

1

1

Werner Zorn

Hasso Plattner Institute at the University of Potsdam

Prof.-Dr.-Helmert Str. 2-3, Potsdam, 14482, Germany

E-mail: zorn@hpi.uni-potsdam.de

Abstract—Service requests are the origin of every ser-

vice provisioning process and therefore the entities to be

considered first. Similar to Physics and Engineering Sci-

ences, service requests as generic model variables are 2-

tuples of {value} and [unit]. Complex service requests build

hierarchies with control structures for the server stations.

With respect to the abstractions of quantitative modeling,

degrees of freedom within these control structures can be

used to transform models into equivalent ones, which make

it possible to simplify the evaluation process. Service re-

quest specific server stations can be mapped to common

multiplexed server stations, thereby extending the applica-

tion domain to multiclass problems.

The modeling and evaluation calculus FMC-QE uses a

3-dimensional representation space, which makes it possi-

ble to integrate paradigms and results from Queueing Net-

works as well as those from Timed Petri Nets. Quantitative

models are represented by one or more trees of parameter-

ized flow balance equations, being placed in a Tableau

structure for evaluation. Due to hierarchical modeling and

the simplicity of the corresponding formulas the computa-

tional complexity is minimal. This will be demonstrated by

means of a well known problem.

I. INTRODUCTION

Quantitative evaluation techniques of state discrete systems

can be roughly divided into those based on Queueing Theory

and those on Time augmented Petri Net Theory as illustrated

by Fig. 1. Models of the former class are represented by static

networks of queueing server stations, whereas those of the

latter use dynamic networks of places and transitions.

Fig. 1: Classification of Quantitative Methods

The new approach presented here tries to integrate the differ-

ent views of the classical disciplines within one model, that

allows to extend the class of problems to be efficiently han-

dled, e.g. performance analysis of large software based sys-

tems.

The models presented in the following are based on FMC-

the Fundamental Modeling Concepts, developed and applied

in teaching and research at HPI ([12], [16], www.f-m-c.org), in

which three different structures are used (see Fig.), namely:

1. Static structures, which describe the composition of active

and passive components

2. Dynamic structures, which describe the causal ordering of

the state transitions

3. Value structures, which describe the contents with their

value ranges and relations

Fig. 2: The Three Plan Types Used in FMC

Each structure corresponds to a bipartite graph (Agent

Channel Net, Petri Net, Entity Relation Diagram), referring to

each other. We consider these structures to be the dimensions

of a 3-dimensional representation space. Successful modeling

with FMC of SAP’s R/3 system in the 1990s has proven

FMC’s usability even for large software systems. We therefore

base our model on FMC. It is called FMC-QE (QE for quanti-

tative evaluation).

Quantitative Modeling for practical applications has always

to be considered under the aspect of cost efficiency. This re-

quires analyzing both the system and the kind of questions to

be answered through modeling.

For the class of performance related questions, if one asks

for the system’s throughput and response times under specific

load assumptions, there is a well known tradeoff between

computational complexity and gain in accuracy of the meas-

ures to be evaluate (s. 2.)

Fig. 3 illustrates the well-known fact that the performance

measures, throughput, and response time over number of cus-

tomers for continuously working systems have a well defined

asymptotic behavior, which is widely independent of the type

of mathematical model applied.

FMC-QE

A New Approach in Quantitative Modeling

2

2

1 WS- Station D/D/1, M /M /1, M /M /1/K(=2Nsys) mit ext AS IS über Nsys

0

5

10

15

20

25

30

0 1 2 3 4 5 6

AD*100 RDges AM*100 RMges AK*100 RKges

Fig. 3: Asymptotic Performance Behavior A,R over N

The results of deterministic and stochastic analysis (here

D/D/1, M/M/1 and M/M/1/K) for a single queueing station

differ only for small numbers of customers. Assuming, that this

station represents the bottleneck component of a larger system,

then the asymptotic behavior of the total system is determined

accordingly.

Facing these facts the question is, whether and how the cost

effectiveness of quantitative modeling can be increased, possi-

bly using additional degrees of freedom in the chosen 3-

dimensional modeling space. This goal should not exclude

more detailed analysis down to the state space explorations at

the Markov chain level, if the real problem requires that.

The approaches pursued so far, make use of the following

four techniques:

1. reduction of the methodical complexity of open and

closed systems by a common model

2. reduction of state space complexity by distinction of con-

trol and operational states

3. reduction of algorithmic complexity by transforming the

model into an equivalent one

4. reduction of computational complexity by approximating

product form solutions

II. MODELING SERVICE REQUESTS

As in the physical and engineering sciences, service requests

are tuples of {value} and [unit]:

Service Requests

SRqi
[bb]

 Service Request of type i at hierarchical level [bb]

Ni
e[bb]

={Ni
e[bb]

} [Ni
e[bb]

] unified Service Request of type i at level [bb]

{Ni
e[bb]

} = 1 (by definition)

Ni
[bb]

={Ni
[bb]

} [Ni
e[bb]

] as multiples of unified Service Request Ni
e[bb]

ni
[bb]

= {Ni
[bb]

} number of Service Requests of type i at level [bb]

Service Response

SRsi
[bb]

 Response to SRqi
[bb]

 (e.g. ACK, NAK(cause), unknown)

(only used in compositional structures (static plans))

The variables carry as attribute the hierarchical level [bb]

with the values 1 for the root and 0 for the surrounding uni-

verse. The generative structure together with an example is

shown in Fig. 4 and Fig. 5.

When dealing with hierarchies, two kinds of relations be-

tween their elements have to be carefully distinguished:

1. organizational hierarchies with super-/subordinate rela-

tions

2. abstraction hierarchies with compose/decompose relations

Complex service requests form hierarchies of kind 2),

thereby decomposing into less complex ones (e.g., go shop-

ping: buy milk, fill up the car, cut your hair). The decomposi-

tion is done by control service requests, the final service by

operational service requests.

Hierarchical Traffic Transformation Flow Coefficients vi al-

low requests in each control node to be replicated. Degrees of

freedom within the control structures allow transformations

into equivalent networks.

Fig. 4: Generative Structure for Hierarchical Service Request

Fig. 5: Tree Structure of Hierarchical Service Requests

III. MODELING SERVER STATIONS

The structure of the server system is generated through a 1:

1 mapping of the Service Request tree as shown by Fig. 5.

Hierarchical Server Stations, hSSt, process control server

requests. Basic Server Stations, BSSt, process the operational

server requests. The latter are those, which need service times,

whereas the former execute “timeless”. The sharing of the

same servers as common resources by different BSSts is de-

scribed later. Each Server Station Subtree can be replicated by

means of a Server Station Multiplexing Coefficient mi
[bb]

. The

common model of a queueing server station, shown in Fig. 6a)

is refined to the models in Fig. 6 b) – d).

3

3

ServerQueue

ServerQueue

Queueing Server Station

 of Type i

SRsi

Basic

Server

Station

of

Type i

Admission

Control

SRqi
Dispatcher

Departure

Control

R

SRsi [bb] i chSSt

R

<Role of Server Agent>

[bb] BSSt

Xi
[bb]

SRq SRs

a) classical queueing station

b) queueing station in FMC-QE c) refined queueing station from b) d) notation of hierarchical queueing station

Fig. 6: modeling Server Stations

 Fig. 7: Relation between Server Request’s and Server System’s Structure

IV. MODELING TRANSITIONS

It is a well known practice in design and implementation

of IT systems to distinguish between control states and op-

erational states of a system [19]. While the control state

space of a single server is typically very small, at least com-

prising the 2 states “Idle” and “Busy”, the operational state

space is potentially infinite, either countable infinite for

discrete operational items or uncountable infinite for con-

tinuous operational variables.

This concept can easily be applied in systems modeling

through distinguishing between “black” control tokens for

marking the control states and “colored” operational tokens

representing the customers, carrying the type and amount of

service required as attached values. The corresponding

structural dynamic elements are shown in Fig. . Considering

a whole network, there are the following definitions:

Control state: marking of places with control tokens

M
c
 = (M

c
1, … M

c
i, … M

c
k)

Operational state: number of customers

N = (N1, … Ni, … Nk), Ni = (Ni,s, Ni,q)

with Ni,s and Ni,q as numbers in server resp. in queue.

In a system with k queueing stations, the states are repre-

sented by values of variables to be found in the composi-

tional structure for the server agent.

Fig. 8: Structure of Controlled Operational Transition T
co

4

4

The T
co

 embedded into the control structure of a BSSt

with its queueing place and dispatching transition is show 7.

Fig. 9: Basic Server Station BSSt with Embedded T

co

The very common serial connection of server stations

raises the questions of the appropriate interpretation of se-

rial transitions, when the service request flow contains ser-

vice responses after passing a T
co

. The easiest understanding

is a simplified model for a control flow, where each service

request is directed to the subsequent station through the

hierarchical station, when the service response is fired by

the predecessor transition.

V. FUNDAMENTAL LAWS

The fundamental Laws applied are the so called:

1. Little’s Law (LL)

2. Forced Traffic Flow Law (FTFL)

The former is the well known “black box” law from

Queueing Theory to interrelate N, A and R for system in

steady state. The FTFL however is a “shadow” law, mostly

used, when visits of server stations are considered.

In this hierarchical context, the two laws can be looked at

as complementary laws, where LL describes dynamic proc-

esses on one hierarchical layer, and FTFL describes proc-

esses between two adjacent hierarchical layers. Both to-

gether are able to describe processes within hierarchical

systems. It is important to emphasize the fundamental dif-

ference between the very similar appearing flow balance

equation

 λi = pj,i λj (1)

and the FTFL equation

 λi = vi λ (2)
Little's Law (LL)

Ni
[bb]

 = Ai
[bb]

 Ri
[bb]

Forced Traffic Flow Law (FTFL)

Ai
[bb]

 =

vi,int

[bb]
 Ah

[bb-1]
h = sup(i)

 Ai
[bb+1]

 = Ni
[bb+1]

/∆t

 Aj
[bb]

 = Nj
[bb]

/∆t

Traffic Flow Transformation Coefficient

vi,int
[bb]

 = {vi,int
[bb]

}[vi,int
[bb]

]

 {vi,int
[bb]

} = {Ai
[bb]

}/{Ah
[bb--1]

}

 [vi,int
[bb]

] = [Ni,int
e[bb]

]/[Nh
e[bb-1]

]
These Traffic Flow Transformation coefficients are

sometimes used to calculate number of visits from prob-

abilities. This can be visualized by means of diagrams as in

Fig.:

Fig. 10: Traffic Coefficient vi vs. Probability pi,j

Two facts are evident from Fig. 10:

1. Transformation (2) generates a different flow, which

can only be done by some active component, repre-

sented in Fig. by a transition, whereas transformation

(1) splits a flow into partial flows, where the joint flow

always equals the unsplit one.

2. The overall steady state condition always requires the

reverse transformation of (2), which corresponds to

nested operations between two adjacent hierarchical

layers.

Beside the two fundamental laws there are other rela-

tions, which form altogether the FMC-QE calculus (see An-

nex).

VI. MODELING STATIONARY PROCESSES

Open Queueing Networks (OQN) and Closed Queueing

Networks (CQN), the latter being the class to which time

augmented Petri Nets (Stochastic Petri Nets SPNs, General-

ized Stochastic Petri Nets GSPNs) belong, are considered

and treated in a totally different way [15]. In OQN the arri-

val rate A is the independent parameter, where as in CQN

the number N of customers is the independent parameter.

The common abstraction however is the stationarity of

processes, where each departing customer is replaced by an

arriving one, either in a deterministic synchronized or a

stochastic way. Both can be combined in a closed system, if

the outside birth/death process is modeled by an external

server with the two parameters A and N.

Fig. 11 illustrates the property, that customers cycle with

a mean interarrival time through the serving system as well

as through the outside world. The more customers want

service, the longer is the roundtrip time. The more the arri-

val rate approaches the maximum throughput of the serving

system, the more customers queue up there.

Fig. 11: Stationary Process with Parameters A and N

5

5

Fig. 11 shows the time Xext spent outside as function of

the free parameters, arrival rate A and total number of cus-

tomers N. The external birth-death process is modeled as an

infinite server, using the response time law for Xext. It thus

resembles the model for a dialogue system.

VII. THE FMC-QE TABLEAU

The quantitative model of a server system is represented

by a parameterized set of equations, which is tree struc-

tured. This tree of equations can be understood as the pro-

duction tree of some program, which can be evaluated bot-

tom up by a stack based interpreter. This tree can be stored

in a table structure, called the FMC-QE Tableau. The inter-

preter used so far for the evaluation of the Tableau here was

MS Excel. A more powerful interpreter is under develop-

ment (see Conclusion and Outlook).

According to the 3-dimensional representation of models,

the Tableau consists of:

1. Service Request Section

2. Server Section

3. Dynamic Evaluation Section

together with

4. Common Section

5. Global Parameter Section.

A description of the Tableau’s syntax and semantic is

given in the “FMC-QE Calculus” (see Annex), and will be

illustrated by a simple example in the following section.

VIII. EXAMPLE

Given the following open queueing network [3]:

Fig. 12: Open Queueing Network from [3], p. 76 ff

Given:

λext = 4 [1/s]

µ = (25; 33,33; 16,67; 20) [1/s]

(<see QN drawing>)

Solution of the flow balance equation system
λ = λ P

results in:

λ = (20;10;10;4) [1/s]

ρ = (0,8; 0,3; 0,6; 0,2)

n = (4; 0,429; 1,5; 0,25)
R = (0,2; 0,043; 0,15; 0,0625) [s]

Nsys = 6,179; Rsys = 1,545 [s]

The following Figures 13 - 15 represent the FMC-QE

model, which is the basis for the Evaluation shown in Ta-

bles 1 and 2.

Fig. 13: Service Request structure for example of Fig. 13 Fig. 14: Server System structure for example of Fig. 1

Global Parameter Section

Ntotal
[0]

7

Amax
[1]

 =min(Bi,max) 5,0

A
[1]

 = f*Amax = 4,0
1>f = 0,8

pret 0,8

vsys,intern = 1/(1-pret) 5

 Fig. 15: dynamic control structure for example of Fig. 13 Table 1a: FMC- QE Tableau (Part I)

6

6

Common SectionService Request Section Server Section Dynamic Evaluation Section

level SRQ unit Server category H: Bi
[bb]

=min(Bmin(Bi/vi) =vi
[bb]

*A Ai/Bi mi*Ui Ui
2
/(1-Ui) ni,q+ni,s Ni,q/Ai Ni,s/Ai Ni/Ai

i [bb] [Ni
e
] pi vi,ext vi,int vi name kind Xi mi,ext mi,int mi B: Bi =mi/(Xi) Bmax = Ai

[bb]
= Ui= ni,s= ni,q = ni= W i= Xi= Ri=

Bottleneck M/M/1

2L 4 [IO1 loop] 0,5 5 0,5 2,5 Disk 1l B 0,03 1 1 1 33,3 13,3 10,0 0,30 0,30 0,13 0,43 0,01 0,030 0,043

2=2Ltrans 3 [IO 1] 0,5 5 1 5 Disk 1 sH 1 1 1 66,7 13,3 20,0 0,30 0,30 0,13 0,43 0,01 0,015 0,021

3L 4 [IO2 loop] 0,5 5 0,5 2,5 Disk 2l B 0,06 1 1 1 16,7 6,7 10,0 0,60 0,60 0,90 1,50 0,09 0,060 0,150

3=§Ltrans 3 [IO 2] 0,5 5 1 5 Disk 2 sH 1 1 1 33,3 6,7 20,0 0,60 0,60 0,90 1,50 0,05 0,030 0,075

1 3 [Compute] 1 5 1 5 CPU B 0,04 1 1 1 25,0 5,0 20,0 0,80 0,80 3,20 4,00 0,16 0,040 0,200

5L=1&2&32[Calculate loop] 1 1 5 5 Calculator l sH 1 1 1 25,0 5,0 20,0 0,80 1,70 4,23 5,93 0,21 0,085 0,296

5=5Ltrans 1 [Calculate] 1 1 1 1 Calculator sH 1 1 1 5,0 5,0 4,0 0,80 1,70 4,23 5,93 1,06 0,425 1,482

4 1 [init] 1 1 1 1 Initiator B 0,05 1 1 1 20,0 20,0 4,0 0,20 0,20 0,05 0,25 0,01 0,050 0,063

sys=4&5 1 [exec Job] 1 1 1 1 System aH 1 1 1 5,0 5,0 4,0 0,80 1,90 4,28 6,18 1,07 0,475 1,545

cust 1 [do Job] 1 1 1 1 Customer IS *) 0,21 1 ### 0,82 4,0 4,0 4,0 1,00 0,82 0,00 0,82 0,00 0,205 0,205

uni 0 [host] 1 1 1 1 Universe aH 1 1 1 4,0 4,0 4,0 1,00 2,72 4,28 7,00 1,07 0,680 1,750

**) IS Server is never Bottleneck N=A*R = 7,0 Check

Table 1b: FMC- QE Tableau (Part II)
Common Section Service Request Section Server Section Dynamic Evaluation Section

level SRQ unit vi
[bb]

=vi,out
[bb]

*vi,int
[bb]

Server category mi
[bb]

=mi,out
[bb]

*mi,int
[bb]

Bi
[bb]

/vi
[bb]

vi
[bb]

*A Ai
[bb]

/Bi
[bb]

mi
[bb]

*Ui
[bb]

(ni,s
[bb]

)/(1-ni,s
[bb]

) ρi/(1-ρi) ni,q
[bb]

/Ai
[bb]

ni,s
[bb]

/Ai
[bb]

ni
[bb]

/Ai
[bb]

i [bb] [Ni
e
] pi vi,out vi,int vi name kind Xi mi,out

[bb]
 = mi,int

[bb]
mi

[bb]
= Bi

[bb]
Amax,i

[1]
 = Ai

[bb]
= Ui

[bb]
= ni,s

[bb]
= ni,q

[bb]
 = ni

[bb]
= W i

[bb]
= Xi

[bb]
= Ri

[bb]
=

Bottleneck M/M/1

2L 4 [loop IO 1] 0,5 v2
[3]

0,5 v2L
[4]

= Disk 1l B 0,03 m2
[3]

1 m2L
[4]

= m2L
[4]

/X2L
[4]

B2L
[4]

/v2L
[4]

v2L
[4]

* A A2L
[4]

/B2L
[4]

m2L
[4]

*U2L
[4]

(n2L,s
[4]

)
2
/(1-n2L,s

[4]
) n2L,s

[4]
+n2L,q

[4]
n2L.q

[4]
/A2L

[4]
n2L,s

[4]
/A2L

[4]
n2L

[4]
/A2L

[4]

2=2L
trans

3 [IO 1'] 1 v5L
[2]

1 v2
[3]

= Disk 1 sH m5L
[2]

1 m2
[3]

= m2
[3]

*B2L
[4]

/v2L,int
[4]

B2
[3]

/v2
[3]

v2
[3]

* A A2
[3]

/B2
[3]

m2
[3]

*U2
[3]

(n2,s
[3]

)
2
/(1-n2,s

[3]
) n2,s

[3]
+n2,q

[3]
n2,q

[3]
/A2

[3]
n2,s

[3]
/A2

[3]
n2

[3]
/A2

[3]

3L 4 [loop IO 2] 0,5 v3
[3]

0,5 v3L
[4]

= Disk 2l B 0,06 m3
[3]

1 m3L
[4]

= m3L
[4]

/X3L
[4]

B3L
[4]

/v3L
[4]

v3L
[4]

* A A3L
[4]

/B3L
[4] m3L

[4]
*U3L

[4]
(n3L,s

[4]
)
2
/(1-n3L,s

[4]
) n3L,s

[4]
+n3L,q

[4]
n3L.q

[4]
/A3L

[4]
n3L,s

[4]
/A3L

[4]
n3L

[4]
/A3L

[4]

3=3L
trans

3 [IO 2'] 1 v5L
[2]

1 v3
[3]

= Disk 2 sH m5L
[2]

1 m3
[3]

= m3
[3]

*B3L
[4]

/v3L,int
[4]

B3
[3]

/v3
[3]

v3
[3]

* A A3
[3]

/B3
[3]

m3
[3]

*U3
[3]

(n3,s
[3]

)
2
/(1-n3,s

[3]
) n3,s

[3]
+n3,q

[3]
n3,q

[3]
/A3

[3]
n3,s

[3]
/A3

[3]
n3

[3]
/A3

[3]

1 3 [Compute] 1 v5L
[2]

1 v1
[3]

= CPU B 0,04 m5L
[2]

1 m1
[3]

= m1
[3]/X1

[3] B1
[3]/v1

[3] v1
[3]* A A1

[3]/B1
[3] m1

[3]
*U1

[3]
(n1,s

[3]
)/(1-n1,s

[3]
) n1,s

[3]
+n1,q

[3]
n1,q

[3]/A1
[3] n1,s

[3]/A1
[3] n1

[3]/A1
[3]

5L=1&2&3 2 [loop Calculate]1 v5
[1]

5 v5L
[2]

= Calculator l sH m5
[1]

1 m5L
[2]

= m5L
[2]

*min(Bj
[3]

/vj,int
[3]

) B5L
[2]

/v5L
[2]

v5L
[2]

* A A5L
[2]

/B5L
[2]

n5L,s
[2]

=Σni,s
[3]

n5L,q
[2]

=Σni,q
[3]

n5L,s
[2]

+n5L,q
[2]

n5L,q
[2]

/A5L
[2]

n5L,s
[2]

/A5L
[2]

n5L
[2]

/A5L
[2]

5=5L
trans

1 [Calculate] 1 vsys
[1]

1 v5
[1]

= Calculator sH msys
[1]

1 m5
[1]

= m5
[1]

*B5L
[2]

/v5L,int
[2]

B5
[1]

/v5
[1]

v2
[1]

* A A5
[1]

/B5
[1]

m5
[1]

*U5
[1]

(n5,s
[1]

)
2
/(1-n5,s

[1]
) n5,s

[1]
+n5,q

[1]
n5,q

[1]
/A2

[1]
n5,s

[1]
/A5

[1]
n2

[2]
/A2

[2]

4 1 [Initialize] 1 vsys
[1]

1 v4
[1]

= Initiator B 0,05 msys
[1]

1 m4
[1]

= m4
[1]

/X4
[1]

B4
[1]

/v4
[1]

v4
[1]

* A A4
[1]

/B4
[1] m4

[1]
*U4

[1]
(n4,s

[1]
)
2
/(1-n4,s

[1]
) n4,s

[1]
+n4,q

[1]
n4,q

[1]
/A4

[1]
n4,s

[1]
/A4

[1]
n4

[1]
/A4

[1]

sys=4&5 1 [exec Job] 1 1 1 vsys
[1]

= System aH 1 1 msys
[1]

= msys
[1]

*min(Bj
[1]

/vj,int
[1]

) Bsys
[1]

/vsys
[1]

vsys
[1]

* A Asys
[1]

/Bsys
[1]

msys
[1]

*Usys
[1]

(nsys,s
[1]

)
2
/(1-nsys,s

[1]
) nsys,s

[1]
+next,q

[1]
nsys,q

[1]
/Asys

[1]
nsys,s

[1]
/Asys

[1]
nsys

[1]
/Asys

[1]

cust 1 [do Job] 1 1 1 vext
[1]

Customer IS *) Xext 1 n
[0]

-nsys
[1]

next
[1]

mext
[1]/Xext

[1]
 --- **) vext

[1]* A Aext
[1]/Bext

[1] mext
[1]

*Uext
[1]

0 next,s
[1]

+next,q
[1]

next,q
[1]/Aext

[1] next,s
[1]/Aext

[1] next
[1]/Aext

[1]

uni 0 [let do] 1 1 1 1 Universe aH 1 1 1 Bext
[1]

=Bsys
[1]

Buni
[0]

/vsys
[0]

vuni
[1]

* A Auni
[ß]

/Buni
[0]

nsys,s
[1]

+next,s
[1]

nsys,q
[1]

+next,q
[1]

nuni,s
[1]

+nuni,q
[1]

nuni,q
[0]

/A
[1]

nuni,s
[0]

/A
[1]

nuni
[0]

/A
[1]

Xext
[1]

=N
[0]

/A
[1]

-Rsys
[1]

 Table 2: formulas from FMC.QE calculus used in Evaluation of Table 1

Fig. 13 shows the service request tree for the QN of Fig. 12

with service times from the corresponding server system tree

(Fig. 14). shows the corresponding serialized dynamic control

structure. The parameters of these three different models are

mapped to the Tableau (see Table 1b) with one hierarchical

equation (row) for each entity. The set of rules applied are

named the FMC-QE Calculus (see Annex), which delivers the

variables of interest within the Dynamic Evaluation Section.

The solution delivered by the Tableau of Table 1b calculus

is equivalent to solving the flow balance equation system.

While the equation system has to be solved for each set of pa-

rameter values, the Tableau has to be set up only once, pro-

vided tree structured service requests are modeled. Modeling

Multiplexer Server Station

IX. MODELING MULTIPLEXER SERVER STATION

Modeling Multiplex/Demultiplex (Mpx/Dpx) server stations

is of particular importance in every modeling approach.

Fehler! Verweisquelle konnte nicht gefunden werden. shows

the typical representation of the multiplexer service for three

requesting systems over time.

There are three parameters to consider for each requesting

basic server station:

1. Arrival Rates A
z
i
[1]

, possibly from different sources z

2. Service Request specific Service Times X
z
i
[bb]

3. Service Request specific Traffic Flow Transformation

coefficients v
z
i
[bb]

The basic idea is to partition the common resource multi-

plexer into parallel servers and to allocate each of these paral-

lel servers to each of the requesting server stations. The pa-

rameter used for this partial allocation is the multiplexing coef-

ficient mi, int which was already introduced for modeling real

Parallel Servers (PS).

The corresponding dynamic structures are shown in Fig. 16:

Fig. 16: Requesting Basic Server Station’s View

Evaluation of m
z
i,int

[bb(i,z)]

m
z
i,int

[bb(i,z)+1]
 = m

z
mpx',i

[2]

 = v
z
mpx',i

[3]
/vmpx

[4]

 = Π v
z
mpx',i

[b]
/vmpx

[4]
for b = 1,2,3

 = ΠΣv
z
mpx',i

[3]
 /Σv

s
mpx',j

[3]
for all rSSt

s
j
[bb(j,s)]

with

Ampx'
[1]

= ΣA
s
j
[bb(j,s)-1]

 for all rSSt
s
j
[bb(j,s)]

v
s
mpx'j

[3]
= (A

s[1]
/Ampx'

[1]
) * {v

s
j
[bb(j,s)]

} * (X
s
j
[bb(j,s)]

/Xmpx
e[3]

) for all (s,j)

v
z
mpx'i

[3]
= (A

z[1]
/Ampx'

[1]
) * {v

z
i
[bb(i,z)]

} * (X
z
i
[bb(i,z)]

/Xmpx
e[3]

) for all (s)

and

vmpx
[4]

= vmpx'
[3]

 = Σv
s
mpx',j

[3]
for all rSSt

s
j
[bb(j,s)]

mmpx,i is simply exported back from the multiplexer’s dis-

patcher back into the Tableaux of the requesting stations.

7

7

X. CONCLUSION AND OUTLOOK

The introduction of service requests as variables with values

and units allows distinguishing among the different traffic

flows and thereby modeling complex server systems hierarchi-

cally. Horizontally, Little’s Law (LL) is applied to evaluate the

equilibrium state for every single station within the hierarchy,

whereas, vertically, the Forced Traffic Flow Law (FTFL) is

applied to describe the transformation of service request flows

between adjacent hierarchical levels along the paths from the

root to the leaves. A set of service invariant transformation

rules is given to transform an initial service request processing

model into a tree structured one, which complies with the

specification and evaluation scheme of the FMC-QE calculus.

For each class of external service requests the tree of param-

eterized flow balance equations is represented within a Tab-

leau, where the three main sections correspond to the three

dimensional description space of FMC [12],[16]. Service re-

quest and server station sections – together with the global

section for the external source/sink – contain the structural and

quantitative model parameters, whereas the dynamic evalua-

tion section contains the well known formulas to evaluate the

steady state variables together with performance measures of

interest. Due to the interdependences within the hierarchical

flow balance sheet, these redundancies can be used to check

the model’s correctness.

When stationary flows are modeled by means of mandatory

external source/sinks, server systems are not classified into

OPEN and CLOSED, but into those with unlimited and limited

buffer resources. Solutions of the latter class are approximated

by applying the well known type M/M/m/K formulas in the

Tableau independently for each server station together with an

estimate for the approximation error. Since basic server sta-

tions in FMC-QE models generally make use of shared multi-

plexer server stations, single class and multiclass problems are

treated with the same methodology.

Once the model is set up and represented by the Tableau(x),

the evaluation, due to the high level of abstraction of equilib-

rium and the simplicity of the corresponding formulas, re-

quires only a minimum of time. The same holds for variations

of quantitative model parameters, being computable with the

same Tableau(x).

Many problems from literature ([3], [6] [8], [10], [17] a.o.)

have been modeled and evaluated e.g.

 Open and Closed Queueing Networks [4], [14]

Multiclass Problems [4]

 Process synchronization [9], [14]

as well as a first

large software system based on SAP Netweaver [20]

with high accuracy and neglectable computing time.

Even though the interpreter, MS-Excel, which has been used

so far was sufficient to demonstrate the methodology, a more

powerful toolset is under construction, which will improve the

ease of use and the power of the modeling as well as of the

evaluation.

ACKNOWLEDGEMENTS

The author would like to thank Stephan Kluth, M.Sc., Dipl.-

Ing. Flavius Copaciu and Tomasz Porzucek, M.Sc. for valu-

able discussions and support in finishing the paper, as well as

Raveendra Babu M. Tech. for various computer evaluations.

Special thanks to my most honorable colleague Siegfried

Wendt for all his inspiring input from the fundamental model-

ing side.

REFERENCES

[1] S. Balsamo. “Product Form Queueing Networks” In “Performance

Evaluation” G. Haring, et al. (Eds.), LNCS 1769, Springer, Berlin, Hei-

delberg, 2000, pp. 377 – 401

[2] S. Bernardi and J. Campos. “On performance bounds for interval Time

Petri Nets” in Proceedings of the “First International Conference on the

Quantitative Evaluation of Systems 2004”, Enschede/NL 27.-

30.09.2004, IEEE Computer Society, USA, 2004

[3] G. Bolch. “Leistungsbewertung von Rechesystemen”, Teubner, 1989

[4] G. Bolch, St. Greiner, H. de Meer and K.S. Trivedi. “Queueing Net-

works and Markov Chains” John Wiley & Sons, New York a.o., 1998

[5] C. Girault and R. Valk. “Petri Nets for Systems Engineering” Springer,

Berlin Heidelberg a.o. 1998

[6] D. Gross and C.M. Harris. “Fundamentals of Queueing Theorie” 3rd

edition John Wiley & Sons, New York a.o., 1998

[7] Performance Evaluation Group, Dipartimento di Informatica, Universita

di Torino “Great SPN-User’s Manual (version 2.0.2)”, 2005

[8] M. Haas and W. Zorn. “Methodische Leistungsanalyse von Rechensys-

temen” Oldenbourg, München, 1995

[9] C. Heitmeyer and N. Lynch. “The Generalized Railroad Crossing: A

Case Study” in “Formal Verification of Real Time Systems”, Proceed-

ings of IEEE Real Time Systems Symposium, San Juan, PR 1994

[10] R. Jain. “The Art of Computer Systems Performance Analysis” John

Wiley & Sons, New York a.o., 1991

[11] F.P. Kelly. “Reversibility and Stochastic Networks”, John Wiley &

Sons, New York a.o. 1979

[12] A. Knöpfel, B. Gröne and P. Tabeling. “Fundamental Modeling Con-

cepts - Effective Communication of IT Systems”, John Wiley & Sons,

New York a.o. 2006

[13] L. Kleinrock. “Queueing Systems” Vol. 1 and 2, John Wiley & Sons,

New York a.o. 1975

[14] M.A. Marsan, G. Balbo, G. Conte, S. Donatelli and G. Franceschinis.

“Modelling with Generalized Stochastic Petri Nets”, John Wiley &

Sons, New York a.o., 1995

[15] B. Schroeder. A. Wierman, M. Harchol-Balter. “Closed versus open

system models and their impact on performance and scheduling” to ap-

pear in NSDI '06

[16] P. Tabeling. “Softwaresysteme und ihre Modellierung” Springer, Berlin,

Heidelberg, 2006

[17] J. Wang. “Timed Petri Nets”, Kluwer Academic Pub., Boston a.o., 1998

[18] S. Wendt. “Nichtphysikalische Grundlagen der Informationstechnik”

Springer, Berlin Heidelberg a.o., 1991

[19] S. Wendt. “Operationszustand versus Steuerzustand- eine äußerst

zweckmäßige Unterscheidung”, Internal Paper, Universität Kaiserslau-

tern, Germany, 1998

[20] M. Grund, J.Klimle; S. Kühn; N. Naumann, R. Reicherdt, K. Spichale

„Case Study ERMF Frame“ Bachelor Project Report, Hasso- Plattner-

Institute, University of Potsdam, 2007

8

8

ANNEX: FORMULAS OF THE FMC-QE CALCULUS

Global Parameter Section

A
z[1]

 = N
z
ext

e[1]
/∆t = [N

z
ext

e[1]
]/∆T ≤ A

z
max

[1]
Arrival Rate of unified external Service Requests from Source z (< for stochastic distr.)

A
z
max

[1]
 = min(B

z
max.i

[bb(i,z)]
) Bottleneck Throughput of Server System (dependant parameter)

{N
z
total

[0]
} = n

z
total

[0]
total number of unified Service Requests in Universe

m
z
ext

[1]
 = {N

z
total

[0]
} - {N

z
sys

[1]
} number if customers within the Infinite Server Source/Sink z (dependant Parameter!)

Common Section

i Index of Service Request/Server/Transistion (unique identifier within Server System)
bb ε (0,1,...) hierarchical level 0- highest ("universe"), 1- ext. Source/Sink || Server System

Service Request Section

N
z
i
e[bb]

 = 1 [N
z
i
e[bb]

] unified Service Request

[N
z
i
e[bb]

] Service Request Unit (semantic identifier)

v
z
i,int

[bb]
 = {v

z
i,int

[bb]
}*[Ni

e[bb]
]/[Nsup(i)

e[bb-1]
] local Service Request transformation coefficient in multiples of [N

z
i
[bb]

]

v
z
i
[bb]

 = v
z
i,int

[bb]
*v

z
sup(i)

[bb-1]
 (recursion leaf i ...root) global Service Request transformation coefficient in multiples of [N

z[1]
]

<origin>::= C||S external Customer or System internal Service Request

Server Section

<server station identifier> Type of Server Station (semantic)

<hierarchical type >::= Server Station type within Server Tree structure

hSSt: H hierarchical Server Station ("node"):

sH (≡ shSSt) superordinate hierarchical Server Station [bb-1]

aH (≡ ahSSt) abstracted hierarchical Server Station [bb] (same as directly embedded Stations)

BSSt: B Basic Server Station ("leaf")

 mB ≡ mBSSt multiplexd Basic Server Station

MSSt: M Multiplexer/Demultiplexer Server Station

<server configuration type> ::= local Server configuration

 SS||PS||IS||mpxed Single/Parallel/Infinite/Mpx

<capacity>:: 1 || K || ∞ max. number of SRq within Service Station ("storage places")

X
z
i
[bb]

Service Time of Basic Server Station type i for a unified SRq

m
z
i,int

[bb]
local multiplicity of servers within Service Station SSt

z
i
[bb]

 (= multiplexing coefficient for SS)

m
zIS

ext
[1]

 = {N
z
total

[0]
} - {N

z
sys

[1]
} average number of infirnite Customer Server Stations (IS) in external Source/Sink

m
z
i
[bb]

 = m
z
i,int[

bb]
 m

z
sup(i)

[bb-1]
 (recursion leaf i... root)total multiplicity of servers within Service Station SSt

z
i
[bb]

M: m
z
mpx(i),int

[bb(i,z)+1]
 = m

z
mpx,i

[2] multiplexer partition for multiplexed Basic Server Station mBSSt
[bb]

Service Rate Bi Service Rate for Unified Service Request

BSSt: B
z
i
[bb]

= m
z
i
[bb]

*[N
z
i
e[bb]

]/X
z
i
[bb]

for all subordinate BSSt/hSSt on level [bb+1]

mBSSt: B
z
i
[bb]

 = B
z
mpx(i)

[bb(i,z)+1] Service Rate of multiplexed Basic Server Station mpxBSSt
[bb]

hSSt: B
z
i
[bb]

 = min(B
z
sub(i)

[bb+1]
/v

z
sub(i),int

[bb+1]
) for all subordinate BSSt/hSSt on level [bb+1]

B
z
max,i

[1]
= B

z
i
[bb]

/v
z
i
[bb] max. external Arrival Rate from Source z (Bottleneck Determination)

Dynamic Evaluation Section

Arrival Rates Ai

A
z
i
[bb]

 = v
z
i
[bb]

*A
z[1]

Arrival Rate in SSt (z.i)

U
z
i
[bb]

= A
z
i
[bb]

/B
z
i
[bb]

Utilization of Server Station SSt (z.i)

Control State variable ni for BSSt:

except for System SRq's, which are ignored (e.g. ACK Service Requests within communication protocols)

Control State variable ni,s number of SRq in Server of SSt (z,i)

n
z
i,s

[bb]
 = m

z
i
[bb]

*U
z
i
[bb]

Control State variable ni,q number of SRq in Queue of SSt (z,i)

n
z
i,q

[bb]
= 0 D/D/m

n
z
i,q

[bb]
= U

z
i
[bb]

/(1-U
z
i
[bb]

) M/M/m

n
z
i,q

[bb]
= U

z
i
[bb]

/(2*(1-U
z
i
[bb]

)) M/D/m

 M/M/m/K a.o. (formulas are a bit too complex to be integrated here)

Control State variables ni for hSSt:

n
z
i,s

[bb]
 = Σn

z
sub(i,z),s

[bb+1]
for all (i,z) directly subordinate Server Stations at Laxer [bb+1]

n
z
i,q

[bb]
 = Σn

z
sub(i,z),q

[bb+1]
for all (i,z) directly subordinate Server Stations at Laxer [bb+1]

common formulas:

n
z
i
[bb]

 = n
z
i,s

[bb]
+n

z
i,q

[bb]
) number of SRq in SSt (z.i)

W
z
i
[bb]

 = N
z
i,q

[bb]
/A

z
i
[bb]

Waiting Time for a unified SRq in Queue of SSt (z,i)

X
z
i
[bb]

 = N
z
i,s

[bb]
/A

z
i
[bb]

Service Time for a unified SRq in Queue of SSt (z,i)

R
z
i
[bb]

 = N
z
i
[bb]

/A
z
i
[bb]

Response Time for a unified SRq in Server Station SSt (z,i) ("Elapsed Time")

Correctness Check

N
z
total

[0]
 = A

z
uni

[0]
 *R

z
uni

[0]
(based on the redundancy of the Tableau)

