of operations are allowed to be carried out on
the software system. This decides the flexibility of system to adapt the vary-
ing environment. In another side the reconfiguration algorithm decides how
the change operations are carried out on the system quickly and with minimal
disruption. Most work of reconfiguration algorithm focus on how to drive the
reconfiguration involved system into a safe state in which change operations are
able to be carried out.

Adaptive systems are based on a set of predefined configurations that have been
assessed during development. During the period of execution, an adaptive software
system is able to modify its own behaviors according to the predefined configuration
in response to the changes of the running environments. Compared to the dynamic re-
configuration system, the adaptive system not only has to deal with dynamic changes
management of the software system, and it is also responsible to plan and deploy
the change conditions, monitor the system execution, and evaluate the environmental
changes [73]. To be more specifically, an adaptive system has to realize the following
functionalities:

1. Planning Conditions for Changes : the conditions for changes have to be prede-
fined to let the system know in which case the changes should be automatically

32

CHAPTER 3 - EVOLUTION OF DYNAMISM ON DISTRIBUTED SYSTEMS

carried out. In addition, the concrete change operations for different change
cases have to be predefined during the system deployment.

2. Monitoring the Execution: adaptive systems need a monitoring entity to mon-
itor the normal execution of system and also catch every change of the system
and the running environment.

3. Evaluating the Changes : the evaluating entity closely collaborates with the
monitoring entity and predefined conditions to make the decision when the
environmental changes can be ignored and when the system has to be adapted
for the changes.

3.4 Reflective Systems

Dynamic reconfiguration enables software systems to reconfigure its inner structure
to deal with faults or meet the varying environment. However, in some case there is
another demand to enable users looking up the inner structure of a system from out-
side environment, and then making the changes on the system based on the acquired
structure information. This is the target of reflective system.

The concept of computational reflection, or simply reflection, was first introduced
in the research field of programming language [56] to enable software systems to
access, watch its computation and possibly alter its own interpretation to change
the way it is performed. Currently the well known example is the Java package
java.lang.reflect which supports only the introspection about the classes and objects
in the current Java Virtual Machine [47]. With respect to the typology of actions
performed by the meta-entities, the reflection can be classified into two branches:
structural and behavioral reflection [19]. Structural reflection can be defined as the
ability of a language to provide a complete reification of both the program currently
executed, as well as a complete reification of its abstract data types. Behavioral
reflection is defined as the ability of a language to provide a complete reification of
its own semantics as well as a complete reification of the data it uses to execute the
current program. In [10] Blair et al had done a pioneering work to introduce the
reflection to middleware systems. In author’s viewpoint a reflective system is one
that provides a representation of its own behavior which is amenable to inspection
and adaptation, and is causally connected to the underlying behavior it describes.
Speaking more clearly, a reflective system holds the following two distinctive features:

Inspection Reflection can be used to inspect the internal behavior of a language
or system. By exposing the underlying implementation, it becomes straightfor-
ward to insert additional behavior to monitor the implementation. This can be
used, for example, to implement the functions of performance monitor and QoS
monitor etc.

Adaptation Reflection can also be used to adapt the internal behavior of a language
or system. This can either be achieved by changing the interpretation of an
existing feature or by adding new features.

33

CHAPTER 3 - EVOLUTION OF DYNAMISM ON DISTRIBUTED SYSTEMS

Since the conception of reflective middleware was first proposed, two frequently
referred works are OpenORB - Reflection in Open Distributed System leaded by G.
Blair from Lancaster University [10] and dynamicTAO Project from University of
Illinois at Urbana-Champaign [50].

3.5 Multi-Solutions Supported Systems

Do the current approaches for dynamic reconfiguration and reflection address the
problem of dynamic changes on software systems to adapt the varying environment?
Although adaptive systems and reflective systems offer richer and more flexible capa-
bilities, the core issue is still concentrated on dynamic changes. As introduced in the
section 1.1, most existing approaches for dynamic reconfiguration adopt two kinds of
mechanism to preserve the consistency during reconfiguration: 1) consistency through
recovery; 2) consistency through avoidance. The first kind of mechanism allows to
drive the system into a safe state immediately by broking the current interaction
which will definitely result in certain loss. Nowadays most approaches abandon this
kind mechanism for its obvious disadvantages, and turn to seek a better algorithm of
second kind of mechanism. However, whatever the algorithms are proposed, the core
idea of the second kind of mechanism follows a strategy of waiting until safe state,
which includes the following steps:

1. Start to make reconfiguration and suspend the incoming requests;

2. Adopt an algorithm to drive all affected components into a safe state in which
components finish their execution activities and are kept in a state of waiting;

3. Carry out change operations on the component software system;

4. Resume to execute the suspended requests by new reconfigured system;

The strategy of waiting until safe state works well in normal applications, but
it may collapse in some extreme cases. For example, if an affected component is
involved into a long time interaction, the processing of reconfiguration will have to
last for long time, which perhaps leads to a terrible consequence.

In addition, considering a mobile application supported by an adaptive system, if
an active user who is using the multimedia service goes into high bandwidth zone from
low bandwidth zone, the adaptive system will immediately delete the component of
buffer filter to provide higher quality multimedia service for the user. In this case, how
to continuously provide the multimedia service for the users who still stayed in low
bandwidth zone? In general, for a adaptive system, how to satisfy the old requirement
for rest users after changes are dynamically made to meet the new requirement for
partial users?

In this dissertation, I propose a novel approach named Routing Based Workflow
(RBW) that is able to address above mentioned problems. Firstly, the RBW is able
to make dynamically reconfiguration on component software system with minimal

34

CHAPTER 3 - EVOLUTION OF DYNAMISM ON DISTRIBUTED SYSTEMS

expense: i) the reconfiguration processing can be finished in a predicated time; ii) the
blackout time can always be limited in an extremely small time in any applications.
Secondly, the RBW is able to support multiple solutions synchronously to provide
personalized services for users.

Motivation

It is well proven in other area, such as IC, that the more independent a thing is, it can
achieve more flexibility. Similar in developing software systems, if a component can
be constructed more independently, it can get more flexibility in its execution and
reconfiguration. To achieve more dynamism on software architecture, it not enough
to separate the configuration concern from its functional implementation. It would
be better to separate all non-functional concerns, such as configuration, execution
management and even communication etc., from its functional implementation. In
term of execution, I call these non-functional execution and management as execu-
tion environment of components. Every software component lives in its individual
execution environment. When the execution environment of component is provided,
the component is able to be executed there. For multiple collaborative components,
I define a global execution environment that connects all individual execution envi-
ronments and is able to transfer and exchange information among components. All
collaborative components can run and interact with each other when their global ex-
ecution environment is available. The execution environment could be duplicated,
modified, replaced or even deleted, and these changes will naturally result in a new
collaboration for all involved components. In my routing based workflow, the global
execution environment is modeled as a routing. When a reconfiguration instruction
comes, what need to do is to modify the routing and update the old routing with
new one. The hard issues, such as consistence preserving etc., is then naturally sim-
plified because all change operations are acted on routing, namely global execution
environment, rather on components. The multi-solutions supporting can be realized
by supplying multiple routings synchronously.

In the research field of programming language, a technology of dynamic binding or
late binding is used to load the complied library at the running time [34]. The dynamic
binding offers high flexibility, such as polymorphism etc., for programming language
because the implementation of an interface can be determined during the execution
of application. To further enhance the execution flexibility of component software, I
introduce a concept of temporary binding for component instances which means the
component instances are temporarily loaded into a created execution environment to
execute their functions. After executions, the component instances will be released
and returned to their repository to wait next executions. The temporary binding
increases the independence of components, and also provides the higher possibility to
enable dynamic reconfiguration with minimal expense.

35

CHAPTER 3 - EVOLUTION OF DYNAMISM ON DISTRIBUTED SYSTEMS

36

Chapter 4

Routing Based Workflow

Routing Based Workflow (RBW) is a new proposed approach to enable dynamic
reconfiguration on component software systems and support multi-solutions for com-
ponents collaboration which is able to offer personalized services for users. RBW
is the fundamental technology of our secure middleware system, and the system for
dynamic services composition, which are introduced in next chapters. This chapter
presents the RBW covering its structure, execution, management, dynamic capabili-
ties, and extension for distributed components.

4.1 Overview of Routing Based Workflow

Routing Based Workflow (RBW) presents a novel software modeling approach for
collaborative software components, and demonstrates how to manage and guide the
execution of components within its modeling structure. The central advantage of
RBW is to enable temporary binding for component instances, which results in high
flexibility of dynamic changes on the system structure and simplifies lots of hard
issues arising from traditional approaches for dynamic changes.

4.1.1 Definition of Routing

As it is well known, routing is a concept commonly appeared in Internet protocols
where routing is an action of moving information across Internet from a source to
a destination. For collaborative components, intermediate data are also required
to be transferred from one component to another component deployed in the same
computer or across networks. Here the technology of RBW is proposed to manage
the execution, communication and control activities among different collaborative
components, and the concept of routing is borrowed to describe the structure, dataflow
and control dependencies among these components. From a given routing, designer
or programmer can acquire information to know the organizational relation of one
component with others. In a routing, each component is scheduled to execute its
function in arranged orders and the intermediate data can be transferred according to
the scheduled directions. From the viewpoint of applications of components, routing

37

CHAPTER 4 - ROUTING BASED WORKFLOW

can also be imagined as pipeline of intermediate data. After a routing is created,
data can flow from one component to other components via pipeline of data stream.
From the viewpoint of designers, a routing models a global execution environment for
all collaborative software components. In a routing, there is no persistent component
instance. Component instance is only temporarily loaded into a routing, namely a
global execution environment, when necessary for execution, and will be unloaded
from the routing immediately after execution. The execution of a routing brings
sequent executions of series of components in a scheduled order. At anytime when a
request comes, a routing is assigned to execute this request. If an instruction comes
to change the collaboration relation of components or replace one component with
its new version, what needs to change is only the routing, i.e. the global execution
environment, instead of component instances themselves.

4.1.2 Framework of Routing Based Workflow

The core element of RBW is routing which models the structure, execution, commu-
nication and control of collaborative components. In order to construct a routing,
the workflow management technology is employed to manage the organizational re-
lation of different components. In addition, software patterns such as proxy pattern
and pattern of object pool etc. have been used to construct components in routings.
Several aid modules are also created to manage and guide the execution of compo-
nents via processing of routings. Figure 4.1 describes the framework of RBW and
shows how different modules of RBW work together. Before explaining the working
mechanism of RBW, some terminologies are clarified as follows:

• Workflow Manager takes care of overall work of RBW. However, it is not in-
volved in specific functions realized by other modules, and concerns more on
the organization of other modules. Concretely speaking, Workflow Manager is
responsible to initialize the RBW to accept requests, organize relevant modules
to execute requests, and send back responses.

• Routing Schema describes the structure of routing and the constituted elements.
It exists in two forms in RBW. One form, called XML-oriented routing schema,
is described in offline configuration file using XML based configuration language,
see section 4.5 for details. The other form, called language-oriented routing
schema, is described in programming language, such as Java in our case. These
two forms are kept consistency. While RBW is initialized, offline configuration
will be parsed into language-oriented routing schemas. Similarly, when server
is going to shut down, language-oriented routing schemas may be changed and
then they have to be rewritten into XML-oriented routing schemas stored in
configuration file.

• Schema Lib serves as a schema repository that stores only language-oriented
routing schemas. It provides a set of interfaces to conveniently insert, get or
modify routing schemas. Its collaborated module is schema configurator.

38

CHAPTER 4 - ROUTING BASED WORKFLOW

Delegate

Delegate

Delegate

Delegate

Routing

...

Workflow Manager

Execution
Engine

Routing
Configurator

Routing Execution

Schema
Configurator

Schema Lib

Container Container Container
... ...

Component Repository

Routing Lib

Routing Reconfiguration

Request Response

Figure 4.1: Framework of Routing Based Workflow

• Bound Routing models the global execution environment for all involved com-
ponents. In a bound routing, each involved component has a representative to
establish the communication path among components. All component instances
are just temporary loaded into a bound routing to execute their functions, and
then unloaded. The round routing is responsible for all non-functional tasks,
such as data and control message transferring etc., to guide interaction and
management among component instances.

• Routing Lib is similar to schema lib, but what it contains is bound routings
instead of routing schemas. The routing lib collaborates with execution engine
which fetches specified bound routing from lib for every request, schema config-
urator which stores a bound routing to lib after it instantiates a routing schema,
and routing configurator which acquires a copy of a specified routing from lib
for change and updates the routing after changing.

• Schema Configurator provides more functions than what its name hints. Firstly,
schema configurator takes charge of parsing functions to parse routing schema

39

CHAPTER 4 - ROUTING BASED WORKFLOW

from XML based configuration file and coding functions to rewrite routing
schema to XML based configuration file. Secondly, schema configurator is re-
sponsible to instantiate a routing schema into a bound routing. Thirdly, schema
configurator fulfills the reconfiguration operations on routing schemas according
to the changes made on the corresponding bound routings.

• Routing Configurator implements the dynamic change operations on bound
routings. These change operations concern adding, deleting or replacing ele-
ments of a bound routing. The changed routing should also be a valid and
workable routing that will result in a new collaboration relation for all involved
components. The change interface provided by routing configurator could be
directly used by Graphic User Interface (GUI) based reconfiguration tools, or
be accessed from authorized client requests via execution engine.

• Execution Engine drives the execution of all involved components via processing
on a routing. Inside of execution engine, each routing has a pool of routing
processor to deal with the real processing on a routing. When a request comes,
a specific routing processor will be assigned and initialized with a request. The
thread technology based routing processor is then started in a parallel manner
for processing: triggering the execution of components by the data arrival from
request or other executed components.

• Component Repository is a virtual repository for all available components. Ac-
tually, all components are hosted in their own container independently. Com-
ponents could be deployed in the same computer or in different computers.

Before RBW starts to work, it has to be initialized. The step for initialization
can be divided into two parts: parsing from offline configuration and routing in-
stantiation. After parsing from XML based offline configuration, routing schemas
are re-expressed in a format of programming language. The process of instantiation
makes the routing to be a workable object - bound routing. The work mechanism of
RBW is simply illustrated in Figure 4.1, where block arrows indicate the interaction
between processing modules and lib modules, black lines with directed arrow indi-
cate the data flow direction. Two dashed lines are also used to indicate an indirect
operation concerning routing. For example, execution engine executes routing via a
third module - routing processor, and routing configurator makes changes on a copy
of the specified routing. In RBW, a request contains routing ID that indicates which
routing will be used to execute for this request, and input parameters that will be
consumed during the execution of this request. When a request comes, the workflow
manager firstly acquire a bound routing from routing lib according to the acquired
routing ID, and then assign a routing processor to execute this routing with input
parameters contained in request. The workflow manager does not need to wait for
the result of execution because routing processor is designed using thread technol-
ogy and knows how to send out response with the information provided in request.
When another request comes immediately, workflow manager can accept it soon and
assign another routing processor with a corresponding bound routing to deal with

40

CHAPTER 4 - ROUTING BASED WORKFLOW

it. The key technology of RBW is the structure and execution mechanism which are
introduced in subsequent sections.

4.1.3 Three-Layers Modeling

RBW models the process of collaborative components from their static structure to
running time states, as shown in Figure 4.2. The modeling of components in different
stages can be reflected into three tiers: routing schema, bound routing and active
routing. Routing schema describes the static structure relation of collaborative com-
ponents, and specifies features and properties of each component. Bound routing is
a routing in which all components are instantiated, and interfaces of all components
and their data communication path are established and tested. In other words, in a
bound routing all components are waiting for upcoming requests and ready to run.
The third tier, active routing, is the execution environment where the execution,
communication and control activities among all involved components occur. Work-
flow manager is more like a coordinator to coordinate different modules to execute
their tasks in different layers. Comparing the second layer - bound routing and the
third layer - active routing, we get more clear that a bound routing is just an idle
global execution environment where there are no any ongoing execution activities of
components. That means RBW does not need to wait any more and can immedi-
ately get a safe state software execution environment. The change operations that
realize dynamic reconfiguration functionalities performed by routing configurator can
be immediately acted on a bound routing, an idle execution environment, instead of
components themselves. So a series of hard issues arising from dynamic changes, such
as component states transferring and consistency preserving etc., can be avoided or
greatly simplified in RBW.

Routing Schema

Active Routing

Bound Routing

Schemas

Processors

Schema
Configurator

Routing
Configurator

Execution
Engine

Workflow
Manager

Routings

Figure 4.2: Three Layers Modeling of Routing Based Workflow

41

CHAPTER 4 - ROUTING BASED WORKFLOW

4.2 Routing Structure and Modeling

In this section I describe the constituted elements of routing, and show how routing
can be used to model the collaborative software components. The routing structure
and modeling discussed in this section and next three sections concern only the com-
ponents deployed in the local computer. This is also the application case of RBW in
our secure middleware construction introduced in chapter 5, and dynamic web ser-
vices composition introduced in chapter 6. In section 4.6 an extension of RBW will
be introduced for components deployed separately.

4.2.1 Routing Structure

The construction of routings adopts the graph oriented workflow structure. In RBW,
the managed components can be randomly integrated together if the IO interfaces
of components are matched. As depicted in Figure ??, all components are not in-
tegrated directly together. They use their representatives, component delegates, to
integrate as a routing. The component instance is wrapped into component proces-
sor and hosted in its home, component container. The interactions among different
components are guided by the routing. Actually routing works as a inner manager
and takes care of the direct management activities on components. In the following
subsections I introduce in detail each constituted elements of routing: component
delegate, component container and component processor.

Fig.1. Structure of Routing

Delegate

Delegate

Delegate

Delegate

Routing
...

Component Container

Processors
… …

get() release()

Figure 4.3: Structure of Routing

Component Delegate

Component delegate represents a component in a routing for all management activ-
ities. In a routing, what you can see is only component delegate and there is no

42

CHAPTER 4 - ROUTING BASED WORKFLOW

persistent component instance. As representatives of components, component del-
egates establish the connection among different components and accepts the input
data from request or outcome of other components. The design and implementation
of component delegate are greatly affected by the structural design pattern of proxy.

Proxy Pattern The proxy design pattern [14] makes the clients of a component
communicating to a representative rather than to the component itself. The rep-
resentative offers the interface of the component but performs additional pre- and
post-process, such as the access control checking etc. Figure 4.4 depicts the general
model of proxy pattern. The client is responsible to invoke a specific task. To com-
plete this job, it invokes the functionality of the original component by accessing the
proxy. The proxy offers the same interface as the original component, and maintains
a reference to ensure correct accessing. The abstract original means the interface
implemented both by the proxy and the original component.

Client

task

Proxy

Service 1
Service 2

Original

Service 1
Service 2

Abstract Original

Service 1
Service 2

Figure 4.4: Diagram of General Proxy Pattern

Depending on the context in which proxy object is used, the proxy pattern can be
divided into several different types, but commonly used are the following three types:

• Remote Proxy provides a reference to an object located in a different address
space on the same or different machine. For example, a proxy for web services
invocation shields the client from the remote address of web service and SOAP
communication for message transfer.

• Virtual Proxy allows the creation of a memory intensive object on demand. The
object will not be created until it is really needed.

• Protection Proxy provides different clients with different levels of access permis-
sion to a target object.

Design of Component Delegate The design of component delegate concentrates
mainly on two aspects: service interface keeping and reference maintaining.

The classical approach to keep the service interface of proxy with that of original
component is to share the same interface. Speaking in Java programming language,

43

CHAPTER 4 - ROUTING BASED WORKFLOW

the class of proxy and class of original component have to implement the same inter-
face. However, there is no distinct invocation by reference in RBW. All the interac-
tions among different components are realized by the data driven communication and
execution, which means component delegate only forwards the data from other com-
ponent to its original component instance and the data arrival automatically trigger
the execution of component. The design of keeping the same interface of component
delegate with its original is realized by sharing the same communication ports which
include in port and out port, refer details in next two section. A series of in ports
and out ports are separately managed in two customizable arrays inside of component
delegate. The class of component delegate is unique, but it can adapt to countless
original components by changing its IO behaviors. When a component delegate is
instantiated, a set of mandatory parameters have to be given to indicate which orig-
inal component is delegated and which ports are used to represent the IO behaviors
of this component. It is possible to create multiple instances of a component delegate
to represent the same original component. In this case the original component may
serve for multiple delegates during different time slices. This multiple delegates for
one original component may happen when the component is used in different position
of a routing or in different routings.

Another responsibility of component delegate is to maintain the reference of the
original component through which inputting data and produced results can be for-
warded. In component delegates the design of reference maintaining is also different
from traditional methods. Component delegate does hold a reference. However, this
reference does not point directly to the original component, but to a component con-
tainer, detailed in next section, that manage the life cycle of the original component.
Such design greatly increases the independence of component and also brings much
flexibility for dynamic changes and reorganization of components. Through the ref-
erence to a component container, the corresponding component delegate can load
the original component to execute its functionality when necessary. After execution
the component delegate will immediately release the original component through this
reference.

As the representative of component in a routing, component delegate also takes
charge of other tasks to guide the execution of components and manage the con-
trol activities: for example, real binding and unbinding for component instance and
control messages transferring etc., refer section 4.3 for details.

Component Processor and Container

Component processor is the wrapper for functional component entity that implements
the functionality it claims. Functional component contains only the implementation
of pure business logics, but it need to be wrapped into component processor to enable
contact and communication with other components in a routing. The functions of
component wrapper can be summarized into four aspects:

1. creating IO interface via communication ports;

2. checking execution requirements for component;

44

CHAPTER 4 - ROUTING BASED WORKFLOW

3. triggering the execution of functional component when all required data arrive;

4. pushing the results to next components after execution.

The closely collaborated module with component processor is its host, component
container, which holds a pool of component processor instances. Component container
takes charge of the life cycle management for component processor:

1. providing interface for client, here namely component delegate, to get from and
release to pool;

2. enabling creating or deleting instance of component processor when necessary;

3. managing the size of pool and synchronization etc.

The design of component container is greatly affected by software design pattern
of object pool.

Pattern of Object Pool The design pattern of object pool [36] provides an effec-
tive means to improve the execution performance by supporting the reuse of multiple
instances of objects. Object pool is used in programming environment where the
specific type of object is expensive to instantiate or only a limited number of this
kind of objects can be created. Figure 4.5 shows a general diagram of the design
pattern of object pool, where the client is any object in the system. To request a
object, a client just calls get() method on pool manager and gives the object back to
the pool by calling release method on the pool manager. The pool manager has to
be initialized by a series of parameters that specify the class of the pooled object and
relevant parameters for the instantiation of pooled object.

Client

task

Pool Manager

Initialize()
Get()

Release()
Pooled Class

Figure 4.5: Diagram of Pattern of Object Pool

The pattern of object pool is most often used in two cases: network connections
and database connections, which both cost much time and resources for new instan-
tiation and have limitation for the number of connections. One of the well known
applications of object pool pattern is the EJB container of J2EE which is a runtime
container for deployed EJBs. During the entire life cycle of an EJB object, from its
creation to removal, it lives in the container. The EJB container also provides a stan-
dard set of services, such as caching, concurrency, persistence, security, transaction
etc., for EJB object used in enterprise applications.

45

CHAPTER 4 - ROUTING BASED WORKFLOW

Design of Component Processor As illustrated in Figure 4.6, component proces-
sor comprises of a functional component implementing pure functional business log-
ics, and a generic processor implementing non-functional aided tasks for execution
management. The component processor’s IO behaviors with other components are
realized through its in/out ports. Few methods of interface of component processor
are offered for external objects to invoke the methods of component. Most other
methods are internal services for guiding the execution of functional component.

Functional Component

Generic Processor

create_ports() init() trigger()

push_out()

check_exec_req()

check_pre_req()

process()

Figure 4.6: Component Processor

Generic processor is designed as an abstract class that has to be extended by all
functional components to create function-specific component processors. The tasks
of generic processor can be classified into two types: basic inner methods that are
same for all functional components, and abstract inner methods that have to be
implemented in different functional components. The basic inner methods of generic
processor are listed as follows:

• Offering high level communication ports creation API : Given the information
from IO interfaces of functional component, the high level port creation APIs
are provided to create in ports connecting its suppliers and out ports connecting
its consumers. During the procedure of ports creation, a series of inner in/out
objects are also created in generic processor to accept the source data from
in port and then forward to functional component, or accept the result from
functional component and then forward to out ports.

• Non-functional initialization: The non-functional initialization means the data
for initialization is beyond the functional execution of component and it is for
execution preparation, such as the clearness of in/out objects created to connect
IO ports, state initialization for component etc.

• Triggering the execution of functional component is independent from functional
component itself. Every time the input data arrives, the in port will start
triggering method to check whether all required data are arrived or not. If the
answer is yes, the execution of functional component is triggered. Otherwise,
just keep waiting for next data arrival.

• Pushing out result is the last step for the execution of component. The result
will be set to the out objects bound to out ports, and then the out ports will

46

CHAPTER 4 - ROUTING BASED WORKFLOW

push the result to its next bound in ports which belong to other component
delegates or response.

The abstract inner methods are mainly about function-specific behaviors of com-
ponent and have to be implemented in each concrete component. The implementation
of abstract methods also indicates the key steps to create a new function-specific com-
ponent processor for RBW:

• Creating IO ports: component processor uses the high level ports creation API
to customize its function-specific IO behaviors. The implementation for IO ports
customization is realized in the constructor method of a concrete component
processor with provided information of method parameters, such as name and
type of IO objects etc.

• Functional initialization: the properties of a concrete component will be used
to initialize a instantiated component processor.

• Checking the preparation requirements: this is provided for the component that
needs specified condition or resources to enable the execution of component:
such as CPU or memory requirements, sound cards or other special resources
etc. This step is invoked by component container when carrying out the virtual
binding for routing, as shown in section 4.3.

• Checking the functional execution requirements according to the acquired data
from other components or request. This step happens during the period of
execution.

• Execution process starts the execution of functional component with received
data from its in ports and puts the result to its out ports that are connected to
in ports of next component delegate.

• Implementing the release function to clear all produced intermediate data and
to reset all relevant data as initial sate.

Design of Component Container Component container is the host and the only
directly collaborated module of component processor. The temporary binding be-
tween component delegate and the instance of component processor, also called com-
ponent instance, is created and controlled by its container whose reference are kept in
the delegate. The component container maintains a pool for instances of one function-
specific component, and each component processor has its exclusive container. The
design of component container adopts the idea of object pool pattern, and comprises
of three key functions as follows:

• Creating component instance: the fixed number of component instances have
to be created in the beginning of instantiation of component container. During
the runtime, there may also be a demand to create a new instance when there is
no idle instantiated component. To enable component instance creation, a set

47

CHAPTER 4 - ROUTING BASED WORKFLOW

of relevant information have to be specified after creating an empty container.
Such information includes not only the name and class of component object,
but also some parameter objects that are required for component instantiation.

• Maintaining a pool for instances: two external methods, get() and release(),
are the key to maintain the pool of component instances. The concrete tasks
include initializing the pool, synchronizing operations of get() and release(),
and maintaining two lists: locked list for dispatched components and idle list
for available components.

• Checking the compatibility with corresponding Component Delegate: this com-
patibility checking is specially designed for RBW in which virtual binding is
an important operation to make different component delegates connected. Al-
though after virtual binding the component instances are still separated from
routing, component container will make a compatibility checking to ensure that
every component instances are bindable and matched to corresponding dele-
gates. The implementation of checking is realized by temporarily loading a
component instance to make real binding and unbinding. During the checking,
an external method of component processor, check prepare requirement(), will
be invoked to check whether the current host environment meets the execution
requirements of component.

Component Processors

get() release()

Component Container

set_processor_class() init_pool() get_available_size() add_one_instance()

check_bindable()

Figure 4.7: Component Container

Communication in Routing

In RBW, all the intermediate data flow from one component processor to others
through their corresponding component delegates. The communication among differ-
ent component delegates and the communication between component processor and
component delegate are realized by communication ports. All the intermediate data
transferred in routing are packed with a universal wrapper - Named Object.

48

CHAPTER 4 - ROUTING BASED WORKFLOW

Communication Port According to the data transferring direction, communica-
tion ports can be classified into in ports and out ports. Communication ports are
used both in component delegate and component processor. For component delegate,
the in ports is defined as port that accepts data from other component delegates and
forwards these data to its represented component processor. For component proces-
sor, the in port is defined as port that accepts data from its represented component
delegate and forwards the data to its inner functional component. The definition
of out port is similar but the transfer direction is contrary, as shown in Figure 4.8.
According to the type of transferred data, communication ports can also be classi-
fied into operation port and stream port. Operation port is defined as port in which
the transferred data is an object that will be forwarded immediately after it is re-
ceived. However, in the stream port the transferred data is stream data that will be
continuously transferred and the forwarding and receiving operations are performed
concurrently. So far, all of my work focuses only on the data transferring by op-
eration port. In the rest of dissertation, if a communication port is referred, it is
automatically considered as an operation port.

P
rocesso

r
Delegate

In Port

Out Port

Figure 4.8: Communication In Port and Out Port

The working mechanism of communication port is described from its structure,
interfaces and management as follows:

• Port Structure: Member variants of port are described in Figure 4.9, which
is the Java expressed abstract class. Two key variants are m sourceList that
contains a list of source objects from which data are sent, and m destinationList
that contains a list of destination objects to which data will be forwarded. The
source objects and destination object are mainly communication ports or the
inner objects of component processor that are bound with ports and interacted
directly with the functional component. In a port the transferred data will not
be stored, and only pass through from its source to a series of destinations.
Another three important member variants of port are: m owner indicates to
which this port is belong, m type indicates what type of data can be transferred
by this port and m state indicates different states in which port stays during
the execution of routing.

• Port Type: For each communication port, a port type is specified when a port
is created. The information of port type contains: the IO direction, symbol

49

CHAPTER 4 - ROUTING BASED WORKFLOW

 public abstract class OperationPort{

private InBehavior m_owner = null ;
private LinkedList m_sourceList = null ;
private LinkedList m_destinationList = null ;
private PortType m_type = null ;
private PortState m_state = null ;
private Property m_property = null ;
...

}

Figure 4.9: Members of Abstract Class of Operation Port

indicates whether it is an operation port or steam port, and the data type of
transferred object. When a port is created, it can only be bound to another
port type matched port, and transfer the specified type of data. Otherwise,
an execution exception will be thrown out. The port type is designed to ease
managing the ports and to enhance the validation condition of ports binding.

• Port Interfaces: The interface of operation port is listed in Figure 4.10. Two
important methods are bind source() which is used to check and bind the
source port together, and bind destination() which is used to bind the des-
tination port together. The method of bind owner source() is designed spe-
cially for out port of component processor to bind its source with its inner
object consumed directly by functional component. Likewise, the method of
bind owner destination() is designed for in ports of component processor to bind
the result produced by functional component with port’s destination. Another
two important methods are unbind source() and unbind destination() that sep-
arate the ports of component processor from the ports of component delegate
and eventually unload the component instance from routing.

 public interface OperationPort{

public int bind_source(OperationPort port);
public int unbind_source(Object source);
public int bind_destination(OperationPort port);
public int unbind_destination(Object destination);
public int bind_owner_source(NamedObject source);
public int bind_owner_destination(NamedObject destination);
...

}

Figure 4.10: Interface of Operation Port

• Port State: During the execution of components, series of activities are acted
on ports: ports binding, data transferring and ports unbinding. To efficiently
manage these activities, the port state is designed to record the state and change
state according to the execution stages of relevant activities. There are five
states which are designed as follows:

50

CHAPTER 4 - ROUTING BASED WORKFLOW

1. STATE INITIAL: is the initial state after port is created.

2. STATE SOURCE BOUND: is the state after successfully carrying out
method of bind source() or bind owner source(). In this state port is not
allowed to transfer data.

3. STATE DESTINATION BOUND: is the state after successful carrying out
method of bind destination() or bind owner destination().

4. STATE READY: After source and destination are bound, port goes into
this state. In this state, port is ready to forward data or to be unbound
from other ports.

5. STATE ACTIVE: when a port receives data, it goes into active state.
After forwarding, it returns back to ready state. In active state, the port
is not allowed to perform port unbinding operations.

• Ports Management: Ports are used both in component processor and their
delegates. To improve the efficiency of implementation, a class of IOBehav-
iorAbstract is designed to take charge of the management task of ports and will
be extended by all objects that facilitate the IO behaviors via ports, such as
component processor and component delegate. The task of ports management
contains common basic operations on ports: offering low level API for port cre-
ation, maintaining a set of list for different type of ports, enabling searching
functions for available ports etc.

Data Transfer Wrapper - Named Object In RBW, all the intermediate data
are not nakedly transferred via ports, they have to be wrapped into a Named Object
and then be transferred. The Named Object helps to manage the transfer process.
Speaking more clearly, what is transferred among the ports is an instance of Named
Object which carries the data value and other relevant information. Named Object
could also be constructed as the inputs set and output set of a routing, which would
be bound to the ports of component delegates, and the inner objects of component
processor that connect the ports of processor and consumed by functional component.
The key constituted elements of Named Object are listed as follows:

• Identifier is the name of transferred object, and it is unique and represents
object in RBW.

• Type indicates the data type of transferred object which will be used to check
the validation of data transferring.

• Value stores the real value of the object.

• State has only possible two values: INITIAL and READY. Only when the state
shows READY which means data are already set, the instance of Named Object
can then be transferred via ports.

51

CHAPTER 4 - ROUTING BASED WORKFLOW

Control Links

In RBW, communication ports provide powerful functionality to create data flow
pipeline and enable the interaction among different components. However, in some
case the flow path can not be decided until it gets the execution result of last com-
ponent. For example, only after the authentication is true, the data will flow to
credit card payment component. Otherwise data will only flow to exception handling
component. Here the control link enables flow selection by making simple logic com-
putation with inputs and sending out the results to one of different ports which are
connected to different components. The implementation of control link is realized
using a similar way as component processor. But the control link has no delegates
and container. Ports of control link are directly connected to ports of component
delegates. In fact, control links can also be, in some extent, taken as simple and
commonly used components.

Three pick links, i.e. AND Link, OR Link and XOR Link, and one data type
mapping link, i.e. Map Link, are introduced in next paragraphs. All three pick links
accept only boolean type of data and produce boolean type of results. For all three
select links, the number of out ports are fixed with two and the produced values are
also fixed: the first port only exports boolean type value of TRUE and the second
port only exports boolean type value of FALSE. When pick link finishes its logic
computation, it will only export one value: True or False. The out port acquired a
boolean value will forward the value to its connected component delegate and trigger
the execution of the picked component. The component that is connected to another
out port of control link will then be blocked because there is no data sending out
from another out port.

AND Link AND Link realizes the same function as logic operation: AND, as
shown in Figure 4.11. AND Link accepts Boolean values from in ports, and outputs
Boolean value ’TRUE’ only if all the inputs are ’TRUE’. Otherwise, the output would
be ’FALSE’. In AND Link the out ports are fixed, and the in ports can be freely
customized with the restraint of fixed data type: Boolean. AND Link can have any
number of in ports.

 TRUE Input 1
AND ...

FALSE

Figure 4.11: Diagram of AND Link

OR Link Similar to AND Link, OR Link realizes the function as logic operation:
OR, as shown in Figure 4.12. OR Link outputs ’TRUE’ if at least one input is
’TRUE’. The number of in ports could be any digit bigger than one.

52

CHAPTER 4 - ROUTING BASED WORKFLOW

Input n

TRUE Input 1

OR ...

FALSE

Figure 4.12: Diagram of OR Link

XOR Link XOR Link realizes the function same as another logic operation: XOR,
as shown in Figure 4.13. If all inputs are same, the XOR Link outputs ’TRUE’.
Otherwise, XOR Link outputs ’FALSE’. In XOR Links, the number of in ports must
be two.

Input n

TRUE Input 1

XOR

FALSE

Figure 4.13: Diagram of XOR Link

Map Link For two collaborative components, the ports planned to be bound are
possible to face a problem of type-mismatched. For example, one in port is for
price expressed in string type, however, the potential coupled out port is expressed
in integer type. In most cases it would be difficult to change the data type of any
port. The Map Link is designed, as shown in Figure 4.14, to address such issues.
The in port and out port can be customized freely for any simple data type. After
customization, given a data with specific type, the Map Link can output the same
data with expected type. The implemented data types in Map Link are nine simple
data type: String, Short, Integer, Long, Float, Double, Boolean, Byte, Character.
Notice that some data types mentioned above are not transformable, e.g. Double
value can not be transformed to Boolean value.

 Map Output with Expected Type Input Data

Figure 4.14: Diagram of MAP Link

4.2.2 Routing Modeling

In RBW, components are represented by their delegates and the flow structure of col-
laborative components are modeled by routing. For the flexible construction of rout-
ing and specially designed communication ports, routing is a graph-oriented structure
and is able to model most kinds of flow structure that reflects the process of com-
ponents. Three typical flow structures modeled by routing are introduced in next

53

CHAPTER 4 - ROUTING BASED WORKFLOW

subsections: sequential and parallel routing, flow pick routing and cycled routing.
The nested structure can also be modeled by routing in which a compound dele-
gate comprises of several different component delegates. But this nested structure
makes no much sense to improve the efficiency of execution and express capability of
component process, so it will not be introduced.

Sequential and Parallel Routing

In the workflow management, sequential and parallel orders are two simplest and
most commonly used structures for business process. Routing also naturally models
these two basic flow structures. Sequential process is modeled in routing through data
flowing from out port of one component delegate to in port of another component
delegate. In a routing, two or more out ports of the same component delegate can
be bound to in ports that belong to different delegates. Likewise, two in ports of the
same component may also accept data from different components. In above cases,
parallel process is modeled. An example of parallel process modeled by routing is
depicted in Figure 4.15, where the directed arrows indicate the data flow direction.

Delegate

 Delegate

Delegate

Routing Delegate

Delegate

Figure 4.15: Example of Parallel Routing

Flow Pick Routing

Picking flow often appears in business process. The result of key component, such as
component of authentication, will dramatically affect the process order of subsequent
components. With control link, routing can rather perfectly model such picking flow.
Three control links can be used to make decision according to the inputs and give
a output direction to which data will flow. The other flow paths will be blocked
because of waiting for the never arrived inputs. Notice that each component delegate
will trigger the execution of component only after all of input data arrive. An example
of flow pick routing is given in the following Figure 4.16, where the real directed arrows
indicate the default data flow path and the dotted directed arrows indicate another
candidate and possible flow path.

54

CHAPTER 4 - ROUTING BASED WORKFLOW

Delegate

 Delegate

Routing

Delegate

Delegate

Delegate

AND

Figure 4.16: Example of Flow Picking Routing

Cycled Routing

In some cases, one or several components have to be executed repeatedly. Routing
can model this kind of process by a cycled structure. The out ports of component
delegate can be freely connected to any in ports if necessary and ports are matched.
When the out ports link to in ports of the same component or the former component,
the connected routing becomes a cycled structure. Normally, the implementation of
component is a black box for the routing designer and the inner implementation is
hardly used to make decision when the flow in the cycle will end. Just as in flow pick
routing, in cycled routing control links once again play an important role to decide
the time and condition to end a cycled flow. An example of cycled routing is given
in the following Figure 4.17, where the real directed arrow indicate the cycled data
flow path, and dotted directed arrows indicate the data flow path after the ending of
cycle. Notice that, although Delegate3 always sends data to one in port of Delegate4,
Delegate4 will not be triggered to execute during period of cycling because it is still
waiting for another input from AND Link while cycling.

Delegate4

Routing Delegate2

Delegate3

AND

Delegate1

Figure 4.17: Example of Cycled Routing

4.3 Routing Execution and Management

Based on the routing structure and routing modeling introduced in the previous
sections, the routing execution procedure and dependency management of routing
are explained in this section. From explanation of routing execution, it is easy to

55

CHAPTER 4 - ROUTING BASED WORKFLOW

know how temporary binding of component instances are realized in RBW and result
in dynamic reconfiguration with minimized prices.

4.3.1 Routing Execution - Temporary Binding

The execution of routing guides the executions of a set of collaborative component in-
stances. Routing has three states during the period of execution: initial state, bound
state and active state, which indicate different stages of component execution. Once
routing is created and instantiated from routing schema, it goes into initial state in
which each component delegate is separated from each others. Two other states con-
cern two important operations on routing: virtual binding and real binding. After
a routing completes the operation of virtual binding, it goes into bound state which
means routing is connected and is ready for request. If a request is dispatched to a
specified routing, the routing goes immediately into active state in which sequences of
real binding and unbinding operations of components are performed. During active
state all relevant component instances are loaded into routing, executing its func-
tionality and are unloaded from routing respectively and continuously. Figure 4.18
shows the routing execution in different states. In the following subsections, two im-
portant execution operations: virtual binding and real binding, and the procedure of
execution are described.

 Routing in Initial State

Delegate

Delegate

Delegate

Delegate

Routing

...
P

P

Activities in Active State

Activities in Bound State

Figure 4.18: Different State of Routing Execution

Virtual Binding

Virtual binding aims to connect a routing, so that the intermediate data can be
transferred among component delegates. As shown in Figure 4.19, virtual binding
has established the pipeline of dataflow among different component delegates. To
establish above dataflow pipeline, virtual binding has to carry out three tasks: IO
behavior checking, pre-execution checking, and ports binding.

56

CHAPTER 4 - ROUTING BASED WORKFLOW

IO behavior checking is the first task of virtual binding to check whether the
IO behaviors, i.e. in/out ports, of component delegate is matched with that of its
represented component processor. The checking issues primarily concern whether the
port types of two ports are the same and whether the transferred data are for the
same purpose. To implement this kind of checking, component delegate temporarily
loads a component instance to make a real test for IO behavior checking, and then
returns back the component instance after test.

The second task, pre-execution checking, is to check whether the local resource
and environment meet the execution requirement of component. The specification
of requirements and implementation of pre-execution are implemented in component
processor by designer. What the virtual binding need to do is to invoke the common
method when component instance is temporarily loaded for IO behavior test.

The third, also the most important task for virtual binding is ports binding which
means connecting component delegates together according to the provided or auto-
matically detected binding pairs of coupled ports. From the introduction of commu-
nication ports, we get to know, each port has a set of source objects and a set of
destination objects. In a pair of coupled ports, there are a supplier and a consumer.
Supplier is set as one of sources of the consumer port and consumer is set as one of
destinations of the supplier port. That is what need to be done for ports binding. If
all ports of all delegates in a routing have been bound, a dataflow pipeline of routing
from input set to output set has been created.

 Virtual
Binding ...

Delegate

Delegate

...

Delegate

Delegate

Figure 4.19: Virtual Binding of Routing

Real Binding and Unbinding

Virtual binding has established the dataflow pipeline between delegates. However,
after virtual binding the connection between component delegate and its represented
processor is still separated which is the responsibility of real binding. For component
delegate and component processor, source objects of the in port and destination
objects of the out port are involved in process with component delegates, so we call
these as outer behaviors of port. Likewise, destination objects of the in port and
source objects of the out port are involved in process with inner processor or the
inner object of processor, so we call these as inner behaviors of port. During the
virtual binding the outer behaviors of delegates have been bound to form dataflow
pipeline. But after virtual binding, the inner behaviors of delegates are still empty.
The inner behaviors of component processor have already been bound and fixed when
it is created and instantiated. One of key tasks of real binding is to bind the inner
behaviors of delegates to the outer behaviors of component processors.

57

CHAPTER 4 - ROUTING BASED WORKFLOW

During the virtual binding it does not enforce that all in/out ports of delegates
have to be bound together. For binding demanded ports, they have to be bound
otherwise an exception will be thrown out. For binding optional port, a default
value has to be provided for the case that the port is not bound with others after
virtual binding. The second task of real binding is to set the unbound port with
its provided default value. This step is indispensable. Otherwise routing will be
blocked because unbound ports will be waiting for the inputs that never arrive. After
the real binding, the routing can be said really ready for request processing. For a
component processor, only when it is its turn to execute, it then carries out the real
binding to load component instance and executes its functionality. After execution,
the processor should also carry out the operation of unbinding from routing.

The real binding of component instance is triggered by data arrival on any in ports
of the corresponding component delegate. The unbinding of component is gradually
and automatically accomplished by unbinding of each out port that is carried out
after out port sends out the result value to next component delegate. Through the
temporary binding of component to routing, component is able to serve in several
different active routings at the same time. In this case, synchronization is made
to ensure different routings can acquire an independent time slice of execution. If
necessary, multiple instances of each component can be instantiated to deal with
mass requests.

Real

Binding

Delegate

Delegate

P
ro

ce
ssor

... ...

Figure 4.20: Real Binding of Component

The separation of virtual binding and real binding increases the independence of
component from others, and also create a complete idle execution environment for all
involved components - virtual bound routing which is always in safe state on which
the dynamic reconfiguration operations can be carried out.

Execution Procedure

The execution procedure of routing can be divided into two stages: routing prepara-
tion and request execution. A diagram of execution procedure is illustrated in Figure
4.21. The preparation of routing is rather time-consuming. Fortunately, it only occurs
and completes during the initialization of RBW, and the concrete steps are explained
as follows:

• Firstly, parsing routing from XML based Schema to Language based Schema:
XML based schemas are specified and stored in configuration file using a XML
based configuration language, refer to section 4.5. The configuration has to be

58

CHAPTER 4 - ROUTING BASED WORKFLOW

firstly parsed into language expressed data structure which is easy and quick to
instantiate and manage.

• Secondly, instantiating a routing from schema data structure: the task of rout-
ing instantiation mainly comprises of instantiation of component and creating
routing structure for involved components. To be more specific, routing in-
stantiation comprises of instantiating the component processor, creating and
initializing the component container, component delegate and communication
ports for each component processor, and finally constructing a routing to orga-
nize all involved component delegates.

• Thirdly, making virtual binding on each instantiated routing, and then creating
a routing container for each virtual bound routing, with which Execution Engine
can easily get or release a virtual bound routing.

Delegate

Delegate

Delegate

Delegate

Active Routing M
...

P

P

Execution
Engine

Schema
Configurator Routing

Lib

Pre.2. Instantiate a routing
from Schema

3. Assign a routing
processor instance

and initialize it with
Request A and

Routing M

5. Return
result and

release
Routing A

1. Request
A comes

2. Get a bound
routing M

Schema
Lib

Pre.3. Make virtual binding
on instantiated routing

Pre.1. Parse from XML based Schema to
Language based Schema

Routing Processor

6. Return response and
release the instance of

Routing Processor

4. Push the
inputs from

request to
routing

Figure 4.21: Request Execution Steps

The second stage of execution focuses on dealing with the request and is summa-
rized in the following steps:

1. Accepting a request for execution. This request comes from the system in which
RBW is integrated, and is reformatted as routing-based request when it is going
into the part of RBW.

59

CHAPTER 4 - ROUTING BASED WORKFLOW

2. Getting a bound routing. Each request contains a routing ID to indicate which
routing is expected to deal with this request. Execution Engine gets the routing
according to the specified routing ID from Routings Lib.

3. Assigning a routing processor instance. Routing processor is designed based on
thread technology and used to guide and manage the execution of one routing.
For each request, Execution Engine assigns a routing processor and initializes
it with the accepted request and the fetched routing.

4. Routing processor starts to run and push the input data from request to input
set of routing that trigger the execution of routing.

5. After automatic execution of routing, routing processor gets result of the exe-
cution and releases this bound routing.

6. Routing processor creates and sends out a response based on the result and the
information provided in the request.

7. Execution Engine finishes the execution and releases this routing processor.

4.3.2 Dependency Management

To efficiently manage the execution of components, the dependencies of component
have to be recorded and managed. There are two kinds of runtime dependencies
of a specific component with its collaborated ones. The most important is dataflow
dependencies which specify the data flow relations and are realized by communication
ports. The other is control dependencies that specify the control and management
relation of one component with its neighbors.

Control Dependency

In RBW, the entity to implement component’s business function is component proces-
sor whose life cycle management is controlled by component container. Component
delegate represents component processor in a routing for collaboration management
activities. So the runtime dependencies of component are recorded and controlled by
component delegates and control links. The concrete tasks of dependency manage-
ment in RBW are dependency creating and control events management.

Four methods for dependency creating are listed in Figure 4.22: register child()
and register parent() are used to register specified component as the child or parent
relation with current one; unregister child() and unregister parent() are used to delete
the control dependencies of specified component with the current. Component dele-
gate and control link create their control dependencies according to their data flow
dependencies. As introduced before, any component delegate and control link con-
tain in ports and out ports. If the coupled port of an out port P belongs to delegate
M, then the owner delegate of port P is a parent delegate of delegate M. Likewise,
if the coupled port of in port Q belongs to delegate N, then the owner delegate of
port Q is a child delegate of delegate N. According to above definition, the control

60

CHAPTER 4 - ROUTING BASED WORKFLOW

 public class ComponentDelegate implements EventListener {
 ...

public void register_child(ComponentDelegate delegate);

public void register_parent(ComponentDelegate delegate);

public void unregister_child(ComponentDelegate delegate) ;

public void unregister_parent(ComponentDelegate delegate);

public void event_from_child(ControlEvent event);

public void event_from_parent(ControlEvent event);

...
}

Figure 4.22: Methods for Control Dependency

dependencies of a component are automatically generated according to the informa-
tion from its dataflow dependencies. Component may have multiple parent delegates
and multiple child delegates because it may have multiple in ports and multiple out
ports, as illustrated in Figure 4.23. A component delegate is even possible to become
parent delegate or child delegate of itself when it is in a cycled routing and consuming
the data produced by itself. After generation of control dependencies for all relevant
components and control links, any control event or message can be easily transferred
from one component delegate to another in the routing.

Parent Delegates Child Delegates

Component

Delegate
 Events Events

Figure 4.23: Control Dependencies of Component

Another two methods are event from child() and event from parent(), that are
used to transfer the control events among component delegates and control links
according to the created control dependencies. In RBW, six control events are defined.
Any event may be triggered automatically in the program or by administrator, and
it will be immediately acted on the current component and then broadcasted to all
other components in the routing if necessary. Six events are described as follows:

• EVENT SUSPEND indicates the routing will be suspended. This event can
not suspend the started execution of component, but it will suspend the data
transferring to next component by suspending the ports of component delegate.

• EVENT RESUME resumes the suspended routing arose by EVENT SUSPEND.
After receiving this event, component delegate will resume the data transferring
among ports and then trigger the execution.

61

CHAPTER 4 - ROUTING BASED WORKFLOW

• EVENT STOP enforce the execution stopped, and throw an exception that will
be captured by routing processor and lead to exception handling. This event
will not be broadcasted to other components because it is not necessary.

• EVENT DESTROY results in destroying operation such as stopping the exe-
cution and releasing occupied resources etc. on the routing. After destroying,
routing will not be returned to the repository.

• EVENT SUCCESS will be broadcasted to all the component delegates after
every successful execution of routing. In some routings, such as flow pick rout-
ing, partial component delegates will be blocked even if the execution of routing
succeed and is completed. This event is used to unblock such delegates and clear
up the routing for next processing.

• EVENT FAILURE is generated when there is unexpected error. This event
will throw out an exception and lead the routing processor to the exception
handling procedure.

4.4 Routing Dynamic Change

The most important advantage of RBW is its capability of dynamic change with
minimal disruption. During the routing execution, the real binding is separated
from virtual binding which generates a complete idle execution environment - bound
routing. The bound routing is always kept in safe state in which there is no execution
activities of components. So the dynamic change operations can be acted on bound
routing without any delay, and results in a new collaboration relation of components.
After changing, the routing lib will be updated with the changed routing. The time
for updating which is an extremely small value, is the real blackout time to delay
subsequent requests. In the following subsection the procedure of dynamic change
and the dynamic capabilities are introduced in detail.

4.4.1 Dynamic Change Procedure

In RBW, routing represents the structure and the collaboration relation of software
components. So changing a routing means changing the structure of a component
oriented software system. Figure 4.24 describes the detailed steps to make changes
on a routing in which all requests are assumed to be executed by the same routing:

0. Request A is being executed by Execution Engine with specified routing M.
Actually, the concrete task of execution management is assigned to a thread
based routing processor.

1. During the execution for request A, a command comes to make change on
routing M which is being executed. This command may come from local ad-
ministrator or from another being executed request.

62

CHAPTER 4 - ROUTING BASED WORKFLOW

1. Command for changing routing M

5.Done

0. Executing
request A with
routing M

Execution
Engine

Routing
Configurator Routing

Lib

Delegate

Delegate

Delegate

Delegate

Active Routing M
...

P

P

3. Make changes on the
copy of bound routing M

3.3. Execute
request B with
bound routing M

2. Get a copy of bound routing M

3.2. Get another copy
of bound routing M

4. Update new
Bound Routing M

3.1. Request
B comes 6. Request

C comes ...

Figure 4.24: Dynamic Change Steps

2. Routing Configurator accepts the command for change, and acquires a copy of
bound routing M from repository - the Routing Lib.

3. Routing Configurator makes changes on the copy of routing M. In Figure 4.24
the dotted arrow is used to indicate the being changed routing M and the being
executed routing M are different copies. During the change of routing M, the
following steps may also happen:

3.1. A request B comes for execution with routing M.

3.2. Execution Engine gets another copy of bound routing M from repository.

3.3. Execution Engine assigns another routing processor instance to execute
this request B with new copy of bound routing M.

4. Routing Configurator finishes the change on routing M, and updates the Rout-
ing Lib with this changed bound routing M. This updating has to be synchro-
nized with continuous getting operation from Execution Engine.

5. The command for change is done and the changed routing M is available for
subsequent requests.

63

CHAPTER 4 - ROUTING BASED WORKFLOW

From above introduction, we get to know that, almost at any time, Execution
Engine is able to continuously execute requests with a routing or make changes on
the same routing. The difference is that the old routing will be used for requests
before the routing updating and the new routing will be adopted after the updating.
During the procedure of dynamic change, there is no any operation directly acted
on components. So the traditional hard issue of consistency preserving is simplified
to synchronization of routing updating of routing repository, which can be addressed
much more easily and can be always guaranteed to complete in a extremely short
time, refer to chapter 7 for details.

4.4.2 Dynamic Capabilities

Operations for dynamic change in RBW can be classified into two categories: routing
level changes and component level changes, as listed in Figure 4.25. Routing level
changes contain operations for cloning a routing and removing a routing. The opera-
tion for modifying a routing is not offered because modification on a routing can be
achieved by the combination of component level changes.

Component level changes contain operations, for example, inserting/removing a
component, disabling/enabling port, and insert/removing ports binding. When re-
moving a component, the real action is to remove a component delegate from current
routing. Only when the component is not used in any routing, the component delegate
and its processor will then be deleted from repository. Because ports of component
processor are fixed, so the change operation on port is actually to change the ports
of component delegate. When disabling a port of a delegate, it means to hide the
port of delegate from other delegates and this disabled port will not be bound to
any other ports. If an in port is disabled, component processor will adopt its default
value as the input when necessary for execution. Only after a port is disabled, the
operation of enabling for this port is available. Another important kind of operations
are inserting/removing the ports binding pair which are used to adjust the data flow
relation. It is especially indispensable when a component is inserted into/removed
from the routing.

In addition, there are some operations which change the identifier or property of
the routing, component and port etc.

After changing a routing, the new changed routing has to be checked wether it is
valid or not. If the changed routing is not valid, the changes on routing are failed.
For routing level changes, it is not necessary to make the validation. However, for
component level changes, it makes no sense to check the validation only after one sin-
gle operation. Two transitional operations: transaction begin() and transaction end()
are designed to enable a collect of change operations atomic. In programming, invo-
cations of all collected operations between transaction begin() and transaction end()
behave as one single operation. The transaction begin() creates an object of Trans-
actor to manage the transactions and enables the subsequent operations to act on
the same routing. Each change operation belonged to component level has to follow
behind the operation of transaction begin(). The collected single operations carries
out the change processing without validation checking. The transaction end() is re-

64

CHAPTER 4 - ROUTING BASED WORKFLOW

 public interface RoutingConfigurator{

public boolean clone_routing(String originalID, String newID);
public boolean remove_routing(String routingID);
public boolean transaction_begin(String routingID);
public boolean transaction_end();
public boolean insert_component(String componentID);
public boolean remove_component(String delegateID);
public boolean enable_port(String portID);
public boolean disable_port(String portID);
public boolean insert_ports_binding(String sourceID, String target ID);
public boolean remove_ports_binding(String sourceID, String target ID);
...

}

Figure 4.25: Key Operations for Dynamic Change

sponsible to check whether the routing changed by collection of operations is valid
or not. If the changed routing is valid, the transaction end() is also responsible to
update the Routing Lib with the new changed routing.

Additional to the dynamic change, another important advantage of RBW is the
multi-solutions supporting. In RBW, the component instances do not fix its interac-
tion and collaboration relations which are modeled by routing. Two different routings
represent different interaction and collaboration solutions for components. From pre-
vious introduction of routing execution, it is easy to know that different routings
stored in the Routing Lib are always available to serve different requests. Component
instances are just temporarily loaded to a routing for execution. There is no differ-
ence whether a component instance is temporarily to the same routing or another
different routing at different time slice. So, the feature of multi-solution supporting
is naturally offered to enable developing personalized services or even personalized
solutions for system configuration.

4.5 XML based RBW Schema

The offline configuration of RBW is specified by an XML based configuration language
whose grammar is defined by XML Schema. XML Schema has powerful express
capability, and shares the same expression format and variety of data type with
XML [27]. In RBW XML based configuration language contains four parts: port
schema, component schema, control link schema and routing schema. The complete
meta-definition of the configuration language can be referred in appendix A.

4.5.1 Port Schema

A reduced meta-data definition of port schema is described in Figure 4.26 expressed
in XML Schema language. In addition to the optional sub-element of description, the
meta-data of port contains three exclusive sub-elements: ioDirection, portType and
usage, and three attributes elements: identifier, classType and defaultValue.

65

CHAPTER 4 - ROUTING BASED WORKFLOW

 � � � � �� � � � 	
 � �
 �
 � � �
 � � � � � � � �

� � � � ��
 � �
 � �
 �
� � � � �
 	
 �
 � � �
 � � � � � � � ! � � !� " � � #� $ � � � � � � � % � � � � $ � � � � � � � & � ' �

� � � � �
 	
 �
 � � �
 � � � ! � (! � � � !� " � ' �

� � � � �
 	
 �
 � � �
 � � � � � � �) * � � � ' �

� � � � �
 	
 �
 � � �
 � � � + � , - � � ' �

� ' � � � ��
 � �
 � �
 �

� � � � �� � � � #� � �
 �
 � � � !� � " � ! . ! � � � ' �

� � � � �� � � � #� � �
 �
 � � � /, � �) * � � � ' �

� � � � �� � � � #� � �
 � � �
 � � � � . , + / � 0 , / + � � �
 �
 � � 1 � � 2, " * � � #� $ � � � � � � � % � � � � $ � � � � � � � & � ' �

� ' � � � �� � � � 	
 � �
 �
 �

Figure 4.26: Port Meta-Data in XML Schema

The sub-element of ioDirection indicates the owner port is an in port or out port.
So it adopts a data type of enumeration and contains only two possible values: ”in” or
”out”. The portType also adopts the enumeration type with two values: ”operation”
and ”stream” to distinguish the data passed by this port is an operation or stream
data. Similarly, the sub-element of usage contains two potential values: ”optional”
and ”required” that point out whether this port is used in a mandatory manner or
not. When the usage is set a value of ”required”, it means that this port can not
be disabled and has to be bound to another ports. Otherwise, an exception will be
thrown out. If a port is set a value of ”optional” in the usage, it means the port is
possible to be disabled.

The first attribute element is identifier which is an extension of string with re-
striction pattern value of ”.+#.+” expressed in XML schema regular expression [9].
The part before separator ”#” indicates the name of component or link that holds
this port. The part after ”#” indicates the real meaning for the port. For example,
a value of identifier could be ”Authorization#Role”. The second attribute element
is classType, which is used here to indicate the data type of passed data. The last
attribute element is the optional defaultValue that is closely related with sub-element
of usage. When the usage has the value of ”optional”, the attribute element of de-
faultValue has to set a value. Conversely, if the usage has the value of ”required”, the
defaultValue could be omitted.

4.5.2 Component and Control Link Schema

The definition of component schema concerns three aspects: component delegate and
container and processor. As illustrated in Figure 4.27, meta-definition of component
schema comprises of three key sub-elements: parameter, property, and port, and two
attribute elements: name and classType that is similar to port schema.

The sub-element of parameter is used to instantiate a component processor that
contains parameter information in its constructor. Because parameters are not indis-
pensable for every component constructor, it could be omitted. As shown in Figure
4.28, the sub-element of parameter is based on normative type of any, and takes with
necessary attributes, such as name, classType etc. The sub-element of property is
used both in component container and processor. For example it can be used to

66

CHAPTER 4 - ROUTING BASED WORKFLOW

 3 4 5 6 78 9 : ; <= > ? @ ; = A B : = C D E F G H F I J I K D L
3 > M N 7M = O P = A 8 = L

 3 > M N 7= <= : = A Q 4 = R C D S J T E U V H K VF I D : WA X 8 8 P 4 M C DY D : B > X 8 8 P 4 M C D Z D [L
 3 > M N 7= <= : = A Q 4 = R C D H \ U\ G J K J U D : WA X 8 8 P 4 M C D Y D : B > X 8 8 P 4 M C D] I ^ F] I S J S D [L
 3 > M N 7= <= : = A Q 4 = R C D H U F H J U K _ D : W A X 8 8 P 4 M C D Y D : B > X 8 8 P 4 M C D] I ^ F] I S J S D [L
 3 > M N 7= <= : = A Q 4 = R C D H F U K D : WA X 8 8 P 4 M C D ` D : B > X 8 8 P 4 M C D] I ^ F] I S J S D [L

3 [> M N 7M = O P = A 8 = L
 3 > M N 7B Q Q 4 W 5 P Q = A B : = C D I \ G J D Q @ ; = C D a T S bT K U V I c D [L
 3 > M N 7B Q Q 4 W 5 P Q = 4 = R C D E d \ T T e _ H J D [L
3 [4 5 6 78 9 : ; <= > ? @ ; = L

Figure 4.27: Component Meta-Data in XML Schema

define the pool size or other application-specific value etc. The last sub-element of
port is only used for component delegate. At least one in port has to be defined to
encapsulate the IO behaviors of component.

 f g h i jk l m n op q r s n p t u m p v w x y z y { | } | z w ~
f q � � jp q � p t � �l t h u � p � v w � � � �y � � w ~

 f q � � ju � � g � h � � p t u m p v w � y { | w � s n p v w � � � �� } z � � � w � ~
 f q � � ju � � g � h � � p g p � v w � �y � � � � x | w � ~
 f q � � ju � � g � h � � p t u m p v w � � � z z y � w � s n p v w � � � �� � � �| y � w � ~

f � q � � jp q � p t � �l t ~
f � g h i jk l m n op q r s n p ~

Figure 4.28: Meta-Data of Parameter Element

The schema of control link is defined to customize the control link as one of four
concrete types: ADDLink, ORLink, XORLink and MapLink. The meta-definition of
control link schema, shown in Figure 4.29, comprises of two sub-elements: linkType,
port, and one attribute element: name. The sub-element of linkType is extension of
string with restriction of four enumeration values of type. The sub-element of port is
the same to port in component schema, but the configuration of ports has to comply
with linkType, e.g. ports of pick link are fixed with the data type of Boolean.

 � � � � �� � � � �� � ¡ � � ¢ £ � � ¤ ¥ ¦ § ¨ © ª § «¬ ­¨ ® ¥ ¯
� � ° ± �° � ² ³ � ¢ � � ¯

 � � ° ± �� �� � � ¢ ´ � � µ ¤ ¥ « ­ ¨ ® ¶ · ¸ ¹ ¥ � º¢ » � � ³ � ° ¤ ¥ ¼ ¥ ½ ¯
 � � ° ± �� �� � � ¢ ´ � � µ ¤ ¥ ¸ § ª© ¥ � º ¢ » � � ³ � ° ¤ ¥ ¾ ¥ � £ � » � � ³ � ° ¤ ¥ ¿ ¨ À § ¿ ¨ Á ¹ Á ¥ ½ ¯

� ½ � ° ± �° � ² ³ � ¢ � � ¯
 � � ° ± �£ ´ ´ � º � ³ ´ � ¢ £ � � ¤ ¥ ¨ Â Ã ¹ ¥ ´ ¡ � � ¤ ¥Ä Å Á ÆÅ © ª ­¨ Ç ¥ ½ ¯
� ½ � � � �� � � � �� � ¡ � � ¯

Figure 4.29: Control Link Meta-Data in XML Schema

4.5.3 Routing Schema

Routing schema is responsible to collect all relevant components and control links for
components integration solution or services composition. As shown in the following

67

CHAPTER 4 - ROUTING BASED WORKFLOW

Figure 4.30, the meta-definition of routing schema comprises of five key sub-elements:
inputs, outputs, import, controlLink and connectors.

 È É Ê Ë ÌÍ Î Ï Ð ÑÒ Ó Ô Õ Ð Ò Ö × Ï Ò Ø Ù Ú Û Ü Ý Þ ß à Ù á
È Ó â ã Ìâ Ò ä å Ò Ö Í Ò á

 È Ó â ã ÌÒ ÑÒ Ï Ò Ö æ É Ò ç Ø Ù è é ê ë Ú Þ ì Ý ÞÛ ß Ù Ï í Ö î Í Í å É â Ø Ù ï Ù Ï × Ó î Í Í å É â Ø Ù ð Ù ñ á
 È Ó â ã ÌÒ ÑÒ Ï Ò Ö æ É Ò ç Ø Ù Þ ß ì Ü Ý ê Ù ñ á
 È Ó â ã ÌÒ ÑÒ Ï Ò Ö æ É Ò ç Ø Ù Û Ü Ý ì Ü Ý ê Ù ñ á
 È Ó â ã ÌÒ ÑÒ Ï Ò Ö æ É Ò ç Ø Ù Þ ò ì Û Ú Ý Ù Ï íÖ î Í Í å É â Ø Ù ð Ù Ï × Ó î Í Í å Éâ Ø Ù Ü ß ó Û Ü ß è é è Ù ñ á

È Ó â ã ÌÒ ÑÒ Ï Ò Ö æ É Ò ç Ø Ù ë Û ß Ý Ú Û ô õ Þ ß ö Ù Ï íÖ î Í Í å É â Ø Ù ï Ù Ï × Ó î Í Í å É â Ø Ù Ü ß ó Û Ü ß è é è Ù ñ á
 È Ó â ã ÌÒ ÑÒ Ï Ò Ö æ É Ò ç Ø Ù ë Û ß ß é ë Ý Û Ú ê Ù ñ á

È ñ Ó â ã Ìâ Ò ä å Ò Ö Í Ò á
 È Ó â ã Ì× æ æ É í Ê å æ Ò Ö × Ï Ò Ø Ù ß ÷ ò é Ù æ Õ Ð Ò Ø Ù ø ê è ùê Ý Ú Þ ß à Ù ñ á
È ñ É Ê Ë ÌÍ Î Ï Ð ÑÒ Ó Ô Õ Ð Ò á

Figure 4.30: Routing Meta-Data in XML Schema

The first two important sub-elements are inputs and outputs, which create the
IO behaviors of the routing by defining two set of NamedObjects. These IO Name-
dObjects will also be created and bound with ports of components delegate. The
meta-definition of NamedObject element has two sub-attribute elements: identifier
to binding with port, and classType to specify the type of stored data. The meta-
definition of import comprises of only one string type sub-element that is used to
specify which component will be imported in routing. If several components need to
be imported, the import will be used several times with different components. The
instance of control link will be shared by several routings. The controlLink is used
to specify which control links will be used in current routing. The last sub-element
is connectors that is used to configure how the components, control links, inputs and
outputs are connected. The sub-element of connectors comprises of multiple links,
and each link specifies one connection between two ports or NamedObjects. The
meta-definition of link, illustrated in Figure 4.31, comprises of two key sub-elements:
source indicating the source object of connection, and target indicating the target
object of connection. Both source and target use the type of identifier to specify a
pair of ports.

 ú û ü ý þÿ � � � �� � � � � � � 	 � �
 � �
 � � � �
ú � � � þ� � � � � � ÿ � �

 ú � � � þ� �� � � � � � 	 � �
 � � � � � � � � � � � �
 �
� � � �
�
� � � � �
 ú � � � þ� �� � � � � � 	 � �
 � � � ! � � � � � � �
 �
� � � �
�
� � � � �

ú � � � � þ� � � � � � ÿ � �
ú � û ü ý þÿ � � � �� � � � � � �

Figure 4.31: Meta-Data of Link Element

4.6 Extension for Distributed Components

In previous sections, a complete description of RBW from structure, execution, man-
agement to schema configuration has been introduced. However, the introduced RBW

68

CHAPTER 4 - ROUTING BASED WORKFLOW

is only applicable for the components deployed in the local computer. In Internet ori-
ented applications the components are also frequently deployed in remote computers
or other devices. In order to adapt RBW for such distributed components, an exten-
sion of RBW is proposed by extending component delegate.

4.6.1 Extension of Component Delegate

In the extension of RBW, the component delegate is extended into two parts: re-
mote delegate and local delegate, as illustrated in Figure 4.32. The remote delegate
represents distributed component in a routing managed by workflow manager. The
local delegate represents the component in the computer where the component is de-
ployed. In addition to inherit the responsibility of component delegate, the remote
delegate and local delegate have to take charge of the communication of intermediate
data over Internet. In the routing of RBW extension, the composed elements are
remote delegates, not local delegates. Remote delegate is responsible to take the role
of constituted element for routing, manage the dependency among components, and
deal with communication for data transferring over Internet etc. The local delegate
is responsible to cooperate with remote delegate for data transferring over Internet,
and load component instance for execution etc. Since the execution and dependency
management of routing have already been introduced in previous sections, here I only
introduce the additional functionality concerning communication of intermediate data
over Internet.

Delegate

Remote
Delegate

Local
Deletate

Figure 4.32: Extension of Component Delegate

Named Object Transfer Protocol - NOTP

As introduced in section 4.2, all intermediate data transferred in routing are packed in
a uniform wrapper - Named Object. In the extension of RBW, the intermediate data
transferred between remote delegate and local delegate are also a series of Named
Objects. To efficiently transfer the Named Objects over Internet, a simple Named
Object Transfer Protocol is designed. The transfer protocol is designed in application
level, and can be implemented on top of other existing communication protocols,

69

CHAPTER 4 - ROUTING BASED WORKFLOW

such as HTTP etc. In our prototype, it is directly implemented on top of TCP/IP.
The design of NOTP protocol adopts the pattern of request/response. However,
the request and response share the same message format because both request and
response are used to transfer Named Objects: request is used to transfer Named
Objects for inputs of component processor and response is used to send back Named
Objects as the result of component execution.

 <Header>
 <Content-Type> NamedObject </Content-Type>
 <Data-Encoding> http://www.w3.org/TR/xmlschema-2/ </Data-Encoding>

 <Object-Number> … </Object-Number>
 <Keep-Alive> true/false </Keep-Alive>
 <Version> 1.0 </Version>
</Header>
<Body>
 <Object-Code> … </Object-Code>

 <Object>
 <Identifier> … </Identifier>
 <Data-Type> … </Data-Type>
 <Data-Value> … </Data-Value>
 <State> … </State>
 </Object>
 <Object> … </Object> …

<Body>

Figure 4.33: Request/Response Message Format in NOTP

As illustrated in Figure 4.33, the message of protocol comprises of a header block
and a body block. The items of header block are explained as follows:

• Content-Type: has to be specified with the text of ”Named Object” which is the
flag to indicate that subsequent contents will follow the regulation of NOTP.

• Data-Encoding : specifies the encoding method used in data expression of Name-
dObject in the body block. The default value is the namespace of XML schema
http://www.w3.org/TR/xmlschema-2/ to indicate the data type and value are
complied with the regulation of XML data expression.

• Object-Number : indicates how many objects is scheduled to be transferred in
the body block.

• Keep-Alive: indicates whether the connection will be kept alive after transfer-
ring of one session. Here a session is defined as one request and one response
transferring for one execution of component. However, in local delegate and
remote delegate the orders of sending request/receiving response are different.

• Version: indicates the current version which is designed for future updating.

The body block of protocol comprises of an Object-Code and a series of number-
specified Named Objects. The Named Object is transferred by transferring its four
constituted elements, which can be used to reconstruct the same Named Object in

70

CHAPTER 4 - ROUTING BASED WORKFLOW

another side. Because remote delegate can not catch any control information or even
exceptions from local delegate and component processor, an Object-Code is designed
to transfer the management information. For all the management information, such
as failure, exception etc., can be predicted and is designed in advanced, the Object-
Code is simply designed as a four digit number for the sake of efficient transferring.
The information that need to be expressed by Object-Code are:

1. The set of Named Objects are from in ports of remote delegate or from out
ports of local delegate?

2. This operation is a normal request execution or a test request to know whether
the remote delegate is matched to component processor or not.

3. The named objects are the result of successful execution of component or NULL
value for failed execution?

4. Which kind of exception is caught during the execution in local delegate?

Interactions between Remote Delegate and Local Delegate

Protocol just specifies the format of transferred message. The interaction model ex-
plains how the remote delegate exchanges data with local delegate, as illustrated in
Figure 4.34. Each component has one local delegate deployed in the same computer,
and one or more remote delegates deployed remotely. The remote delegates represent
the same component in different routings that may be deployed in one computer or
different computers. Remote delegate inherits from component delegate, and also in-
herits the management responsibilities in routing. However, compared to component
delegate, remote delegate has the following differences:

1. Remote delegate does not hold a component container for loading component
instance. As substitution, a remote Connector is embedded in each remote
delegate to deal with the task of communication with local delegate.

2. Remote delegate holds customizable inner named objects bound with its in/out
ports. The inner named objects are shared with embedded remote connector.

3. Remote delegates rewrite three methods that are concerned with component
container: real binding(), real unbinding() and check bindable(). The real binding()
is rewritten to enable remote connector creating connection with distributed
component instead of loading component instance. The real unbinding() is
rewritten to disconnect with distributed component. For the establishment
of internet connection is time-consuming, an option can be selected by offline
configuration to keep the connection alive during the runtime. This selection
can be informed to local delegate by the item of Keep-Alive in protocol header
block. Method of Check bindable() is rewritten to send a test request to local
delegate to simulate an execution.

71

CHAPTER 4 - ROUTING BASED WORKFLOW

Component Container

Processors

...

P
ro

ce
ssor

Local
Connector

Remote
Connector

Remote
Delegate

Local
Connectors

Local Delegate

Remote
Connector

Remote
Delegate

P
ro

ce
ssor

Local
Connector

Computer A

Computer B Computer B or C

Figure 4.34: Interaction between Remote and Local Delegates

Local delegate is deployed with component together and is responsible to coordi-
nate the communication with remote delegate. Unlike remote delegate, local delegate
can not interact with other component processors or other local delegates, and it
only interacts with the remote delegate which represents the same component. Lo-
cal delegate holds customizable named objects as its IO behaviors matched with the
represented component processor, and holds the reference of component container.
Because the local delegate has to deal with the connection with multiple remote del-
egates, a repository for instantiated local connectors is designed to be embedded into
local delegate. After deploying the component, local delegate starts a listen service
for remote delegates. Once a connection is created, local delegate will assign the
connection to one idle local connector for concrete connection processing. The tasks
of local connector are described as follows:

1. Local connector customizes and initializes itself to be matched with component
processor by acquiring the cloned IO behavior of its local delegate and reference
of component container.

2. Local connector loads the instance of component processor and binds its IO
behaviors with the in/out ports of component processor while receiving a for-
warded connection from local delegate.

3. Local connector deals with communications with remote connector and parses
the request messages.

72

CHAPTER 4 - ROUTING BASED WORKFLOW

4. Local connector pushes the parsed Named Objects to in ports of component
processor to trigger the execution of component.

5. Local connector receives the execution results from out ports of component
processor, encodes the result into response message, and sends back the response
to remote delegate.

6. Local connector also deals with binding test after receiving the test request from
remote delegate, and is responsible to translate the test results or execution
exceptions into a abnormal response message.

4.6.2 Routing for Distributed Components

In the extension of RBW, the distributed components are virtually organized as a
routing by their representatives - remote delegates. As illustrated in Figure 4.35, the
components and corresponding local delegates may be deployed in different comput-
ers, but all the remote delegates that belong to one routing have to be deployed in the
same computer. The interactions of different distributed components are managed in
a centralized model. Each component can only interact with other components via
the centralized remote delegate, instead of local delegate.

Local
Delegate

Local
Delegate

Local
Delegate

… …
get()

Component Container

Processors

release()

Remote
Delegate

Remote
Delegate

Remote
Delegate

Remote
Delegate

Routing
...

Figure 4.35: Routing for Distributed Components

In the deployment of distributed components, the offline configuration of com-
ponent schema is the same for remote delegate and local delegate. In fact remote

73

CHAPTER 4 - ROUTING BASED WORKFLOW

delegate and local delegate just need to acquire different parts of component schema
for initialization. The meta-definition of component schema does not need to change
for distributed components. All the additional information can be configured using
the sub-element of property of component schema. For example, a property item
Keep-Alive is required to be added in the schemas for distributed components.

74

Chapter 5

Case Study: Smart Data Server
Version 3.0

Middleware is not only demanded to provide powerful functionalities for easily cre-
ating distributed applications, but also demanded to have a flexible management for
its the functional components to offer adaptive services for varying application envi-
ronments. As an application case of RBW, a dynamic and secure middleware system
- Smart Data Server Version 3.0 (SDS3) is introduced in this chapter. The SDS3
adopts parts of CORBA as the communication infrastructure and creates three se-
cure components to enhance the invocation. Through RBW management on secure
components, the SDS3 is able to provide multi-level security control on the deployed
applications and the control strategy can be dynamically changed.

5.1 Case Introduction

The project Smart Data Server (SDS) was initiated at Institute of Telematics [81] to
create a modular and extensible framework for distributed functionalities that pro-
vides a universal and secure accessing to multiple different data sources. Illustrated
as in Figure 5.1, the SDS, also called as Smart Data Server Version 1.0 (SDS1), was
constructed in a layer-oriented structure: session layer for handling and transferring
the request/response, service layer for invoking functionality of application and ac-
cessing system service, such as logging, authorizing, database etc., and function layer
for deployed applications. To enable communication with other distributed comput-
ing technologies, a widely accepted message protocol - Simple Object Access Protocol
(SOAP) was integrated into the SDS [44].

To achieve more flexible control and parallel execution of middleware components,
we re-encapsulated the IO behaviors of the existing functional components and em-
ployed piped workflow for component management to reconstruct the middleware
system [45], called Smart Data Server Version 2.0 (SDS2). As shown in Figure 5.2,
different modules of SDS2 can be categorized into three layers: the infrastructure
layer for core services, the middle layer for piped workflow and managed functional
components, and the top layer for applications. In the key part of middle layer, each

75

CHAPTER 5 - CASE STUDY: SMART DATA SERVER VERSION 3.0

Client
Platform

S D

Function
Layer

Service
Layer

Session
Layer

Timer Session Protocol

Listener

System Admin Module Module Module

DB Mail Auth Logger FURB

SDS

SDS

SDS

Figure 5.1: Architecture of Smart Data Server Version 1.0

managed component exhibits distinctly its IO behaviors, requirements and proper-
ties. To be managed by piped workflow, each component has to implement a specific
kind of pipe interface according to the role of this component in the workflow and
automatically create a control node as its representative to guide the execution. In
SDS2 the execution of components could be processed in a parallel manner, which
means part of result could be exported to next component for execution while the
current component is still in processing. Another distinguished feature is the flexi-
bility in configuration of components collaboration. Components could be configured
and reorganized to offer different middleware solutions for varied applications.

 Sender Receiver
Socket

Connection

 Workflow Manager Workflow Manager

Core Services
"# ""# ""# ""# " $

Logger Timer Database

...

Transport
Receiver

...

Transport
Sender

Application
Services

Listen Service

Client Platform

SOAP
Unmarshal

SOAP
 Marshal

Request
Broker

Figure 5.2: Architecture of Smart Data Server Version 2.0

76

CHAPTER 5 - CASE STUDY: SMART DATA SERVER VERSION 3.0

However, the improvements of SDS2 are still not enough to meet requirement
of increasing varying application environment. The reorganization of middleware
components in SDS2 can only be achieved by making the offline configuration. To
meet the demand of dynamic reconfiguration introduced in section 1.1, we create
a dynamic secure middleware system - Smart Data Server Version 3.0 (SDS3). In
fact the technologies used in SDS3 have no direct connection with former versions
of Smart Data Server. The CORBA is adopted and modified as the communication
infrastructure of SDS3. The RBW is used to manage the secure components and reach
a multi-levels, dynamically changeable security control on the deployed applications.
As the infrastructure of SDS3, CORBA also holds the features of dynamics and
security which are presented in the following subsections to clarify the differences.

5.1.1 Dynamism in CORBA

The dynamic features of CORBA [40] are involved in the Dynamic Invocation In-
terface (DII), which defines the client-side interfaces to dynamically create CORBA
request, the Dynamic Skeleton Interface (DSI), which is the server-side counterpart
to the DII, and the Interface Repository (IFR) etc.

In CORBA the widely accepted means for client to communicate with server is
the Static Invocation Interface (SSI) that is provided by static stubs generated by
CORBA IDL compiler with the knowledge of target interface at compile time. The
DII is a dynamic way to create a CORBA Request to invoke the operations on remote
object, however, without relying on static stubs. Three steps are involved to enable
invocation with DII:

1. invoking a built-in operation on the object’s interface to dynamically construct
a Request object;

2. providing details for the request, such as operation name, argument types and
values, and the return type;

3. calling an operation on the request object to trigger the invocation, causing the
request to be sent to the remote CORBA object.

The DII provides a much more flexible invocation way for the situation that the
request information is supplied during runtime. But the performance, e.g. the in-
vocation time, is not so efficient as the way of static stub. This is why most of
CORBA applications are written with static stub offered of IDL compiler. However,
an important and growing kind of applications, such as interface browsers, network
management applications, distributed visualization tools, debugger, and configuration
management tools etc., require the dynamism provided by DII.

As the server-side counterpart of the DII, the DSI enables servers to dynamically
receive and handle request without compile-time knowledge of operations. Just like
in static skeleton each the object implementation inherits from an object-specific
skeleton generated by CORBA IDL compiler, in DSI the object implementation has to
inherit from a common abstract object of DynamicImplementation in which abstract

77

CHAPTER 5 - CASE STUDY: SMART DATA SERVER VERSION 3.0

methods, such as invoke() etc., are expected to be overridden. The key class to realize
dynamic skeleton in DSI is the ServerRequest that contains methods for concrete
servant to de-marshal request for execution, as well as to marshal reply to the client.
In addition to the flexibility in handling request, there are also two primary tradeoffs
compared to static skeletons in a CORBA server:

1. low performance for the type information is discovered during runtime;

2. complexity increasing in programming of DSI object implementation because
the programmer has to do extra work to enable exactly invocation, such as de-
marshalling distinctly the arguments of request, setting the return value and
raising an exception.

The IFR allows application to store and retrieve the type information dynami-
cally, which works like a dynamic IDL compiler. The IFR normally is offered in the
way of CORBA services that can be accessed by passing the string ”InterfaceRepos-
itory” to the ORB::resolve initial references method, or more directly by using the
CORBA::Object::get interface method. The usage of IFR is often combined with DII
for creating a dynamic client Request and with DSI for parsing type information.
The IFR separates the meta-information from CORBA objects and offers a series of
methods to access the meta-information. However, the IFR is actually seldom used in
practice for complexity of usage and consistency management for meta-information
with corresponding objects.

Above dynamic features are only concerned how to dynamically access the CORBA
application without the knowledge of type information at compiling time. In our SDS3
the dynamics focus on changing the collaboration relation of middleware components
to adapt the variety of application environments and requirements.

5.1.2 Security in CORBA

The CORBA security consists of a set of security models [40], [39] and series of
security interfaces [41] for application developer, administrator and implementer etc.
The security features contained in CORBA security models focus on the following
aspects:

• Identification and Authentication: Any active entity, a human user or software
system, has to be registered as an identification to establish its right to access
objects in the system. The identification may be authenticated in a number of
ways while it is involved in the system activities.

• Authorization and Access Control : User acquire the permission to do what
he/she wants with authorization operations involving the granting, denying,
and revocation of access right. The access control is the mean to realize the
privilege definition process.

• Auditing and Non-Repudiation: Security auditing assists in the detection of
actual or attempted security violations, and is achieved by recording details of

78

CHAPTER 5 - CASE STUDY: SMART DATA SERVER VERSION 3.0

security relevant events in the system. Non-repudiation services enable to make
users accountable for their actions.

• Secure Communication: The secure interoperability can be achieved by three
ways: i) the Object Request Brokers (ORBs) share a common interoperability
protocol; ii) consistent security policies are in force both at the client and target
objects; iii) the same security mechanism is used.

• Security Administration: the administration of security activities for an appli-
cation includes security policy, users, roles and permissions etc.

The CORBA security model is specified in details by offering series of security
interfaces from the view of different types of users as follows:

• The End User View focuses on the actual, individual principal, the privileges
that are authorized, and the authentication that must take place to confirm the
identification.

• The Application Developer View focuses on the degree that stakeholder (e.g.,
software engineers, programmer, developers etc.) must be aware of the secu-
rity capabilities of the enterprise. In some situations the enterprise may wish
to defines security, but make those definitions transparent to the majority of
stakeholders. In this case, the ORB security services could be automatically
called to enforce security of the principals against target objects. In other sit-
uations, the security may be the strict responsibility of all stakeholders, who
would interact explicitly and programmatically with the security services.

• The Administrator View is the security management perspective, providing all
of the capabilities to administer and control security policy definition and en-
forcement, including: creating and maintaining the domains, assigning the priv-
ilege attributes to end users, administrating the security policies, monitoring the
control attributes of target objects, etc.

• The Object Implementer View differs from the application developer’s view,
since these stakeholders are actually responsible for prototyping and imple-
menting the ORB. The interfaces for this view are intended for the case that a
given enterprise decides to implement its own unique security services.

The CORBA security specifications really offer comprehensive security capabili-
ties at the model level. However, it is only a specification without implementation.
Further, there is no any product or open source implementation satisfying all the ca-
pabilities and features of the CORBA security. In our SDS3 the multi-level security
controls are different from CORBA security in the following two aspects:

1. Security capabilities of SDS3 are provided by middleware secure components,
not by security services. The high level security control strategy can be changed
during runtime for the secure components are managed by our RBW.

79

CHAPTER 5 - CASE STUDY: SMART DATA SERVER VERSION 3.0

2. The Attribute Certificate (AC) are employed in SDS3 to create a security model
of Role Based Access Control (RBAC) to enhance the flexibility of roles man-
agement used for access control.

5.1.3 Overview of SDS3

In SDS3 the RBW is integrated into a modified CORBA infrastructure to construct a
dynamic secure middleware system. In the implementation, an open source Java im-
plementation of CORBA, named openORB [75], has been adopted and modified as the
communication infrastructure. Three secure components are created as the middle-
ware core component and work in a model of Role Based Access Control (RBAC) [82].
Instead of as middleware services, here the secure components directly cooperate with
Request Broker component to enable secure invocation. For the sake of management
by RBW the collaboration relation of secure components can be changed during run-
time to adapt the varied application environment.

Workflow Adapter

Application Implementation

RBW Manager

Request
Broker

Access
Controller

Authenticator Authorizor

Component
Instances

Wrapper
of DII

ORB ORB

Client
Platform

LDAP
Server

...

Core
Services

Figure 5.3: Architecture of Secure Middleware - SDS3

The architecture of SDS3 is depicted in Figure 5.3, where not the whole CORBA,
but only the Object Request Broker (ORB) is adopted to transfer the request/response
messages over Internet. To integrate with RBW, a Workflow Adapter is designed to
intercept the request from ORB to RBW or return the response back to ORB. The
Workflow Adapter works in a role as Basic Object Adapter (BOA) or Portable Object
Adapter (POA) in CORBA. Likewise, the RBW bears the responsibility, similar as
Dynamic Skeleton Interface (DSI) in CORBA, to enable the request to invoke the
application implementation and to create response based on invocation result. In
the client side, the Dynamic Invocation Interface (DII) is wrapped to create rout-
ing based request. All the rest parts of CORBA, e.g. DSI, POA, and all kind of

80

CHAPTER 5 - CASE STUDY: SMART DATA SERVER VERSION 3.0

CORBA services etc., are stripped for non-necessity and simplicity. The ORB used
in SDS3 is only taken as the communication infrastructure and can also be replaced
by other transport protocol, such as Simple Object Access Protocol (SOAP) etc. In
SDS3 three security capabilities are offered: Public Key Infrastructure (PKI) based
authentication and non-repudiation, Attribute Certificate (AC) based privilege man-
agement, and Role Based Access Control (RBAC). Here the security for transport
has not been provided because it is a partial task of communication protocol which
is not the emphasized point of SDS3, and can be realized by replacing an ORB with
the capability of secure interoperability.

5.2 Communication Infrastructure

The SDS3 adopts the Internet-Inter ORB Protocol (IIOP) to define the data for-
mat of request/response. Because in CORBA the ORB is designed on top of IIOP
and responsible for delivering the request/response which includes message encoding,
transferring and parsing, the ORB is also taken as the communication infrastructure
of SDS3, presented in the following subsection. Two other functional parts closely
related with communication infrastructure are also introduced: a wrapper of DII de-
signed to create routing based request in the client side, and the Workflow Adapter,
an implementation of abstract Object Adapter, to take the role similar as BOA.

5.2.1 Original Communication Infrastructure

In CORBA the ORB request/response is transferred by a General Inter-ORB Proto-
col (GIOP), which can be mapped onto any connection-oriented transport protocol.
The specific mapping of GIOP on TCP/IP connection is called Internet Inter-ORB
Protocol (IIOP). There are also other mappings on proprietary networks. For exam-
ple, an Environment Specific Inter-ORB Protocol for the OSF DCE environment is
called DCE Common Inter-ORB Protocol (DCE-CIOP). Currently most application
of GIOP is dominated by IIOP, also used in SDS3. IIOP is a high-level protocol
that takes care of many of the services associated with the levels above the transport
layer, including data translation, memory buffer management, dead-locks and com-
munication management. IIOP assumes the client-server computing model in which
a client program always makes request and a server program waits to receive request
from clients. For a client to make a request on an object distributed in Internet, it
must have an object reference to identify the distributed object. Once an application
has an object reference, it has all the information it need to connect to the object
and make remote invocation on the object’s methods. As part of protocol, CORBA
specifies a universal format for the object references known as Interoperable Object
Reference (IOR). This enables the information about an object reference to be either
stored or transferred directly to clients in a form which is universally understood.
The information encoded in an IOR consists of the following pieces of information:
type of the object, host address, port number and object key. The structure of IIOP
can be simply described in the following three aspects:

81

CHAPTER 5 - CASE STUDY: SMART DATA SERVER VERSION 3.0

• Definition of Common Data Representation (CDR) specifies a coding syntax
for all data types, including basic types, structured types, and object references
etc. The CDR coding translates data types into a series of bytes to make up an
octet stream.

• IIOP Message Formats : IIOP defines seven types of messages to allow client to
pass invocations to servers and receive replies which can either be normal or in-
dicate some error status. Typically, each IIOP message contains three elements:
IIOP header, message header and message body. The two most important mes-
sage formats are the Request message used to invoke distributed object by client,
and Reply message used to return the response to client from the server. Other
message formats are CancelRequest, LocateRequest, LocateReply, CloseCon-
nection and MessageError.

• Transport Management give a high level view of the semantics of setting up
and ending connections, where the roles of client and server are respectively
outlined.

In CORBA IIOP is built in ORB level, which marshals and un-marshals the IIOP
requests/responses. The SDS3 is built above the level of ORB and create relevant
modules to integrate with RBW managed components.

5.2.2 Wrapper for Dynamic Invocation Interface

In CORBA there are two ways to invoke operations on target object: Static Invocation
Interface (SII) and Dynamic Invocation Interface (DII), which are introduced last
section. To achieve higher flexibility, the DII is adopted and wrapped in the SDS3
to dynamically construct request for object invocation. For clearly explaining the
wrapper of DII, a example for the usage of DII is firstly given in Figure 5.4

 …
 CORBA.ORB orb = ORB.init();
 Object object = orb.string_to_object(ior)//obtain object reference.
 CORBA.Request request = object._request("get_quote ");
 request.add_in_arg().insert_string("SAP");
 request.set_return_type (CORBA._tc_long);
 request.invoke ();
 Long retval = request.return_value (); …

Figure 5.4: Example of a CORBA Request with DII

In original DII client program the object reference, uniquely identifying the target
object and implementing the client stub interface, has to be obtained before request
creation. In CORBA there are two ways to obtain the object reference: i) using
ORB operation string to object() in which the argument, string of IOR, has to be
created using the counterpart ORB operation object to string() and be transferred
by other means: such as physical duplication; ii) using the CORBA Naming service

82

CHAPTER 5 - CASE STUDY: SMART DATA SERVER VERSION 3.0

which needs the whole CORBA platform. To adapt the DII for SDS3 where only
ORB is used for request/response transferring, a wrapper of DII is created. The
wrapper of DII enables to directly create request for remote object in client program.
But the paid price is that the information about target object, such as host name,
port and object name etc, has to be specified distinctly when creating request. In
addition, the wrapper of DII provide functionality to conveniently transfer the routing
specific information with request together, such as routing ID, signature etc. The
implementation of DII wrapper is based on the original DII package, including class
of Request, NVList, Context and Environment etc. One additional function of the
wrapper package is class of IOREncoder which provides the functionality to create
Interoperable Object Reference (IOR) instance that is necessary to directly create
request. In creating IOR instance by IOREncoder, all relevant information, such as
type, host name, port number and protocol etc., are distinctly specified as arguments.
Based on IOR encoder and original DII package, a routing based request could be
created directly in client side. The routing information, such as routing id, signature
etc., are encoded into the context of request, which will be parsed distinctly in the
server side counterpart - Workflow Adapter. An example of SDS3 request created
with DII wrapper is illustrated in Figure 5.5

 …
 IIOPRoutingRequest request =
 new IIOPRoutingRequest(host,port,ta rget,operation);
 request.add_parameter(“Hello,“);
 request.add_parameter(“you are welcome“);
 request.set_routing(“SecureRouting“);
 request.set_return_type(String.class.getName());
 request.invoke();
 String result =(String)request.get_result();

Figure 5.5: Example of a SDS3 Request with DII Wrapper

5.2.3 Wrapper for Object Adapter

Object adapter is a mechanism in CORBA to associate a servant with object im-
plementation, activate or inactivate a registered object, and de-multiplexe incoming
requests to relevant object implementation. Object adapter normally collaborates
with IDL skeleton or Dynamic Skeleton Interface (DSI) to dispatch the appropriate
operation up-calling on the implementation of specified servant in request. The Basic
Object Adapter (BOA) is the first concrete implementation to realize the mechanism
of object adapter. But the BOA was widely recognized to be incomplete and unspec-
ified. For instance, the API for registering servant with the BOA was unspecified.
Therefore, different vendors provided their implementation of ORB by making indi-
vidual interpretations and extensions, which are incompatible with each other. The
Portable Object Adapter (POA) was adopted by OMG as the solution to substitute
BOA. The POA provides a series of advanced capabilities for object management:

83

CHAPTER 5 - CASE STUDY: SMART DATA SERVER VERSION 3.0

1. the POA allows programmer to construct servants that are portable between
different ORB implementation which is the major shortcoming of BOA;

2. the POA enables to support servants that provide consistent service for object
whose lifetimes span multiple server process lifetimes;

3. the POA supports transparent activation of objects and implicit activation of
servants, which makes the POA easier and simpler to use;

4. the POA allows a single servant to support multiple objects simultaneously,
thereby conserving memory resource on the server;

5. policies are associated with servants in POA to enable rich and flexible man-
agement on objects etc.

In SDS3 the Routing Based Workflow (RBW) takes the role similar as IDL skele-
ton or DSI to manage the secure components enabling secure invocation on target
objects. To integrate RBW with ORB, a workflow oriented object adapter - Workflow
Adapter is designed to take charge of the tasks similar to BOA or POA. In CORBA
each object has to be registered to an Object Adapter and activated to be ready
for execution. When an object is invoked from client, the hosted Object Adapter
acquires request from ORB and helps to access the object implementation. In SDS3
Workflow Adapter is registered as the default Object Adapter for all deployed appli-
cation objects. Workflow Adapter intercepts request from ORB and forwards it to
workflow manager of RBW. The Workflow manager is responsible to assign a routing
to process the request and retrieve the response back to workflow adapter through
which response is sent back to remote client via ORB. The implementation of work-
flow adapter is realized by implementing the common interface of object adapter plus
additional functionality. The common functionalities offered by workflow adapter
are the same to BOA, such as object reference interpreting, servants activating and
deactivating, request de-multiplexing, and collaborating with RBW etc. The addi-
tional functionality of workflow adapter is to create RBW-specific request from ORB
request. In the DII wrapper the routing-specific information, such as routing id, sig-
nature etc., are encoded into the context object of original request. Workflow adapter
is the server-side parser to decode such information to restore a RBW-specific request
used in RBW for secure invocation, as illustrated in Figure 5.6.

5.3 Middleware Components

Five components are provided in SDS3 to realize the secure invocation for request,
namely Authenticator, Authorizer, Access Controller, Request Broker and Abnormal
Handler. In addition, a control link, AND Link, is used to automatically and dynam-
ically select the flow direction to different components. The indispensable component
is Request Broker that directly collaborates with Workflow Adapter to make invo-
cation on application objects. The component of Abnormal Handler is designed to
deal with the error, exception and unauthorized accessing etc. Three components of

84

CHAPTER 5 - CASE STUDY: SMART DATA SERVER VERSION 3.0

Workflow Adapter

Object Implementations

register
activate
deactivate
...

RBW Manager

Object Request Broker
ORB Request

RBW Request

Invocation
 Result

Response
...

Figure 5.6: Working Mechanism of Workflow Adapter

Authenticator, Authorizer and Access Controller work together in a model of Role
Based Access Control (RBAC) [82] to enhance the security of invocation. In our im-
plementation, Public Key Certificate (PKC) based Authenticator is used to identify
a user, and Attribute Certificate (AC) based Authorizer is used to express the roles
associated with user. A policy is employed in Access Controller component to specify
the detailed rules for accessing. As the aided functions, a Security Center is designed
and implemented to issue the PKCs and ACs and an open LDAP server is provided
to store and retrieve PKCs and ACs issued by our local Security Center. In the fol-
lowing subsections the components management by RBW is first described, then the
functionality and design of each secure component are introduced respectively.

5.3.1 Management by RBW

In SDS3 the RBW takes charge of the organization of components and makes se-
cure invocation on application objects. The executions of collaborative components
are managed by RBW, whose workflow diagram is illustrated in Figure 5.7. As in-
troduced in chapter 4, each component used in RBW has to inherit from generic
processor and create its IO behaviors using communication ports. For example, the
component of Authenticator accepts byte stream of signature and outputs identity
information, the component of Authorizer accepts the identity and outputs roles as-
sociated with accepted identity, and component Access Controller accepts the roles
and output a permission to indicate whether the current user is allowed to invoke
the specified application. The AND control link accepts the permission result and
outputs one Boolean value to pick the next component: TRUE to pick component
Request Broker and FALSE to pick component Abnormal Handler. The RBW is
initialized when the server of SDS3 starts. During the initialization each concrete
component will be instantiated, and for each component one customized component
delegate and one exclusive component container will be created automatically to en-
able the management by RBW. All the information used for initialization, such as

85

CHAPTER 5 - CASE STUDY: SMART DATA SERVER VERSION 3.0

component properties, communication ports and structure of available routings etc.,
are provided by offline configuration, referring Appendix B.

Permission

Identity

LDAP
Server

Security
Center

Application
Services

Policy
Repository

Implementation
Repository

Access
Controller

Authorizer
(AC)

Authenticator
(PKC)

Request
 Broker

Roles

PKC AC

Request

Response

Abnormal
Handler

AND

False

True

RBW
Manager

Routing id
signature

Figure 5.7: Secure Components in RBW

The execution and management inside of routing are already introduced in section
4.3, here we explain the integration with SDS3. To integrate with rest part of SDS3,
RBW-specific request and response are designed. The RBW request is parsed and
encoded from ORB request by workflow adapter. Addition to regular invocation
information, such as target object, operation, parameters etc., there are routing-
specific information, such as routing id and signature etc. All these information are
extracted and stored in format of NamedObject. For example, the information of
signature and target object respectively have the identifiers: ”Request#Signaure”
and ”Response#Target”. During the execution preparation, the RBW request and
a specified bound routing will be used to initialize a routing processor. all relevant
NamedObjects from RBW request will be set as inputs of routing and trigger the
execution of routing. After execution, the response is directly created by methods of
RBW request: write reply() or write reply exception(), and then be sent to client.

5.3.2 Component of Authenticator

The security technology of Public Key Infrastructure (PKI) is employed in the com-
ponent of Authenticator to realize functions: authentication and non-repudiation.

Public Key Infrastructure

The concept of public key cryptography, also called asymmetric cryptography, was
firstly proposed to allow users communicating securely without having a shared key,

86

CHAPTER 5 - CASE STUDY: SMART DATA SERVER VERSION 3.0

by using a pair of mathematically related cryptographic keys, designated as public
key and private key [61]. Each public/private key can only decrypt the information
encrypted by its corresponding private/public key. The public key is published widely,
but still associated with its owner, and the private key is only known to its owner.
In a general process of data encryption/decryption with asymmetric cryptography,
illustrated as in Figure 5.8, the sender acquires the recipient’s public key from a public
repository to encrypt the clear data and sends out the result. The recipient decrypts
the received scrambled data with his private key, and gets back the clear text.

Dear Alice,
I have
received
the …

Public
Key

Encryption

alf@#%2d
b4sdfb423
@2s2!#
b#% f@

alf@#%2d
b4sdfb423
@2s2!#
b#% f@

Dear Alice,
I have
received
the …

Private
Key

Decryption

Cleartext Cleartext Ciphertext Ciphertext

Figure 5.8: Data Encryption/Decryption using Public/Private Key

To make the public key technology applicable in practical application environment,
Public Key Infrastructure (PKI) is proposed to bind public keys to entities, enable
other entities to verify public key bindings, and provide the services needed for ongoing
management of keys in a distributed system. The basic data structure used in PKI is a
digital certificate, called Public Key Certificate (PKC), which identifies an individual,
a company, or other entity with an associated public key, and is protected by a digital
signature of the issuer. As widely used industry standard, X.509 specifies a data
format for public key certificate [43] that contains six mandatory and four optional
common fields. The mandatory fields are: the series number, the certificate signature
algorithm identifier, the certificate issuer name, the certificate validity period, the
public key and the subject name that controls the corresponding private key. Four
optional fields are the version number, two unique identifiers, and the extensions.
Two other important functional component of PKI are Certificate Authority (CA)
that acts as a trusted and independent provider of PKC, and Repository that is a
database of active digital certificates and is mainly used to confirm the status of digital
certificates. The CA has its own published root public key certificate and securely
maintained private key. Clients use the root certificate to verify the signatures issued
by CA. The basic PKI functions performed by CA are: issuing certificates (i.e.,
creating and signing them), maintaining certificate status information, and issuing
Certificate Revocation Lists (CRLs) etc.

The widely used application of public key cryptography is the digital signature
which makes an unalterable mark on the electronic document to ensure the document
is originated from the person who signed it. The signature is made in two steps: i)
a Hash algorithm is operated on the original document to extract a message digest
with fixed length; ii) private key of the owner is used to encrypt the message digest to
create signature. Any entity holding the public key of signer is capable to verify the
validation of the signature. PKI technology is also used in data encryption/decryption
to ensure the data confidentiality. For the reason of time-consuming of the algorithm

87

CHAPTER 5 - CASE STUDY: SMART DATA SERVER VERSION 3.0

execution, PKI is often used to encrypt/decrypt the short message, such as symmetric
share key etc.

Design of Authenticator

In the component of Authenticator two functions are actualized: authentication and
non-repudiation. Concretely speaking, Authenticator has to recognize the identity
of current user and make sure that the identity is not impersonated by other people
or entity. The implementation has employed Java cryptography package and IAIK
security package [46] which provide all kind of security algorithm implementation,
including public key cryptography. To enable authenticate the request from remote
client, a Signature Certificate (SC) is designed to carry all related information, such
as signature owner and signed signature data etc. The data structure of Signature
Certificate contains elements listed as follows:

• Subject Distinguished Name, indicates the entity to make the signature within
the request.

• Algorithm Name of Digital Signature, indicates which algorithm is used for
signature.

• Provider Name of Digital Signature, indicates provider of implementation of
signature algorithm.

• Signed Data, is the signature entity which is signed by subject with its private
key.

• Clear Data, is the original plain text used for signature algorithm.

 public class SignatureCertificate{
...
public void update_clear_data(byte[] clearData);
public boolean sign(PrivateKey privateKey);
public boolean verify(PublicKey publicKey);
public byte[] to_bytes();
public boolean from_bytes(byte[] bytes);
...

}

Figure 5.9: Primary Methods of Class of Signature Certificate

The primary methods realized in Signature Certificate are illustrated in Figure
5.9. In the client side, the method of sign() will be used to create a signature on
updated clear data. The signature certificate will then be serialized to bytes stream by
to bytes() method before transferring with request to distributed components of SDS3.
After received the bytes stream of signature, the component of Authenticator will
restore the bytes stream to a signature certificate object using method of from bytes(),

88

CHAPTER 5 - CASE STUDY: SMART DATA SERVER VERSION 3.0

and then make verification and extract relevant information. For any secure request
before sending in client end, the sender has to apply for a PKC in advance from
the security center of the SDS3. In server side the Signature Certificate will be
firstly parsed by Authenticator to get user DN with which corresponding Public Key
Certificate (PKC) could be retrieved from open LDAP server to make the verification.
To be serialized to byte stream in a unique format, each element of SC has to comply
with the format as the following Figure 5.10.

 Length for
Name

Element of
Name

Length for
Value

Element of
Value

Figure 5.10: Serialization Format of SC Elements

As one component managed by RBW, Authenticator exhibits its IO behaviors
by unique format - creating fixed communication ports. Authenticator accepts bytes
stream of Signature Certificate as its necessary input, and outputs a Distinguished
Name (DN) to identify the current user. A Boolean value is also outputted to indicate
whether the digital signature is successful to be verified or not.

5.3.3 Component of Authorizer

Different from component of Authenticator to identify who is the entity, the compo-
nent of Authorizer adopts the technology of Attribute Certificate to make clear what
rights and obligations are authorized to the entity.

Attribute Certificate

In the fourth edition of X.509, an Attribute Certificate (AC) [28] is proposed to bind
the subject with one or more attributes information, such as authorization etc. AC is
taken as the complementation of Public Key Certificate (PKC) to enhance the public
key based security control and management. Instead as the extension field of PKC,
AC has the similar data structure with PKC, and is also digitally signed by its issuer.
There are two reasons to propose AC to make distinctly separation from PKC. Firstly
the authorization information stored in AC does not often have the same lifetime as
the bound subject identity and public key. Secondly, the PKC issuer is usually not
authoritative for the authorization information. A subject may have multiple AC
with each of its PKC. Just as the issuer of PKC is called a Certificate Authority
(CA), the entity to sign an AC is called an Attribute Authority (AA), and the root
of trust is called the Source of Authority (SOA). Similar as X.509 PKC, X.509 AC
also has the field to describe the signature algorithm and the signature value. The
primary information contained in AC are as follows:

• Holder describes the holder of the attribute certificate. The most common way
for field is a reference to the holder’s PKC via the unique serial number which
binds the CA of the PKC and the AC issuer together.

89

CHAPTER 5 - CASE STUDY: SMART DATA SERVER VERSION 3.0

• Issuer links the AC to the Attribute Authority (AA) by a single general name
which may contain e.g. a Distinguished Name or an IP address of the AA.

• Serial Number identifies the AC uniquely from the other ACs issued the AA.

• Validity Period states the period for which the AA certifies that the binding
between the holder and the attributes will be valid.

• Attributes can contain any data to represent the attribute value. The typical
types of attribute are role, group, access identity and service authentication
information etc.

The widely used application of AC is Privilege Management Infrastructure (PMI)
which is also the original purpose of AC. The PMI provide a series of services to enable
privileges to be allocated, delegated, revoked and withdrawn in an electronic way. In
most applications PMI works closely with PKI to provide privilege management. A
PMI is to authorize the entity on which a PKI is to authenticate.

Design of Authorizer

The component of Authorizer is responsible to give the authorization for specified
entity. More concretely, Based on inputted identity of the entity, component of Au-
thorizer fetches its Attribute Certificate and extracts the verified roles of the entity.
During the implementation an open source project - IAIK security package [46] is
used for it provides API for X.509 public key Certificate and Attribute Certificate.
Because the AC used in Authorizer component is employed to store the role infor-
mation, two classes of Role and RoleType are designed to express the role and fulfill
relevant functions. The RoleType is rather simple, constructed from a general name
and a unique object id. For example, two default role types are set as: ”AuthorRole”,
and ”UserRole”. Each role contains the following information: role type, role value,
beginning date for the valid period, end date of the valid period, and the holder of
role extracted from the Holder field of AC.

Open LDAP

Trusted
 User DN

User Roles Fetch PKC

Verify PKC

Fetch AC

Verify AC

Public Key Extract Roles

Figure 5.11: Work Diagram of Authorizer Component

90

CHAPTER 5 - CASE STUDY: SMART DATA SERVER VERSION 3.0

Before the accessing every user or entity has to be assigned an AC associated
with its PKC via security center, referring section 5.3.5. The AC can be revoked or
reassigned at any time according to new requirements. Each AC may contain one
or more different type of role, and each type of role may also have multiple values.
The working diagram of Authorizer component is illustrated as in Figure 5.11. For
component of Authorizer, the input is a trusted Distinguish Name (DN) of current
user with which the PKC and AC can be retrieved from open LDAP server. Firstly
Authorizer fetches the PKC and then verifies whether the PKC is valid or not. At
the same time the AC is also fetched from open LDAP server and verified using
the public key extracted from PKC. Finally the Authorizer extracts the roles from
AC, and checks whether the date of roles is beyond the valid period or not before
outputting to next component.

5.3.4 Component of Access Controller

The component of Access Controller realizes functions for role based access enforce-
ment. It often works with other components, which provide services for authentication
and authorization etc., to construct a security enhanced Role Based Access Control
(RBAC) for target application invocation.

Access Control Model

Access control refers to a security protection mechanism that controls who is allowed
to access the protected specific resource. The access is the operation to do with
the computer resource, e.g., execution, view and modification. Ideally, the access
control model should be flexible enough to configure all resources with different access
constrains, and protect against the unauthorized viewing, modification or execution.
There are plenty of accepted access control models, such as Discretionary Access
Control, Mandatory Access Control, and Role Based Access Control etc.

Discretionary Access Control (DAC) is a means of restricting access to resource
based on the identity of user or membership in certain group. DAC allows users to
grant or revoke access privileges to any of the objects under their control. In certain
sense, users are said to be the owner of the objects under their control. However,
in many organizations, the end users do not own the information to which they are
allowed to access. The access priorities are controlled by the organization and are
often based on the employee functions rather than data ownership. Mandatory Access
Control (MAC) is a means of restricting access to objects based on the sensitivity
of the information contained in the objects. MAC secure information by assigning
sensitivity labels on information and comparing this to the level of sensitivity a user is
operating at. The most important feature of MAC is that the user can not fully control
the access to resources that they create. The constraints of the access rules of MAC
are provided by security policies which are in the hands of the system administrator.
In general, MAC mechanisms are more secure than DAC, but they have trade offs in
performance and convenience to users.

Role Based Access Control (RBAC) [82], firstly proposed by D.Ferradiolo etc.,

91

CHAPTER 5 - CASE STUDY: SMART DATA SERVER VERSION 3.0

is a more effective, natural and promising method for controlling access to computer
resources, in which access decision are based on the roles that individual users have as
part of an organization. Under the RBAC framework, users are granted membership
into roles based on their competencies and responsibilities in the organization. The
operations that a user is permitted to perform are based on the user’s role. User
membership into roles can be revoked easily and established with job assignments.
This simplifies the administration and management of privileges because roles can be
updated without updating the privileges for every user on an individual basis.

Under RBAC, roles can have overlapping responsibilities and privileges. That
means, users belonging to different roles may need to perform common operations.
Some general operations may even be performed by all employees. Role hierarchies
can be established to avoid repeatedly specifying these general operations for each
role. A role hierarchy defines role that have unique attributes and may contain other
roles.

A properly-administrated RBAC system enables users to carry out a broad range
of authorized operations, and provides great flexibility and breadth of application.
System administrators can control access at a level of abstraction that is natural to
the way that enterprises typically conduct business. This is achieved by statically
and dynamically regulating user’s actions through the establishment and definition
of roles, role hierarchies, relationships, and constraints.

Design of Access Controller

Access Controller is a processing center to make the decision for permission assign-
ment to specific user for specific objects. Different from other access control engine,
here the tasks of authentication and authorization are assumed to be done out of
component Access Controller. An XML based policy is given as access rules to spec-
ify who has what kind of access privilege to which target object and under what
conditions. Access Controller makes decision to give the permission on the basis of
access policy and received request with roles of current user. A full example of ac-
cess policy can be referred in Appendix C. The syntax of policy is borrowed from
PERMIS project [20] and comprised of the following sub-policies:

• Subject Policy: specifies the domains of users that are allowed to access resource
within the overall policy. Each domain is specified as an LDAP sub-tree, using
Include and Exclude statements, with optional layering.

• SOA Policy : lists the LDAP DNs of the SOAs that are trusted to issue roles
to the subjects specified in the subject policy. These DNs will match the root
issuer names in published Attribute Certificates stored in LDAP server.

• Role Hierarchy Policy : defines the role hierarchies that are supported in this
access policy. Each role hierarchy is specified as a set of Superior-Subordinates
attribute values. The superior roles inherit the privileges of a subordinate role.
The role hierarchy also supports multiple inheritances whereby a superior role
inherits all the privileges of a set of subordinate roles.

92

CHAPTER 5 - CASE STUDY: SMART DATA SERVER VERSION 3.0

• Role Assignment policy : specifies which roles are allocated to which subjects
and by which SOAs. For each assignment, there are also time constrains to
specify the valid lifetime of roles assignment.

• Target Policy : specifies the target domains covered by this policy. Target do-
mains are specified as LDAP sub-trees using Include and Exclude etc.

• Action Policy : specifies the actions supported by this policy. An action, the
smallest granularity of the access to a target, has a name, and zero or more
arguments. Actions are separated from targets because several targets may
support the same action.

• Target Access Policy : specifies which roles have permission to perform which
actions on which targets and under which conditions. The target access policy
comprises a set of target access clauses. Each target access clause grants an
initiator with a specified set of roles permission to carry out the specified actions
on the specified list of targets.

Component of Access Controller takes target and operation of request and roles of
current user as its inputs, and produce a Boolean value to indicate whether the permis-
sion is allowed for given user with specified target and operation. The implementation
of access enforcement is illustrated as in Figure 5.12. During the initialization of com-
ponent, the policy will be retrieved and decoded by policy parser which provides rich
set of APIs for Access Decision Function (ADF) to extract relevant information from
policy. After receiving the request, ADF use the information from request, such as
target, operation roles, and information from policy, such as role hierarchies etc., to
create an accessing credential used for subsequent checks. First ADF checks whether
the credential satisfies the assignment rules. After getting a result of True, ADF
continue checks the access rules using created credential. The result of this step will
be sent out as the output of permission.

Request

with Roles Permission
Access Decision Function

(ADF)

Credential
Creation

Policy Parser Policy

Access
Rules

Checking

Assignment
Rules

Checking

Figure 5.12: Access Enforcement of Access Controller

93

CHAPTER 5 - CASE STUDY: SMART DATA SERVER VERSION 3.0

5.3.5 Security Centre - Local Security Authority

In the previously introduced secure components, Public Key Certificate (PKC) and
Attribute Certificate (AC) are used for authentication and authorization. As a aid
tool which is indispensable for running SDS3, a Security Center is created to take
charge of the administration functions: Graphics User Interface (GUI) based admin-
istration for open LDAP server and management for PKCs and ACs. A windows
version OpenLDAP built by ILEX team [85] is employed in SDS3 to store PKCs and
ACs. The PKC is directly supported in OpenLDAP server. However, the supporting
for storage of AC has to manually add an additional item in the schema configuration
file, inetorgperson.schema, as follows:

attributetype (2.5.4.76

NAME ’AttributeCertificate’

DESC ’RFC2256: X.509 AC certificate, use ;binary’

SYNTAX 1.3.6.1.4.1.1466.115.121.1.8)

To conveniently manage LDAP server, two GUI based LDAP functions are pro-
vided: creating LDAP entry and removing LDAP entry. The PKCs and ACs will
automatically be stored in LDAP server after they are created.

Figure 5.13: Screenshot of Attribute Certificate Creating

In normal case the public key Certificate Authority (CA) and Attribute Authority
(AA) are not necessary to be the same entity, but here they are same and managed by
Security Center which takes the role of local security authority for both PKC and AC.
The implementation of Security Center is based on public research security package -
IAIK [46] that provides implementations for all kinds of concrete algorithms, such as
algorithm of encryption and digital signature etc. The basic functions offered by local
security authority are: creating and revoking Public Key Certificate and Attribute
Certificate. Figure 5.13 is a screenshot for attribute certificate creating. Other trusted
CAs and AAs can also be configured into trust list to enable the SDS3 accepting the
PKCs and ACs issued by other CAs and AAs.

94

CHAPTER 5 - CASE STUDY: SMART DATA SERVER VERSION 3.0

5.4 Analysis on Features and Applications

As a middleware system, SDS3 is able to ease the burden of programmer to develop
distributed applications. Apart from this basic functionality, SDS3 is distinguished
from other middleware solutions in two important aspects: security and dynamics.
Instead of behaving as middleware services, security functionalities in SDS3 are inte-
grated into the core components of middleware system to establish an authenticated
and authorized Role Based Access Control (RBAC) framework to enhance the se-
curity on invocation of applications. In addition, the technology of Routing Based
Workflow (RBW) is employed to manage the secure components, which results in
high flexible and dynamic management of security control. The detailed features of
SDS3 can be classified into the following different aspects:

Multi-Level Security Control

The security controls of application invocations in SDS3 are realized in two levels: the
coarse-level strategy control and detail-level control on specific application. Coarse-
level security control means the specific application-independent control strategy. For
instance, if all the accessing users are assumed to have the real identity that he claims,
and then they don’t need to be authenticated. The coarse-level security control is re-
alized by the organization of different secure components: Authenticator component
for user authentication, Authorizer component for user authorization and Access Con-
troller component for access enforcement function. The detail-level security control
is concerned about secure accessing on the specific application or even the concrete
one or more operations of specific application. For example, the accessing to com-
pany’s sensitive data, e.g. developing blueprint, is only allowed for the entity with
role of Manager. The detail-level security control is realized by policy configuration
for component of Access Controller.

Dynamic changeable Coarse-Level Security Control

Due to the RBW management on secure components, the coarse-level security con-
trol of SDS3 can be dynamically changed during runtime. In SDS3 changing the
collaboration relation of secure components means a new security control strategy
is generated. In another words, a routing means a solution for one security control
strategy. If all introduced components are utilized in one routing, then the full and
powerful security are provided: each access will be authenticated, authorized and con-
trol policy checked. However, one or more secure components may also be omitted to
provide incomplete secure invocation for less important applications. When one com-
ponent is missing for routing, the output values for this component will be replaced
with corresponding default values that are configured in XML based configuration
language. For example, if all accessing users are assumed to be the real entity that
it claims, the component of Authenticator can be omitted. The collaborative compo-
nent, such as Authorizer, will automatically get a ”True” as the default value from
component of Authenticator. Likewise, if the applications are given the same access

95

CHAPTER 5 - CASE STUDY: SMART DATA SERVER VERSION 3.0

permission for all users, the component of Authorizer is not necessary and should be
omitted in the routing. The simplest routing just contains one component, Request
Broker. In this case there is no any security control on the application invocation.

Secure Application without Security Source Code

Applications of the SDS3 contain only business processing logics, and application
developer does not need to consider any security issues in the source code. All the
security issues of application can be configured in policy after application is pro-
grammed. Even the application specific security control, such as access permission to
an operation, can also be configured in the policy for component of Access Controller.
As illustrated in Fig.5.14, the example shows that which roles (e.g. ”Designer”) are
allowed to access which operations (e.g. ”inverse”) of the specified application (e.g.
”AppSample”). A full policy example can be referred in appendix C.

 - % & ' () * +, - - * . . / 0 1 2- 3 4
 - % & ' () * + , - - * . . 4
 - % 5 0 1* 6 2. + 4
 % 5 0 1* & 3 7 * 8 9 : . * (5 0 1* 9 ; ' 1< * 8 9= ' > ') * (9 ? 4
 % 5 0 1* & 3 7 * 8 9, < + @ 0 (5 0 1* 9 ; ' 1< * 8 9 A * . 2) > * (9 ? 4
 % ? 5 0 1* 6 2. + 4
 - % & ' () * + 6 2. + 4
 - % & ' () * + , - + 20 > . 8 9 2> B * (. * 9 4
 % & ' () * + A 0 C ' 2> D A 8 9, 7 7E ' C 7 1* 9 ? 4
 % ?& ' () * + 4

% ?& ' () * + 6 2. + 4
% ?& ' () * + , - - * . . 4F

% ?& ' () * +, - - * . . / 0 1 2- 3 4F

Figure 5.14: Example of Sub-Policy of Target Access Policy

Supporting Multiple Security Control Strategies

Multiple security control strategies are supported in SDS3 to enable flexible security
control for different kinds of applications. To be specific, in an application server
powered by SDS3, it is possible to support two or more different control strategies:
sensitive applications need strict and full control, less important applications need
only incomplete security control, and testing applications do not need any security
control. This feature is directly inherited from the RBW which supports multiple
routing synchronously. In RBW, each component instance does not reside in one
routing for long time. After execution, instance will be unloaded from routing. For
component instance, it has no awareness that there is only one routing or multiple
routings. There is no differences that component instance is executed in the same
or different routings at different time. So multiple routing can be created to share
the same instances of components to support multiple solutions synchronously for
different requirements.

96

Chapter 6

Case Study: Dynamic Services
Composer

Web services composition is a promising approach to fulfill the enterprise application
integration with which enterprise applications are able to interact in the application
level regardless of their deployment location, implementation language, and the sup-
porting fundamental technology of each single application. This chapter presents
another application case of Routing Based Workflow (RBW) - Dynamic Services
Composer (DSC), which is capable to integrate distributed web services and enable
the composition structure dynamically changed. In DSC, the technology of RBW
is used to model the interaction and process of collaborative web services, and the
open source project Apache Axis and Web Services Invocation Framework (WSIF)
are employed to help constructing the system.

6.1 Introduction to Services Composition

Web services composition is an emerging paradigm for applications integration within
and across organizational boundaries. Numerous approaches and techniques for web
services composition has continuously been proposed from different vendors and coali-
tions. Most approaches for web services composition can be classified into two cate-
gories: process oriented composition and semantic based composition.

6.1.1 Process Oriented Composition

The process oriented composition approaches are mostly supported and pushed for-
ward by industrial enterprises. Early works included XLANG [87], WSFL [54] and
WSCL [6] etc. The XLANG specification was developed by Microsoft alone for the
Microsoft BizTalk Server. The XLANG focuses on the creation of business processes
and interaction between web service providers. The Web Services Flow Language
was proposed by IBM to define a specific order of activities and data exchanges for
a particular process. Two kinds of models, i.e. flow model and global model, are
defined in WSFL. The flow model represents series of activities in the process, while

97

CHAPTER 6 - CASE STUDY: DYNAMIC SERVICES COMPOSER

the global model binds each activity to a specific web service instance. The WSCL
is the abbreviation of Web Services Conversation Language proposed by HP. The
WSCL outlines a rather simple conversation language standard, and focuses on mod-
eling the sequence of interaction messages between web services. Two rather new
specifications, BPEL4WS and WSCI, are introduced as follows.

BPEL4WS

The specification of BPEL4WS [3] was proposed by industrial Microsoft, IBM, Siebel
and SAP etc. The BPEL4WS, based on early works of XLANG and WSFL, models
the behavior of web services in a business process interaction. BPEL4WS supports
for executable and abstract business processes. An executable process models the
behaviors of participants in a specific business interaction, essentially modeling a
private workflow, illustrated as in Figure 6.1. Abstract processes specify the public
message exchanges between parties, but it is not executable and also does not convey
the internal details of a process flow. The specification includes both basic and
structured activities. A basic activity can be taken as a component that interacts
with external services and process itself. The constructed activities manage the overall
process flow, specifying what activities should run and in what order. Containers and
partners are two other important elements in BPEL4WS. A container identifies the
specific data exchanged in a message flow, and are used to manage the persistence of
data across web services requests. A partner could be any service that the process
invokes or any service that invokes the process.

Step 1

Step 2

Step 3a Step 3b Step 3c

Exception
Handling

Roles and
Partners

Transactions
Handling

BPEL4WS Process Flow

Sequential Flow

Parallel Flow

Web
Service

Web
Service

...

Web
Service

Web
Service

...

W
S

D
L

W
S

D
L

Figure 6.1: Working Diagram of BPEL4WS

WSCI

The Web Services Choreography Interface (WSCI) [4] is a specification proposed by
Sun, SAP, BEA and Intalio etc. The WSCI defines the overall choreography of web
services that describes the messages between services that participate in a collabora-
tive exchange. A key aspect of WSCI is that it only describes the observable or visible

98

CHAPTER 6 - CASE STUDY: DYNAMIC SERVICES COMPOSER

behavior between web services. WSCI does not address the definition of executable
business process as defined in BPEL4WS. Furthermore, a single WSCI document
only describes one partner’s participation in a message exchange. As illustrated in
Figure 6.2, WSCI choreography includes a set of WSCI documents, an each one is for
a partner in the interaction. In WSCI, there is no single controlling process manag-
ing the interaction. WSCI supports also basic and structured activities which is for
sequential and parallel process etc.

Web

Service

WSCI

Web
Service

WSCI

Web
Service

WSCI

Web
Service

WSCI

Collaboration

Figure 6.2: Working Diagram of WSCI

6.1.2 Semantic Based Composition

The semantic web community concentrates on reasoning about resources by explic-
itly declaring their preconditions and effects with terms precisely defined in Resource
Description Framework (RDF) [49]. OWL-S (formerly DAML-S) [58] is a semantic
markup for web services, which describes the properties, capabilities, interaction and
access model of web services in an unambiguous, computer-interpretable form. The
tasks that OWL-S is expected to address are automatic web service discovery, invo-
cation, composition and interoperation. The ontology of services in OWL-S consists
of the following three main parts:

• Service Profile provides the information to tell what the service does, in a way
that is suitable for a service-seeking agent to determine whether the service
meets its needs.

• Service Model tells a client how to use the service by detailing the semantic
content of requests, conditions under which particular outcomes will occur, and
step by step processes leading to those outcomes.

• Service Grounding specifies details of how an agent can access a service. Typi-
cally a grounding will specify a communication protocol, message formats, and
other service-specific details, such as port numbers etc.

99

CHAPTER 6 - CASE STUDY: DYNAMIC SERVICES COMPOSER

6.2 Modeling - RBW for Services Composition

Routing Based Workflow (RBW) is originally proposed to model and manage the
collaborative software component and applied in middleware construction introduced
in Chapter 5. Here the RBW is employed again to model the process and interaction
of web services and achieve the capability of dynamic change on the services flow
structure. The RBW modeling for web services composition consists of the modeling
of services activity, services process, interaction and control etc., which are introduced
in detail as follows.

6.2.1 Basic Service Modeling

Basic web service is an independent and atomic web service activity executed in ser-
vices process. A basic web service may come from internal or external, and may be a
real atomic web service or even a composite service that behaves as an atomic service.
In RBW for services composition, a basic service is modeled as service component,
which evolves from the component structure of original RBW.

release

G HI J H KL MN H

Service Container

Service Invoker

Service Delegate

get

Figure 6.3: Diagram of Service Component

As depicted in Figure 6.3, service component is comprised of service delegate,
service container, service processor, and the remote web service entity. The entity
that directly invokes web service is service invoker. Service container takes charge of
the life cycle activities of a service invoker. During a process, each service component
may create one or several instances of service invoker which are all hosted in service
container. Service delegate is responsible for management and control tasks of ser-
vice component during process, and service container is the bridge between service
delegate and service processor. Just the same as component in RBW, service invoker,
the implementation of service invocation, is also temporarily bound to the service
delegate. To be more specific, only when web service is demanded to invoke, the
service delegate will ask service container to assign an instance of service invoker to
perform the invocation operation. After service invoker finishes its invocation, service
delegate will release this instance and send it back to container.

100

CHAPTER 6 - CASE STUDY: DYNAMIC SERVICES COMPOSER

In term of implementation, service delegate and service container are exactly the
same as component delegate and component container introduced in Chapter 4. For
the sake of better understanding in new application of web services composition,
the names are changed here. Service invoker is actually an example of function-
specific component processor, just as component of Authenticator in SDS3. Service
invoker also inherits basic functionality from generic processor which is responsible for
contact keeping and communication with service delegate and service container. The
functional component part of service invoker fulfils the implementation of invocation
to a specific web service. The communications among different service delegates
and between service delegate and its corresponding service invoker are realized by
communication ports introduced already in Chapter 4.

6.2.2 Flow Control Modeling

Control flow modeling specifies execution order and data flow direction of involved ba-
sic web services through the communication ports and a set of control links of RBW.
The sequential and parallel flows can be realized by the binding pairs of communi-
cation ports. The control links fulfil the conditional logic to enable different kinds
of conditional flow in which one component will be picked from multiple candidates
for next execution . As introduced before, the control links include three logic links,
i.e. AndLink, OrLink and XorLink, and one data map link, i.e. MapLink. Different
kinds of control flows realized in RBW are explained as follows:

• Sequential Flow : Service component starts to execute only after its in ports
(namely, target ports of the binding pairs) receive the data from out ports
(namely, source ports of the binding pairs) of other services. Each service com-
ponent may have multiple in ports which may be bound to out ports belonging
to different service components. Only after all of in ports receive the data, the
service component will then be triggered to execute.

• Parallel Flow : is directly supported through communication ports. When sev-
eral out ports of service A is bound to multiple in ports that belong to different
service components, the data from service A will then flow to different followed
services in parallel way.

• Cycled Flow : is also directly supported, similar to parallel flow. If one out port
of service A is bound to in port that belongs to the same service or a former
executed service, then cycled flow is formed.

• Logic Control Flow : is conditional flow in which the decision is made according
to the input values and logic operation of AND, OR, or XOR. These simple
logic computations are realized by three control links: AndLink, OrLink, and
XorLink. These three control links include multiple in ports and two out ports.
The ports of control link are designed for specific data with type of Boolean
and will also be bound to ports of service component.

101

CHAPTER 6 - CASE STUDY: DYNAMIC SERVICES COMPOSER

During the composition of basic web services, all above mentioned flow models
will be employed and mixed together to form a complex flow model. For the usage of
control link is also realized by port binding with ports from service components, all
kind of flow models are designed by the layout of communication ports.

6.2.3 Composite Service Modeling

Composite service models process and interactions of basic web services. To be spe-
cific, composite service specifies how the involved services are combined, in which
order they have to be performed, and how the data are transferred among involved
service activities. In RBW for service composition, the composite service is modeled
by routing in which service delegates and control links construct the primary parts,
and the binding pairs are created to joins isolated service activities together to form
a connected services flow. As illustrated in Figure 6.4, the composite service is com-
posed of basic services, and itself can also behave as a basic service that is possible to
be integrated in other composite services. When it is accessed, client does not know
whether it is an atomic service or a composite service.

Service
Delegate

 Service
Delegate

Service
Delegate

Composite Service
... AND

Figure 6.4: Diagram of Composite Service

In term of implementation, a composite service is just a routing, so the man-
agement and execution of composite service is exactly the same as management and
execution of routing. The execution entities, i.e. instances of service invoker, are
stored in repositories. The execution of a composite service is a procedure to tem-
porarily load the invoker instance, trigger the execution of service invoker, and unload
the invoker instance. The distinctive structure of basic service and composite service
leads to the temporary binding for instances of service invoker, which enables dy-
namic changes on the structure of composite service. The execution and change of
composite service need series of control activities to coordinate and keep consistency
for all involved basic services. Based on the data flow dependencies created from the
information of ports binding pairs, control dependencies are established for all rele-
vant services. Control events are designed to carry the information and commands
of control activity, and the distribution of control events is realized through the es-
tablished control dependencies. Details for execution and management of composite
service (namely routing) can be referred in section 4.3.

102

CHAPTER 6 - CASE STUDY: DYNAMIC SERVICES COMPOSER

6.3 System - Dynamic Services Composer

Based on the RBW modeling for service composition, we developed the Dynamic Ser-
vice Composer (DSC), which is able to integrate the single internal or external web
services to a more powerful composite service and to dynamically change the com-
posite service during running time. In DSC, two open source project are employed:
Apache Axis [32] which is composed as the underlying infrastructure to publish self-
developed web services and integrated composite services (DSC services), and Apache
Web Service Invocation Framework (WSIF) [33] which is used to construct Service
Invoker to implement the invocation to extern web services. Figure 6.5 illustrates the
architecture of DSC and shows an overview that how services are composed, executed
and published in our system. The Key technologies involved in DSC are introduced
respectively in the following subsections.

Apache Axis Platfrom

Axis Engine (SOAP Engine)

Axis Server Engine Axis Client Engine

Web Services Client Applicaiton DSC Services

O P Q R P S T UV P

Service
Delegate

Service
Delegate

Service
Delegate

Service
Delegate

O P Q
R P S T UV P ...

O P Q
R P S T UV P

Composite
Service

W X V Y Z R P S T U V P

...

 WSIF Framework

Remote Invoker

Local Invoker

S
ervice Invoker

RBWAbstract

Figure 6.5: Architecture of Dynamic Services Composer

6.3.1 RBW Integration

As depicted in Figure 6.5, the open source project Apache Axis acts as the underlying
platform of DSC to publish services, and enable the services to be accessible. A mod-
ule of RBW Abstract is designed to integrate RBW with Axis, similar to Workflow
Adapter of SDS3, to publish and execute composite services. With RBW abstract

103

CHAPTER 6 - CASE STUDY: DYNAMIC SERVICES COMPOSER

the execution differences between composite services and other atomic services are
transparent to clients. To enable the composite services to be accessed in a way the
same as that of other atomic web services, the IO behaviors, e.g. parameters and
return type, of composite service have to be created using the same way as that for
atomic service creating which is provided by Apache Axis. The implementation of
composite service is the codes which construct and execute RBW request based on
RBW Abstract. The RBW Abstract provides a set of APIs to support the integration
of RBW with Axis. As illustrated in Figure 6.6, the functionality of RBW Abstract
primarily focuses on the following aspects:

• Constructing RBW Request based on the IO behaviors of composite service.
The primary tasks are to create named objects as input set of composite service
with the given parameter information, and to create named objects as output
set with the given information of return type.

• Pre-Execution of RBW : the actual execution is managed by RBW manager.
Here only some preparations of execution are done, such as assigning a routing
according to the name of composite service etc.

• Extracting Result from RBW Response: After execution the result is extracted
and returned as the execution value of composite service.

DSC Composite Services

Constructing
RBW Request

Pre-Executing
RBW Request

Extract Result
From RBW Resp

RBW
Abstract

Figure 6.6: Diagram of RBW Abstract

6.3.2 Services Invocation

The implementation of invoking all kinds of remote web services is not an easy task,
because web services may be deployed in heterogeneous environment using varied
supporting technologies. The implementation of Service Invoker in DSC has employed
an open source project Apache Web Service Invocation Framework (WSIF) [33], which
provide a uniform means to access web services described in WSDL, no matter how
and where the services are provided. WSIF tries to free the developer from constrains
of developing services for particular transports or service environments. Thus, a set
of APIs are provided in WSIF to allow accessing any web services whose transport

104

CHAPTER 6 - CASE STUDY: DYNAMIC SERVICES COMPOSER

bindings are supported by SOAP, Java RMI or HTTP Get etc. WSLF supports
traditional approach of stub mechanism or completely dynamic invocation of web
service based upon examination of the meta-data about service at runtime. WSIF
invokes service operations through the following steps:

1. Load a WSDL document that describes the invoked web service.

2. Create a port factory for this service and retrieve a specific service port with
the given name of port type.

3. Create input message and output message, if necessary, by using message parts
typed according to some native type system

4. Make the invocation by supplying the port with the name of the operation that
is going to be invoked, along with an input and /or output message.

In implementation, the Service Invoker inherits from Generic Processor which
is an abstract class for each component managed by RBW, and provides concrete
implementation for service invocation. The web service accessed by Service Invoker
may be a service deployed locally or a service deployed remotely. Although the local
service can be dealt with the same way as that for remote web service, we create a
Local Invoker to separate itself from Remote Invoker to improve the efficiency and
speed the invocation. For Local Invoker, it does not need the document of WSDL and
requires direct invocation information, such as name of service, port type, operation,
and parameter names and values etc. For Remote Invoker the WSDL of diverse
services has to be explicitly specified. During the execution all instances of different
service components are instantiated from the same class of component entities, such
as service delegate, service container, and service invoker etc. The configuration
information, e.g. parameters and in/out ports etc., are used to initialize and customize
an instance of the service component exclusively for a specific web service.

6.3.3 Services Configuration

The XML based configuration language for RBW can also be used to specify how
to compose a complex service from multiple basic services. The key configuration
elements are the basic service activity and the composite service activity introduced
as follows. The configuration of control link is similar to that of basic service activity
and a full configuration example is given in Appendix D.

Basic Service Activity

For each web service that needs to be integrated into a composite service, it has to
be firstly configured as a basic service activity using the XML based configuration
language of RBW. Each basic service activity is specified according to one operation
provided by a web service. If two or more operations of a service need to be integrated
into composite service, those operations have to be specified respectively into different

105

CHAPTER 6 - CASE STUDY: DYNAMIC SERVICES COMPOSER

basic service activities. The configuration of the basic service activity specifies the
information of service invoker, parameters, properties and communication ports etc.,
as shown in Figure 6.7. The configuration of basic service activity has to be complied
with the component schema introduced in section 4.5. The key information which
are used to customize service component, are provided by series of parameters. Three
parameters are used to identify the function of remote web service invoked by this
service component:

• WSDLDoc indicates the WSDL document of the target web service;

• Interface indicates the target interface (port type) of the specified web service;

• Operation indicates the target function of the specified web service interface.

In addition, the port information will be used to create service delegate to enable
management by RBW.

 [\] ^ _` a b c d _` b e f g h i i j k l m g n k o j i p n i f ` q] ^ ^ r s t b e u p v wx y w z { k | } j i w ~ j � n p j � k o n � j i u �
[t] c] � b � b c �] � b e f� � � � � n l f ` q] ^ ^ r s t b e f� y | � y p i v k � � w � x y | } � l h i i j k l m wx y | } [� t] c] � b � b c �
[t] c] � b � b c �] � b e f � k p j i � { l j f ` q] ^ ^ r s t b e f� y | � y p i v k � � g n k o j i y v n k ~ { p j � n { � [� t] c] � b � b c �
[t] c] � b � b c �] � b e f � � j i { p v n k f ` q] ^ ^ r s t b e f � y | � y p i v k � � g n k o j i y v n k ~ { p j [� t] c] � b � b c �
[t c � t b c � s �] � b e f � n n } � v � j f � � [� t c � t b c � s �
�
[t � c � _� b � � _ � _ b c e f g h i i j k l m g n k o j i p n i � � i n � g h i i j k l m f ` q] ^ ^ r s t b e u � y | �y p i v k � u �

[_ � � _ c b ` � _� � � v k [� _ � � _ c b ` � _� � �
[t � c � r s t b � n � j i { p vn k [� t � c � r s t b �
[� ^] � b � i j � h v i j | [� � ^] � b �

[� t � c � �
�

[� \] ^ _` a b c d _` b �

Figure 6.7: Simplified Configuration for Basic Service Activity

Composite Service Activity

The configuration of a composite service specifies which basic services will be involved
to the composition and how these basic services interact to each other. The configu-
ration of composite services has to comply with the schema of routing introduced in
section 4.5. As shown in Figure 6.8, the configuration comprise of four parts:

• inputs and outputs specify the IO behaviors of a composite service;

• import specifies which basic web services are integrated into this composite
service;

• controlLink specifies which control links are used in this composite service;

• connectors specifies binding pairs of communication ports which are used to
schedule how the data are flowed among basic services or control links.

106

CHAPTER 6 - CASE STUDY: DYNAMIC SERVICES COMPOSER

 � � ¡ ¢ £ ¤¥ ¦ § ¦ ¨ © ¤ª ¦ « ¬ ­ ® ¯ ¯ ° ± ² ³ ­ ´ ± µ ° ¯ ¶ ´ ¯ ¬ ·
� ¤ ¸ ¢ ¹ ¥ £ ·

� ¸ º ¡ ¦ » ¼ º ½¹ ¦ ¤» ¦ ¸ ¥ ¤¾ ¤¦ ¨ « ¿ À ° Á ® ° Â ¶ Ã Ä ¯ ´ Å ­ ® ¯ ¯ ° ± ² ³ ¿ ª ½º £ £ Æ Ç ¢ ¦ « ¿ È Â É Ê Â ¶ ¯ Ë ± Ì ¿Í ·
� ¸ º ¡ ¦ » ¼ º ½¹ ¦ ¤» ¦ ¸ ¥ ¤¾ ¤¦ ¨ « ¿ À ° Á ® ° Â ¶ Ã Ä ¯ ´ Å ­ ® ¯ ¯ ° ± ² ³ ¿ ª ½º £ £ Æ Ç ¢ ¦ « ¿ È Â É Ê Â ¶ ¯ Ë ± Ì ¿Í ·
Î

� Í ¤¸ ¢ ¹ ¥ £ ·
� ¹ ¥ ¢ ¹ ¥ £ ·

� ¸ º ¡ ¦ » ¼ º ½¹ ¦ ¤» ¦ ¸ ¥ ¤¾ ¤¦ ¨ « ¿ À ° Â Ï ´ ± Â ° Ã ¯ ° ¶ ® ¯ ± ¿ ª ½º £ £ Æ Ç ¢ ¦ « ¿ È Â É ÊÉ ´ ® Ð Ñ° ¿ Í ·
Î

� Í ¹ ¥ ¢ ¹ ¥ £ ·
� ¤¡ ¢ ¨ ¥ · ­ ® ¯ ¯ ° ± ² ³ ­ ´ ± µ ° ¯ ¶ ´ ¯ � Í ¤¡ ¢ ¨ ¥ ·
� ¤¡ ¢ ¨ ¥ · Ò Å Ó Ë ÑÔ ° ¯ ËÄ ° ¯ � Í ¤¡ ¢ ¨ ¥ ·
� ¤¡ ¢ ¨ ¥ · Ò Å Ó Ë ÑÕ ° ± É ° ¯ � Í ¤¡ ¢ ¨ ¥ ·
Î
� ª ¸ ¸ ¦ ª ¥ ¨ £ ·

� ½ ¤ ¸ Ö ·
� £ ¹ ¨ ª ¦ · À ° Á ® ° Â ¶ Ã Ä ¯ ´ Å ­ ® ¯ ¯ ° ± ² ³ � Í £ ¹ ¨ ª ¦ ·
� £ ¹ ¨ ª ¦ · ­ ® ¯ ¯ ° ± ² ³ ­ ´ ± µ ° ¯ ¶ ´ ¯ Ã ¶ ´ ­ ® ¯ ¯ ° ± ² ³ � Í £ ¹ ¨ ª ¦ · � Í ½ ¤ ¸ Ö ·

Î
� Í ª ¸ ¸ ¦ ª ¥ ¨ £ ·

� Í � ¡ ¢ £ ¤¥ ¦ § ¦ ¨ © ¤ª ¦ ·

Figure 6.8: Simplified Configuration for Composite Service Activity

6.3.4 Services Deployment

The deploying and publishing of a composite service in the DSC are closely related
to the Apache Axis which is integrated as the underlying platform of the DSC. As
the third generation of Apache SOAP, Axis is not only a SOAP engine, but also a
simple stand-alone server to allow easily accessing remote services and deploying self-
developed services. In DSC, the composite services are marked as DSC Service. In
fact the way to deploy a DSC Services is similar to that of a basic service, which can
be accomplished by adding a service entry in the Web Service Deployment Document
(WSDD) of Axis Server. The different point is the implementation of service. For a
basic service, the implementation is the code to realize the claimed functionality. For a
DSC Service, the implementation is the code to execute the composite service. RBW
Abstract is a package that provides foundational APIs to execute composite services,
such as initializing the RBW, creating RBW request etc. A typical implementation
of a composite service is illustrated as the following Figure 6.9.

 × Ø Ù Ú Û Ü Ù Ý Ý Ú Þ ß à á Ø Þ â ã ä Û à å Ý æ å â Ý ç è Ø â â Þ à Ü ã é ê Ý è Ø â â Þ à Ü ã é ë Ø Ù ì Þ Ü ê é Þ ç ß Û Úí î î â Þ ë ë ï ð
Ý ñ Þ â ß ê ÛÝ à ò ß ç Þ ó ô á Ø Þ âã ä Û à å Ý õ ö÷ ø í × ÷ Þ â ù ÛÜ Þ ú Þ á Ø Þ ë ê â Þ á Ø Þ ë ê ó à Þ û ÷ ø í × ÷ Þ â ù ÛÜ Þ ú Þ á Ø Þ ë ê æ ë Þ â ù Û Ü Þ ò ß ç Þ é Ý ñ Þ â ß ê ÛÝ à ò ß ç Þ ï ö÷ ê â Û à ü ý þ ñ ß â ß ÿ ã ñ Þ ë ó à Þ û ÷ ê â Ûà ü ý þ ð � öø Ù ì Þ Ü ê ý þ ñ ß â ß ø Ù ì Þ Ü ê ë ó à Þ û ø Ù ì Þ Ü ê ý þ ð å â Ý ç è Ø â â Þ à Ü ã é ê Ý è Ø â â Þ à Ü ã é ë Ø Ù ì Þ Ü ê é Þ ç ß Û Úí î î â Þ ë ë � ö÷ ê â Û à ü ý þ â Þ ê Ø â à ÿ ã ñ Þ ë ó à Þ û ÷ ê â Û à ü ý þ ð � ö
ë Ø Ü Ü Þ ë ë ó Ü Ý à ë ê â Ø Ü ê ä â Þ á Ø Þ ë ê æ â Þ á Ø Þ ë ê é ñ ß â ß ÿ ã ñ Þ ë é ñ ß â ß ø Ù ì Þ Ü ê ë é â Þ ê Ø â à ÿ ã ñ Þ ë ï ö� å æ ë Ø Ü Ü Þ ë ë ï ð Þ � Þ Ü Ø ê Þ ä Ü Ý ç ñ Ý ë Ûê Þ ä ë Þ â ù ÛÜ Þ æ â Þ á Ø Þ ë ê ï ö �ø Ù ì Þ Ü ê â Þ ë Ø Úê ó â Þ á Ø Þ ë ê �ü Þ ê ä â Þ ë ñ Ý à ë Þ æ ï �ü Þ ê ä â Þ ê Ø â à ä ù ß Ú Ø Þ æ ï ö
â Þ ê Ø â à â Þ ë Ø Ú ê ö

�

Figure 6.9: Pseudo Code of a Typical Implementation of Composite Services

107

CHAPTER 6 - CASE STUDY: DYNAMIC SERVICES COMPOSER

The key steps to deploy a new composite service can be summarized as follows:

1. Specify basic service activities and composite services using XML based config-
uration language.

2. Construct an interface of composite service as one function of an application in
the Apache Axis, and then, implement the function as in Figure 6.9.

3. Add a service entry in the WSDD configuration of the Axis server to enable the
DSC application accessible by clients.

6.3.5 A Practical Example

During the procedure of web services composition, local services may be used in two
cases: i) a local services is required to realize the self-developed functional service;
ii) a local service is required to deal with coordination among different services. The
services coordination may be information integration, type conversion or even simple
logical computing. A practical example is introduced here to provide a composite
service of querying stock price and getting result information by email, as depicted in
Figure 6.10. The composite service has integrated four services: Stock Query which
retrieves stock price information with the given stock, Email Verifier which outputs
a boolean value to indicate whether the given email is valid or not, Email Sending
which send an email according to the given information, and Decision Maker which is
a local service to convert query result into the email message body and judge whether
it is necessary to email the query result. The XMethod website1 provides a portal to
publish free web services, from which above three services are found.

Service
Delegate

� � � � � 	
 � �� �
 �

� � � � �

 � �
 �
 � � � �
� �
 � �

Service
Delegate

 SQ

EV

Service
Delegate

 ES

�
 � �� �� �
� � �
 �

Service
Delegate

 DM

Figure 6.10: The Composite Service of Stock Query and Sending

1http://www.xmethod.net/

108

CHAPTER 6 - CASE STUDY: DYNAMIC SERVICES COMPOSER

6.4 Discussion and Analysis

So far the Dynamic Services Composer (DSC) has been introduced from its modeling
with RBW to the system architecture. The most important advantage of DSC is the
capability of dynamic change on the service providers and flow structure of composite
services, which is described as follows.

Dynamic Change on Service Composition

The dynamic capability of DSC is directly inherited from RBW which is specially
designed for dynamic changes. The dynamic binding of service provider, supported
in most approaches for dynamic service composition, is also supported in DSC by
changing the service invoker or changing the whole service component. The more
attractive capability of dynamism in DSC is to change the flow structure of com-
posite services during running time. In DSC a composite service is represented by a
routing which models the execution environment for collaborative services. So all the
change capabilities on the composition structure, e.g. adding/removing/replacing a
web service and reorganizing the interaction way of collaborative services etc., can be
achieved through changing a routing, which is already introduced in section 4.4

Actually our approach of RBW is centralized on the execution management of
components or web services, not the specification definition which is the target of the
process oriented composition approaches, e.g. BPEL4WS, and semantic based com-
position approaches, such as OWL-S. It would be better to combine the BPEL4WS
or OWL-S into the RBW to provide more powerful functions to automatically and
dynamically integrate web services.

Shortages for Enterprise Application

We have to confess that the DSC is still not mature. The key contributions of DSC
is that it demonstrates the feasibility of RBW in applications for web service compo-
sition. For utilization in enterprise application, numerous works are still demanded
to improve the system, such as:

• Transaction: atomic behavior of composite service is essential for enterprise
application. To keep consistence in the whole distributed system, all executions
of involved basic services have to be succeeded, otherwise, all are failed.

• Security : Security has to be considered when the integrated basic services are
from different organization or different companies.

• Data Format Transformation: In different countries or different organization,
the same data are possible to be expressed in different formats which should be
transformed automatically and transparently.

• Graphic User Interface (GUI) based Tool : To easily and quickly compose the
web services, GUI based composition tools are needed to improve the efficiency
and eliminate the errors.

109

CHAPTER 6 - CASE STUDY: DYNAMIC SERVICES COMPOSER

110

Chapter 7

Performance Tests and Analysis

The prime contribution throughout my work introduced in this dissertation is Rout-
ing Based Workflow (RBW) which achieves a high flexibility of dynamic change on
component oriented software systems. The dynamic capability of RBW is achieved
by its flexible structure and distinctive execution mechanism which may result in
prices of performance. This chapter presents an overall performance tests on RBW
and SDS3 to make sure how much expenses of performance are paid, and whether
the reduced performance will affect the execution of SDS3 applications.

7.1 Performance Tests

The performance tests are made on the RBW for components deployed in the same
computer, not on RBW extension for distributed components. The test environment
is a Dell desktop PC with Intel CPU 2.5 Ghz, RAM 2.0 G and Windows XP in-
stalled. The performance tests focus on three aspects: running times of key stages
of RBW execution, running times comparison between sub-stages and between SDS3
and CORBA, and running times of dynamic changes.

7.1.1 Running Times of Execution Stages

To go into deep details of the RBW execution performance, the tests on different sub-
stages of RBW execution are made. Eight blank components are specially designed
to test the variety and evolution of RBW execution in different situations. The blank
components are designed to simulate all non-functional component behaviors during
the RBW execution. The construction of blank component is exactly the same as
other components, such as component of Authorizer in SDS3. The features shared
by all blank components are described as follows:

• No parameter is specified for component instantiation.

• Only one property is specified: Pool Size is set the value 1 to indicate that
component container holds only one component instance.

111

CHAPTER 7 - PERFORMANCE TESTS AND ANALYSIS

• No functional logic is implemented in component processor. All data got from
in ports will be immediately forwarded to out ports.

Each blank component distinguishes itself from other blank components in the
aspects of number of in/out ports which are closely related with the performance of
RBW. Eight blank components, named respectively Comp I1 O0, . . . , Comp I4 O4,
are designed to have the communication ports respectively with the number from 1
to 8. For example, component Comp I2 O3 has two in ports and three out ports.
It is clear that the blank components can not simulate the execution of components
in which different parameters or properties may bring huge difference in running
time. Aforementioned blank component are only used to test the performance of
RBW execution which focuses on the management and non-functional execution.
The performance tests of three key sub-stages are introduced as follows.

RBW Initialization

The RBW initialization is comprised of two parts: XML based schema parsing and
routing instantiation. The performance test of schema parsing is to compute the
running time of parsing from XML based schema to language based schema. In the
test eight different configurations are created, and each of them has only one routing
schema which involves different numbers of blank components. In order to test the
relation between schema parsing time and the number of components involved in the
routing, increasing number of components are designed in a series of configurations.
For example, the second configuration config2 contains a routing where there are two
components. For each configuration, the test is repeated eight times, respectively
called No.1, ..., No.8. The result of eight tests is shown in Figure 7.1, from which it
can be concluded that the parsing time is much affected by the number of components
of a routing contained in the configuration.

10

20

30

40

50

60

70

Config
1

Config
2

Config
3

Config
4

Config
5

Config
6

Config
7

Config
8

Different
Configurations

Time (ms)

No.1

No.2

No.3

No.4

No.5

No.6

No.7

No.8

Figure 7.1: Parsing Times for Different XML Configurations

The routing instantiation includes a series of operations, such as instantiating

112

CHAPTER 7 - PERFORMANCE TESTS AND ANALYSIS

components, creating component containers and component delegates, and creating
routing instances with component instances and input/output information etc. This
test is made on the routings that are configured as in Figure 7.1. The test result
of instantiation time for different routings is shown in Figure 7.2, from which it
can be deduced that although the instantiation time increases with the number of
components, the increased amount is very small. Because the instantiation of the
first component has to initiate a class loader, and the subsequent components use the
same class loader to finish their processing of instantiation.

20

30

40

50

60

70

80

Routing
1

Routing
2

Routing
3

Routing
4

Routing
5

Routing
6

Routing
7

Routing
8

Different
Routings

Time (ms)

No.1

No.2

No.3

No.4

No.5

No.6

No.7

No.8

Figure 7.2: Instantiation Times for Different Routings

Virtual Binding

The virtual binding is to connect the instantiated routing. This processing is com-
prised of connecting inputs/outputs of the routing with ports of corresponding compo-
nent delegates and connecting different component delegates according to the sched-
uled binding pairs. The test of virtual binding is made on the instantiated routings
introduced in the last section. The test result, shown in Figure 7.3, indicates that the
running times of the virtual binding increase with the number of components. When
the numbers of components grow to a big value, the running times for virtual bindings
increases more quickly. This is because the virtual binding is mainly concerned on
the processing of communication ports, such as searching, checking and matching etc.
The new added ports will increase not only the time for processing new ports, but
also the searching time of all existing ports.

Real Binding and Unbinding

The real binding and unbinding are two important steps for request execution within
RBW. The data arrival triggers a real binding to load component instance and to
connect the IO ports of component instance with the IO ports of corresponding com-
ponent delegate. This process occurs in every component for every request execution.

113

CHAPTER 7 - PERFORMANCE TESTS AND ANALYSIS

0

0.5

1

1.5

2

2.5

3

3.5

Rou
tin

g1

Rou
tin

g
2

Rou
tin

g
3

Rou
tin

g
4

Rou
tin

g
5

Rou
tin

g
6

Rou
tin

g
7

Rou
tin

g
8

Different
Routings

Time (ms)

No.1

No.2

No.3

No.4

No.5

No.6

No.7

No.8

Figure 7.3: Running Times of Virtual Binding for Different Routings

The test was made on the Routing 8 in which all eight blank components are involved.
As shown in Figure 7.4, the processing of real binding consumes a little amount of
time although the times increase with the number of IO ports of the component.

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0.2

Com
p_

I1
_O

0

Com
p_

I1
_O

1

Com
p_

I2
_O

1

Com
p_

I2
_O

2

Com
p_

I3
_O

2

Com
p_

I3
_O

3

Com
p_

I4
_O

3

Com
p_

I4
_O

4
Different

Components

Time (ms)

No.1

No.2

No.3

No.4

No.5

No.6

No.7

No.8

Figure 7.4: Running Times of Real Binding for Different Components

After the component instance finishes its functional execution and sends out the
results, the component delegate carries out series operations of real unbinding to
unload the component instance and returns it to component container. The unbinding
operation occurs for each in/out port of component delegate. After in/out port
sends out data from/to component delegate to/from component processor, the in/out
port makes an unbinding operation to disconnect itself with corresponding port of
component processor. Because this unbinding is dealt in each port, the running
times increase quickly with the number of ports, as shown in Figure 7.5. During the
request execution, besides real binding and unbinding, there are some other trivial

114

CHAPTER 7 - PERFORMANCE TESTS AND ANALYSIS

operations, such as data transferring between different in/out ports and control events
distribution etc.

0

0.05

0.1

0.15

0.2

0.25

0.3

Com
p_

I1
_O

0

Com
p_

I1
_O

1

Com
p_

I2
_O

1

Com
p_

I2
_O

2

Com
p_

I3
_O

2

Com
p_

I3
_O

3

Com
p_

I4
_O

3

Com
p_

I4
_O

4
Different

Components

Time (ms)

No.1

No.2

No.3

No.4

No.5

No.6

No.7

No.8

Figure 7.5: Running Times of Real Unbinding for Different Components

7.1.2 Running Times Comparisons

Two kinds of running time comparison tests are introduced in this section: comparison
of different stages in one request execution and comparison between CORBA and
SDS3 for execution of invocations to the same applications. The blank components are
not used for tests here, and the comparison tests are made directly on our middleware
system SDS3.

stage comparison inside of Request Execution

The stage comparison test is made to get the running time distribution in the exe-
cution of real requests. This test directly shows how much performance expenses are
paid for the advantage of dynamic change when employing RBW. During the rest,
only the important stages are recorded and other trivial operations are missed here.
The stage of routing schema parsing, routing instantiation and virtual binding are
executed when the RBW initiates, so they are tested by repeated starting up and
shutting down of the SDS3. The real binding/unbinding and execution of compo-
nents are tested by repeated request invocations. As shown in Figure 7.6, all results
are statistical average of eight repeated tests. From the comparison figure, most
non-functional running times are consumed during the initialization stages, such as
parsing, instantiation etc. During request executions, the key non-functional opera-
tions are real binding and unbinding whose running times (average level less than 0.1
ms) are much less than that of RBW initializations and functional executions.

115

CHAPTER 7 - PERFORMANCE TESTS AND ANALYSIS

0

10

20

30

40

50

60

70

80

90

100

Parsing Instantiation Virtual-
Binding

Bind-
Authenticator

Exe-
Authenticator

Bind-
Authorizer

Exe-
Authorizer

Bind-
AController

Exe-
AController

Time (ms)

Average for Eight Times

Figure 7.6: Running Time Comparison of Different Execution Stages

Request Execution comparison between SDS3 and CORBA

Because the SDS3 is built on top of Object Request Broker (ORB) of CORBA, a
performance comparison test between SDS3 and CORBA is made to evaluate the
efficiency of SDS3. In the test, the client program and server program are deployed in
the same environment introduced in the beginning of this chapter. To be comparable
with SDS3, the tested CORBA are configured with modules of DII, DSI and POA.
The SDS3 are configured with three supported solutions:

• SDS3-NoSecurity : there is only one component, Request Broker, to deal with
the invocation on its applications.

• SDS3-HalfSecurity : All the access users are automatically considered as the
person who claimed. So, three components are used to deal with requests:
Authorizer, Access Controller, and Request Broker.

• SDS3-FullSecurity : A full and strictest security checking is made on the appli-
cation invocation through this solution, in which four components are employed:
Authenticator, Authorizer, Access Controller, and Request Broker.

In the test, all requests are created to invoke a same application deployed respec-
tively in CORBA and SDS3: an application to realize the arithmetic operation of
divide. All requests are repeatedly executed ten times and the results are shown in
Figure 7.7. From the test result, the invocation by solution of SDS3-NoSecurity is
a little faster than invocation by CORBA. This is because the module of Workflow
Adapter is designed more simply than POA. To adapt for enterprise applications
in the future, the Workflow Adapter need to be improved to be more powerful, and
will cost a little more time. The request invocations by SDS3-HalfSecurity and SDS3-
FullSecurity certainly cost a little more time than CORBA because they employ more
components for security checking.

116

CHAPTER 7 - PERFORMANCE TESTS AND ANALYSIS

 Time (ms)

20

30

40

50

60

70

80

90

100

110

120

CORBA-DII-DSI-POA SDS3-NoSecurity SDS3-HalfSecurity SDS3-FullSecurity Solution

No.1
No.2
No.3
No.4
No.5
No.6
No.7
No.8
No.9
No.10
Average

Figure 7.7: Running Time Comparison between Different Solutions

7.1.3 Running Times for Dynamic Changes

Dynamic changes on the components structure are the most important contribution
of RBW. In RBW, the routing level changes, such as removing or cloning a routing
solution etc., are rather easy and not explained here. The test of dynamic changes
is made by changing the structure of the routing to weaken the security control on
SDS3 applications from SDS3-HalfSecurity to SDS3-NoSecurity.

0

0,2

0,4

0,6

0,8

1

1,2

Trans_Begin rm_Comp(3) rm_Control-
Link(1)

rm_I/O
Object (1)

rm_Ports-
Binding(10)

Trans_End Sum for
Changes

Time (ms)

No.1 No.2 No.3 No.4
No.5 No.6 No.7 No.8

Figure 7.8: Running Time of Change from SDS3-HalfSecurity to SDS3-NoSecurity

There are series of operations involved in above dynamic changes: transaction begin(),
remove comonent(), remove control link(), remove input bject(), remove ports binding(),
and transaction end(). The statistical test results of above changes are shown in Fig-
ure 7.8. The total time for the tested change is less than 1 ms, and most of time is
consumed in the operation of transaction begin() and transaction end(). The changes
time will vary in different change solutions that are comprised of different numbers
and kinds of change operations.

117

CHAPTER 7 - PERFORMANCE TESTS AND ANALYSIS

7.2 Performance Analysis

Based on above performance tests of RBW, a detailed analysis on performance is given
in the following two aspects which concern the execution efficiency and reconfiguration
time of RBW and its potential applications.

7.2.1 Execution Efficiency Analysis

For the execution of RBW, most works are completed during the stage of initialization,
such as routing schema parsing, routing instantiation and virtual binding. Only
the real binding and unbinding operations are always followed with each request
execution. All of these execution stages are closely related with the number of involved
components and the number of communication ports of each component. Routing
instantiation is seriously affected by the specific components because the sub-time of
component instantiation is heavily decided by the parameters and properties handling
of component. The virtual binding and real binding/unbinding are more concerned
about the ports number of components. For ordinary requests to access applications,
the execution managed by RBW is mainly comprised of three parts: real binding to
load component, component execution for functionality, and real unbinding to unload
component. To better explain the performance of RBW, we created a definition of
component execution efficiency shown in Figure 7.9.

executionEfficiency = T imeExecution

T imeExecution + T imeBinding+Unbinding

Figure 7.9: Definition of Execution Efficiency

Components Execution Time Binding and Unbinding Time Efficiency

Authenticator 23,315875(ms) 0,088454 (ms) 99,62%
Authorizer 7,2605(ms) 0,071517 (ms) 99,02%

Access Controller 1,24838(ms) 0,154873 (ms) 88,96%
Request Broker 0,1325(ms) 0,170099(ms) 43,79%

Table 7.1: Execution Efficiency of SDS3 Components

During the test of SDS3, the functional execution times and the execution effi-
ciencies of SDS3 components are computed in Table 7.1. Although the times of real
binding and unbinding are also varied with the ports number, the extent of this vary-
ing is still small, especially compared with execution times of components. Generally
speaking, the execution efficiency is nearly decided by execution time of component.
However, if the execution time of a component is also extremely small, the execution
efficiency of the component would be rather lower. Based on above tests and analy-
sis, the application utilization of RBW can be summarized as the following three
categories:

118

CHAPTER 7 - PERFORMANCE TESTS AND ANALYSIS

• Time Consuming Component Applications : The RBW is recommended to be
employed because the component execution efficiency will be very high, espe-
cially when the dynamic change is demanded in applications.

• NOT Time Consuming and NOT Time Critical Component Applications : The
RBW could be employed in this case, but it is not highly recommended.

• NOT Time Consuming But Time Critical Component Applications : The RBW
is not recommended to be employed in this kind of applications.

7.2.2 Reconfiguration Time Analysis

In the routing-level changes, there are two change operations which can be indepen-
dently executed: cloning a routing and removing a routing. Cloning a routing will
never disturb the current running application, and the running time to cloning a rout-
ing is affected by the specific routing. For example, under our testing environment
the average running time to clone the routing SDS3-HalfSecurity is 9.5652 (ms). The
operation of removing a routing will only affect the upcoming requests, not the on-
going requests. The running time to remove a routing is very small and independent
of specific routings and specific components.

ID Operation Name Running Time Comments 1

op[1] clone routing() 9,5652(ms) affected by Env., Routing
op[2] remove routing() 0,0959(ms) affected by Env.
op[3] transaction begin() 0,25625(ms) affected by Env., Routing
op[4] insert component() 0,0605(ms) affected by Env., Comp.
op[5] remove component() 0,024(ms) affected by Env.
op[6] insert control link() 0,07838(ms) affected by Env., Link
op[7] remove control link() 0,02125(ms) affected by Env.
op[8] insert input object() 0,01213(ms) affected by Env.

insert output oject()
op[9] remove input object() 0,0125(ms) affected by Env.

remove output oject()
op[10] insert ports binding() 0,01403(ms) affected by Env.
op[11] remove ports binding() 0,01013(ms) affected by Env.
op[12] transaction end() 0,53019(ms) affected by Env., Routing

Table 7.2: Running Times for Change Operations Tested in SDS3

1affected by Env., Routing, Comp. Link means the runtime of the operation is respectively
dependent on the running system environment, the specific routing, component, or control link.
The current running system environment is the testing environment introduced in the beginning of
this chapter. The current routing is SDS3-HalfSecurity. The current components are three secure
components introduced in section 5.3, and the current control link is the AND Link used in SDS3.

119

CHAPTER 7 - PERFORMANCE TESTS AND ANALYSIS

The primary work of dynamic change in RBW concentrates on changing the struc-
ture of the running routing, which will result in a new collaboration relation of com-
ponents without need to shut down the system. The change of routing structure is
accomplished by two transactional operations and a series of change operations. In
our test, the average running time of each single change operation is computed and
shown in Table 7.2, in which running times are dependent and affected by differ-
ent conditions clarified in the footnote. All the results are computed in the case of
successful execution.

As introduced in section 4.4, the hard issue of consistency preserving is simplified
to the synchronization of routing updating which is accomplished in the transac-
tion end(). In our tests, the average processing time for routing updating is only
0.00975(ms) which is the blackout time that users really have to wait for the dynamic
changes. Different dynamic reconfigurations involving different change operations
consume different processing times. Based on experimental results tested in advance,
e.g. our test results shown in Table 7.2, we can analyze which change operations will
be involved in a new reconfiguration and the processing time for the new reconfigura-
tion could be predicated using the formula described in Figure 7.10, where T imeop[i]

indicates the running time of change operation op[i], and Numberop[i] indicates the
repeated times for this change operation.

T imepredicted = T imetrans begin + (
∑11

i=4 T imeop[i] × Numberop[i]) + T imetrans begin

Figure 7.10: Definition of Predicted Time for Dynamic Changes

However, RBW is not originally designed for the components that hold persistent
and varying states which are used and changed in component executions. Because in
RBW each component may hold several component instances, different component
instances are randomly selected for the execution of requests. The execution modeling
of persistent components can also be addressed using a tradeoff solution in which only
one component instance is instantiated for request executions and then the persistent
sates can be changed with the same orders as the executions of requests. But the
expense for this compromise is that the dynamic reconfiguration is not so efficient as
we previously state. Because the transferring of component’s persistent state has not
been considered in our dynamic reconfiguration approach of RBW. To deal with the
persistent component, the reconfiguration algorithm of RBW has to be modified and
will generate the same issue as traditional approaches. In addition, the executions
for persistent components are not so efficient because only one component instances
will be instantiated and available for one routing or several routings to deal with the
large number of requests.

120

Chapter 8

Related Works

The related works are introduced in this chapter. Firstly, the related works go to
the approaches for dynamic reconfiguration which is the core issue addressed in this
dissertation. Then, the related works are introduced for the issues that are involved
in our two case studies: security control of middleware applications and web services
dynamic composition.

8.1 Related Works on Dynamic Reconfiguration

As introduced in Chapter 3, the dynamism on distributed system is evolved from pro-
grammed reconfiguration, unplanned reconfiguration, adaptive system, to reflective
system. The typical approaches concerning above different dynamism are summarized
and analyzed in the following subsections.

8.1.1 Programmed Reconfiguration

ADL is a formal language to describe the static architecture structure of a component
oriented software system. Dynamism is also supported on small number of ADLs or
the extension of existing ADL to dynamically specify software architecture.

Darwin

Darwin [57] was proposed to specify static system structures in much common with
other ADLs to describe a system as a configuration of connected component instances.
However, through the use of conditional and replicated constructor, Darwin allows
parameters to determine the system structure at initialization time [52], [53]. Fur-
ther, Darwin has features to permit the description of dynamic structure which evolve
as execution progresses. Structural evolution includes changes in both the connec-
tions between components and the set of component instances. Two mechanisms are
designed to describe dynamic structures:

• Lazy Instantiation: The component providing a service is not instantiated un-
til a user of that service attempts to access the service. Lazy instantiation is

121

CHAPTER 8 - RELATED WORKS

modeled by using a dummy provision to which the clients of a server are ini-
tially bound. This dummy provision, in response to a binding request, returns
the name of a prefix which triggers instantiation of the lazy instance and its
associated bindings when communication is initiated.

• Direct Dynamic Instantiation permits the definition of structures which can
evolve in an arbitrary way. Dynamic instantiation is modeled in the π-calculus
by an agent that supplies the name of the instantiation service. This instantia-
tion service triggers one of copies of a replicated process.

Dynamic Wright

Unlike the Darwin, dynamism of Wright [1] is achieved by extending a new nota-
tion to separate the dynamic reconfiguration behavior of architecture from its non-
reconfiguration functionality. By providing a notation that provides a precise in-
terpretation of each aspect, the description of architecture can be analyzed for the
consistency and completeness. The approach idea to achieve dynamism in Dynamic
Wright can be summarized as two parts:

• Special control events are introduced for description of component and port.

• These control events are used in a separate view of the architecture to describe
how these events trigger reconfigurations.

In dynamic Wright the new notation for describing changes of architecture is
called Configuror. By adding a Configuror to the notation and then clarifying what
the control does, the designer gets a dynamic system. The Configuror consist of the
following most important information:

1. When should the architecture be re-configured?

2. What should cause the architecture to re-configure itself?

3. How should the re-configuration be made?

8.1.2 Unplanned Reconfiguration

Unlike the programmed reconfiguration in which the reconfiguration is automatically
triggered when the predefined conditions are met, unplanned reconfiguration is em-
ployed in the application where the reconfiguration operations are not predefined and
is triggered by the administrator or program when necessary.

Kramer et al

In [51] Kramer et al proposed a change management model for system reconfiguration
which had been widely used or extended by subsequent approaches for dynamic re-
configuration. In Kramer’s approach the structural concern is firstly separated from

122

CHAPTER 8 - RELATED WORKS

the concern of functional application, which makes the configuration of system ex-
plicit and enable to formulate general structural rules for change at the configuration
level without consideration of application state. The proposed model for dynamic
change management is shown in Figure 8.1 which enables to dynamically change the
system from configuration i to configuration i+1. In addition, authors argued that
the objectives of the dynamic changes should:

1. be specified in terms of the system structure;

2. be declarative;

3. be independent of the algorithms of application;

4. leave the system in a consistent state;

5. minimize the disruption to the application system.

Kramer et al firstly took the avoidance mechanism to ensure the reconfiguration
leaving in a consistent state. During the change processing, the configuration manager
identifies the set of components whose activities must be restricted to avoid leaving
the system in mutually inconsistent states. Once these components have been iden-
tified, the manager instructs these components to be in passive state in which the
component is only currently engaged in initiated transaction and will not initiate new
transactions, so that safe sate for reconfiguration quiescence can be brought over the
affected components.

Configuration
Management

Dynamic
Changes

Configuration
Specification i

Configuration
Specification i+1

N1

N2 N4 System i

N1

N2 N4 System i+1

N3

Structural Concern

Functional
Concern

Functional
Concern

Figure 8.1: Change Management Model for System Reconfiguration

Goudarzi et al

The work of Goudarzi et al in [38], [66] is based on the Kramer’s dynamic recon-
figuration model and focus on maintaining component consistency during change
processing. Kramer introduced a passive state to drive the component into the safe
state. However, the defined rules for passive state are possible to result in deadlock in
some case. Goudarzi et al proposed a new algorithm to allow all started transactions
to terminate and ensure all components finally being driven into safe state. Compared
to the passive state, unblocked state and blocked state are introduced in Goudarzi’s

123

CHAPTER 8 - RELATED WORKS

new algorithm. A coordinator sends a block message to all component nodes in the
system. Once the component is in idle state, it will directly be moved into blocked
state. But if the components moved into the blocked state receive a transaction
request, they will be moved into the unblocked state. In this state, components con-
tinue their execution until they have serviced the request which unblocked them. At
that time, they return to the blocked sate again. Unblocking a blocked component
may well result in a new transaction before the unblocking sub-transaction request
is serviced. Hence unblocking of a component will eventually lead to a fully blocked
system. To enforce the safe sates of the component nodes that are directly affected
by the changes, two measures are adopted (BSet for short to indicate the set of nodes
which are targeted for blocking):

1. Dynamically expanding the BSet in step with outgoing transaction flow. In this
way nodes received request from BSet members become members themselves.

2. Ignoring incoming request from non-set member.

Wermelinger et al

In [92] Wermelinger et al proposed a hierarchic architecture model for dynamic re-
configuration whose framework is also based on the model proposed by Kramer et al.
Wermelinger aims to reduce the system disruption in two aspects:

• Minimizing the part of the system to be ”frozen”;

• Minimizing the time taken by reconfiguration operations;

Comparing the algorithms of consistency preserving from Kramer and Goudarzi,
authors took a connection based algorithm to drive the affected components into the
safe state in which the reconfiguration can be carried out. The essence of connection
based algorithm is to block only those connections that will be removed. To block
a connection its initiator node waits for any ongoing transaction to finish and then
simply does not start a new one. Blocking connection means that the node will not
serve any transaction that depends on the blocked one. To ensure that the blocking of
one connection will not prevent other pending transactions to block, the configuration
manager orders the blocking commands according to the dependency: if transaction
t depends on t1 then the block message is sent to the initiator of t1 only after t is
known to be blocking. This is always possible because transactions do not depend
cyclically on each other. In addition, author separated the commands into different
independent sets and define rules to enable execute commands in a parallel way which
can reduce the disruption time considerably.

Rasche et al

Rasche et al presented a framework of Adapt.NET to enable runtime reconfiguration
of component based application in [78], [79]. Adapt.NET is used for a web based
remote laboratory - the Distributed Control Lab, to adapt experiment control for

124

CHAPTER 8 - RELATED WORKS

failures in user control components. The adopted dynamic reconfiguration model
and algorithm to preserve consistency are based on the work of Wermelinger et al
[92] which is extended from Kramer et al [51]. The features and contributions of
Adapt.NET can be summarized as follows:

1. The component configuration is identified as an aspect of the system. Aspect
Oriented Programming (AOP) technology is employed to implement the in-
terface IConfigure to realize the configuration functions, such as transaction
handling, connections and starting/finalizing the component etc. Using AOP
the configuration functions can be weaved into the binary component, e.g. .NET
components etc.

2. The communication between application components is realized via connectors.
Through introducing new connector types, such as local call connector and IIOP
connector etc., the Adapt.NET is able to adapt the components deployed on
heterogeneous platform, such as Microsoft .NET, CORBA and J2EE.

3. Authors analyzed in detail the blackout time and reconfiguration time during
the dynamic reconfiguration on components, and gave an experimental evalua-
tion on the two kinds of time consuming in different situations.

Almeida et al

In [2] Almeida et al proposed a dynamic reconfiguration service for CORBA that
allows the reconfiguration of a running system with maximum transparency for both
client and server side developer. The adopted dynamic reconfiguration model is
also from the Kramer [51] with series of extensions for consistency preservation etc.
Almeida applied the dynamic reconfiguration model to CORBA object and gave a
series of concrete sub-solutions for typical issues as follows:

• Structural Integrity : In CORBA the structural integrity is embodied as referen-
tial integrity and interface compatibility. Referential integrity becomes an issue
whenever an object reference changes. In order to re-establish the reference
binding after reconfiguration, authors provided a location agent for clients to
find the objects with invalidated object references. To realize interface compat-
ibility, the new object must implement the old interface or an interface derived
from it.

• Mutual Consistency : To guarantee the safe state of affected CORBA objects,
authors distinguished the requests into three sets: i) blocking set for requests
that prevent affected objects to reach safe state; ii) laissez-passer set for request
necessary to reach safe state; iii) requests that do no involve any affected object.
In implementation a selector was designed to determine whether the request
belongs to the laissez-passer set or not. If yes, it is forwarded to target object
as in normal operation. Otherwise, the request is sent to the blocking queue and
will be redirected to the new version of target object after the reconfiguration.

125

CHAPTER 8 - RELATED WORKS

Cao et al

In [15] Cao et al proposed a graph-oriented model for constructing reconfigurable
distributed programs. Based on proposed model authors implemented an integrated
software platform, called Distributed Implementation Graphs (DIG), which provides
a high-level logical graph construct and a collection of software facilities to support
graph-oriented distributed programming. In a graph-oriented distributed model, a
distributed program is defined as a collection of local programs (LPs) that can ex-
ecute on multiple processors, and the LP represents the parallel computation. The
communication between LPs is via message passing. To achieve the dynamic re-
configuration on components mapped to graph-oriented model, a series of primitive
operations are provided: such as AddVertex, DelVertex, AddEdge and DelEdge etc.
A dynamic reconfiguration manager is also presented to be responsible to validate a
reconfiguration plan and to coordinate the distributed processes to execute the plan.
A central server based prototype is implemented on top of a Parallel Virtual Machine
(PMV) which handles massage routing, data conversion and task scheduling across a
network of heterogeneous platform.

The most important contribution of the approach is that it provides powerful ca-
pability to model the dynamic features of various kinds of distributed and parallel
programs. However, authors did not address well the issue of consistency preserv-
ing during reconfiguration processes which is in particularly critical in the of graph
oriented modeling for distributed components.

Shivastava et al

In [83] technology of transactional workflow was employed to realize application com-
position and execution environment in which the dynamic reconfiguration on appli-
cation structure is supported. In author’s workflow based approach the application
components are modeled by a task model in which a task is an application specific
unit and a task controller is designed to supervise and control the activities of the
task. More specifically,

• Task i) has alternative input sources to acquire a given input from one or more
sources; ii) has alternative outputs to produce specified output object; iii) can
be composed from other tasks to form a compound task; iv) has a detachable
implementation to contain application codes.

• Task Controller is exclusively created for each task to record the persistent
dependencies and manage the execution activities. The task controller receives
notifications from other task controllers and uses this information to determine
when its associated task can be started.

The execution of a workflow application is controlled by the exchange of notifi-
cations between task controllers and tasks. Through task modeling the functional
component is separated from its dependencies and execution environment, which can
enable flexibly and dynamically change on the components. The use of transactional

126

CHAPTER 8 - RELATED WORKS

workflow ensures the changes can be atomically carried out with respect running ap-
plication. The consistency issue is dealt with by checking the states of all involved
task controllers at the beginning of the transactional change operations, and there is
no new algorithm taken for consistency preserving because it is not the key point of
this approach.

8.1.3 Agent Based Reconfiguration

Agent technology is used in lots of approaches to enable dynamic reconfiguration on
distributed component system, in which the agent is used to construct the application
component or the system deployed in remote host to monitor the components.

Palma and Bellissard et al

In [7], [74] authors presented a system that enable dynamic reconfiguration on the
agent based applications. In author’s agent based distributed system, the reconfig-
urable application components is constructed as a agent which follows an execution
model based on event. An event received by an agent triggers a reaction which itself
may send out new events. Signaling event is the only mean of communication between
agents. Events are delivered to the agents via a message bus called Channel. In the
agent based system there is a execution engine which provides a loop program to
successively get the notifications from the message queue and calls the relevant reac-
tion function member of the targeted agent. To perform the reconfiguration actions
during running time, a Configurator Agent is created to take charge of transmitting
reconfiguration actions to either the application agents for a new assignment, such as
interconnection update, or to the message bus, such as agent removal and creation
etc. The reconfiguration actions on the agents are dealt with the simple mechanism
as follows:

1. Freeze the agent and rollback its state to save on disk;

2. Remotely create a agent of the same class and initialize its state according to
the saved one;

3. Change every role that was bound to the initial agent and replay the possible
suspended reaction with new agents.

To preserve the consistency, authors define constraints for each reconfiguration,
and define three states for agent execution, similarly in [38]: active state, passive
state and frozen state.

Cherif et al

Cherif et al also developed a distributed software architecture based on agent which
has the ability to react to events and perform architectural changes autonomously [77].
The distributed intelligent components in the architecture are called Agents which act

127

CHAPTER 8 - RELATED WORKS

autonomously to adapt dynamically the application without outside intervention. In
a distributed application across several locations multiple agents are provided. Each
agent monitors one local application and communications with other agents over net-
work. To order to react with the architecture and the architectural environment, the
events, conditions and action rules have to be assigned to each agent. The dynamic
operations of the agent based architecture are classified into Agent Primitive which is
made up of the primitive operations, and Agent Strategy which are the composite op-
erations that call upon the primitive operations. The operations for Agent Primitive
contain: creating component, connector, role and port, adding port to components,
adding role to connectors, and even setting/getting a value of attribute quality of
components, connectors etc. The operations for Agent Strategy contains: adding
component/connector to architecture, deleting component/connector from architec-
ture, migrating component to another agents, etc. Author’s agent based architecture
presents a powerful and flexible dynamic change management for the components
distributed across different locations. However the approach to address the issues
involving in change process did not explicitly explained.

Castaldi et al

In [18] Castaldi et al presented a system of Lira which is a lightweight infrastructure
for managing dynamic reconfiguration on component based distributed system. The
approach of Lira is to define a series of methods to apply the basic facilities of Internet-
Standard Network Management (ISNM) to the complex component-based software
system. The primary modules developed in Lira are summarized as follows:

• Reconfiguration Agent is associated with a component and is responsible to
reconfigure the components in response to operations on defined variables. The
reconfiguration agent takes charge of the life cycle of its component by set of
functions, such as start(), stop(), suspend(), resume() and shutdown() etc.

• Host Agent is associated with a computer in the network and is responsible to
install and activate components on that computer in response to requests from a
manager which can also be a reconfiguration agent. In the process the host agent
provides an available network port, called agent address, to the reconfiguration
agent over which that agent can receive request from a manager.

• Management Protocol follows the SNMP paradigm. Each message in the pro-
tocol is either a request or response which is transferred between agents and
managers.

8.1.4 Adaptive Systems

In adaptive system the changes are automatically carried out to adapt the application
system to varying environment or requirements. So more functions are needed to com-
plete: predefining the change conditions, monitoring and evaluating the execution,
and carrying out the change operations.

128

CHAPTER 8 - RELATED WORKS

Oreizy et al

In [73] Oreizy described a proposal of architecture based approach to support compre-
hensive adaptation on software system from adaptation-in-the-small to adaptation-in-
the-large. There are two facilities to consist the architecture based approach: adapta-
tion management and evolution management. Adaptation management is responsible
to observe and analyze its behaviors and the changing circumstances. To be more
specific, the adaptation management consists of the functions as follows:

• Collecting Observation: large numbers and varieties of observations and mea-
surements are required, such as embedded assertion within the application,
expectation agent for modeling application behaviors etc.

• Evaluating and Monitoring representative behaviors of the running system are
required to be monitored to maintain the consistency whose management re-
quires hybrid approach to combine both static and dynamic analysis.

• Planning the Changes have two forms: observation planning to determine which
observations are necessary for deciding when and where adaptation are required,
and adaptation planning to determine exactly which adaptations are made.

• Deploying Change Descriptions : changes agents is required to propagate change
description among sites to coordinate the change dispatched from third site.

Evolution management is responsible to evolve the application system in a con-
sistent manner, and consists of the functions as follows:

• Dynamic software architecture: two approaches are adopted and blended into
one single cohesive whole: C2 which is optimized for flexible components, and
Weave which focuses on high-performance and flexible connectors.

• Maintaining Consistency and System Integrity : an Architecture Evolution Man-
ager (AEM) is proposed to mediate all change operations directed toward the
architecture.

• Enacting Changes : a visual, interactive and architecture editor can be used to
construct architecture and specify modification.

David et al

David et al presented an infrastructure which enables to make middleware platform
adaptable to changing execution environment [23]. The adaptation is achieved by
dynamic reconfiguration on the associations between functional components and non-
functional services. The infrastructure consists of the following main parts:

• Application Model : the application is composed of two kinds of components:
functional components fulfilling the application functionality, and the non-
functional component to realize the management services, such as distribution
and persistence etc.

129

CHAPTER 8 - RELATED WORKS

• Observation: two kinds of functionalities are realized in the framework of ob-
servation: i) exposing enough information to adaptation engine to make the
decision; ii) detecting meaningful change in above information which will result
in adaptation.

• Adaptation Engine is the heart of the system which makes the adaptation when
meaningful change is detected. The adaptation engine is specialized for each
application by configuring adaptation policies. The adaptation policies can be
split into low-level system policies whose role is to define adaptation rules inde-
pendently of application semantic, and higher-level application policies which
are designed for application programmer.

Mukhija et al

A Contract-based Adaptive Software Architecture (CASA) was developed by Mukhija
et al in [67], to enable dynamically adapting the functionality and performance in
response to runtime changes in their execution environments. The constituent entities
of the CASA framework are described as follows:

• Applications are composed of a series of components to provide the functionality.
Apart of the component, another two entities are the Application Contract and
Service Negotiator. The application contract of an application in divided into
operating zones each of which contains a list of valid alternative component
configurations and corresponding resource requirements. The service negotiator
is responsible to negotiate the offered QoS with the expectation of its peer
applications.

• Contract-based Adaptation System (CAS) is the entity to carry out dynamic
adaptation on behalf of its associated application.

• Contract Enforcement System (CES) is responsible for satisfying resource re-
quirements of all applications running on its host node.

• Resource Manager (RM) monitors the value and availability of resources and
keeps the CES updated with the current resource status.

In [68] authors also gave an example to explain how the CASA is applied in a
self-organized mobile network environment to enable the interaction processes and
dynamically adaptation on the mobile nodes.

8.1.5 Reflective Systems

The reflective system provides more flexibility than dynamic reconfigurable system
because it enables to exhibit meta-data information of the system to third-party
application, which offers the possibility for third-part program to make dynamically
reconfiguration on the system.

130

CHAPTER 8 - RELATED WORKS

OpenORB

Blair et al applied the concept of reflection which originated from the area of pro-
gramming language, to develop a reflective middleware - OpenORB [10]. Blair et al
argued that a reflective system should have two features:

• Inspection - reflection can be used to inspect the internal behavior of a system,
so the third part program can also employ such functionalities to implement
the functions, such as performance monitor and QoS monitor etc.

• Adaptation - reflection can be used to adapt the internal behavior of a system,
which can satisfy the requirement of system running in varying environment.

In author’s approach of reflective OpenORB the core technology is the open bind-
ing illustrated in Figure 8.2. The open binding is composed of a series of component
objects, binding objects and local bindings which connect the component objects and
binding objects. The binding object could also be an open binding which then results
in a recursive binding structure, or a primary binding whose implementation is closed.
For example, the primary binding could be a Real-time transport protocol to bind two
distributed object. The component object may the MPEG encoder/decoder or the
QoS monitor/controller etc. Through the control interface user is able to inspect the
structural information of open binding and make adaptation on the structure. Au-
thors’ reflective middleware - OpenORB is based on a CORBA implementation from
Sun Microsystems, called Cool-ORB. The implementation of open binding is based on
a communication system - Ensemble which enables the programmer to select a par-
ticular protocol profile at binding time and supports the running time modification
and reconfiguration of modules.

RTP Binding RTP
Sender

RTP
Receiver

MPEG
Encoder

MPEG
Decoder

Component
Object Open Binding

Primary Binding
Component

Object

Local
Binding

Local
Binding

Control Interface

Functional
In-Interface

Functional
Out-Interface

Figure 8.2: A Nested Open Binding

DynamicTAO

Kon et al developed a dynamically adaptive middleware, called DynamicTAO [50]
which is based on the existing configurable middleware TAO. DynamicTAO is said a
reflective ORB because it allows inspection and reconfiguration of its internal engine.
The reflection in DynamicTAO is achieved through a collection of entities known as

131

CHAPTER 8 - RELATED WORKS

the Component Configurator which holds the dependencies between a certain compo-
nent and other system components. There are three kinds of entities that employed
Component Configurator for dynamism management. Each process running dynam-
icTAO contains a customized Component Configurator, called DomainConfigurator
which is responsible for maintaining reference to instances of the ORB. A TAO-
Configurator maintains the reference of dynamicTAO strategy implementations, and
ServantConfigurator holds the references of servant instances attached in the running
ORB.

Authors developed multiple configuration tools, such as network broker and re-
configuration agents. All the reconfiguration requests will be forwarded to a dy-
namic (service) Configurator that holds all kinds of Component Configurators. The
operations of dynamic Configurator can be classified into two kinds. One kind of
operations in the interface are used to inspect the dynamic structure of system,
such as list domain components(), list loaded implementations() etc. The rest op-
erations are used to dynamically adapt the system, such as load implementation(),
delete implementation() etc. All the loadable component implementations are or-
ganized in categories representing different aspects of the TAO ORB packaged as
dynamically loadable libraries that can be linked to the ORB at run time.

mChaRM

A reflective middleware mChaRM, which extend the Java RMI, was developed by
Cazzola et al in [19]. In mChaRM a new reflective model, called the multi-channel
reification, was presented and complemented to address a series of problems arose
by distributed application developing, such as security, communication reliability and
multi-communications etc. The multi-channel reification model is based on the idea
of considering a message sent through a logical channel established among a set of
objects requiring a service, and a set of objects providing such as service. The logical
channel was reified into a logical object, called multi-channel, which monitor message
and enriches the underlying communication semantics with new features used for the
specific performed communication. Author’s reflective middleware mChaRM mainly
consists of three parts:

1. A preprocessor which transforms the client invocation described by self-defined
language into the Java syntax.

2. A Java package which contains the basic classes needed to develop all kinds of
multi-channels demanded for different requirements.

3. A Java package which contains some implemented examples of multi-channels.

The reflection is embodied in the functions of introspection and intercession which
are carried out on the messages dispatched through a multi-channel, such as get-
ting/setting method name, inspecting, modifying or removing arguments etc.

132

CHAPTER 8 - RELATED WORKS

8.1.6 Comparison and Evaluation

The approaches for programmed reconfiguration, such as Darwin [57] and dynamic
Wright [1], do provide the capability to specify the component oriented software
architecture dynamically. However, all the changes on the software structure have to
be pre-designed and compiled before system is released, that only meet the need of
small partial applications in which dynamic changes are demanded.

In most applications, people don’t know which component will be changed and
what change operations has to be made. So a series of approaches were proposed to
enable the unplanned changes on the system structure. The pioneering work was done
by Kramer et al [51], who separated the structural concerns from the functional con-
cerns and proposed a change management model for system reconfiguration. Kramer’s
change management model was frequently referred, improved and extended. For ex-
ample, Goudarzi [38] and Welmelinger [92] improved the algorithm of consistency
preserving during the dynamic changes, Almeida [2] applied the improved model to
CORBA and proposed a practical solution for changes on CORBA applications, and
Rasche [79] employed the model to develop a framework which allows to carry out
dynamical changes on the applications deployed in heterogenous platform. All above
mentioned approaches inherits a common shortcoming: adopting a strategy of waiting
until safe state, refer section 3.5 for details. If the algorithm of consistency preserving
is improved, just as the work of Goudarzi and Welmelinger, the reconfiguration time
does decrease in certain extent. However, this kind of change model has to face and
can not address this issue: if the component affected by change keeps in a long time
interaction, the change processing has to wait long time. In RBW, this issue can
be avoided because the changes is acted on an idle execution environment, namely
routing. The reconfiguration time can be predicted and is only lightly affected by the
structure of specific components. More importantly, the block time that subsequent
requests really have to wait is simplified as the time for routing updating which is
always limited in a extremely small value, refer section 7.2 for details.

In Agent based approaches for dynamic reconfiguration, agent may be composed as
the functional component [7], [74] or be composed as system to monitor the component
[77], or even act as the non-functional management [77], such as reconfiguration
activities. The main contribution of agent technology for change management is that
it allows to coordinate and dynamic change the components deployed in distributed
network. In RBW, I also proposed an extension for distributed components, in which
components deployed in different computers can be managed or even dynamically
changed by RBW, refer section 4.6 for details.

Adaptive and reflective approaches enrich the functionality of dynamic reconfigu-
ration to enable they can be used for special applications. Adaptive systems [73], [23]
enlarge the change management with monitoring and evaluating functionality which
enable to make the application system automatically adapted for the varied environ-
ment. The reflective systems [10], [50] enlarge the change management with inspection
of meta-structure of application system which enable third-party program to make
dynamic changes on the system structure according to the special demands. In addi-
tion, both agent based technology and adaptive, reflective approaches didn’t provide

133

CHAPTER 8 - RELATED WORKS

solution to address the issues arising from dynamical changes.
There are some approaches which are proposed to model the execution and man-

agement of collaborative components and also result in the capability of dynamic
changes. For example, Cao et al [15] proposed a graph-oriented model to construct
distributed components, in which the components are mapped into the node of graph-
oriented model and the dynamic changes are realized by changing the structure of
graph-oriented model. However, above mentioned issues were addressed. Shivastava
et al [83] employed a transactional workflow technology to model the execution envi-
ronment of functional component, in which a task controller is designed to supervise
and control the activities of component. Our RBW is much affected by this trans-
actional workflow modeling. However, in Shivastava’s approach the task controller
is tightly fixed with functional component, which lead to less flexibility than RBW.
In addition, the execution and management modeling of RBW realize the concept
of temporary binding which results in a high dynamism that can not be reached in
Shivastava’s approach.

8.2 Related Works on Middleware Security

For the popular applied middleware system or products, such as CORBA, J2EE and
DCOM/.NET etc., already provide powerful security mechanism implementations
and rich set of security APIs to help developer create secure applications over Inter-
net. So most research works concerning middleware security are involved to extend
the existing solution or create their own platform to provide additional or special
application demanded security functionality. Most extensions of existing solution are
based on CORBA for its popular acceptance and lots of open source implementa-
tions. Some extended security functionalities are for special application demands,
such as multi-level security interoperability [48]. Some approaches provide efficient
security management, such as mechanism to easily deploy application-specific security
policy [8]. With the emerging of new Internet applications, there are also research
works trying to address the security in e-commerce transactions [70]. In addition,
the security interoperability between the system supported by different middleware
technologies is also investigated [31].

Kang et al

A practical and CORBA based secure solution was proposed by Kang et al in [48] to
achieve Multi-Level Secure (MLS) interoperability in which the access control deci-
sions are made based upon the level of user’s trustworthiness determined by enterprise
administrator and sensitivity of the accessed information. Authors’ MLS architecture
is constructed from multiple conventional single-level CORBA and two special secu-
rity devices which are described more as follows:

• Starlight Interactive Link which uses high-side proxy and low-side proxy to
mimic the real low-side client and high-side server to realize the data commu-

134

CHAPTER 8 - RELATED WORKS

nication from high side to the low side, and eventually enables high level users
to access low level resources.

• NRL Pump is a one-way device provides a secure way to replicate low-level
information for higher level applications and users.

In the CORBA-based approach implementation the NRL Pump is configured as
a CORBA object and multi-level Starlight-client is configured as CORBA clients.

Beznosov et al

Beznosov investigated and developed a framework to reason about the middleware se-
curity mechanism which enables application-specific access control [8]. Firstly author
classified the middleware providing secure functionalities into three catalogues:

1. MDME - every security functions is done by middleware that has no application-
specific security;

2. ADME - Only application decisions are enforced in middleware;

3. ADAE - Both decision function and enforcement function are implemented in
application, not in middleware platform.

Based on the ADME schema, authors proposed a new approach to realize application-
specific access control in middleware, in which two key techniques are as follows:

• Object Security Attributes (OSA) was introduced to generically represent appli-
cation specific factors in middleware application. The semantic interpretation of
an OSA is completely up to the processing entity. Example could be name-value
pairs or XML-based structure etc.

• Attribute Function (AF) which is independent from the concrete application, is
introduced to communicate between Enforcement Function (EF) in middleware
and Decision Function (DF) in application objects. Moreover, the implementa-
tion of AF is provided by the application, not by middleware platform.

An implementation of such approach based on OSA and AF was realized on
CORBA as an extension and improvement to the CORBA Security.

Syntegra Federal

Unlike other current secure middleware to realize security in middleware system level
or application level, Syntegra Federal proposed a software solution of Secure Access
Middleware (SAM) [29] to protect the data in the level of data repository level.
The key technology to enable repository level protection is realized by inserting a
new layer of control between open interfaces and product-specific proprietary code.
SAM offers protection across COTS-based data stores and provides a foundation of
granularity supporting intruder detection and dynamic alerts by a series of inserted
security service modules. From the viewpoint of security application, SAM offers the
following features:

135

CHAPTER 8 - RELATED WORKS

• Offer a single point to protect the access on the data stores independent of
applications.

• Provide user-specific access operation to the object and ensure appropriate au-
thentication credentials.

• Selectively encrypt content using keys produced by the SAM to ensure interop-
erability across different applications.

• Support popular ODBC database and LDAP directory products whose data
driver can be modified to intercept transactions and perform security checks
prior to submitting the transaction to the data server.

In the implementation, most of security functions are realized by different Service
Modules (SM), such as Authentication SM, Access Control SM and Auditing SM etc.

Nenadic et al

A secure middleware project - Fair Integrated Data Exchange Services (FIDES) was
developed by Nenadic et al [70] to support e-commerce transactions and provide
series of security services demanded by e-commerce. FIDES was designed to satisfy
the security requirements:

1. strong fairness for both parties joining the exchange process;

2. Non-repudiation for each participant during the process;

3. confidentiality of the exchanged items;

4. Reduced role and transparency of the Semi-Trust Third Party (STTP).

Two FIDES protocols are designed to enable secure e-commerce transaction: a
normal exchange protocol performed by two business parties and a recovery protocol
performed between STTP and business party. The symmetric encryption algorithm
and public-key algorithm are employed in two protocols for the functions of secure
exchange and non-repudiation. The FIDES system consists of three entities:

• FIDES Server is the core of the system consisting of transaction manager and
protocol library, JMS and secure storage etc.

• FIDES Client provides a GUI-based application interface that allows a business
user to securely access the FIDES services.

• FIDES STTP provides an online facility for dispute resolution and recovery of
exchanged item, in cases when a normal exchange process fails.

136

CHAPTER 8 - RELATED WORKS

Foley et al

A secure WebCom which is a secure distributed computing architecture was developed
by Foley et al [30], [31] to enable security interoperability between the COM+/.NET,
CORBA and Enterprise Java Bean. In secure WebCom the RBAC is employed for
the privilege management on the application objects. A technology of KeyNote which
is an expressive and flexible trust management schema was used to help coordinating
the trust relationships between the different system and their associated security
policies. The secure WebCom environment can automatically convert middleware
RBAC policies to their equivalent KeyNote policies, and vice-versa. This enables
a high degree of policy interoperability between different middleware systems. The
policy based trust coordination can be divided into follow sub-tasks:

• Policy Configuration whose task is to translate the specified KeyNote RBAC
policy into the equivalent middleware RBAC security configuration.

• Policy Comprehension whose task is to transform the middleware security con-
figuration back to KeyNote RBAC policy, which needs the understanding of the
entire policy in one common format.

• Policy Migration is needed for the interoperability of security policy when ex-
isting or modified policies have to be moved from one middleware system to
another system.

• Policy Maintenance is necessary to preserve a consistent global policy across
the different heterogeneous middleware systems.

8.3 Related Works on Services Dynamic Compo-

sition

The dynamism on web services composition concerns two aspects. Firstly web ser-
vices are dynamically selected and automatically composed into the composite service.
Although workflow based composition approaches may also provide such dynamic
capability, such as eFlow [16], semantic based approaches are more suitable to of-
fer dynamic selection [35]. Secondly dynamic change on the structure of composite
service. In most approaches the changes are made on the schema of composite ser-
vice [17], [95] which will be executed at runtime to achieve dynamic composition.
The approach based on dynamic business rules [21] is distinctive from others for its
usage of interpreted AOP language. The second kind of dynamism is also reached
in our DSC, in which the changes are not directly made on the schema, but on a
instantiated schema. Moreover, the typical issues arose by dynamic change, which is
not explicitly mentioned in the following approaches, has been successfully simplified
for the employment of RBW. In fact, the RBW could be integrated with other ap-
proaches, such as semantic technology, to achieve more powerful solution for dynamic
and automatical service composition.

137

CHAPTER 8 - RELATED WORKS

Casati et al

An eFlow was developed in HP [16], CIJKS002 to support the specification, enactment
and management of composite e-services, which can be preassembled or created on
the fly, and can dynamically adapt to changes in the business environment. In eFlow
the composite service is modeled as graph-oriented service process, including service,
decision and event nodes, which can be instantiated several times and be concurrently
running. The dynamism of eFlow is behaved in the following aspects:

• Dynamic Service Discovery : a service selection rule, which has several input
parameters, is designed in service node to enable dynamically discover and
select the appropriate service upon the customer’s requirements.

• Multi-Service Nodes: a special service node, called multi-service node, is de-
signed to enable invoking multiple, parallel instances of the same type of service
,and the number of service nodes to be activated is terminated during run time.

• Dynamic Service Node Creation is supported in eFlow by a generic service
node which is not statically bound or limited a specific set of services. The
configuration parameters with a list of service nodes can be set at instantiation
time or at run time.

• Ad-hoc Changes are modification applied to a single, running process instance.
The ad-hoc changes are first made on the process schema by authorized users
and then migrated to the running process instance. Some consistency rules are
specified in eFlow to guarantee the behavioral consistency while migration.

• Bulk Changes is to apply changes to many instances of the same process. With
this mechanism the set of instances with common properties can be changed in
one operation, instead of case by case.

Zeng et al

In [95] Zeng et al developed a DYnamic intelligent flow for web services composition,
called DYflow, in which end users can define their business objectives and the system
dynamically composes web services to execute business processes. In DYflow, web
services, business objectives, business rules are specified over defined set of services
ontologies which adopt a common language to define basic concepts and terminologies
in a community. The dynamic features of DYflow are embodied in the following
aspects:

• Business Rule Templates are proposed to facilitate the description of business
policies. There are two kinds of business rule templates. One is service compo-
sition rules which are used to dynamically compose services. Another is service
selection rules which identify a particular algorithm or strategy to be used for
choosing a web service to execution task during the runtime.

138

CHAPTER 8 - RELATED WORKS

• Adaptive Service Composition Engine which enables runtime modification of
composite service schemas. Users can define business rules to modify the com-
posite service schema in DYflow at any time. The composition engine can au-
tomatically incorporate newly added business rules at runtime if necessary.

Fujii et al

A semantic information based approach for dynamic service composition was pro-
posed and implemented in [35]. To enable semantic-based dynamic service composi-
tion, both the modeling of service components and the service composition mechanism
are required to support semantics. Author proposed semantic approach is comprised
of three parts: a Component Service Model with Semantic (CoSMoS) to integrate
the semantic information of a component and the functional information of compo-
nent into a single semantic graph representation, Component Runtime Environment
(CoRE) to convert different component implementation onto CoSMoS representation,
and Graph based Service Composition (SeGSeC) to perform semantic matching. The
details of three parts are described as follows:

• CoSMoS is an abstract model that represents a component as a single seman-
tic graph. CoSMoS defines component in four domains: Data Type Domain
for data type of component, Semantic Domain to represent abstract ideas or
actions, Logic Domain for logics knowledge about component, Component Do-
main as a combination of its data type, logics, operations and properties.

• CoRE provides discover interfaces and access interfaces for components imple-
mented in various component technologies. The discovery interface provides
the functionality to discover a component its keyword, URI, property or oper-
ation. The access interface provides the functionality to invoke an operation of
a component.

• SeGSeC allows a user to request a service using a natural language sentence,
and generates the execution path, which describes the structure of a composite
service, of the requested service, and executes the composite service.

In author’s semantic approach the composite services are always dynamically com-
posed at the running time according to the semantic information. The changes of the
composite service are realized by changing the semantic information of component.

Wu and Vukovic et al

An AI planning based approach, Simple Hierarchical Ordered Planner 2(SHOP2) [69],
was employed for automatic and adaptive web service composition. The SHOP2 is
a domain independent planner, which uses a Hierarchical Task Network (HTN) to
decompose an abstract task into a group of operators that forms a plan to carry out
the task. In SHOP2 the planning system decomposes tasks into smaller and smaller
subtasks until the primitive tasks are found that they can be performed directly.

139

CHAPTER 8 - RELATED WORKS

Wu et al [94] believe that the concept of task decomposition in HTN planning is
very similar to the concept of process decomposition in DAML-S process ontology.
Authors gave a very detailed description on the process of translating DAML-S to
SHOP2. In their implementation, the following modules are included:

• A DAML-S to SHOP2 translator which translates a collection of DAML-S
process definition into a SHOP2 domain.

• An interface to let users specify the request for a service.

• A monitor which handles SHOP2’s calls to external information collecting web
service during planning.

• A SHOP2 to DAML-S plan converter which convert a plan to DAML-S format.

In [91] Vukovic et al also presented an architecture which enable specific context
aware dynamic service composition using the SHOP2 planning system and BPEL4WS
technology. In authors’ implementation the SHOP2 planner is employed for selection
of required services and the sequence of services execution, and the BPEL4WS is used
to express the logic of a composite service.

Cibran et al

An approach of business rules was proposed by Cibran et al [21] for web service dy-
namic composition. A business rule is defined as a statement to define or constrain
some aspect of a business service, which is intended to assert business structure or
control the behavior of the business. Authors’ approach is based on existing compo-
sition specification - BPEL4WS, and the business rules are defined and imported to
trigger the event or conditions of the execution of the core application. These rules
will decide whether to add, replace, change or remove activities that are present in
the core composition.

Different business rules are categorized and illustrated in detail with examples
and solutions. The implementation of business rules are realized using an AOP lan-
guage, JAsCo, with which the business rules are treated as aspects to be inserted
and integrated with the core composition. In authors’ interpretation based approach,
the aspects can be plugged in at runtime when the interpreter reaches their pointcut
definition. So the dynamic composition is achieved when business rules are plugged
in/out as aspects at run time.

140

Chapter 9

Conclusion and Future Work

In this last chapter I comes to a conclusion of my work by summarizing its advantages
and disadvantages, and outlines the future work.

9.1 Summary of the Advantages

Dynamic reconfiguration is strongly demanded in long time running systems where a
break of service is not tolerable, as well as in mobile systems where the service has
to be adapted dynamically to meet the varying client environments.

In this dissertation I proposed a technology named Routing Based Workflow
(RBW), which is designed to model the execution and management of collaborative
components. In RBW, an XML based configuration language was designed to specify
the properties and IO behaviors of each component and the interactions among dif-
ferent components. More importantly, through modeling the execution environment
of collaborative components, a high flexible execution management of components is
achieved. In RBW, the execution management of components is separated into two
phases: virtual binding to create a connected idle execution environment for collabo-
rative components, and real binding to guide the executions of series of components.
Through separation of real binding from virtual binding, temporary binding for com-
ponent instances is realized. The temporary binding means the component instances
are temporarily loaded into a created execution environment to execute their func-
tions, and then, released to their repository after execution. The advantages of RBW
can be summarized as follows:

• RBW allows to model the execution of collaborative components from their
static structure to running time state.

• RBW allows to model different kinds of flow structure of collaborative compo-
nents, such as sequential and parallel structure, flow pick structure, and cycled
structure.

• Control management on the collaborative components, such as suspend, resume,
stop operations etc., can be easily carried out in RBW with the control depen-

141

CHAPTER 9 - CONCLUSION

dencies that are automatically created according to the data flow of components
supplied by RBW schema.

• RBW addresses the problem of dynamic reconfiguration by its distinctive ex-
ecution management - temporary binding for component instances, through
which the hard issues, such as consistency preserving etc., are greatly simpli-
fied. The reconfiguration time can be predicted with knowledge of experimental
data tested in advanced, and the blackout time can always be kept in an extreme
small value in any applications.

• Multi-solutions are supported synchronously in RBW, through which RBW can
be employed to develop the system providing personalized services.

• An extension of RBW is able to model and manage the execution of collaborative
components which are deployed separately.

With the technology of RBW, a secure middleware system - Smart Data Server
Version 3.0 (SDS3) is developed on top of CORBA. In SDS3, partial CORBA is
adopted and modified as the underlying communication infrastructure, and three
secure components, e.g. Authenticator, Authorizer and Access Controller, are de-
veloped and managed by RBW to enhance the security control on the invocation of
deployed applications. The SDS3 not only demonstrates the feasibility of RBW, but
also provides a framework to easily develop the applications that need be protected.
The advantages of SDS3 can be summarized as follows:

• Multi-levels security control is provided in SDS3 from coarse-level security strat-
egy control to detail-level application specific security control.

• The coarse-level security strategy control can be dynamically changed by re-
organizing the secure components, which is a feature inherited from RBW.

• The detail-level application specific security control is achieved by configuring
the policy for component of Access Controller. So the application of SDS3
contains only business processing logics and does not need to consider any issues
of security in source code.

• Multiple security control strategies are supported synchronously in SDS3 to
enable flexible security control for different kinds of applications, which is a
feature inherited from RBW.

As another case study of RBW, Dynamic Service Composer (DSC) is developed on
top of Apache Axis and Apache WSIF. In DSC, RBW is employed to integrate several
internal or external web services into a composite service, and Apache Axis acts as the
underlying platform to deploy and publish the self-developed single web services and
the composite services. Apache WSIF is used to help constructing the Service Invoker
which carries out the function of web service invocation and is managed by RBW.
Firstly, DSC demonstrates that RBW can be used for web services composition, which

142

CHAPTER 9 - CONCLUSION

is a promising approach for enterprise applications integration. Secondly, compared
to other approaches for web services composition, DSC has the following advantage
inherited from RBW:

• DSC is able to dynamically change the service providers and change the com-
position structure to provide better service.

9.2 Summary of the Disadvantages

The temporary binding for component instances brings much flexibility for manage-
ment of collaborative component. However, it also leads to the issue for execution
efficiency because the extra operations of real binding and unbinding appear in each
request execution. Fortunately, according to our analysis the operations of real bind-
ing and unbinding are composed of a series of simple manipulations, such as set-
ting/removing the object references etc. The performance tests also show that the
temporary binding pose very small impact on the execution of components that con-
sume the time for functional execution much higher than the time for real binding
and unbinding. However, there are also some kinds of components which consume
a little time for its functional execution. If this kind of component will be used for
time critical application, RBW is not recommended for such application because the
execution efficiency is low in this case.

In addition, RBW is not originally designed for the components that hold per-
sistent and varying states which are changed in component execution and will be
used in subsequent components. Because in RBW each component may hold several
component instances, different component instances are randomly selected for the ex-
ecution of requests. For the components with persistent state, the modeling can also
be addressed with a tradeoff solution in which there is only one component instance
instantiated for request executions and so the persistent sates can also be changed
with the same order as the executions of requests. But the price for this tradeoff
solution is that the dynamic reconfiguration is not so efficient as we previously state.
Because the transferring of component’s persistent state has not been considered in
our dynamic reconfiguration approach of RBW. To deal with the persistent compo-
nent, the reconfiguration algorithm of RBW has to be modified and will generate the
same issue as traditional approaches.

For the two application cases: SDS3 and DSC, it is hard to list their disadvan-
tages. As experimental systems, they surely have numerous works, e.g. usability and
stability etc., that need to be done to become products. In particular, DSC is just a
demo system for the application of RBW in web services composition.

9.3 Future Work

As introduced in section 4.6, the RBW extension can also be used to model and
manage the collaborative components distributed separately. However, an investigate
has to be carried out in a real application environment, e.g. mobile computing, to

143

CHAPTER 9 - CONCLUSION

ensure which new issues will arise, and how to address such issues. Moreover, I hope
to apply the RBW extension in a practical application system in the future.

In addition, I hope to combine our RBW with the widely accepted web ser-
vice composition specification, such as BPEL4WS, and semantic web technology,
e.g. OWL-S, to create a powerful and practical system that is able to dynamically
and automatically integrate web services.

144

Bibliography

[1] R. Allen, R. Douence, and D. Garlan. Specifying and analyzing dynamic soft-
ware architectures. In Proceedings of the Fundamental Approaches to Software
Engineering, volume 1382 of LNCS, pages 21–37. Springer-Verlag, 1998.

[2] J. P. A. Almeida, M. Wegdam, M. V. Sinderen, and L. Nieuwenhuis. Transparent
dynamic reconfiguration for corba. In Proceedings of the third International
Symposium on Distributed Objects and Apllication, pages 197–207, 2001.

[3] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Ley-
mann, K. Liu, D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weer-
awarana. Business process execution language for web services ver-
sion 1.1. ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf,
May 2003.

[4] A. Arkin, S. Askary, S. Fordin, W. Jekeli, K. Kawaguchi, S. Pogliani D. Orchard,
and K. Riemer et al (Editors). Web service choreography interface (wsci) 1.0.
http://www.w3.org/TR/wsci/, August 2002. W3c Note.

[5] Daniel Austin, Abbie Barbir, Christopher Ferris, and Sharad Garg (Editors).
Web service architecture requirements. http://www.w3.org/TR/wsa-reqs/, Feb-
ruary 2004. World Wide Web Consortium (W3C) Working Group Note.

[6] Arindam Banerji, Claudio Bartolini, Dorothea Beringer, and Venkatesh Chopella
et al (Editors). Web services conversation language (wscl) 1.0.
http://www.w3.org/TR/2002/NOTE-wscl10-20020314/, March 2002. W3C
Note.

[7] L. Bellissard, N. De Palma, and M. Riveill. Dynamic reconfiguration of agent-
based applications. In Proceedings of the ACM European SIGOPS Workshop,
Sintra, September 1998.

[8] K. Beznosov. Object security attributes: Enabling application-specific access
control in middleware. In Proceedings of the DOA/CoopLS/ODBASE 2002, vol-
ume 2519 of LNCS, pages 693–710, 2002.

[9] Paul V. Biron, Kaiser Permanente, and Ashok Malhotra (Editors). Xml schema
part 2: Datatypes (second edition). http://www.w3.org/TR/xmlschema-2/, Oc-
tober 2004. W3C Recommendation 28.

145

BIBLIOGRAPHY

[10] G. S. Blair, G. Coulson, P. Robin, and M. Papathomas. An architecture for next
generation middleware. In Proceedings of the Middleware’98, pages 191–206.
Springer-Verlag, September 1998.

[11] D. Booth and C. K. Liu (Editors). Web services description language (wsdl)
version 2.0 part 0: Primer. http://www.w3.org/TR/wsdl20-primer/, August
2005. World Wide Web Consortium (W3C) Working Draft.

[12] David Booth, Hugo Haas, and Francis McCabe et al (Editors). Web services
architecture. http://www.w3.org/TR/ws-arch/, February 2004. World Wide
Web Consortium (W3C) Working Group Note.

[13] D. Box. Essential COM. Addison-Wesley Publishing Company, 1998.

[14] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and
Michael Stal. Pattern-Oriented Software Architecture, Volume 1: A System of
Patterns. Wiley Press, July 1996. ISBN: 0-471-95869-7.

[15] J. Cao, A. T. S. Chan, Y. Sun, and K. Zhang. Dynamic configuration man-
agement in graph-oriented distributed programming environment. Science of
Computer Programming, 48(1):43–65, July 2003.

[16] F. Casati, S. IInicki, L. Jin, V. Krishnamoorthy, and M. Shan. Adaptive and dy-
namic service composition in eflow. In Proceedings of the 12th International Con-
ference on Advanced Information Systems Engineering, volume 1789 of LNCS,
pages 13–31, 2000.

[17] F. Casati, S. Ilnicki, L. Jin, V. Krishnamoorthy, and M. Shan. eflow: A platform
for developing and managing composite e-services. In Proceedings of the Acad-
emia Industry Working Conference on Research Challenges (AIWoRC), pages
341–348, 2000.

[18] M. Castaldi, A. Carzaniga, P. Inverardi, and A. L. Wolf. A lightweight infrastruc-
ture for reconfiguring applications. In Proceedings of the SCM 2003, volume 2649
of LNCS, pages 231–244, 2003.

[19] W. Cazzola. Communications-Oriented Reflection: a Way to Open Up the RMI
Mechanism. PhD thesis, Department of Computer Science, Universita degli Studi
di Milano, Milan, November 2000.

[20] D. W. Chadwick and A. Otenko. The permis x.509 role based privilege man-
agement infrastructure. Future Generation Computer Systems, 19(2):277–289,
February 2003.

[21] M. A. Cibran and B. Verheecke. Dynamic business rules for web service com-
position. In Proceedings of the International Workshop on Dynamic Aspects
workshop, Chicago, USA, March 2005.

146

BIBLIOGRAPHY

[22] Microsoft Cooperation. The .net framework developer center.
http://msdn.microsoft.com/netframework/.

[23] P. C. David and T. Ledoux. An infrastructure for adaptable middle-
ware. In Proceedings of On the Move to Meaningful Internet Systems -
DOA/CoopIS/ODBASE 2002, volume 2519 of LNCS, pages 773–790, 2002.

[24] Guy. Eddon and Henry. Eddon. Inside Distributed COM. Microsoft Press, 1998.
ISBN: 157231849X.

[25] M. Endler. A language for generic dynamic configuration of distributed programs.
In Proceedings of the 12th Brazilian Symposium of Computer Networks -SBRC,
pages 175–187, Curitiba, 1994.

[26] M. Endler and J. Wei. Programming generic dynamic reconfigurations for distrib-
uted applications. In Proceedings of the International Workshop on Configurable
Distributed Systems, pages 68–79, 1992.

[27] David C. Fallside and Priscilla Walmsley (Editors). Xml schema part 0: Primer
(second edition). http://www.w3.org/TR/xmlschema-0/, October 2004. W3C
Recommendation.

[28] S. Farrell and R.Housley. An internet attribute certificate profile for authoriza-
tion. http://www.ietf.org/rfc/rfc3281.txt, April 2002. Network Working Group
RFC 3281.

[29] Syntegra Federal. Secure access middleware - information assurance for the us
intelligence community. White paper, Syntegra Federal, 2003.

[30] S. N. Foley, T. B. Quillinan, and J. P. Morrison. Secure component distribution
using webcom. In Proceedings of the 17th International Conference on Informa-
tion Security, Cairo, Egypt, May 2002.

[31] S. N. Foley, T. B. Quillinan, B. Mulcahy, M. O’Connor, and J. P. Morrison.
A framework for heterogeneous middleware security. In Proceedings of the 13th
Heterogeneous Computing Workshop, Santa Fe, New Mexico, USA, April 2004.

[32] Apache Software Foundation. Apache axis project. http://ws.apache.org/axis/.

[33] Apache Software Foundation. Apache wsif project. http://ws.apache.org/wsif/.

[34] Michael Franz. Dynamic linking of software components. IEEE Computer,
30(3):74–81, 1997.

[35] K. Fujii and T. Suda. Dynamic service composition using semantic informa-
tion. In Proceedings of the 2nd International Conference on Service Oriented
Computing, November 2004.

147

BIBLIOGRAPHY

[36] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlisside. Design Pat-
terns: Elements of Reusable Object Oriented Software. Addison Wesley Profes-
sional Computing Series, October 1994. ISBN: 0201633612.

[37] D. Garlan, R. Monroe, and D. Wile. Acme: An architecture description inter-
change language. In Proceedings of the CASCON97, pages 169–183, Toronto,
1997.

[38] K. M. Goudarzi and J. Kramer. Maintaining node consistency in the face of
dynamic change. In Proceedings of the Third International Conference on Con-
figurable Distributed Systems, pages 62–69. IEEE Computer Society Press, 1996.

[39] Object Management Group. Authorization token layer
acquisition service (atlas) sepcification - version 1.0.
http://www.omg.org/technology/documents/corba spec catalog.htm, Octo-
ber 2002.

[40] Object Management Group. Common object request
broker architecture: Core specification version 3.0.2.
http://www.omg.org/technology/documents/corba spec catalog.htm, De-
cember 2002.

[41] Object Management Group. Security service specification version 1.8.
http://www.omg.org/technology/documents/corba spec catalog.htm, March
2002.

[42] David Hollingsworth. Workflow management coalition the workflow reference
model. http://www.wfmc.org/standards/docs/tc003v11.pdf. The Workflow
Management Coalition Specification Document Number TC00-1003.

[43] R. Housley, W. Ford, W. Folk, and D. Solo. Internet x.509 public key infrastruc-
ture certificate and crl profile. http://www.ietf.org/rfc/rfc2459.txt, January
1999. Network Working Group Request for Comments: 2459.

[44] W. Huang, U. Roth, and Ch. Meinel. Improvement to the smart data server
with soap. In Advances in Communications and Software Technologies, WSEAS
Electrical and Computer Engineering Series, pages 107–111, 2002.

[45] W. Huang, U. Roth, and Ch. Meinel. A flexible middleware platform with piped
workflow. In Proceedings of On The Move to Meaningful Internet Systems 2003:
OTM’03 Workshops, LNCS 2889, pages 950–959. Springer-Verlag, 2003.

[46] IAIK. Iaik jce library. http://jce.iaik.tugraz.at/.

[47] JavaSoft. Java core reflection: Api and specification.
http://java.sun.com/j2se/1.4.2/docs/guide/reflection/index.html, Septem-
ber 1996.

148

BIBLIOGRAPHY

[48] M. H. Kang, J. N. Froscher, and I. S. Moskowitz. An architecture of multi-
level secure interoperability. In Proceedings of 13th Annual Computer Security
Applications Conference, pages 194–204, 1997.

[49] Graham Klyne, Jeremy J. Carroll, , and Brian McBride (Editors).
Resource description framework (rdf) concepts and abstract syntax.
http://www.w3.org/TR/rdf-concepts/, February 2004. W3C Recommen-
dation.

[50] F. Kon, M. Roman, P. Liu, J. Mao, T. Yamane, L. C. Magalhaes, and R. H.
Campbell. Monitoring, security, and dynamic configuration with the dynamictao
reflevtive orb. In Proceedings of IFIP/ACM International Conference on Dis-
tributed Systems Platforms and Open Distributed Processing (Middleware’2000),
New York, April 2000.

[51] J. Kramer and J. Magee. The evolving philosophers problem: Dynamic change
management. IEEE Transactions on Software Engineering, 16(11):1293–1306,
1990.

[52] J. Kramer and J. Magee. Dynmic structure in software architectures. In Pro-
ceedings of the Fourth ACM Sigsoft Sympsium On Foundations of Software En-
gineering, California, USA, October 1996.

[53] J. Kramer and J. Magee. Analysing dynamic change in software architectures
- a case study. In Proceedings of the 4th IEEE International Conference on
Configurable Distributed Systems, Annapolis, May 1998.

[54] F. Leyman. Web services flow language version 1.0. http://www-
306.ibm.com/software/solutions/webservices/pdf/WSFL.pdf, May 2001. IBM
Software Group.

[55] David C. Luckham, John J. Kenney, Larry M. Augustin, James Vera, Doug
Bryan, and Walter Mann. Specification and analysis of system architecture using
rapide. IEEE Transactions on Software Engineering, 21(4):336–355, April 1995.

[56] P. Maes. Concepts and experiments in computational reflection. In Proceedings
of the OOPSLA’87, volume 22, pages 147–155. ACM Press, 1987.

[57] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying distributed software
architectures. In Proceedings of the 5 European Software Engineering Conference,
volume 989 of Lecture Notes in Computer Science, pages 137–153. Springer-
Verlag, September 1995.

[58] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. Mcllraith,
S. Narayanan, and M. Paolucci et al. Owl-s: Semantic markup for web services.
http://www.daml.org/services/owl-s/1.1/, November 2004.

149

BIBLIOGRAPHY

[59] N. Medvidovic and R. N. Taylor. A classification and comparison framework
for software architecture description languages. IEEE Transaction on Software
Engineering, 26(1):70–93, 2000.

[60] Nenad Medvidovic. Adls and dynamic architecture changes. In Proceedings of
the SIGSOFT Workshop, San Francisco, USA, 1996.

[61] Alfred J. Menezes, Paul C. Van Oorschot, and Scott A. Vanstone. Handbook of
Applied Cryptography. CRC Press, October 1996. ISBN:0849385237.

[62] Sun Microsystems. Enterprise javabeans specification, version 2.1.
http://java.sun.com/products/ejb/docs.html, November 2003.

[63] Sun Microsystems. Java remote method invocation.
http://java.sun.com/products/jdk/rmi/reference/docs/index.html, 2003.

[64] Sun Microsystems. Java2 platform, enterprise edition specification v1.4.
http://java.sun.com/j2ee/j2ee-1 4-pfd2-spec.pdf, November 2003.

[65] N. Mitra. Simple object access protocol (soap) version 1.2 part 0: Primer.
http://www.w3.org/TR/soap12-part0/, June 2003. World Wide Web Consor-
tium (W3C) Recommendation.

[66] K. Moazami-Goudarzi. Consistency-Preserving Dynamic Reconfiguration of Dis-
tributed Systems. PhD thesis, Department of Computing, Imperial College of
Science, Technology and Medicine, University of London, 180 Queen’s Gate,
London SW7 2BZ, UK, 1997.

[67] A. Mukhija and M. Glinz. Casa - a contract based adaptive software architec-
ture framework. In Proceedings of the 3rd IEEE Workshop on Applications and
Services in Wireless Network, pages 275–286, Bern, July 2003.

[68] A. Mukhija and M. Glinz. A framework for dynamically adaptive applications
in a self-organized mobile network environment. In Proceedings of the ICDCS
2004 Workshop on Distributed Auto-adaptive and Reconfigurable Systems, 2004.

[69] D. Nau, H. Munoz-Avila, Y. Cao, A. Lotem, and S. Mitchell. Total-order plan-
ning with partially ordered subtasks. In Proceedings of the Seventeenth Inter-
national Joint Conference on Artificial Intelligence, pages 425–C430, Morgan
Kaufmann, San Francisco, 2001.

[70] S. Nenadic, N. Zhang, and S. Barton. Fides - a middleware e-commerce security
solution. In Proceedings of the 3rd European Conference on Information Warfare
and Security, pages 295–304, 2004.

[71] OASIS. Introduction to uddi: Important features and functional concepts.
http://uddi.org/pubs/uddi-tech-wp.pdf, October 2004.

150

BIBLIOGRAPHY

[72] OASIS. Universal description, discovery and integration (uddi) version 3.0.2.
http://uddi.org/pubs/uddi-v3.0.2-20041019.pdf, October 2004. UDDI Spec
Technical Committee Draft.

[73] P. Oreizy, M. M. Gorlick, T. N. Taylor, D. Heimbigner, G. Johnson, N. Med-
vidovic, A. Quilici, D. S. Rosenblum, and A. L. Wolf. An architecture-based
approach to self-adaptive software. IEEE Intelligent Systems, 14(3):54–62, May
1999.

[74] N. De Palma, L. Bellissard, and M. Riveill. Dynamic reconfiguration of agent-
based applications. In Proceedings of the Third European Research Seminar on
Advances in Distributed Systems, Madeira Island - Portugal, April 1999.

[75] The Community Open Source Project. Java implementation of corba - openorb.
http://openorb.sourceforge.net/.

[76] Allen R. A Formal Approach to Software Architecture. PhD thesis, School of
Computer Science, Carnegie Mellon University, 1997.

[77] A. Ramdane-Cherif and N. Levy. An approach for dynamic reconfigurable soft-
ware architecture. In Proceedings of the Integrated Design and Process Technol-
ogy, 2002.

[78] A. Rasche and A. Polze. Configuration and dynamic reconfiguration of
component-based applications with microsoft .net. In Proceedings of the Inter-
national Symposium on Object-oriented Real-time distributed Computing, Hako-
date, Japan, 2003.

[79] A. Rasche and A. Polze. Dynamic reconfiguration of component-based real-time
software. In Proceedings of the Workshop on Object-oriented Dependable Real-
time Systems, Sedona, Arizona, USA, February 2005.

[80] D. Riehle and H. Zuellighoven. Understanding and using patterns in software
development. Theory and Practice of Object Systems, 2(1):2–13, 1996.

[81] U. Roth, E. G. Haffner, T. Engel, and Ch. Meinel. The smart data server - a
new kind of middle tier. In Proceedings of the IASTED International Conference
Internet and Multimedia Systems and Applications, pages 361–365, 1999.

[82] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access
control models. IEEE Computer, 29(2):38–47, February 1996.

[83] S. K. Shivastava and S. M. Wheater. Architectural support for dynamic re-
configuration of large scale distributed applications. In Proceedings of the 4 th
Int. Conf. On Configurable Distributed Systems, pages 10–17. IEEE Computer
Society, May 1998.

[84] Clemens Szyperski. Component Software: Beyond Object-Oriented Program-
ming. ACM Press and Addison-Wesley, December 1997. ISBN: 0201178885.

151

BIBLIOGRAPHY

[85] ILEX Development Team. Windows version implementation of openldap.
http://www.ilex.fr/openldap/.

[86] Thuan Thai and Hoang Q. Lam. .NET Framework Essentials (First Edition).
O’ Reilly Press, 2001. ISBN: 0596001657.

[87] S. Thatte. Xlang: Web service for business process design.
http://www.gotdotnet.com/team/xml wsspecs/xlang-c/default.htm, 2001.
Microsoft Corporation.

[88] W. M. P. van. der Aalst and A. H. M. ter Hofstede. Yawl: Yet another workflow
language. Information Systems, 30(4):245–275, 2005.

[89] W. M. P. van. der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and A. P.
Barros. Workflow patterns. Distributed and Parallel Databases, 14(3):5–51, July
2003.

[90] Wil. van. der Aalst. Workflow pattern web site.
http://www.workflowpatterns.com/.

[91] M. Vukovic and P. Robinson. Adaptive, planning-based, web service composi-
tion for context awareness. In Proceedings of the International Conference on
Pervasive Computing, Vienna, April 2004.

[92] M. Wermelinger. A hierarchic architecture model for dynamic reconfiguration.
In Proceedings of the second International Workshop on Software Engineering
for Parallel and Distributed Systems, 1997.

[93] WfMC. The workflow management coalition official website.
http://www.wfmc.org/.

[94] D. Wu, E. Sirin, J. Hendler, D. Nau, and B. Parsia. Automatic web services
composition using shop2. In Proceedings of the Workshop on Planning for Web
Services, Trento, Italy, June 2003.

[95] L. Zeng, B. Benatallah, H. Lei, A. Ngu, D. Flaxer, and H. Chang. Flexible
composition of enterprise web services. Electronic Markets, 13(2):141–152, June
2003.

152

Appendices

153

Appendix A

Meta-Definition of RBW Schema

Technology of XML Schema is employed to describe the meta-definition of RBW
Schema which is a XML based configuration language to specify how component is
wrapped and how components interact in RBW.

<?xml version="1.0" encoding="UTF-8"?> <rbw:schema

xmlns="http://www.hpi.uni-potsdam.de/TI/Projeckte/RBW"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:rbw="http://www.hpi.uni-potsdam.de/TI/Projeckte/RBWSchema"

targetNamespace="http://www.hpi.uni-potsdam.de/TI/Projeckte/RBW"

elementFormDefault="qualified">

<rbw:simpleType name="description">

<xsd:extension base="xsd:string"/>

</rbw:simpleType>

<rbw:simpleType name="classType">

<xsd:restriction base="xsd:string">

<xsd:pattern value="[A-Za-z_][A-Za-z1-9_\.]*[A-Za-z1-9_]"/>

</xsd:restriction>

</rbw:simpleType>

<rbw:complexType name="parameter">

<xsd:extension based="xsd:any">

<xsd:attribute name="name" type="xsd:string"/>

<xsd:attribute ref="classType" />

<xsd:attribute name="isArray" type="xsd:boolean"/>

</xsd:extension>

</rbw:complexType>

<rbw:simpleType name="ioDirection">

<xsd:restriction base="xsd:string">

<xsd:enumeration value="in"/>

<xsd:enumeration value="out"/>

</xsd:restriction>

</rbw:simpleType>

154

APPENDIX A - META-DEFINITION OF RBW SCHEMA

<rbw:simpleType name="portType">

<xsd:restriction base="xsd:string">

<xsd:enumeration value="operation"/>

<xsd:enumeration value="stream"/>

</xsd:restriction>

</rbw:simpleType>

<rbw:simpleType name="usage">

<xsd:restriction base="xsd:string">

<xsd:enumeration value="optional"/>

<xsd:enumeration value="required"/>

</xsd:restriction>

</rbw:simpleType>

<rbw:complexType name="property">

<xsd:extension based="xsd:any">

<xsd:attribute name="name" type="xsd:string"/>

</xsd:extension>

</rbw:complexType>

<rbw:simpleType name="identifier">

<xsd:restriction based="xsd:string">

<xsd:pattern value=".+#.+"/>

</xsd:restriction>

</rbw:simpleType>

<rbw:complexType name="port">

<xsd:sequence>

<xsd:element ref="description" minOccurs="0"

maxOccurs="1"/>

<xsd:element ref="ioDirection"/>

<xsd:element ref="portType"/>

<xsd:element ref="usage"/>

</xsd:sequence>

<xsd:attribute ref="identifier"/>

<xsd:attribute ref="classType"/>

<xsd:attribute name="defaultValue" type="xsd:any"

minOccurs="0" maxOccurs="1"/>

</rbw:complexType>

<rbw:complexType name="component">

<xsd:sequence>

<xsd:element ref="description" minOccurs="0"

maxOccurs="1"/>

<xsd:element ref="parameter" minOccurs="0"

maxOccurs="unbounded"/>

<xsd:element ref="property" minOccurs="0"

maxOccurs="unbounded"/>

<xsd:element ref="port" minOccurs="2"

maxOccurs="unbounded"/>

155

APPENDIX A - META-DEFINITION OF RBW SCHEMA

</xsd:sequence>

<xsd:attribute name="name" type="xsd:string"/>

<xsd:attribute ref="classType"/>

</rbw:complexType>

<rbw:simpleType name="linkType">

<xsd:restriction base="xsd:string">

<xsd:enumeration value="ANDLink"/>

<xsd:enumeration value="ORLink"/>

<xsd:enumeration value="XORLink"/>

<xsd:enumeration value="MapLink"/>

</xsd:restriction>

</rbw:simpleType>

<rbw:complexType name="controlLink">

<xsd:sequence>

<xsd:element ref="port" minOccurs="2"

maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:attribute name="name" type="linkType"/>

</rbw:complexType>

<rbw:complexType name="namedObject">

<xsd:sequence>

<xsd.element ref="description" minOccurs="0"

maxOccurs="1"/>

</xsd:sequence>

<xsd:attribute ref="identifier"/>

<xsd:attribute ref="classType"/>

</rbw:complexType>

<rbw:complexType name="inputs">

<xsd:sequence>

<xsd:element ref="description" minOccurs="0"

maxOccurs="1"/>

<xsd:element ref="namedObject" minOccurs="1"

maxOccurs="unbounded"/>

</xsd:sequence>

</rbw:complexType>

<rbw:complexType name="outputs">

<xsd:sequence>

<xsd:element ref="description" minOccurs="0"

maxOccurs="1"/>

<xsd:element ref="namedObject" minOccurs="1"

maxOccurs="unbounded"/>

</xsd:sequence>

</rbw:complexType>

<rbw:simpleType name="import">

<xsd:extension base="xsd:string"/>

156

APPENDIX A - META-DEFINITION OF RBW SCHEMA

</rbw:simpleType>

<rbw:complexType name="link">

<xsd:sequence>

<xsd:element name="source" type="identifier"/>

<xsd:element name="target" type="identifier"/>

</xsd:sequence>

</rbw:complexType>

<rbw:complexType name="connectors">

<xsd:sequence>

<xsd:element ref="link" minOccurs="2"

maxOccurs="unbounded"/>

</xsd:sequence>

</rbw:complexType>

<rbw:complexType name="routing">

<xsd:sequence>

<xsd:element ref="description" minOccurs="0"

maxOccurs="1"/>

<xsd:element ref="inputs"/>

<xsd:element ref="outputs"/>

<xsd:element ref="import" minOccurs="1"

maxOccurs="unbounded"/>

<xsd:element ref="linkControl" minOccurs="0"

maxOccurs="unbounded"/>

<xsd:element ref="connectors"/>

</xsd:sequence>

<xsd:attribute name="name" type="xsd:string"/>

</rbw:complexType>

</rbw:schema>

157

Appendix B

RBW Schema Example for SDS3

This is a configuration example of SDS3 which is specified in RBW Schema. In
the configuration example all secure components are employed to enable full security
control on the SDS3 applications.

<?xml version="1.0" ?>

<!--== -->

<!-- Smart Data Server version 3.0 XML configuration -->

<!--== -->

<project name="RBW_SDS3"

xmlns="http://www.hpi.uni-potsdam.de/TI/Projekte/RBW"

xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.hpi.uni-potsdam.de/TI/

Projekte/RBW/config/rbw.xsd">

<description>...</description>

<!-- ** -->

<!-- Available Components -->

<!-- ***-->

<component name="RequestBroker"

classType="ti.sds.component.requestBroker.RequestBroker">

<description>...</description>

<property name="PoolSize">3</property>

<port identifier="RequestBroker#UserID"

classType="java.lang.String" defaultValue="guest">

<description>userID indicate who is using ...</description>

<ioDirection>in</ioDirection>

<portType>operation</portType>

<usage>optional</usage>

</port>

<port identifier="RequestBroker#Permission"

classType="java.lang.Boolean" defaultValue="true">

<description>indicates whether the ...</description>

158

APPENDIX B - RBW SCHEMA EXAMPLE FOR SDS3

<ioDirection>in</ioDirection>

<portType>operation</portType>

<usage>optional</usage>

</port>

<port identifier="RequestBroker#Target"

classType="java.lang.String">

<description>...</description>

<ioDirection>in</ioDirection>

<portType>operation</portType>

<usage>required</usage>

</port>

<port identifier="RequestBroker#Operation"

classType="java.lang.String">

<description>...</description>

<ioDirection>in</ioDirection>

<portType>operation</portType>

<usage>required</usage>

</port>

<port identifier="RequestBroker#Parameters"

classType="ti.rbw.routing.ParameterStream">

<description>...</description>

<ioDirection>in</ioDirection>

<portType>operation</portType>

<usage>required</usage>

</port>

<port identifier="RequestBroker#Result"

classType="java.lang.Object">

<description>...</description>

<ioDirection>out</ioDirection>

<portType>operation</portType>

<usage>required</usage>

</port>

<port identifier="RequestBroker#Context"

classType="java.lang.String">

<description>...</description>

<ioDirection>out</ioDirection>

<portType>operation</portType>

<usage>required</usage>

</port>

</component>

<component name="Authenticator"

classType="ti.sds.component.authentication.Authenticator">

<description>...</description>

<property name="PoolSize">3</property>

<port identifier="Authenticator#Signature"

159

APPENDIX B - RBW SCHEMA EXAMPLE FOR SDS3

classType="java.lang.Byte[]">

<description>...</description>

<ioDirection>in</ioDirection>

<portType>operation</portType>

<usage>required</usage>

</port>

<port identifier="Authenticator#UserID"

classType="java.lang.String">

<description>...</description>

<ioDirection>out</ioDirection>

<portType>operation</portType>

<usage>required</usage>

</port>

<port identifier="Authenticator#Valid"

classType="java.lang.Boolean">

<description>...</description>

<ioDirection>out</ioDirection>

<portType>operation</portType>

<usage>required</usage>

</port>

</component>

<component name="Authorizer"

classType="ti.sds.component.authorization.Authorizer">

<description>...</description>

<property name="PoolSize">3</property>

<port identifier="Authorizer#UserID"

classType="java.lang.String">

<description>...</description>

<ioDirection>in</ioDirection>

<portType>operation</portType>

<usage>required</usage>

</port>

<port identifier="Authorizer#Roles"

classType="ti.security.pkc.Role[]">

<description>...</description>

<ioDirection>out</ioDirection>

<portType>operation</portType>

<usage>required</usage>

</port>

</component>

<component name="AccessController"

classType="ti.sds.component.accessControl.AccessController">

<description>...</description>

<property name="PoolSize">3</property>

<port identifier="AccessController#Valid"

160

APPENDIX B - RBW SCHEMA EXAMPLE FOR SDS3

classType="java.lang.Boolean" defaultValue="true">

<description>...</description>

<ioDirection>in</ioDirection>

<portType>operation</portType>

<usage>optional</usage>

</port>

<port identifier="AccessController#Target"

classType="java.lang.String">

<description>...</description>

<ioDirection>in</ioDirection>

<portType>operation</portType>

<usage>required</usage>

</port>

<port identifier="AccessController#Operation"

classType="java.lang.String">

<description>...</description>

<ioDirection>in</ioDirection>

<portType>operation</portType>

<usage>required</usage>

</port>

<port identifier="AccessController#Roles"

classType="ti.security.pkc.Role[]">

<description>...</description>

<ioDirection>in</ioDirection>

<portType>operation</portType>

<usage>required</usage>

</port>

<port identifier="AccessController#Permission"

classType="java.lang.Boolean">

<description>...</description>

<ioDirection>out</ioDirection>

<portType>operation</portType>

<usage>required</usage>

</port>

</component>

<component name="AbnormalHandler"

classType="ti.sds.component.abnormal.AbnormalHandler">

<description>...</description>

<property name="PoolSize">3</property>

<port identifier="AbnormalHandler#Permission"

classType="java.lang.Boolean" defaultValue="true">

<description>...</description>

<ioDirection>in</ioDirection>

<portType>operation</portType>

<usage>optional</usage>

161

APPENDIX B - RBW SCHEMA EXAMPLE FOR SDS3

</port>

<port identifier="AbnormalHandler#Result"

classType="java.lang.Object">

<description>...</description>

<ioDirection>out</ioDirection>

<portType>operation</portType>

<usage>required</usage>

</port>

<port identifier="AbnormalHandler#Context"

classType="java.lang.String">

<description>...</description>

<ioDirection>out</ioDirection>

<portType>operation</portType>

<usage>required</usage>

</port>

</component>

<!-***-->

<!-- Available Routings -->

<!--**-->

<routing name="FullControlRouting">

<description>...</description>

<inputs>

<namedValue identifier="Request#Target"

classType="java.lang.String">

<description>..</description></namedValue>

<namedValue identifier="Request#Operation"

classType="java.lang.String">

<description>...</description></namedValue>

<namedValue identifier="Request#Parameters"

classType="ti.rbw.routing.ParameterStream">

<description>...</description></namedValue>

<namedValue identifier="Request#Signature"

classType="java.lang.Byte[]">

<description>...</description></namedValue>

</inputs>

<outputs>

<namedValue identifier="Response#Result"

classType="java.lang.Object">

<description>...</description></namedValue>

<namedValue identifier="Response#Context"

classType="java.lang.String">

<description>...</description></namedValue>

</outputs>

<import>Authenticator</import>

<import>Authorizer</import>

162

APPENDIX B - RBW SCHEMA EXAMPLE FOR SDS3

<import>AccessController</import>

<import>RequestBroker</import>

<import>AbnormalHandler</import>

<controlLink name="Selector" linkType="AndLink">

<port identifier="Permission" classType="java.lang.Boolean">

<description>...</description>

<ioDirection>in</ioDirection>

<portType>operation</portType>

<usage>required</usage>

</port>

<port identifier="OutTrue" classType="java.lang.Boolean">

<description>...</description>

<ioDirection>out</ioDirection>

<portType>operation</portType>

<usage>required</usage>

</port>

<port identifier="OutFalse" classType="java.lang.Boolean">

<description>...</description>

<ioDirection>out</ioDirection>

<portType>operation</portType>

<usage>required</usage>

</port>

</controlLink>

<connectors>

<link>

<source>Request#Signature</source>

<target>Authenticator#Signature</target></link>

<link>

<source>Authenticator#Valid</source>

<target>AccessController#Valid</target></link>

<link>

<source>Authenticator#UserID</source>

<target>Authorizer#UserID</target></link>

<link>

<source>Authenticator#UserID</source>

<target>RequestBroker#UserID</target></link>

<link>

<source>Authorizer#Roles</source>

<target>AccessController#Roles</target></link>

<link>

<source>Request#Target</source>

<target>AccessController#Target</target></link>

<link>

<source>Request#Operation</source>

<target>AccessController#Operation</target></link>

163

APPENDIX B - RBW SCHEMA EXAMPLE FOR SDS3

<link>

<source>Request#Target</source>

<target>RequestBroker#Target</target></link>

<link>

<source>Request#Operation</source>

<target>RequestBroker#Operation</target></link>

<link>

<source>Request#Parameters</source>

<target>RequestBroker#Parameters</target></link>

<link>

<source>RequestBroker#Result</source>

<target>Response#Result</target></link>

<link>

<source>RequestBroker#Context</source>

<target>Response#Context</target></link>

<link>

<source>AccessController#Permission</source>

<target>Selector#Permission</target></link>

<link>

<source>Selector#OutTrue</source>

<target>RequestBroker#Permission</target></link>

<link>

<source>Selector#OutFalse</source>

<target>AbnormalHandler#Permission</target></link>

<link>

<source>AbnormalHandler#Result</source>

<target>Response#Result</target></link>

<link>

<source>AbnormalHandler#Context</source>

<target>Response#Context</target></link>

</connectors>

</routing>

<!--*** -->

<!-- Available Application Services -->

<!--*** -->

<application name="StringHandler"

classType="ti.sds.servant.sample.StringHandler">

<description>This is only for test!</description>

</application>

</project>

164

Appendix C

Policy Example for Access
Controller

A policy example for component of Access Controller is give here to show how to
enable application-specific security control by configuring policy.

<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE SDS3_RBAC_Policy>

<X.509_SDS3_RBAC_Policy OID="1.2.826.0.1.3344810.6.0.19">

<SubjectPolicy>

<SubjectDomainSpec ID="Developers">

<Include LDAPDN="OU=TI,O=HPI,C=DE"/>

</SubjectDomainSpec>

<SubjectDomainSpec ID="Utilizer">

<Include LDAPDN="C=DE"/>

</SubjectDomainSpec>

</SubjectPolicy>

<SOAPolicy>

<SOASpec ID="PolicyOwner" LDAPDN="CN=SOA,OU=TI,O=HPI,C=DE"/>

</SOAPolicy>

<RoleHierarchyPolicy>

<RoleSpec OID="1.2.826.0.1.3344810.1.1.14" Type="UserRole">

<SupRole Value="Guest"/>

<SupRole Value="Clerk"/>

<SupRole Value="Customer"/>

<SupRole Value="Manager">

<SubRole Value="Clerk"/>

<SubRole Value="Customer"/></SupRole>

<SupRole Value="Administrator">

<SubRole Value="Manager"/></SupRole>

</RoleSpec>

<RoleSpec OID="1.2.826.0.1.3344810.1.1.15" Type="AuthorRole">

<SupRole Value="Tester"/>

<SupRole Value="Programmer"/>

165

APPENDIX C - POLICY EXAMPLE FOR ACCESS CONTROLLER

<SupRole Value="Designer">

<SubRole Value="Tester"/>

<SubRole Value="Programmer"/></SupRole>

<SupRole Value="Supervisor">

<SubRole Value="Designer"/></SupRole>

</RoleSpec>

</RoleHierarchyPolicy>

<RoleAssignmentPolicy>

<RoleAssignment>

<SubjectDomain ID="Developers"/>

<RoleList>

<Role Type="AuthorRole" Value="Tester"/>

<Role Type="AuthorRole" Value="Programmer"/>

<Role Type="AuthorRole" Value="Designer"/>

<Role Type="AuthorRole" Value="Supervisor"/>

</RoleList>

<Delegate Depth="0"/>

<SOA ID="PolicyOwner"/>

<Validity>

<Absolute Start="2004-09-21T00:00:00"/>

<Absolute End="2005-12-21T00:00:00"/></Validity>

</RoleAssignment>

<RoleAssignment>

<SubjectDomain ID="Utilizer"/>

<RoleList>

<Role Type="UserRole" Value="Guest"/>

<Role Type="UserRole" Value="Clerk"/>

<Role Type="UserRole" Value="Customer"/>

<Role Type="UserRole" Value="Manager"/>

<Role Type="UserRole" Value="Administrator"/>

</RoleList>

<Delegate Depth="0"/>

<SOA ID="PolicyOwner"/>

<Validity>

<Absolute Start="2004-09-21T00:00:00" />

<Absolute End="2005-12-21T00:00:00" /></Validity>

</RoleAssignment>

</RoleAssignmentPolicy>

<TargetPolicy>

<TargetDomainSpec ID="TargetInvocation">

<Include LDAPDN="CN=Invoker,OU=TI,O=HPI,C=DE" />

</TargetDomainSpec>

<TargetDomainSpec ID="TargetConfiguration">

<Include LDAPDN="CN=Configurator,OU=TI,O=HPI,C=DE"/>

</TargetDomainSpec>

166

APPENDIX C - POLICY EXAMPLE FOR ACCESS CONTROLLER

</TargetPolicy>

<ActionPolicy>

<Action Args="" Name="invoke" />

<Action Args="" Name="insert" />

<Action Args="" Name="remove" />

<Action Args="" Name="modify" />

</ActionPolicy>

<TargetAccessPolicy>

<TargetAccess>

<RoleList>

<Role Type="UserRole" Value="Clerk" />

<Role Type="UserRole" Value="Customer" />

<Role Type="AuthorRole" Value="Tester" />

<Role Type="AuthorRole" Value="Programmer" />

</RoleList>

<TargetList>

<Target Actions="invoke">

<TargetDomain ID="TargetInvocation" />

</Target>

</TargetList>

</TargetAccess>

<TargetAccess>

<RoleList>

<Role Type="UserRole" Value="Manager" />

<Role Type="AuthorRole" Value="Designer" />

</RoleList>

<TargetList>

<Target Actions="invoke">

<TargetDomain ID="TargetConfiguration" />

</Target>

<Target Actions="insert">

<TargetDomain ID="TargetConfiguration" />

</Target>

<Target Actions="remove">

<TargetDomain ID="TargetConfiguration" />

</Target>

<Target Actions="modify">

<TargetDomain ID="TargetConfiguration" />

</Target>

</TargetList>

</TargetAccess>

</TargetAccessPolicy>

</X.509_SDS3_RBAC_Policy>

167

Appendix D

RBW Schema Example for DSC

An example of RBW Schema for web services composition is given to show how to
integrate web services in DSC. For better understanding, the name of items component
and routing are respectively changed to BasicService and CompositeService in the
configuration of DSC.

<?xml version="1.0" ?> -

<!--===-->

<!--Configuration for Dynamic Services Composer Supported by RBW -->

<!--===-->

<project name="RBW_DSC"

xmlns="http://www.hpi.uni-potsdam.de/TI/Projekte/RBW"

xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.hpi.uni-potsdam.de

/TI/Projekte/RBW/config/rbw.xsd">

<description>...</description>

<!--**-->

<!-- Available Basic Services -->

<!--**-->

<BasicService name="GetCurrencyRate"

classType="ti.ws.invoker.RemoteInvoker">

<description>...</description>

<parameter name="WSDLDoc" classType="java.lang.String">

.\wsdl\CurrencyExchangeService.wsdl</parameter>

<parameter name="Interface" classType="java.lang.String">

getRateSoap</parameter>

<parameter name="Operation" classType="java.lang.String">

getRate</parameter>

<property name="PoolSize">5</property>

<port identifier="GetCurrencyRate#country1"

classType="java.lang.String">

168

APPENDIX D - RBW SCHEMA EXAMPLE FOR DSC

<description>...</description>

<ioDirection>in</ioDirection>

<portType>operation</portType>

<usage>required</usage>

</port>

<port identifier="GetCurrencyRate#country2"

classType="java.lang.String">

<description>...</description>

<ioDirection>in</ioDirection>

<portType>operation</portType>

<usage>required</usage>

</port>

<port identifier="GetCurrencyRate#Result"

classType="java.lang.Float">

<description>...</description>

<ioDirection>out</ioDirection>

<portType>operation</portType>

<usage>required</usage>

</port>

</BasicService>

<BasicService name="EmailSender"

classType="ti.ws.invoker.RemoteInvoker">

<description>...</description>

<parameter name="WSDLDoc" classType="java.lang.String">

.\wsdl\IEmailService.wsdl</parameter>

<parameter name="Interface" classType="java.lang.String">

SendMailSoap</parameter>

<parameter name="Operation" classType="java.lang.String">

SendMail</parameter>

<property name="PoolSize">5</property>

<port identifier="EmailSender#ToAddress"

classType="java.lang.String">

<description>...</description>

<ioDirection>in</ioDirection>

<portType>operation</portType>

<usage>required</usage>

</port>

<port identifier="EmailSender#FromAddress"

classType="java.lang.String">

<description>...</description>

<ioDirection>in</ioDirection>

<portType>operation</portType>

<usage>required</usage>

</port>

169

APPENDIX D - RBW SCHEMA EXAMPLE FOR DSC

<port identifier="EmailSender#ASubject"

classType="java.lang.String">

<description>...</description>

<ioDirection>in</ioDirection>

<portType>operation</portType>

<usage>required</usage>

</port>

<port identifier="EmailSender#MsgBody"

classType="java.lang.String">

<description>...</description>

<ioDirection>in</ioDirection>

<portType>operation</portType>

<usage>required</usage>

</port>

<port identifier="EmailSender#return"

classType="java.lang.Integer" defaultValue="0">

<description>...</description>

<ioDirection>out</ioDirection>

<portType>operation</portType>

<usage>optional</usage>

</port>

</BasicService>

<BasicService name="EmailVerifier"

classType="ti.ws.invoker.RemoteInvoker">

<description>...</description>

<parameter name="WSDLDoc" classType="java.lang.String">

.\wsdl\ValidateEmail.wsdl</parameter>

<parameter name="Interface" classType="java.lang.String">

IsValidEMailSoap</parameter>

<parameter name="Operation" classType="java.lang.String">

IsValidEMail</parameter>

<property name="PoolSize">3</property>

<port identifier="EmailVerifier#EmailAddress"

classType="java.lang.String">

<description>...</description>

<ioDirection>in</ioDirection>

<portType>operation</portType>

<usage>required</usage>

</port>

<port identifier="EmailVerifier#IsValidEMailResult"

classType="java.lang.Boolean">

<description>...</description>

<ioDirection>out</ioDirection>

<portType>operation</portType>

170

APPENDIX D - RBW SCHEMA EXAMPLE FOR DSC

<usage>required</usage>

</port>

</BasicService>

<BasicService name="QueryVerifier"

classType="ti.ws.invoker.LocalInvoker">

<description>...</description>

<parameter name="ServiceClass" classType="java.lang.String">

ti.ws.services.sample.QueryService</parameter>

<parameter name="Operation"

classType="java.lang.String">query_verify</parameter>

<property name="PoolSize">3</property>

<port identifier="QueryVerifier#IsEmailValid"

classType="java.lang.Boolean" defaultValue="true">

<description>...</description>

<ioDirection>in</ioDirection>

<portType>operation</portType>

<usage>optional</usage>

</port>

<port identifier="QueryVerifier#EmailAddress"

classType="java.lang.String">

<description>...</description>

<ioDirection>in</ioDirection>

<portType>operation</portType>

<usage>required</usage>

</port>

<port identifier="QueryVerifier#QueryMessage"

classType="java.lang.Double">

<description>...</description>

<ioDirection>in</ioDirection>

<portType>operation</portType>

<usage>required</usage>

</port>

<port identifier="QueryVerifier#VerifyResult"

classType="java.lang.Boolean">

<description>...</description>

<ioDirection>out</ioDirection>

<portType>operation</portType>

<usage>required</usage>

</port>

<port identifier="QueryVerifier#QueryResult"

classType="java.lang.String" defaultValue="NULL">

<description>...</description>

<ioDirection>out</ioDirection>

<portType>operation</portType>

171

APPENDIX D - RBW SCHEMA EXAMPLE FOR DSC

<usage>optional</usage>

</port>

</BasicService>

<!--***-->

<!-- Available Composite Services -->

<!--***-->

<CompositeService name="QueryInfoService">

<description>...</description>

<inputs>

<namedValue identifier="Request#fromCurrency"

classType="java.lang.String">

<description>...</description></namedValue>

<namedValue identifier="Request#toCurrency"

classType="java.lang.String">

<description>...</description></namedValue>

<namedValue identifier="Request#subject"

classType="java.lang.String">

<description>...</description></namedValue>

<namedValue identifier="Request#email"

classType="java.lang.String">

<description>...</description></namedValue>

</inputs>

<outputs>

<namedValue identifier="Response#return"

classType="java.lang.Boolean">

<description>...</description></namedValue>

</outputs>

<import>CurrencyConvertor</import>

<import>EmailSender</import>

<import>EmailVerifier</import>

<import>QueryVerifier</import>

<connectors>

<link><source>Request#fromCurrency</source>

<target>CurrencyConvertor#fromCurrency</target></link>

<link><source>Request#toCurrency</source>

<target>CurrencyConvertor#toCurrency</target></link>

<link><source>Request#email</source>

<target>QueryVerifier#EmailAddress</target></link>

<link><source>CurrencyConvertor#rate</source>

<target>QueryVerifier#QueryMessage</target></link>

<link><source>Request#email</source>

<target>EmailSender#ToAddress</target></link>

<link><source>Request#email</source>

<target>EmailSender#FromAddress</target></link>

172

APPENDIX D - RBW SCHEMA EXAMPLE FOR DSC

<link><source>Request#subject</source>

<target>EmailSender#ASubject</target></link>

<link><source>QueryVerifier#QueryResult</source>

<target>EmailSender#MsgBody</target></link>

<link><source>QueryVerifier#VerifyResult</source>

<target>Response#return</target></link>

</connectors>

</CompositeService>

<application name="QueryService"

classType="ti.ws.services.sample.QueryService">

<description>...</description>

<function name="query_info"

CompositeService="QueryInfoService"/>

</application>

</project>

173

	Titlepage
	Abstract
	Zusammenfassung
	Contents
	List of Figures
	List of Tables

	1. Introduction
	Dynamic Reconfiguration
	Middleware Security
	Dynamic Services Composition
	Contributions and Organizational Structure

	2. Concerned Distributed Computing Technologies
	Object Oriented Distributed Computing
	Common Object Request Broker Architecture
	Microsoft Technologies
	Java Technologies

	Web Services Technologies
	Web Services Description Language
	Universal Description, Discovery and Integration
	Simple Object Access Protocol

	Workflow Management
	Workflow Reference Model
	Workflow Patterns

	3. Evolution of Dynamism in Distributed Systems
	Issues Introduction
	Configurable Component Systems
	Dynamic Reconfigurable Systems
	Reflective Systems
	Multi-Solutions Supported Systems

	4. Routing Based Workflow
	Overview of Routing Based Workflow
	Definition of Routing
	Framework of Routing Based Workflow
	Three-Layers Modeling

	Routing Structure and Modeling
	Routing Structure
	Routing Modeling

	Routing Execution and Management
	Routing Execution - Temporary Binding
	Dependency Management

	Routing Dynamic Change
	Dynamic Change Procedure
	Dynamic Capabilities

	XML based RBW Schema
	Port Schema
	Component and Control Link Schema
	Routing Schema

	Extension for Distributed Components
	Extension of Component Delegate
	Routing for Distributed Components

	5. Case Study: Smart Data Server Version 3.0
	Case Introduction
	Dynamism in CORBA
	Security in CORBA
	Overview of SDS3

	Communication Infrastructure
	Original Communication Infrastructure
	Wrapper for Dynamic Invocation Interface
	Wrapper for Object Adapter

	Middleware Components
	Management by RBW
	Component of Authenticator
	Component of Authorizer
	Component of Access Controller
	Security Centre - Local Security Authority

	Analysis on Features and Applications

	6. Case Study: Dynamic Services Composer
	Introduction to Services Composition
	Process Oriented Composition
	Semantic Based Composition

	Modeling - RBW for Services Composition
	Basic Service Modeling
	Flow Control Modeling
	Composite Service Modeling

	System - Dynamic Services Composer
	RBW Integration
	Services Invocation
	Services Configuration
	Services Deployment
	A Practical Example

	Discussion and Analysis

	7. Performance Tests and Analysis
	Performance Tests
	Running Times of Execution Stages
	Running Times Comparisons
	Running Times for Dynamic Changes

	Performance Analysis
	Execution Efficiency Analysis
	Reconfiguration Time Analysis

	8. Related Works
	Related Works on Dynamic Reconfiguration
	Programmed Reconfiguration
	Unplanned Reconfiguration
	Agent Based Reconfiguration
	Adaptive Systems
	Reflective Systems
	Comparison and Evaluation

	Related Works on Middleware Security
	Related Works on Services Dynamic Composition

	9. Conclusion and Future Work
	Summary of the Advantages
	Summary of the Disadvantages
	Future Work

	Bibliography
	Appendices
	A. Meta-Definition of RBW Schema
	B. RBW Schema Example for SDS3
	C. Policy Example for Access Controller
	D. RBW Schema Example for DSC

