
Virtual Smart Cards:
How to Sign with a Password and a Server

Jan Camenisch, Anja Lehmann, Gregory Neven, and Kai Samelin

IBM Research – Zurich
{jca, anj, nev, ksa}@zurich.ibm.com

Abstract. An important shortcoming of client-side cryptography on
consumer devices is the poor protection of secret keys. Encrypting the
keys under a human-memorizable password hardly offers any protection
when the device is stolen. Trusted hardware tokens such as smart cards
can provide strong protection of keys but are cumbersome to use. We
consider the case where secret keys are used for digital signatures and
propose a password-authenticated server-aided signature Pass2Sign pro-
tocol, where signatures are collaboratively generated by a device and a
server, while the user authenticates to the server with a (low-entropy)
password. Neither the server nor the device store enough information to
create a signature by itself or to perform an offline attack on the pass-
word. The signed message remains hidden from the server. We argue that
our protocol offers comparable security to trusted hardware, but with-
out its inconveniences. We prove it secure in the universal composability
(UC) framework in a very strong adaptive corruption model where, un-
like standard UC, the adversary does not obtain past inputs and outputs
upon corrupting a party. This is crucial to hide previously entered pass-
words and messages from the adversary when the device gets corrupted.
The protocol itself is surprisingly simple: it is round-optimal, efficient,
and relies exclusively on standard primitives such as hash functions and
RSA. The security proof involves a novel random-oracle programming
technique that may be of independent interest.

1 Introduction

Mobile devices such as smart phones and tablets are used more and more for
security-critical tasks such as e-banking, authentication, and signing documents.
However, they can be infected by malware and, due to their mobility, the devices
are easily lost or stolen. Keeping cryptographic keys safe in such an environment
is challenging. Typically, they are simply encrypted with a human-memorizable
password. If a device is lost, stolen, or compromised by malware, the password-
encrypted keys are usually easily recovered through an offline dictionary attack.
Such attacks are extremely effective on modern hardware, especially given the
low entropy in human-memorizable passwords [25].

Higher-security use cases such as online banking or government-issued elec-
tronic identification (eID) therefore often resort to tamper-proof hardware such

as smart cards, SIM cards or trusted platform modules (TPMs) for extra pro-
tection. The hardware tokens offer interfaces to interact with the keys, e.g., to
compute digital signatures on messages provided by the host, while the signing
key never leaves the confined environment. Usually, a password or PIN code is
added as a second layer of protection. Offline attacks on the password or PIN are
infeasible as the token blocks after too many failed attempts. In case a hardware
token is compromised, it can additionally be rendered useless by revoking its
public key.

The protection is not perfect though; without a dedicated display, malware
on the host machine may instruct the plugged-in token to sign more or differ-
ent messages than the user intended to sign. Also, side-channel attacks such
as differential power analysis only become more powerful with time. In other
words, what is considered tamper-proof hardware today, may not be so anymore
tomorrow [31]. Additionally, trusted hardware suffers from poor usability and
high deployment and maintenance costs. Users find it inconvenient to carry a
hardware token for each security-sensitive application. Desktop and laptop com-
puters rarely come with built-in smart card readers and not all consumer-grade
machines have TPMs. External USB card readers are available, but supporting
drivers and browser plug-ins on several platforms simultaneously requires a con-
siderable effort. Using trusted hardware in combination with mobile devices is
even more problematic, as they often lack connectivity to interact with external
tokens.

So the question is, can we somehow realize similar security guarantees as
hardware tokens, but avoid their practical inconveniences? Software obfuscation
may come to mind, but does not help at all: leaking an obfuscated signing algo-
rithm to an adversary is just as bad as leaking the signing key itself. As network
connectivity is far more ubiquitous than trusted hardware in consumer devices,
how about relying on the assistance of an online server to create signatures? A
solution must protect the keys as long as at least one of the device or the server
is not corrupted. Moreover, we want the user to remember at most a potentially
weak password or a PIN code, while offering protection against offline password
guessing attacks. Involving an online server in the signing process enables addi-
tional control of the use of the signing key, as the server can block the account
or involve a second authentication factor when too many signing requests are
made.

Our primitive. We introduce the notion of password-authenticated server-aided
signatures (Pass2Sign), where the signing key is distributed over the user’s device
and an online server. The signing key is never reconstructed; rather, the device
and the server must engage in a distributed protocol to compute signatures.
For added security, the user must enter a password on the device each time a
signature is generated. The server not only verifies the password, but also the
identity of the device, i.e., an adversary without access to the device cannot even
perform an online guessing attack. This prevents an adversary from blocking an
honest user’s account by swamping the server with fake login attempts: the server
simply ignores signing attempts from the wrong device. If the device falls into

the wrong hands, or if the device is compromised by malware, then the attacker
must still perform an online guessing attack before it can generate signatures.
When the server detects too many failed password attempts or signing requests
per time period, it can take appropriate action such as blocking the account or
requiring additional authentication. The server neither learns the message that
is being signed, nor does it learn the user’s password (or password attempts).
This not only protects the user against malicious servers, but also protects the
password in case the server is broken into by hackers.

Malware running on the device can of course capture both the device keys
and the password, enabling the adversary to sign any messages it wants, but only
by interacting with the server for each new signature. The server can therefore
implement additional security measures on top of our protocol, e.g., a logic which
detects abnormal signing behavior, or a secondary communication channel via
which the server informs the user about his account activity. When suspicious
transactions are detected, the server can block the user’s account to ensure that
no further signatures can be created, and in case the activity indeed turns out
to be malicious, revoke the user’s public key.

The resulting security level is almost identical to the protection offered by
trusted hardware tokens, but without their inconveniences. Only few smart card
readers feature integrated trusted keypads and displays; built-in secure elements
such as SIM cards or TPMs never do. Malware running on the host system can
therefore also capture the user’s PIN code and have different messages signed
than what is shown on the screen. The main security guarantee of trusted hard-
ware tokens is therefore that no more signatures can be generated after unplug-
ging the token—which can actually be quite cumbersome or even impossible for
SIM cards and TPMs. In the same way, our protocol prevents further signatures
from being generated when the user’s account is blocked by the server. When
the device is lost, our solution even offers better protection than hardware: while
it may be possible to extract the keys from a compromised token, the only in-
formation that an adversary can extract from a corrupted device is a useless key
share.

Strong security notion and corruption model. We define the security of a
Pass2Sign scheme in the universal composability (UC) framework [15]. The main
goal of our protocol is to guarantee protection of the user’s password and signing
key in the event of device or server compromise. We therefore propose a very
strong corruption model that, unlike standard corruptions as defined in the UC
framework, does not hand all past inputs and outputs to the adversary when
a party is corrupted. In case the device gets corrupted, these inputs include
the user’s password and all previously signed messages, which obviously goes
directly against our security goals. Clearly, it is impossible to achieve such a
strong corruption model without secure erasures: if the device cannot even erase
the entered password, then there’s no way to hide it from an adversary when
the device is corrupted later.

The UC framework is well known to provide superior and more natural se-
curity guarantees for the particular case of password-based protocols than tradi-

tional game-based notions [14]. In particular, by letting the environment generate
all passwords and password attempts, UC formulations correctly model arbitrary
dependencies between passwords. For example, their game-based counterparts
fail to provide any security guarantees when honest users make typos while enter-
ing their passwords, a rather frequent occurrence in real life. Also, by absorbing
password guessing attacks inside the functionality, secure composition with other
protocols is guaranteed to hold; this is much less clear for game-based notions
that tolerate a non-negligible adversarial success probability.

Efficient protocols. One might expect that meeting such stringent security stan-
dards comes at a considerable cost in efficiency. Indeed, similar protocols involve
a factor 4–10 in performance penalty to protect against (standard) adaptive
corruptions [11], while generic techniques to obtain adaptive security at least
double the number of communication rounds [37]. Blindness for signed messages
is another feature that is notoriously expensive to achieve in the UC frame-
work [30]. It is therefore even more surprising that our protocol is refreshingly
simple, round-optimal, and efficient. Generating a signature requires only three
modular exponentiations on the device and two on the server, plus a few hash
function evaluations, with only one protocol message from the device to the
server and back. We also describe two simpler variants of our protocol for the
setting where message blindness is not required. Our first variant exposes the
message only to the server, a second variant does not hide the message at all.

New proof technique. In spite of its simplicity, the security proof of the proto-
col is actually quite intricate. The many cases triggered by adaptive corruptions
(which are allowed even during setup and arbitrarily interleaved signing sessions)
and the mixture of passwords, encryption, and signatures require very careful
bookkeeping, especially of the random-oracle responses during simulation. We
employ an interesting and, to the best of our knowledge, novel technique to
reconcile the seemingly contradictive requirements that the simulator must be
able to determine the value of each signature, but without learning the message
being signed. We avoid typical blind signature techniques and the associated
“one-more”-type security assumptions [5] by letting the device and the server
both contribute to the randomness of the signature, and by programming the
random oracle “just-in-time” at the moment that the signature is verified, not
when it is created. This technique is of independent interest, and may find ap-
plications in other scenarios as well.

Implementation. We implemented our protocol on a commodity mobile device
and provide a thorough performance analysis of our prototypical implementation
to demonstrate the practicality of our protocol. With signature generation for a
2048-bit key requiring roughly 250ms (including network delays), our protocol
is clearly efficient enough for use in practice.

2 Related Work

The idea of distributing signing keys over two separate entities dates back to
Boyd [10], and was later generalized to threshold signatures [18, 36, 22, 9, 2].
Threshold signatures assume that all parties somehow agree on the messages
to be signed, i.e., there is no “main entity” that can trigger a signing protocol
and thus also no authentication to ensure that only the “main entity” can do
so. Bellare and Sandhu [7] present two-party RSA signature protocols between
a client and a server. However, in their protocols the server cannot be corrupted
and requires no client-authentication.

Server-assisted signatures with additional password protection have been pre-
sented in the literature as well. Ganesan [21] proposes a protocol where the
client’s signing exponent is derived from his password. This is similar to Gjøsteen
and Thuen [24, 23] who propose password-based signature schemes where the se-
cret signing key is shared between different entities, but where one share only
depends on the password. A server knowing the high-entropy part of the signing
key can mount offline attacks by creating a signature based on a guessed pass-
word (from which the low-entropy key share is derived) and verifying it under
the public key. Hence, the above approaches assume that the server cannot be
corrupted. He et al. [28] propose a related idea where a password is used to
authenticate to a server, which, in turn, signs the message for the user. The
scheme offers much weaker security guarantees than ours: the server can mount
offline attacks against the user’s password and sign messages in the name of
the user, as it knows the signing key. Both is not possible in our scheme. Xu
and Sandhu [38] present two server-assisted threshold signature schemes for a
closely related setting where a user can generate the signatures with the help of
his device and a threshold of multiple servers. Their constructions do not yield
single-server instantiations as a special case, however, because in their setting a
collusion of servers larger than the threshold can perform an offline attack on
the user’s password, without access to the user’s device.

Another line of work are the schemes by Mannan and van Oorschot [33], and
Damg̊ard and Mikkelsen [17], which assume a trusted, yet resource-contrained
device and aim at securely outsourcing parts of the device’s computation to an
untrusted entity. However, our goal is not to reduce the computational com-
plexity for the trusted device, but to fully remove the assumption of trusted
hardware.

The S-RSA protocol due to MacKenzie and Reiter [32] envisages many of the
goals that we also pursue, such as requiring the adversary to compromise the
device to perform even an online attack, avoiding offline attacks as long as the
server and the device are not both compromised, and “key disabling” by blocking
a user’s account on the server. Their protocol is proven secure in a property-based
(i.e., non-UC) notion that is weaker than ours in several respects. Foremost, it
does not enjoy the many advantages of UC password-based protocols discussed
earlier, such as preserving security in case of mistyped passwords and secure
composition with other protocols. Also, the server in their protocol sees the
message being signed, can only be corrupted between (and not during) signing

sessions, and can actually perform an offline dictionary attack on the password
based on the information it sees during the signing protocol (but the last problem
is easy to fix).

Our protocol is the first to support fully adaptive corruptions of the server
as well as the device in the UC model. One could of course evaluate the signing
algorithm using generic adaptively UC-secure multiparty computation (MPC),
but this comes at great cost: evaluating even a single multiplication gate in
the most efficient two-party computation protocol secure against adaptive cor-
ruptions [12] incurs computation and communication costs that are orders of
magnitude larger than our direct construction.

A more remotely related primitive is password-authenticated secret sharing
(PASS) [3]. A PASS-scheme allows a user to share a secret among a set of servers
that it can later recover based on a password. In a sense, one could consider
storing a secret signing key using a two-out-of-two PASS scheme, where the user’s
device plays the role of one of the servers. This does not fulfill our requirements,
though, as the device would need to locally reconstruct the signing key in order
to compute a signature. Moreover, once the signing key is reconstructed, the
device can as many messages as it wants to without any interaction.

3 Preliminaries

Here we introduce the building blocks for our construction. These include RSA-
FDH signatures (DSIGRSA), non-committing encryption (NCE), trapdoor one-
way permutations (TDP), and three UC-functionalities: FCA providing a PKI,
FD→RRO modeling random-oracles, and FAuth providing authenticated channels.

Notation. We use τ ∈ N as our security parameter. 1τ is the string of τ ones.
All algorithms receive 1τ as an implicit input. a

r← S denotes that a is assigned
a random element chosen uniformly from the set S. If A is a PPT algorithm we
write y

r← A(x; r) to denote that y is assigned the output of A with input x and
external random coins r. If we drop r, the random coins are drawn internally. For
deterministic algorithms, we write y ← A(x). A function ε : N→ R is negligible
if ε(τ) = τ−ω(1). By |m| we denote the binary length of a message m. |S| denotes
the cardinality of the set S. If an argument is a list, we assume that the list has
an injective encoding which allows to decode each element again.

Ideal Functionality FCA. We assume a public-key infrastructure where servers
can register their public keys, modeled by the ideal functionality FCA [13]. These
keys can be retrieved by any party using the entity’s identity for which the public
key is requested. A formal definition of FCA is given in Figure 7 in the Appendix.

Ideal Functionality FD→RRO . A random oracle can be seen as an idealized hash
function that consistently maps inputs from domain D to random values in range
R [6]. It is adjusted for our notation, as we parametrize it with domain D and
range R. We sometimes use more than one random oracle with the same range R
and domain D for easier analysis, i.e., more than one random oracle corresponds

to FD→RRO . To distinguish different random oracles, we assume that each call is
prefixed with a unique identifier. The formal definition of FD→RRO is based on [29]
and given in Figure 6 in the Appendix.

Ideal Functionality FAuth. The FAuth functionality provides authenticated (but
public) channels between parties [15, 13]. For our protocol, we can use the sim-
plified version of [15], which allows to send a single authenticated message to
the designated receiver. The formal definition of FAuth is given in Figure 8 in the
Appendix.

RSA Problem and RSA Assumption. Let (N, e, d, p, q)
r← RSAGen(1τ) be an

RSA-key generator returning an RSA modulus N = pq, where p and q are
random distinct primes, e > 1 an integer coprime to ϕ(N), and d ≡ e−1 mod
ϕ(N). The RSA Problem associated to RSAGen is, given N , e, and y

r← Z∗N , to
find x such that xe ≡ y mod N . The RSA Assumption now states that for every
PPT adversary A, Pr[(N, e, d, p, q)

r← RSAGen(1τ), y
r← Z∗N , x

r← A(N, e, y) :
xe ≡ y mod N] ≤ ε(τ) for some negligible function ε.

RSA-FDH Signatures. We use a RSA Full-Domain Hash (FDH) signature
scheme DSIGRSA = (SKGenRSA,SignRSA,VerifyRSA) associated to RSA-key gen-
erator RSAGen defined as follows. The key generation algorithm (spk , ssk)

r←
SKGenRSA(1τ) runs (N, e, d, p, q)

r← RSAGen(1τ) and outputs ssk = (d, p, q) and
spk = (N, e). It also requires a hash function HRSA : {0, 1}∗ → Z∗N , modeled as
a random oracle. To sign a message m ∈ {0, 1}∗ with key ssk = (d, p, q), SignRSA
computes σ ← (HRSA(m))d mod N . To verify if a signature σ is valid for a
message m ∈ {0, 1}∗ and spk = (N, e), VerifyRSA outputs true if 0 < σ < N and
HRSA(m) = σe mod N , else it outputs false. RSA-FDH signatures are strongly
unforgeable against chosen message attacks in the random-oracle model if the
RSA assumption holds [16].

Trapdoor One-Way Permutations. Let (f, f−1, Σ)
r← TFGenf(1

τ) be the instance
generator for a function f : Σ → Σ defining a permutation over Σ, with an
inversion function f−1 : Σ → Σ, such that we have 1) for all x ∈ Σ, all τ ∈
N, and for all (f, f−1, Σ)

r← TFGenf(1
τ), we have x = f−1(f(x)), and 2) for

all PPT adversaries A we have Pr[(f, f−1, Σ) ← TFGenf(1
τ), x

r← Σ : x =
A(f, f(x), Σ)] ≤ ε(τ) for some negligible function ε. We also require that we can
efficiently sample from Σ. An RSA-key generator RSAGen yields a trapdoor one-
way permutation under the RSA assumption with Σ = Z∗N , f(x) = xe mod N
and f−1(y) = yd mod N [6].

Non-Committing Labeled Public-Key Encryption Scheme. To deal with adaptive
corruptions, we require a non-committing encryption scheme. In the security
proof, the simulator needs to be able to simulate ciphertexts without knowing
the corresponding plaintexts which would be encrypted in the real protocol.
However, when the adversary later corrupts the receiver of a simulated cipher-
text, the simulator has to provide a state of the corrupted party such that all

Experiment ExpIND−NC−ideal
NCE,A,SIMNCE

(τ):

epk
r← SIMNCE(publickey, 1τ)

Q ← ∅
stateA

r← AO
H(·),OEnc(·,·),ODec(·,·)

(epk)

where OEnc(·,·) on input (mi, `i):

Ci
r← SIMNCE(encrypt, |mi|, `i)

Q ← Q∪ {(Ci,mi, `i)}
return Ci

where ODec(·,·) on input (Cj , `j):
if (Cj ,mj , `j) ∈ Q, return mj

else, return mj ← SIMNCE(decrypt, Cj , `j)

where OH(·) on input qk:

return hk
r← SIMNCE(roquery, qk)

esk
r← SIMNCE(keyleak,Q)

return AO
H(·)

(esk , stateA)

Experiment ExpIND−NC−real
NCE,A (τ):

(epk , esk)
r← EKGen(1τ)

stateA
r← AO

H(·),OEnc(·,·),ODec(·,·)
(epk)

where OEnc(·,·) on input (mi, `i):

return Ci
r← Enc(epk ,mi, `i)

where ODec(·,·) on input (Cj , `j):
return mj ← Dec(esk , Cj , `j)

where OH(·) on input qk:

return hk
r← H(qk)

return AO
H(·)

(esk , stateA)

Fig. 1. Experiments IND-NC-ideal and IND-NC-real for our IND-NC Definition.

the ciphertexts decrypt to some concrete plaintext. This is related to the “se-
lective de-commitment problem” [4]. The notion of non-committing encryption
that we require is stronger than some that were proposed in the literature [19,
27] and weaker than others [35]. To minimize the security assumptions for our
protocol and leave open the possibility for more efficient instantiations, we in-
troduce our own definition here and provide a non-interactive construction in
the random-oracle model.

A labeled non-committing encryption scheme NCE = (EKGen,Enc,Dec) con-
sists for three algorithms: a key generation algorithm (epk , esk)

r← EKGen(1τ)
outputting a public and secret key, where the public key specifies a finite message
space M, an encryption algorithm C

r← Enc(epk ,m, `) computing a ciphertext
C on input a public key epk , a message m ∈ M, and a label ` ∈ {0, 1}∗, and a
decryption algorithm m′ ← Dec(esk , C, `) that takes as input a secret key esk ,
a ciphertext C and a label ` and outputs either a message m′ or ⊥ if decryption
failed. We require the usual correctness properties to hold. Sometimes we need
to explicitly talk about the random choices of the encryption algorithm. To this
end, let Σ be the space of these choices.

We now define the IND-NC security property that a labeled non-committing
encryption scheme needs to satisfy in our context.

Definition 1 (IND-NC security). An encryption scheme NCE =
(EKGen,Enc,Dec) is IND-NC-secure iff for all PPT adversaries A there
exists a stateful PPT simulator SIMNCE such that

∣∣Pr[ExpIND−NC−realNCE,A (τ) =

1] − Pr[ExpIND−NC−idealNCE,A,SIMNCE
(τ) = 1]

∣∣ ≤ ε(τ) for some negligible function ε and the
experiments of Figure 1.

This definition says an encryption scheme is non-committing if there exists a
simulator (that is given control over the random oracle) such that no adversary
can distinguish between simulated ciphertexts (which do not contain any infor-
mation about the plaintexts except their lengths) and real ones. More precisely,

the adversary cannot tell in which of the two experiments it is run, even if it
can adaptively query for new encryptions and decryptions and receive the secret
key at a later point. In both experiments, the adversary gets oracle access to
the random oracle H and the encryption and decryption algorithms. At the end
of both experiments, the adversary is handed the secret key used to encrypt all
ciphertexts. The crucial difference is that in the ideal game the adversary gets
handed simulated ciphertexts instead of real ones, which are computed by a sim-
ulator on input only the length of the plaintext. Only at the end of the game the
simulator learns the plaintexts to which it produced the simulated ciphertexts.
With that knowledge, the simulator then has to provide the adversary with the
secret key such that the provided ciphertexts indeed decrypt to the messages
that the adversary queried to the encryption algorithm.

Compared to the definition given by Fehr et al. [19], our adversary A is
allowed adaptive queries and receives the secret key esk at the end of the exper-
iment, while the definitions given in [27] only consider a single (randomly sam-
pled) message per secret key, which is not enough for our protocol. Nielsen [35]
gives a formulation of non-committing encryption—in the sense of secure mes-
sage transmission—in the UC framework. Nielsen’s functionality is stronger than
what we need, however, because it also requires that the randomness used during
encryption is simulatable, which we can avoid using secure erasures.

Analogously to [19], we show that our definition implies standard IND-CCA2
security. The proof of the following theorem is given in Appendix B, where we
also recall a definition of IND-CCA2 security derived from [34].

Theorem 1 (IND-NC =⇒ IND-CCA2). Every scheme which is IND-NC-
secure, is also IND-CCA2-secure.

Instantiation. We now give a concrete instantiation for an encryption scheme
that achieves IND-NC security. We modify the CCA2-secure encryption scheme
introduced in [6] to include labels and handle arbitrary-length messages. Let
G : {0, 1}∗ → {0, 1}τ and K : {0, 1}∗ → {0, 1}τ denote two hash functions,
modeled as random oracles. Let ec : {0, 1}∗ → ({0, 1}τ)+ be an injective encoding
function and let dc : ({0, 1}τ)+ → {0, 1}∗ denote the corresponding decoding
function that returns ⊥ if no valid pre-image exists. We require that the output
length of ec only depends on the length of its input.

EKGen(1τ) : Generate a random trapdoor one-way permutation, i.e.,
(f, f−1, Σ)

r← TFGenf(1
τ). The message space M is {0, 1}∗. Output

the public key epk = (f,Σ), and esk = f−1 as the secret key.
Enc(epk ,m, `) : Let (m1,m2, . . . ,mk) ← ec(m). Draw x

r← Σ, compute C1 ←
f(x), Ci2 ← G(i, x)⊕mi for i = 1, . . . , k, and C3 ← K(x, k,m, `) and output
the ciphertext C := (C1, (C

1
2 , . . . , C

k
2), C3).

Dec(esk , C, `) : Parse C as (C1, (C
1
2 , . . . , C

k′

2), C3) for some k′ ≥ 1. Compute
x′ ← f−1(C1) and m′i ← G(i, x′) ⊕ Ci2 for i = 1, . . . , k′. Let m′ ←
dc(m′1, . . . ,m

′
k′). If m′ = ⊥ or C3 6= K(x′, k′,m′, `), output ⊥, else out-

put m′.

The above construction fulfills perfect correctness. We prove that the scheme
described above achieves our notion of IND-NC-security in Appendix C.

Theorem 2. The construction above is IND-NC-secure, if G and K are modeled
as random oracles and TFGenf(1

τ) is a secure TDP generator.

4 Ideal Functionality

We now formally define password-authenticated server-aided signatures
(Pass2Sign) by describing its ideal functionality in the universal composability
(UC) framework [15].

First, recall the high-level goal of our Pass2Sign scheme: signatures on mes-
sages should be derived collaboratively between two parties, a device D and a
server S, meaning that a valid signature can only be obtained if both parties
agree to the generation. Access to the server’s signing operation is protected by
a user password pwd that is chosen at setup and needs to be provided for every
signing request. The server then verifies whether the password is correct and
also whether the request came from the correct device, which has the additional
advantage that an attacker cannot block an honest user’s account by swamping
the server with false login attempts. The protocol must be secure against of-
fline attacks on the password used during setup and on the password attempts
during signing. That is, as long as at least one party remains honest, the adver-
sary does not learn anything about the used passwords. In particular, the server
learns only whether a password attempt in a signing request was correct or not,
but not the actual password attempt itself. The server also does not learn the
messages being signed. (If this blindness feature is not required, we discuss how
it can easily be removed in Section 8.) Security must be guaranteed for adaptive
corruptions in order to protect against the main threat, namely the user losing
his device. Note that we subsume the user of the device into the environment
to have a more readable functionality. How this maps to real-life scenarios is
discussed at the end of this section.

The detailed description of our ideal functionality FPass2Sign for password-
authenticated server-aided signatures is given in Figure 2. When describing our
functionality, we use the following writing conventions to reduce repetitive no-
tation:

– For the SETUPREQ and KEYGEN interfaces, the ideal functionality only
considers the first input for each sid . Subsequent inputs to the same inter-
face for the same sid are ignored. For the SIGNREQ, DELIVER, PROCEED,
SIGNATURE interfaces the functionality only considers the first input for each
combination of sid and qid .

– At each invocation, the functionality checks that sid = (S,D, sid ′) for some
server identity S, device identifier D and sid ′ ∈ {0, 1}∗. Also, whenever we
say that F receives input from or provides output to S or D, we mean S or
D as specified in the sid , respectively.

1. Setup Request Device. On input (SETUPREQ, sid , pwd) from device D:

– Create a record (setup-req, sid , pwd) and send (SETUPREQ, sid) to A.

2. Key Generation. On input (KEYGEN, sid , pwd∗, pk) from adversary A:

– Look up a record (setup-req, sid , pwd).

– If D (taken from sid) is corrupt, then mark this instance as key-corrupt.

– If D is corrupt and pwd∗ 6= ⊥, then create a record (setup, sid , pwd∗, pk). Else,
create a record (setup, sid , pwd , pk).

– Output (SETUP, sid , pk) to D.

3. Sign Request. On input (SIGNREQ, sid , qid , pwd ′,m) from device D:

– Look up a record (setup, sid , pwd , pk).

– Create a record (sign-req, sid , qid , pwd ′,m).

– Send (SIGNREQ, sid , qid) to A.

4. Sign Delivery. On input (DELIVER, sid , qid , pwd∗,m∗) from adversary A:

– Look up records (setup, sid , pwd , pk) and (sign-req, sid , qid , pwd ′,m).

– If D is corrupt and pwd∗ 6= ⊥, then set pwd ′ ← pwd∗ and m← m∗.

– If pwd ′ = pwd then set status ← pwdok, else set status ← pwdwrong.

– Create a record (sign, sid , qid ,m, status).

– Output (SIGNREQ, sid , qid , status) to S.

5. Server Proceed. On input (PROCEED, sid , qid) from server S:

– Look up a record (sign, sid , qid ,m, status) with status = pwdok.

– Update the record to status ← proceed, and send (PROCEED, sid , qid) to A.

6. Signature Generation. On input (SIGNATURE, sid , qid , σ) from A:

– Look up a record (sign, sid , qid ,m, status).

– If S is honest, only proceed if status = proceed.

– If there is no record (signature, pk ,m, σ, false), then create a record
(signature, pk ,m, σ, true), and output (SIGNATURE, sid , qid , σ) to D.

7. Verify. On input (VERIFY, sid , pk ′,m, σ) from a party P:

– Create a record (verify, sid , pk ′,m, σ) and send (VERIFY, sid , pk ′,m, σ,P) to A.

8. Verified. On input (VERIFIED, sid , pk ′,m, σ, φ) from A with φ ∈ {true, false}:
– Look up a record (verify, sid , pk ′,m, σ,P).

– Record (signature, pk ′,m, σ, f) and output (VERIFIED, sid , pk ′,m, σ, f) to P,
where f is determined as follows:

• If a record (signature, pk ′,m, σ, f ′) for some f ′ exists, set f ← f ′. (consistency)

• Else, if a record (setup, sid , pwd , pk) exists with pk = pk ′ and the instance is
not marked key-corrupt, set f ← false. (strong unforgeability)

• Else, set f ← φ.

Fig. 2. Main Interfaces of our Functionality FPass2Sign.

– When we say that the functionality “looks up a record”, we implicitly under-
stand that if the record is not found, the functionality ignores the input and
returns control to the environment.

– We assume that the session (sid) and query identifiers (qid) given as input to
our functionality are globally unique. In the two-party setting that we consider,
this can be achieved by exchanging random nonces between both parties and

9. Corruption. On input (CORRUPT, sid ,P, Σ) from adversary A:

– Look up a record (setup, sid , pwd , pk) and initialize a list L ← ∅.
– If P = S, then assemble L containing (qid i, ci) for all existing records

(sign-req, sid , qid i, pwd ′i,mi), where ci ← pwdok if pwd = pwd ′i and ci ←
pwdwrong otherwise.

– If now both D and S are corrupt, then mark this instance as key-corrupt
and complete the abandoned sign requests: For all (qid i, σi) ∈ Σ, look up
mi from record (sign-req, sid , qid i, pwd ′i,mi). If there does not exist a record
(signature, pk ,mi, σi, false), then create a record (signature, pk ,mi, σi, true).

– Send (CORRUPT, sid ,P,L) to A.

10. Password Guessing. On input of (PWDGUESS, sid , qid , pwd∗) from adversary A:

– If not both D and S are corrupt, then ignore this input.

– If qid = ⊥ then look up a record (setup-req, sid , pwd).

– If qid 6= ⊥ then look up a record (sign-req, sid , qid , pwd ,m).

– Set c← pwdok, if pwd∗ = pwd and c← pwdwrong otherwise.

– Send (PWDGUESS, sid , qid , c) to A.

Fig. 3. Corruption-Related Interfaces of our Functionality FPass2Sign.

including the concatenation of both in the identifiers. We also assume that
honest parties drop any inputs with session or query identifiers to which they
did not contribute.

– When we say that an instance is “marked”, we mean that the specified label
is associated with the instance of the functionality with the current sid . This
does not affect other instances of the functionality with a different sid .

We now describe the behavior of all interfaces in a somewhat informal manner
to clarify the security properties that our functionality provides.

Setup. The setup-related interfaces allow the device D to create an account in
F that is protected with a password pwd and associated with the server S.

1. The SETUPREQ interface allows the device D to register with the server S,
where D and S are the identities as included in the session identifier.

2. The KEYGEN interface allows the adversary to complete the setup by deter-
mining the public key pk under which messages in this instance are signed.
If the device D is corrupt at the time of key generation, then we say that the
instance is key-corrupt, meaning that the adversary may know the signing key
and may therefore be able to sign any messages it wants. A corrupt device
D additionally has the option to “overwrite” the original password pwd from
the SETUPREQ input (that may have been provided when D was still honest)
with a new password pwd∗. This does not affect the unforgeability of signa-
tures, as the instance is key-corrupt anyway, but does allow the adversary to
later perform signing requests with correct passwords with S without having
to guess pwd .

Signature Generation. Once setup is completed, the signature-related interfaces
allow the device D to obtain a signature σ on a message m, but only if the pro-
vided password attempt pwd ′ is correct and the server S agrees to the signature
generation. Signing requests can be done in parallel; the unique query identifier
qid identifies different signing sessions.

3. The SIGNREQ interface allows the device D to submit the message m to be
signed, and a password attempt pwd ′. Only the device D included in sid can
perform signing requests, so without compromising the device, the adversary
cannot even perform an online attack against the setup password pwd .

4. The DELIVER interface lets the adversary notify the server of an incoming
signing request. The notification only includes whether the submitted pass-
word is correct, but not the password attempt itself. A corrupt device D can
overwrite the original password pwd ′ and message m from the SIGNREQ input
(that may have been provided when D was still honest) with a new password
pwd∗ and message m∗.

5. The PROCEED interface allows the server to indicate whether it wants to
proceed with the signing request. This models the opportunity for an external
throttling mechanism to refuse the signing request. An honest server can
only proceed if the password was correct, but corrupt servers can proceed
regardless of whether the passwords matched. If the server is honest, then the
adversary only (implicitly) learns whether the password was correct when the
server agrees to proceed.

6. The SIGNATURE interface allows the adversary to determine the value σ of
the signature and have it delivered to the requesting device. If the server is
honest, then a signature can only be established if the server previously agreed
to proceed. A corrupt server can choose to ignore an incorrect password.
The functionality creates a signature record (signature, pk ,m, σ, true) that will
allow successful verification of the signature.

The above interfaces follow a similar approach to Canetti’s signature func-
tionality [13] where the adversary determines the signature value, with the im-
portant difference that the adversary does not learn the message being signed.
This models a weak form of blindness: it ensures that a corrupt server does not
learn the message, but it does not provide unlinkability as blind signatures do.
A full blindness notion would let the functionality generate the signatures by
running an algorithm provided by the adversary [20]. Achieving such a notion
is interesting, but would almost certainly come at a considerable overhead, as is
the case for standard (UC-secure) blind signatures [20, 30].

Signature Verification. With the verification interfaces, any party can check
whether a signature σ is valid for message m and public key pk ′.

7. The VERIFY interface allows any party P to ask for the verification of a
signature σ on message m and under public key pk ′.

8. The VERIFIED interface lets the adversary trigger the delivery of the verifica-
tion result to P and also allows the adversary to input the verification result

φ for adversarially controlled keys pk ′. Here, adversarially controlled means
that either pk ′ is different from the key pk registered in the functionality,
or the instance for pk is key-corrupt. The ideal functionality enforces that
responses are consistent, meaning that verification of the same signature for
the same message and public key always returns the same result.

For a non-adversarially-controlled key pk , the functionality guarantees strong
unforgeability, meaning that even if the message m was signed before with
signature σ, the adversary cannot come up with a different valid signature
σ′ 6= σ for m. For regular unforgeability, one should add the condition that
there does not exist a record (signature, pk ′,m, σ′, true) for σ′ 6= σ. We opt for
strong unforgeability because it offers more application scenarios and implies
regular unforgeability.

Corruptions. Our functionality supports adaptive corruptions, i.e., the environ-
ment can, at any time, decide to corrupt any initially honest party. It is not a
standard-corruption functionality as defined by the UC framework [15] where the
adversary, upon corruption of a party, obtains all the past inputs and outputs of
that party. Such a corruption model is clearly unsuitable our setting, as it would
hand the user password to the adversary as soon as the device gets corrupted.
In fact, even when both the device and server are corrupted, we do not want to
give away the passwords immediately. Instead, our functionality then offers an
interface modeling offline attacks against the passwords.

9. The CORRUPT interface allows the adversary to dynamically corrupt an ini-
tially honest device or server. When the device is corrupted after setup was
complete, the adversary obtains the possibility to perform signing requests,
but he still needs to provide the correct password. We stress that the adver-
sary doesn’t receive any passwords attempts or messages from past or even
ongoing signing protocols.

When the server gets corrupted, the adversary is told for all past signing re-
quests whether or not the respective password attempts were correct. Still, the
adversary is not given the stored password, nor the past password attempts
themselves. Also, the adversary is not able to generate valid signatures.

When both the device and the server are corrupt, the instance becomes key-
corrupt, meaning that the adversary can sign any messages that he wants,
and the adversary can offline-attack past passwords using the PWDGUESS
interface described below. Additionally, the adversary can finish “abandoned”
sign requests, meaning sign requests that were never delivered to the server,
that were overwritten by the adversary, that were turned down by the server
because the password was incorrect, or for which the server did not (yet) agree
to proceed. The adversary determines the signature values for abandoned
requests in a separate input Σ. This interface may seem superfluous now that
the instance is key-corrupt anyway, but the the adversary does not know the
message of sign requests that were initiated when the device was still honest,
so it cannot register these signatures through the normal VERIFIED interface.
In the real world, an adversary who obtains the full state information of the

device and server can inherently complete abandoned queries, so we have to
model it here as well.

10. The PWDGUESS interface allows the adversary to perform offline attacks on
the stored password and on previous password attempts, but only becomes
available when both the device and the server are corrupt. For the stored pass-
word, offline attacks cannot be avoided, as the device and the server together
must store some information that allows them to decide whether a password
attempt was correct. For previous password attempts, this could in principle
be avoided, but would make our protocol considerably less efficient, because
new cryptographic material would have to be generated at each request and
securely deleted afterward.

If the device is already corrupt at the time of setup, we consider the instance
as key-corrupt even though the server might still be honest. A stronger security
notion, requiring only slight changes to the functionality, would be achievable
where the instance is only considered key-corrupt when both the device and
server are corrupted. However, this would mean that in the realization, the key
generation be done distributively between the server and the device. This is
possible but for RSA rather inefficient [1, 26] and seems to offer little added
security; hence we chose not to do this.

Discussion. Let us discuss how real-world attack scenarios map to our ideal
functionality. If a user loses his device, we assume that the adversary is able to
extract all the data from the device, so the device becomes corrupted. As long
as the server is not corrupted, though, the adversary controlling the device still
has to make online password guesses to be able to sign, but does not obtain the
(full) signing key. To protect against online password guessing, the server should
implement some kind of throttling on top of our protocol, such as refusing to
serve further queries after too many failed password attempts.

If the device becomes infected by malware, we also capture the worst case
scenario: it may get all the data from the device and hence the device becomes
corrupted. In contrast with the scenario above, the malware may also learn the
(correct) password of the user if he’s unaware of the infection and continues
to use the device. This behavior is subsumed into the environment; we model
this correctly by letting the environment provide the correct password to the
adversary. Some protection against this kind of attack can be implemented on
top of our protocol by adding intrusion detection logic on the server’s side, e.g.,
by stopping to serve requests if they become too frequent. This situation is
actually quite similar to that of a smart card inserted in an infected device: the
device could intercept the PIN code and sign any messages it wants until the
card is removed.

One could consider a more gradual corruption model where the device can be
semi-corrupted, e.g., if an application turns malicious, but the uncompromised
operating system separates it from other applications on the device. Our model
covers this as long as applications have their own protected execution space: the
device in our model represents the application, while everything else is subsumed

into the environment. More advanced models where applications can observe
other applications (e.g., their running times) are beyond the scope of this paper.

5 Our Pass2Sign Protocol

The core idea of our protocol is fairly simple: an RSA secret key d = dD ·
dS mod ϕ(N) is split between the device and the server who then jointly perform
the signing operation for each message m. To hide the message from the server,
the device “blinds” it with randomness r as hm ← H(r,m) and lets the server
sign it as σS ← hdSm . The device completes the signature as σ ← σdDS . For
each signing request, the user authenticates towards the server using a salted
password hash hp ← H(k, pwd), where the salt k is stored on the device.

Our corruption model and the need for secure erasures. The main challenge is
to maintain this simplicity while achieving the strong security properties that
we envisage. Most often, security against adaptive corruptions in the UC model
comes at a considerable price in terms of computation and communication, and
our corruption model is even substantially stronger. In particular, recall that
we want to protect the user’s password and previously signed messages in case
the device is lost or stolen. The “standard corruption” model in the UC frame-
work [15] hands all previous inputs and outputs of a party to the adversary upon
corruption of that party, which in case of the device would include all previous
passwords and messages. It is quite obvious that standard corruption does not
suffice for our purposes, and also that our model cannot be achieved without se-
cure erasures, as there would be no way to securely erase previous inputs. Given
the usual difficulty of achieving even standard UC corruption, it is surprising
that our protocol remains refreshingly simple, round-optimal, and efficient.

Achieving blindness. Achieving blind signatures against adaptive corruptions
in the UC model is notoriously hard: the only scheme is due to Kiayias and
Zhou [30] and requires six rounds of communication and several zero-knowledge
proofs. We decided to strike a reasonable compromise between security and ef-
ficiency by dropping the unlinkability requirement, i.e., the property that the
signer cannot link a signature to a previous signing transcript, but focusing en-
tirely on hiding the message from the signer. We describe a new “just-in-time”
programming technique for the random oracle that inserts the correct entries
into the oracle when signatures are verified, rather than when they are created.
We thereby obtain an efficient and round-optimal construction without having
to rely on one-more-type assumptions that are typical for full-domain-hash blind
signatures [5, 8].

In a bit more detail, to enable the simulator to open any signing transcript
to any message-signature pair, the server adds another layer of randomness, i.e.,
he signs h′m ← H(r′, hm) for some randomly chosen r′. When the simulator
has to provide a signature σ to the functionality without knowing the message
m, it simply signs a random value h′m

r← {0, 1}τ . The connection to m is only

established when the signature is verified, which we call “just-in-time” program-
ming. Namely, whenever a random oracle query H(r′,H(r,m)) is made where
r, r′ were previously used in a simulated blind signature, the simulator verifies
whether (m,σ) is valid with the help of the ideal functionality. If so, the simu-
lator programs the random oracle to map the message m it just learned to the
randomly chosen h′m that was signed as σ.

Non-committing communication and state. As we allow corruptions during setup
and signing sessions, we have to take special care that messages sent by the device
and server do not commit the simulator to values that it might not know at that
time in the proof. We achieve this by employing non-committing encryption
for the passwords hashes hp ← H(k, pwd) and each password attempt h′p ←
H(qid ,H(k, pwd ′)) that the device sends to the server. At a first glance that
might seem unnecessary since we also assume secure erasures. However, secure
erasures are not sufficient as an adversary can intercept the ciphertexts and later
corrupt the server to learn the decryption key. He then expects all ciphertexts
to open to the proper password hashes (that in the security proof might be
unknown when the ciphertexts are generated). The non-committing encryption
gives us exactly that flexibility. To determine the correct password hashes hp
and h′p upon server corruption we use different random oracle programming
techniques, eventually also reying on the password guessing interfaces of the
ideal functionality (if both parties are corrupted).

We have to take similar care for the intermediate state-records that the device
keeps during interactive protocols. After sending a signing request, the device
cannot store the message m, or even the randomness r and the message hash
hm ← H(r,m), as the simulator does not learn m upon corrupting the device.
Nevertheless, the device must be able to verify whether the server’s contribu-
tion is correct. Therefore, when sending the message hash hm, the device also
sends a value t ← H("MAC", qid , k, hm) that acts as a message authentication
code (MAC) for hm. This allows the device to check that the server signed the
correct message upon receiving the signature share, but without requiring state
information that depends on m.

Authentication of participants. As already mentioned earlier, the session identi-
fier sid contains the identities of the device D and the server S. This means that
D and S have to be authenticated. We do so by employing FAuth for authen-
ticated communication, thereby making abstraction of how the authentication
is performed. This could be through a shared secret, through digital signatures
(e.g., TLS with client authentication), or in an “offline fashion” by letting the
user use a trusted third party to register the device, such as a bank or a local
municipal office. The last option has the additional advantage that one could
also check the name or other credentials of the user, and also directly certify the
resulting public key of the user.

5.1 Protocol Description

We now present the detailed protocol for our Pass2Sign scheme and give a sim-
plified presentation in Figures 4 and 5. We assume that a server has a key pair
(epk , esk) for a non-committing encryption scheme (EKGen,Enc,Dec), generated
by EKGen on input the security parameter 1τ . We also assume a public-key in-
frastructure, where devices and servers can register their public keys, modeled
by the ideal functionality FCA [13], and authenticated message transmission,
modeled by FAuth. In the protocol description we denote inputs to and outputs
from them informally to make the protocol more readable (e.g., we will write
that S sends m to D via FAuth instead of an explicit call to FAuth with sub-
session IDs etc.). We further assume that parties check the correctness of session
and sub-session IDs in all inputs. Moreover, we use H and HRSA as shorthand

notations for two random-oracle functionalities F{0,1}
∗→{0,1}τ

RO and F{0,1}
∗→Z∗N

RO ,
respectively. Note that these are single-instance functionalities; one can obtain
a secure multi-instance implementation by prefixing each call to them with sid .
Our protocol further makes use of an RSA-key generator RSAGen.

As discussed earlier, secure erasures are necessary to achieve our security
guarantees. We thus assume that after each protocol step all variables are deleted
except unless we explicitly state that a variable is stored.

Finally, we assume that whenever a check performed by the server or device
fails, the checking party will abort the protocol.

Device Server
encryption key epk decryption key esk

on input (SETUPREQ, sid , pwd):

((N, e), (d, p, q))
r← RSAGen(1τ),

dD
r← Z∗ϕ(N), dS ← d · d−1

D mod ϕ(N)

k
r← {0, 1}τ , hp ← H(k, pw)

C
r← Enc(epk , (dS , hp), (sid , (N, e)))

sid , (N, e), C
−−−−−−−−−−−−−−−−−→

(dS , hp)← Dec(esk , C, (sid , (N, e)))
store (setup, sid , hp, dS , (N, e))

sid←−−−−−−−−−−−−−−−−−
store (setup, sid , k, dD, (N, e)) and output (SETUP, sid , (N, e))

Fig. 4. Setup Protocol (simplified).

Setup Protocol. The setup procedure is the following protocol that a device D
runs on input (SETUPREQ, sid , pwd) with server S, where sid = (S,D, sid ′).

Setup – Step 1. Device generates account data:

a) Upon input (SETUPREQ, sid , pwd), retrieve the encryption key epk for S
from FCA.

b) Generate RSA key material as (N, e, d, p, q)
r← RSAGen(1τ) and share the

secret exponent d by choosing a random dD
r← Z∗ϕ(N) and setting dS ←

d · d−1D mod ϕ(N), where dS is encoded as an |N |-bit string.

c) Compute a “salted” password hash as hp ← H(k, pwd) for a random k
r←

{0, 1}τ .

d) Encrypt the RSA key share dS and the authentication information hp under
epk and with the label (sid , (N, e)). That is, compute C

r← Enc(epk , (dS , hp),
(sid , (N, e))).

e) Store the record (setup-temp, sid , k, dD, (N, e)) and send the message m =
(sid , (N, e), C) to the server S using FAuth.

Setup – Step 2. Server registers account:

a) Upon receiving m = (sid , (N, e), C) from D via FAuth, check that sid is not
registered yet.

b) Decrypt C as (dS , hp) ← Dec(esk , C, (sid , (N, e))). If decryption succeeds,
store (setup, sid , hp, dS , (N, e)).

c) Acknowledge the created account by sending (sid) to D via FAuth.

Setup – Step 3. Device completes registration:

a) Upon receiving a message (sid) from S via FAuth, check that a record
(setup-temp, sid , k, dD, (N, e)) for sid exists.

b) Store (setup, sid , k, dD, (N, e)) and end with output (SETUP, sid , (N, e)).

Device Server
encryption key epk decryption key esk

setup record (setup, sid , k, dD, (N, e)) setup record (setup, sid , hp, dS , (N, e))

on input (SIGNREQ, sid , qid ,m, pwd ′):

h′p ← H(qid ,H(k, pwd ′)), r
r← {0, 1}τ ,

hm ← H(r,m), t← H(“MAC”, qid , k, hm)

C′
r← Enc(epk , (h′p, hm, t), (sid , qid))

sid , qid , C′−−−−−−−−−−−−−−−−−−−→

(h′p, hm, t)← Dec(esk , C′, (sid , qid))
if H(qid , hp) = h′p then c← pwdok
else c← pwdwrong
output (SIGNREQ, sid , qid , c)

on input (PROCEED, sid , qid) and if c = pwdok:

r′
r← {0, 1}τ , σS ← HRSA(sid , qid ,H(r′, hm))dS

sid , qid , hm, t, r
′, σS←−−−−−−−−−−−−−−−−−−−

abort if t 6= H(“MAC”, qid , k, hm)

σRSA ← (σS)dD , abort if (σRSA)e 6= HRSA(sid , qid ,H(r′, hm))
set σ ← (σRSA, qid , r, r′) and output (SIGNATURE, sid , qid , σ)

Fig. 5. Signing Protocol (simplified).

Signing Protocol. The signing protocol starts when the device D receives an
input (SIGNREQ, sid , qid ,m, pwd ′), where sid = (S,D, sid ′), upon which he
runs the following protocol with the server S. Recall that we assume that
both parties have previously agreed upon a common and globally unique query
identifier qid . All messages sent between the device and server also contain the
qid as prefix, and only those messages with the corresponding qid are further
processed.

Sign – Step 1. Device sends signing request:
a) Upon input (SIGNREQ, sid , qid ,m, pwd ′), retrieve the record (setup, sid , k,

dD, (N, e)) for sid .

b) “Blind” the message by drawing r
r← {0, 1}τ and computing hm ← H(r,m).

c) Compute the (re-)authentication value h′p ← H(qid ,H(k, pwd ′)).

d) Compute a “MAC” t of hm as t← H("MAC", qid , k, hm).

e) Generate a non-committing encryption of h′p, hm, and t under the public

key epk and with label (sid , qid) as C ′
r← Enc(epk , (h′p, hm, t), (sid , qid)).

f) Store the record (sign, sid , qid , r) and send (sid , qid , C ′) to S via FAuth.

Sign – Step 2. Server verifies information:
a) Upon receiving (sid , qid , C ′) from D via FAuth, retrieve the record

(setup, sid , hp, dS , (N, e)) for sid .

b) Decrypt C ′ to (h′p, hm, t)← Dec(esk , C ′, (sid , qid)).

c) Check the password by verifying whetherH(qid , hp) = h′p and set c← pwdok
if so and c← pwdwrong otherwise.

d) Store the record (sign, sid , qid , hm, t, c) and output (SIGNREQ, sid , qid , c).

Sign – Step 3. Server creates its signature share:
a) Upon input (PROCEED, sid , qid), retrieve (sign, sid , qid , hm, t, c) for qid and

abort if c 6= pwdok.

b) Compute the signature share σS ← HRSA(sid , qid ,H(r′, hm))dS mod N for
a random r′

r← {0, 1}τ .

c) Send (sid , qid , hm, t, r
′, σS) to D via FAuth.

Sign – Step 4. Device completes the signature:
a) Upon receiving (sid , qid , hm, t, r

′, σS) from S via FAuth, retrieve the signing
record (sign, sid , qid , r) for qid and setup record (setup, sid , k, dD, (N, e)).

b) Verify that t = H("MAC", qid , k, hm).

c) Complete the signature by computing σRSA ← (σS)dD mod N . Verify that
(σRSA)e = HRSA(sid , qid ,H(r′, hm)) mod N holds, i.e., that the server’s sig-
nature share was correct.

d) Set σ ← (σRSA, qid , r, r′) and end with output (SIGNATURE, sid , qid , σ).

Signature Verification. On input (VERIFY, sid ,m, σ, pk), parse pk = (N, e), σ =
(σRSA, qid , r, r′) and set M ← (sid , qid ,H(r′,H(r,m))). If σRSA is a valid RSA
signature on M , i.e., if 0 < σRSA < N and HRSA(M) = σeRSA mod N , output
(VERIFIED, sid ,m, σ, pk , true) and (VERIFIED, sid ,m, σ, pk , false) otherwise.

6 Security

The full proof of the following theorem is given in Appendix D, we give a sketch
below.

Theorem 3. The Pass2Sign scheme described in Section 5 securely implements
the ideal functionality FPass2Sign defined in Section 4 in the (FCA,FRO,FAuth)-
hybrid model with secure erasures if the RSA assumption associated to RSAGen
holds and (EKGen,Enc,Dec) is an IND-NC secure encryption scheme.

Using the IND-NC secure encryption scheme proposed in Section 3, which is
an extension of the Bellare-Rogaway CCA2 encryption scheme, and instantiated
with the RSA trapdoor permutation, we get the following corollary:

Corollary 1. The Pass2Sign scheme described in Section 5 and instantiated as
described above, securely implements the ideal functionality FPass2Sign defined in
Section 4 in the (FCA,FRO,FAuth)-hybrid model with secure erasures if the RSA
assumption associated with RSAGen holds.

Proof (Sketch). The proof of Theorem 3 is done by providing a simulator and a
sequence of games. The initial game is the real experiment and the final game
(Game 10) runs the simulator given only the information that is also available to
the adversary when interacting with the ideal functionality. We now give a rough
sketch of the game sequence, the detailed description as well as the description
of the simulator is given in Appendix D.

Game 1 through and Game 2 abort when collisions occur in random-oracle
outputs, or if the adversary “predicts” random-oracle outputs. Game 3 replaces
all ciphertexts sent by an honest device to an honest server with simulated
“dummy” ciphertexts. It uses the decryption simulation to decrypt ciphertexts
that were not sent by the honest device, and uses the key-leakage simulation to
obtain the secret key esk in case the server is corrupted.

In Game 4 and Game 5, the simulator aborts when a valid signature is
verified that did not originate from the device or the server, whichever is still
honest. Interestingly, the case for an honest device can be reduced from the
unforgeability of RSA-FDH, but for an honest server we have to reduce straight
from the RSA assumption (similar as in [7]).

The subsequent games are all about making the setup and signing protocol
simulations independent of the actual values of the passwords and messages being
signed. Game 6 and Game 7 make the setup and signing protocol simulations
independent of the actual value of the password and password attempts. When
the server is corrupt, instead of deriving hp and t from the device secret k and
the real passwords, the simulator uses random values. For h′p,i it either uses
H(qid , hp) or a random value, depending whether the password attempt used in
a signing request is correct or not. As long as the device is honest, this change
cannot be detected by the adversary as he doesn’t know k. When the device gets
corrupted too, and thus the adversary learns k, the simulator starts programming
the random oracle consistenly to the previously chosen hp and h′p,i whenever the

actual passwords pwd and pwd ′i are queried. In the final simulation with the
ideal functionality this is done with the help of the password guessing interface
that becomes available as soon as both, the device and the server, are corrupted.

If both entities are initially honest and the device gets corrupted first, the
simulation is different though. Then we keep hp, h

′
p,i unassigned and only fix

their values when the server gets corrupted too. This is sufficient as the device
never stores the hash values and sends them only in encrypted form to the server
(which are dummy ciphertexts since Game 3). However, as soon as the server
gets corrupted, the adversary learns the secret key of the encryption scheme and
thus all previous dummy communication between the device (sent by the simu-
lator when D was still honest) and the server must decrypt to the correct hash
values. Here we cannot assign random values to hp, h

′
p,i though. This stems from

the fact that the device got corrupted first, and thus the adversary knows the
device secret k and could have already computed hp or h′p,i for the correct pass-
word values pwd , pwd i. Thus, in order to ensure consistency, we check whether a
previously answered random oracle query contained an actual password pwd or
pwd ′i (when switching to the ideal world, this is done via the password guessing
interface). If such a query is found, we simply reuse the previously given ran-
dom oracle response for hp or h′p,i and assign random values otherwise. We then
use the keyleak-simulator of the non-committing encryption scheme to obtain a
key esk that decrypts the dummy ciphertexts from Game 3 to the just deter-
mined hash values. In fact, this case is the reason why we need non-committing
encryption, as in the ideal world the passwords pwd or pwd ′i are unknown to
the simulator (even when the device gets corrupted), and the password guessing
interface only becomes available when both entities got corrupted.

Game 8 and Game 9 make the signing process independent of the mes-
sage m, with an interesting technique that programs the relevant random-
oracle entries only when the signature is verified, not when it is created. In
Game 8, an honest device interacting with a corrupt server chooses random
values r and hm and, if the server behaves honestly, computes the signature as
σRSA = HRSA(sid , qid ,H(r′, hm))dSdD mod N , which it can compute because it
knows the keys dS and dD from the time they were generated. The simulator
stores the resulting signature σ = (σRSA, qid , r, r′) as valid for m in its records;
in the ideal world, the simulator would input (SIGNATURE, sid , qid , σ) to let
the functionality associate σ to m. When later a random-oracle query H(r,m)
comes in, the simulator looks up whether a signature σ was recorded with ran-
domness r, and if so, checks whether σ has been recorded as a valid signature for
m (using its own records, or using the VERIFY interface in the ideal world). If
so, then it uses the value hm used during the corresponding signing protocol as
the random-oracle response, otherwise it returns a random value. Game 9 acts
similarly when the device and server are both honest, but by letting the server
sign random h′m values, without knowing the corresponding hm. Only when a
query H(r′, hm) is made, h′m is assigned if a corresponding signature has been
recorded.

7 Implementation of Our Pass2Sign Scheme

In this section we give a short summary of our prototypical implementation
of the Pass2Sign scheme. A more detailed description is given in Appendix E.
We measured our protocol with three different RSA-moduli sizes, 1,024, 2,048
and 4,096Bit to account for different security requirements. The key size is used
for both the signing key and the trapdoor permutation in the non-committing
encryption scheme. To instantiate the random oracles K,G, and H we use SHA-
512 and prefix each call accordingly. The instantiation of the full-domain hash
HRSA is based on the construction given in [6], and uses rejection sampling
to uniformly map into Z∗N . The communication partners send messages using
standard TCP-Sockets.

Our implementation uses Java 8 without any optimization. Our server is a
laptop with a 2.7GHz processor and 16GB RAM, while the device is a Nexus 10
tablet with 1.7GHz, 2GB RAM and Android 5.1.1.

Table 1 depicts the average time for the setup and signing protocol, split
between the device and server part, and based on measurements of 100 inde-
pendent protocol runs. The figures do not include network latencies though, as
they strongly depend on the actual location setting. However, assuming a round-
trip time takes 100ms, a full signing protocol with 2,048Bit keys then requires
roughly 250ms in total.

Setup Signing
Key Size 1,024 Bit 2,048 Bit 4,096 Bit 1,024 Bit 2,048 Bit 4,096Bit

Device
Median 648.11 3′335.34 14′343.46 19.08 79.83 482.60

Average 855.58 3′646.27 16′202.58 19.79 83.40 574.41

Server
Median 14.32 63.96 388.11 11.76 64.53 456.38

Average 15.20 65.69 393.27 12.31 65.50 466.73

Table 1. Overview of our measurements. All values are in ms.

8 Non-Blind Signatures

Our Pass2Sign scheme guarantees message blindness towards the server, meaning
that the server does not learn the message the device wishes to be signed. This
may not always be required or wanted though, e.g., if the message is public
or jointly determined or if the server should have control over the messages
being signed (for instance because it should also apply throttling based on the
message). We therefore sketch in this section a variant Pass2Sign∗ of our scheme
that does not include message blindness and comes with the additional benefit
that the signing protocol is even simpler and verification requires less message
pre-processing.

The Ideal Functionality. The ideal functionality FPass2Sign∗ can be obtained from
the one for Pass2Sign by simply including the message m in the output to the
server. That is, when the server learns about a signature request, we augment
the output to contain the message m provided by the device: in the <4.Sign

Delivery> interface, the server S now receives (SIGNREQ, sid , qid , status,m).

Note that so far the message still remains confidential between D and S,
disregarding the length the message. If the message is supposed to be entirely
public, then m must also be included in the output (SIGNREQ, sid , qid ,D,m) to
the adversary A in the <3.Sign Request> interface.

The Protocol. We now sketch how our Pass2Sign realization can be modified
to one that realizes FPass2Sign∗ with entirely public messages. First note that
only the signing protocol needs to be changed. In a nutshell, one simply drops
all its steps that aim at providing message blindness, such as the hashing of
the message including r and r′. More precisely, when requesting a signature,
the device drops the blinding Step 1b) where hm ← H(r,m) is computed for a
random r, and the “MAC” Step 1d) which aims at ensuring message consistency
without having to store m on the device. Instead, the device now simply keeps
the message in its sign record. Depending on whether one aims at the confidential
or public message setting, the message is sent either encrypted or in plain to S.
For the latter, one has to ensure that the adversary cannot tamper with the
message during delivery, and thus we would have to include m in the label of
the ciphertext. That is, for the public message setting, the device sends to S the
tuple (sid , qid , C ′,m) with C ′ becoming C ′

r← Enc(epk , h′p, (sid , qid ,m)).

The changes to the server’s computation are similar: in Step 3b) the server
drops its randomness r′ and double-hashing contribution and simply signs the
(slightly augmented) message (sid , qid ,m) based on the received message m. The
server then returns (sid , qid , σS) to the device.

Finally, in Step 4c), where the device completes the signature to σRSA, the
verification of σRSA is adapted accordingly and, in Step 4d), the full signature is
set to σ = (σRSA, qid). Verification of a signature σ on message m is simplified
to a standard RSA-FDH verification of σRSA for message M ← (sid , qid ,m).

It is easy to see that the proof of the simplified non-blind scheme Pass2Sign∗

can be derived with minor modifications from the proof of our Pass2Sign scheme.
Roughly, we have to adapt the games for the reduction to the RSA assumption,
and drop all simulation that stems from the message blinding, such as the sim-
ulation of the tags t or the “late-programming” of the random oracle upon a
signature verification request (as the messages are now known to the simulator).

9 Conclusion

We have introduced a protocol for signing messages with the help of a device and
a server. To authenticate towards the server, the user has to enter a password on
his device. If the device gets stolen, an adversary is limited to online password
guessing attacks, which can be throttled by the server. Neither the device nor

the server are required to be tamper-resistant in any form, yet our protocol offers
comparable security to trusted hardware, but without its inconveniences.

The UC-formulation guarantees that our protocol remains secure even in ar-
bitrarily chosen contexts. Our protocol is secure against adaptive corruptions,
which properly models our main threat where the device gets lost or stolen. Our
model of corruption is even stronger than the existing standard: the simulator
does not learn any previous inputs. The ideal functionality also provides a re-
alistic way how password guesses are handled. Namely, even if both the device
and the server are corrupted, the adversary does not immediately learn the pass-
words, but can only mount an offline attack. Thus, if strong passwords are used,
the adversary might still not be able to guess them, despite having corrupted
both entities.

The protocol is round-optimal and very efficient, as it only requires few ran-
dom oracle calls and three full-size modular exponentiations for each signature
generation. Furthermore, we sketched how to lift the blindness property from
our functionality and protocol, yielding an even more efficient scheme.

Possible extensions include achieving full blindness with unlinkability of the
resulting signature, an instantiation in the standard model, and extensions to
more than one server.

References

1. J. Algesheimer, J. Camenisch, and V. Shoup. Efficient computation modulo a
shared secret with application to the generation of shared safe-prime products. In
CRYPTO 2002, pages 417–432, 2002.

2. J. F. Almansa, I. Damg̊ard, and J. B. Nielsen. Simplified threshold RSA with
adaptive and proactive security. In EUROCRYPT 2006, pages 593–611, 2006.

3. A. Bagherzandi, S. Jarecki, N. Saxena, and Y. Lu. Password-protected secret
sharing. In CCS 2011, pages 433–444, 2011.

4. D. Beaver and S. Haber. Cryptographic protocols provably secure against dynamic
adversaries. In EUROCRYPT 1992, pages 307–323, 1992.

5. M. Bellare, C. Namprempre, D. Pointcheval, and M. Semanko. The one-more-rsa-
inversion problems and the security of chaum’s blind signature scheme. Journal of
Cryptology, 16(3):185–215, 2003.

6. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In CCS 1993, pages 62–73, 1993.

7. M. Bellare and R. S. Sandhu. The security of practical two-party RSA signature
schemes. IACR ePrint, 2001/060, 2001.

8. A. Boldyreva. Threshold signatures, multisignatures and blind signatures based on
the gap-diffie-hellman-group signature scheme. In PKC 2003, pages 31–46, 2003.

9. D. Boneh, X. Ding, G. Tsudik, and C.-M. Wong. A method for fast revocation of
public key certificates and security capabilities. In USENIX 2001, 2001.

10. C. Boyd. Digital multisignatures. In Cryptography and Coding 1989, pages 241–
246, 1989.

11. J. Camenisch, R. R. Enderlein, and G. Neven. Two-server password-authenticated
secret sharing uc-secure against transient corruptions. IACR ePrint, 2015/006,
2015.

12. J. Camenisch, R. R. Enderlein, and V. Shoup. Practical and employable protocols
for uc-secure circuit evaluation over Zn. In ESORICS 2013, pages 19–37, 2013.

13. R. Canetti. Universally composable signature, certification, and authentication. In
CSFW 2004, pages 219–233, 2004.

14. R. Canetti, S. Halevi, J. Katz, Y. Lindell, and P. D. MacKenzie. Universally
composable password-based key exchange. In EUROCRYPT 2005, pages 404–421,
2005.

15. Ran Canetti. Universally composable security: A new paradigm for cryp-
tographic protocols. Cryptology ePrint Archive, Report 2000/067, 2000.
http://eprint.iacr.org/.

16. J.-S. Coron. On the exact security of full domain hash. In CRYPTO 2000, pages
229–235, 2000.

17. I. Damg̊ard and G. L. Mikkelsen. On the theory and practice of personal digital
signatures. In PKC 2009, pages 277–296, 2009.

18. Y. Desmedt and Y. Frankel. Threshold cryptosystems. In CRYPTO 1989, pages
307–315, 1989.

19. S. Fehr, D. Hofheinz, E. Kiltz, and H. Wee. Encryption schemes secure against
chosen-ciphertext selective opening attacks. In EUROCRYPT 2010, pages 381–
402, 2010.

20. M. Fischlin. Round-optimal composable blind signatures in the common reference
string model. In CRYPTO 2006, pages 60–77, 2006.

21. R. Ganesan. Yaksha: augmenting kerberos with pkc. In NDSS 1995, pages 132–143,
1995.

22. R. Gennaro, T. Rabin, S. Jarecki, and H. Krawczyk. Robust and efficient sharing
of RSA functions. Journal of Cryptology, 13(2):273–300, 2000.

23. K. Gjøsteen. Partially blind password-based signatures using elliptic curves. IACR
ePrint, 2013/472, 2013.

24. K. Gjøsteen and Ø. Thuen. Password-based signatures. In EuroPKI 2011, pages
17–33, 2011.

25. J. M. Gosney. Password cracking HPC. Passwordsˆ12 Conference, 2012.
26. C. Hazay, G. L. Mikkelsen, T. Rabin, and T. Toft. Efficient rsa key generation and

threshold paillier in the two-party setting. In CT-RSA 2012, pages 313–331, 2012.
27. C. Hazay, A. Patra, and B. Warinschi. Selective opening security for receivers.

IACR ePrint, 2015/860, 2015.
28. Y.-Z. He, C.-K. Wu, and D.-G. Feng. Server-aided digital signature protocol based

on password. In CCST 2005, pages 89–92, 2005.
29. D. Hofheinz and J. Müller-Quade. Universally composable commitments using

random oracles. In TCC 2004, pages 58–76, 2004.
30. A. Kiayias and H.-S. Zhou. Equivocal blind signatures and adaptive UC-security.

In TCC 2008, pages 340–355, 2008.
31. O. Kömmerling and M. G. Kuhn. Design principles for tamper-resistant smartcard

processors. In WOST 1999, 1999.
32. P. D. MacKenzie and M. K. Reiter. Networked cryptographic devices resilient to

capture. Int. J. Inf. Sec., 2(1):1–20, 2003.
33. M. Mannan and P. C. van Oorschot. Using a personal device to strengthen pass-

word authentication from an untrusted computer. In FC 2007, pages 88–103, 2007.
34. M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen

ciphertext attacks. In STOC 1990, pages 427–437, 1990.
35. J. B. Nielsen. Separating random oracle proofs from complexity theoretic proofs:

The non-committing encryption case. In CRYPTO 2002, pages 111–126, 2002.
36. T. Rabin. A simplified approach to threshold and proactive RSA. In

CRYPTO 1998, pages 89–104, 1998.

37. M. Venkitasubramaniam. On adaptively secure protocols. In SCN 2014, pages
455–475, 2014.

38. S. Xu and R. S. Sandhu. Two efficient and provably secure schemes for server-
assisted threshold signatures. In CT-RSA 2003, pages 355–372, 2003.

A Functionalities

Here, we formally introduce the formal UC-definitions for the random oracle
functionality FD→RRO (Figure 6), the certification authority FCA (Figure 7) and
the authenticated channel functionality FAuth (Figure 8).

1. Query. Upon input (QUERY, sid ,m), m ∈ D, from a party P do:

– If there is a tuple (m, ĥ) ∈ L for some ĥ, let h← ĥ.

– Else, draw ĥ
r←R, add (m, ĥ) to L, and set h← ĥ.

– Output (RESPONSE, sid ,m, h) to P.

Fig. 6. Random Oracle Functionality FD→RRO , where L is an initially empty list.

1. Registration. Upon input (REGISTER, sid , v) from a party P:

– Send (REGISTER, sid , v) to A. Upon receiving ok from A, and if sid = P, and
this is the first request from P, record (sid , v).

2. Retrieve. Upon receiving a message (RETRIEVE, sid) from a party P ′:
– Send (RETRIEVE, sid ,P ′) to A. Upon receiving ok from A:

• If a record (sid , v) exists, output (sid , v) to P ′.
• Else, output (sid ,⊥) to P ′.

Fig. 7. Certificate Authority Functionality FCA.

1. Send. Upon input (SEND, sid ,S,R,m) from a party S:

– Check that sid = (S,R, sid ′).

– Send public delayed output (SEND, sid ,S,m) to R, if R has not received any
output yet.

2. Corrupt. Upon receiving a message (CORRUPT, sid ,m′) from A:

– Check that sid = (S,R, sid ′).

– If S is not corrupt, ignore.

– Output (SEND, sid ,S,m′) to R, if R has not received any output yet.

Fig. 8. Authenticated Channel Functionality FAuth.

Experiment ExpIND−CCA2
ENC,A (τ):

(epk , esk)
r← EKGen(1τ)

b
r← {0, 1}

((m0,m1), `, stateA)
r← AO

H(·),ODec(·,·)
(epk)

where ODec(·,·) on input (Ci, `i):
return m′i ← Dec(esk , Ci, `i)

where OH(·) on input qj :

return hj
r← H(qj)

If |m0| 6= |m1| ∨m0 /∈M∨m1 /∈M:
C ← ⊥

Else:

C
r← Enc(epk ,mb, `)

b∗
r← AO

H(·),ODec′(·,·)
(stateA, C)

where ODec′(·,·) behaves as ODec(·,·),
but returns ⊥ if (C, `) is queried.

return b∗ = b

Fig. 9. Labelled IND-CCA2 for messages with arbitrary length.

B Proof of Theorem 1 (IND-NC =⇒ IND-CCA2)

In this section we provide the proof of Theorem 1 that our IND-NC security as
specified in Definition 1 implies IND-CCA2 security. For the sake of completeness
we first recall the notion of IND-CCA2 security and give our proof afterwards.

Definition 2 (IND-CCA2 security [34]). An encryption scheme ENC =
(EKGen,Enc,Dec) for arbitrary length messages with labels is IND-CCA2-secure,
if for all PPT adversaries A, |Pr[ExpIND-CCA2

ENC,A (τ) = 1] − 1/2| ≤ ε(τ) for some
negligible function ε and the experiment given in Figure 9.

Proof. Intuitively, the proof formalizes the following idea: if an adversary can
decide which message a given ciphertext contains, then it can decide whether a
given ciphertext contains any information at all.

Assume an (efficient) adversary A that guesses the bit b in the IND-CCA2
game with probability at least 1

2 + ε. We can then construct an (efficient) ad-
versary B such that the probability that it outputs 1 in the two experiments
IND-NC-real and IND-NC-ideal differs at least by ε. The proof is straightforward.
Essentially, the reduction feeds the ciphertexts to A and if A guesses correctly,
then it must be the real experiments as the ciphertexts in the ideal experiments
are unrelated to the challenge message. More precisely, the reduction is as fol-
lows. Initially, B receives a public key epk of the encryption scheme, oracle access
to Enc, Dec, and a random oracle H. Thus, B runs A on input epk . Whenever A
requests access to its decryption oracle, B forwards A’s query to its own oracle,
and returns the unmodified answer to A. When eventually A outputs the chal-
lenge messages ((m0,m1), `, stateA), B checks that |m0| = |m1|, and that both

m0 ∈M and m1 ∈M. If any checks fail, B sets c← ⊥. Else, B picks a random
bit b ∈ {0, 1} and calls its own encryption oracle: c← Enc(mb, `). B then passes
(stateA, c) to A. If now (c, `) is queried to the decryption oracle, B responds
with ⊥. For every other query, B uses its own decryption oracle, and forwards
the answer to A. Eventually, A outputs its guess b∗. B outputs 1 if b∗ = b, and 0
otherwise. Let us analyze the probability that B outputs 1 in both experiments.

1. If B is run in the experiment IND-NC-real, then clearly, B was playing the IND-
CCA2 game withA, using the random bit b. Hence, we have Pr[ExpIND-NC-real

NCE,B =

1] = Pr[ExpIND-CCA2
NCE,A = b′] = 1

2 + ε.

2. If B run in experiments IND-NC-ideal, then the challenge ciphertext that B fed
to A was unrelated to mb, i.e., the answer b∗ of A is information-theoretically
independent of b and therefore Pr[ExpIND-NC-ideal

NCE,B = 1] = 1
2 follows.

So, the difference between these two probabilities is at least ε.

C Proof of Theorem 2 (IND-NC Security of
BR-Encryption)

This section is devoted to prove Theorem 2, i.e., showing that the modified
Bellare-Rogaway encryption as described in Section 3 achieves our notion of
IND-NC security in the random-oracle model.

Proof. The proof is related to the one given by Nielsen [35] for his construction;
we also reduce the security of our construction to the one-wayness of the un-
derlying trapdoor permutation. For the sake of readability, we first describe our
simulator SIMNCE, and then prove via a sequence of games that our scheme with
the given simulator is IND-NC secure, as required by Definition 1. The simulator
processes its tasks as follows.

Key Generation. On input of (publickey, 1τ), SIMNCE generates (f, f−1, Σ)
r←

TFGenf(1
τ). It stores esk = f−1, and returns (f,Σ) as epk .

Encryption. On input of (encrypt, k, `), SIMNCE draws r
r← Σ. It also saves the

randomness r for further usage. Namely, if the same r was drawn before, the
simulator aborts. Let l ← |ec(1k)|/τ .1 Set C1 ← f(r), Ci2

r← {0, 1}τ , for all
0 < i ≤ l, and C3

r← {0, 1}τ . SIMNCE returns C ← (C1, (C
1
2 , C

2
2 , . . . , C

l
2), C3).

RO Queries. With the input of (roquery, q) both random oracles G and K are
addressed, i.e., we assume that q is prefixed accordingly (e.g., q = (G, q′)).
If the input does not satisfy this format, SIMNCE ignores the inputs (in the
real world, the same behavior is enforced by definition). We use LG and LK
as a short-hand notation to refer to the lists of queries and answers to G and
K, respectively. If for any of the random-oracle queries the simulator draws
a response twice, it aborts.

Decryption. On input of (decrypt, (C1, (C
1
2 , C

2
2 , . . . , C

k
2), C3), `), SIMNCE checks

if a preimage (r′, k,m′, `) of C3 for K and images of (i, r′) for G and all

1 Note, this is always an integer.

1 < i ≤ k have been defined. Let (m′1,m
′
2, . . . ,m

′
k′) ← ec(m′). If k 6= k′,

the simulator returns ⊥. It then checks whether Ci2 = G(i, r′) ⊕m′i for all
1 < i ≤ k, and C1 = f(r′) holds. If so SIMNCE returns m′. Otherwise, the
simulator makes the missing oracle calls. If these make the ciphertext valid,
the simulator aborts, otherwise it returns ⊥.

Key Leakage. On input of (keyleak,Q), SIMNCE must program the ran-
dom oracles to ensure consistent decryption of ciphertexts as the ad-
versary will receive the secret key esk . That is, for all Cj = (C1,j ,

(C1
2,j , C

2
2,j , . . . , C

kj
2,j), C3,j), and mj ∈ Q, it programs G and K as follows:

Let (m1,j , . . .mkj ,j) ← ec(mj). SIMNCE adds ((i, (f−1(C1,j))),mi,j ⊕ Ci2,j)
for 0 < i ≤ kj to LG and adds ((f−1(C1,j), kj ,mj , `j), C3,j) to LK. Finally,
SIMNCE returns the secret key esk , i.e., f−1. If the programming fails at some
point, i.e., a preimage already exists, the simulator aborts.

We now show that the simulator is such that the adversary will output 1
in both experiments with essentially the same probability. We denote by Pi the
probability that A outputs 1 in Game i.

Game 0: In the first game, the real protocol is run with the adversary, i.e.,
IND-NC-real. Hence, we have Pr[ExpIND-NC-real

NCE,A (1τ) = 1] = P0.

Game 1: Next, each query (mi, `i) to OEnc and the corresponding answer Ci
is stored in a list LEnc. In particular, it is encrypted honestly, but ((mi, `i), Ci)
is stored in a list LEnc. Whenever the adversary queries the decryption oracle
with (Ci, `i), mi is returned, if an entry ((mi, `i), Ci) ∈ LEnc for some mi exists.
In other words, such ciphertexts are not decrypted anymore. This is only an
internal change, due to the perfect correctness of our scheme and thus we have∣∣P0 − P1

∣∣ = 0.

Game 2: We now start gradually building the simulator SIMNCE. In the first step,
the simulator SIMNCE receives control of the random oracles G and K. We abort,

if the simulator draws a response twice. This only happens with probability
q2h
2τ

due to the birthday paradox, where qh is the number of random oracle queries

made.
∣∣P1 − P2

∣∣ ≤ q2h
2τ follows.

Game 3: Next, the simulator SIMNCE generates the key pair. In particular,
on input of (publickey, 1τ), it generates (epk , esk)

r← EKGen(1τ), and returns
(epk , esk). This step is purely conceptional, so we have

∣∣P2 − P3

∣∣ = 0.

Game 4: Now, the encryption oracle OEnc is simulated by SIMNCE. In particu-
lar, on input of (encrypt,m, `) (the simulator at this point still receives the full
message m), the simulator draws r

r← Σ, calculates C
r← Enc(esk ,m, `; r), and

returns (r, C). Note, Σ is exponential in size. However, the simulator aborts, if
it draws a randomness ri a twice. This only happens with probability at most

q2

|Σ| due to the birthday paradox, where q is the number of queries made to Enc.

Hence, we have
∣∣P3 − P4

∣∣ ≤ q2

|Σ| .

Game 5: Next, the simulator SIMNCE takes over the decryption of cipher-texts.
On input of (decrypt, C, `), SIMNCE runs the decryption algorithms and returns
the results. This is only a conceptual change, so

∣∣P4 − P5

∣∣ = 0.

Game 6: The simulator SIMNCE now no longer returns esk directly after creation,
but only when it is queried with (keyleak, ·), which is sent once the adversary is
finished with its query phase. As esk is not required in the meantime, this is a
conceptional change only, thus

∣∣P5 − P6

∣∣ = 0.

Game 7: The simulator now always returns ⊥ whenever the adversary queries
the decryption oracle with a ciphertext C for which not all random oracle
calls have been made. In particular, the simulator checks whether a preimage
(r′, k,m, `) of C3 for K, and images of (i, r′) for G and all 1 < i ≤ k have been
defined and whether Ci2 = G(i, r′) ⊕mi for all 1 < i ≤ k and C1 = f(r′) holds,
while k = |ec(1k)|/τ must hold. If any of these checks fail, the simulator outputs
⊥. Note, the preimages are unique if they exist. Also, the simulator makes the
missing random oracle calls. If these turn the ciphertext into a valid one, the
simulator aborts. The adversary will only notice a difference to the Game 6 if
the latter happens, which is with probability at most qhqd

2τ , where qh is the num-
ber of random oracle queries made and qd denotes the number of calls to the
decryption oracle. Hence, we have

∣∣P6 − P7

∣∣ ≤ qhqd
2τ .

Game 8: We now gradually change the simulator’s input; instead of giving
SIMNCE the message m before it has to come up with an encryption C, the
challenger provides m after the adversary is done with its query phase, i.e.,
when the simulator receives (keyleak,Q). In particular, the simulator SIMNCE

only receives (encrypt, |m|, `) instead of (encrypt,m, `). Eventually, (keyleak,Q)
(containing the messages the cipher-texts should contain) is sent to SIMNCE,
which allows SIMNCE to program the random oracles accordingly. We prove that
this only affects the view of the adversary negligibly by a series of hybrids. Let
q be an upper bound of queries to the encryption oracle.

Hybrid 8.j: Up to encryption query j, 0 ≤ j ≤ q, SIMNCE is given
(encrypt, |m|, `) instead of (encrypt,m, `). So, Game 8.0 is identical to Game 7.
On inputs (encrypt,m, `), the simulator behaves as before. Now we describe how
the simulator SIMNCE proceeds on inputs (encrypt, |m|, `). It draws r

r← Σ as in
Enc and sets C1 ← f(r). Let l← |ec(1|m|)|/τ . For each 0 < i ≤ l, SIMNCE draws
Ci2

r← {0, 1}τ . Finally, it draws C3
r← {0, 1}τ and returns C ← (C1, C2, C3).

Note, the distributions of C are exactly the same as honest encryptions for the
same message length |m|.

Eventually, SIMNCE is queried (keyleak,Q) and thus receives the message m
corresponding to each (encrypt, |m|, `) call made earlier. To achieve consistent

decryption, the simulator now programs the random oracles K and G, such that
a decryption of each generated C (with the correct label `) returns the corre-
sponding m. Let (m1,m2, . . . ,mk) ← ec(m). SIMNCE adds ((i, r),mi ⊕ Ci2) for
each block mi, 0 < i ≤ k in m to LG . Additionally, it adds ((r, k,m, `), C3) to
LK. This programming may fail if one of these preimages already exists in LG
or LK. This is only possible if the adversary had already queried (r, k,m, `) to K
or (i, r) for some i, 0 < i ≤ k to G, as SIMNCE always draws fresh random coins.

Reduction: Assuming that the adversary can distinguish between Hybrid 8.j
and Hybrid 8.j + 1, we can turn the adversary A into an adversary B which
inverts a given element c, i.e., outputs f−1(c) with non-negligible probability.
To do so, adversary B receives c and the corresponding parameters Σ and f
from the trapdoor game. It embeds the challenge c for A as follows. It draws
a random index j

r← {1, 2, . . . , l} and then on the jth query to the encryption
oracle, C1 is not calculated from a honestly drawn r, but is set to the provided
challenge c, i.e., C1 ← c. Every other query is processed as in the prior game. In
particular, we can extract r = f−1(C1) from LG or LK resp., and can therefore
simulate the decryption oracle, if queried with a correctly computed ciphertext.
Note that other ciphertexts are already excluded. Hence, the embedding does
not change the view of the adversary. Assuming that we cannot program the
random oracles accordingly, i.e., the adversary notices a difference to the prior
game, then the adversary must have made a query (r′, k′,m′, `′) to the random
oracle K, such that c = C1 = f(r′), or a query (i, r′) for some i, 0 < i ≤ k, to G
for some C = (C1, C2, C3) returned by SIMNCE. Let the probability of this event
be εl. We can now derive that B can invert f with probability εl

l , which is non-
negligible, if εl is non-negligible. This is a contradiction to the assumption that
the element c cannot be inverted with noticeable probability.

∣∣P7−P8

∣∣ ≤∑q
i=0 εi

follows.2

Game 9: Finally, IND-NC-ideal is run with the simulator given in Game 8. This is
only an internal change: the adversary does not note any difference.

∣∣P8−P9

∣∣ = 0
follows.

As an upper bound, we can therefore derive
∣∣P0 − P9

∣∣ ≤ ∑9
i=1

∣∣Pi−1 − Pi∣∣,
i.e.,

∣∣Pr[ExpIND-NC-real
NCE,A (τ) = 1]− Pr[ExpIND-NC-ideal

NCE,A,SIMNCE
(τ) = 1]

∣∣ is negligible.

D Proof of Theorem 3 (Security of our Pass2Sign
Protocol)

We now prove that our Pass2Sign protocol described in Section 5 indeed satisfies
the ideal functionality FPass2Sign defined in Section 4.

D.1 Sequence of Games

Our proof consist of a sequence of games that a challenger runs with the real-
world adversary. In our final game we then make the transition to let the chal-

2 q is at most polynomial, therefore the given sum is also negligible.

lenger run internally the ideal functionality FPass2Sign and simulate all messages
based merely on the information it can obtain from FPass2Sign. We now describe
each game i and argue why the view of the environment does not significantly
change.

Game 0: In the first game, the challenger executes the real protocol for all
honest players, obtaining their inputs from, and passing the respective outputs
to the environment.

Game 1: Let TH be the table in which the simulator stores query-response pairs
(m,h) when simulating random-oracle queries toH. Recall that all random oracle
calls to H are implicitly prefixed with sid of the current account. Similarly, we
create a table TH per sid , but will omit the explicit handling of the sid here as
well. This game aborts whenever the adversary or the challenger cause a collision
in H or HRSA, or the adversary sends a “correctly predicted” hash value. A
“correctly predicted” value is some hash hp, h

′
p, hm that neither resulted from a

query to the random oracle nor was previously generated by the challenger, and
the adversary makes a random-oracle query that maps to this value only after
having sent the hash.

By the random choice of the response from {0, 1}τ , the adversary can distin-
guish this game hop only with negligible probability.

Game 2: From now on, the challenger creates additional internal records
for setup and signing. When setup is done by an honest device, it stores
(setup-sim, sid , k, hp, dS , dD, (N, e)), i.e., it also keeps the RSA key share dS of
the server. For an account created by a corrupt device with an honest server,
the challenger maintains (setup-sim, sid ,⊥k, hp, dS ,⊥dD , (N, e)).

Similarly, when an honest device starts a signing request, the challenger
initiates a record (sign-sim, sid , qid i, h

′
p,i, hm,i,mi, ti, ri,⊥r′ ,⊥σ). For a signing

session between a corrupt device and honest server, the challenger creates
(sign-sim, sid , qid i, h

′
p,i, hm,i,⊥m, ti,⊥r, r′,⊥σ). Both records will be completed

with the missing values as soon as they are generated or received by an honest
party.

Clearly, this is only an internal change and has no effect on the view of the
environment.

Game 3: In this game, we replace every non-committing encryption (via a series
of hybrids) that would be sent between two honest parties by a simulated cipher-
text. More precisely, we first deploy the simulator SIMNCE of the non-committing
encryption scheme in mode SIMNCE(publickey, 1τ) to obtain the public key epk
that the honest server registers with FCA. Then, whenever the honest device has
to create an encryption of m with label ` under epk we replace the real cipher-
text by C

r← SIMNCE(encrypt, |m|, `) where |m| denotes the message length. We
also internally maintain a list Q of tuples (C,m, `) mapping the real messages
to the “dummy” ciphertexts.

When an honest server receives such a simulated ciphertext, it does not
decrypt C but looks up the corresponding plaintext from its internal record, i.e.,
either setup-sim for ciphertexts received in setup and sign-sim for ciphertexts
received in the signing protocol. If the server receives a ciphertext/label pair
(C ′, `′) where (C ′, ·, `′) /∈ Q, i.e., that was not created by an honest device, we
run SIMNCE(decrypt, C ′, `′) instead of the decryption algorithm.

When the server eventually gets corrupted, we finally deploy
SIMNCE(keyleak,Q) to obtain the secret decryption key esk we have to
hand to the adversary.

This game hop is indistinguishable by the IND-NC security of the encryption
scheme (EKGen,Enc,Dec).

Game 4: Here, we abort if an honest party obtains an input
(VERIFY, sid ,m∗, σ∗, pk) for a public key pk of an honest device, but for
a signature σ∗ that the device has never produced. We show that receiving
such a forged signature in our protocol allows to construct an adversary B that
breaks the strong unforgeability of RSA-FDH signatures with non-negligible
probability. For the sake of simplicity, we use the same reduction for the case of
an honest and a corrupt server.

When B receives the challenge RSA public key pk = (N, e), we choose dS at
random from ZN , leave dD unassigned and normally compute the authentication
values for our protocol. Recall that the challenger also internally stores dS . For
each signing query mi, the honest device chooses random ri and hmi , gets hmi ←
H(ri,mi) from the random oracle, and sends hmi to the server. When it re-
ceives a response (sid , qid i, hm,i, ti, r

′
i, σS,i), B verifies that σS,i = HRSA(sid , qid i,

H(r′i, hmi))
dS and aborts otherwise. Then B sends Mi ← (sid , qid i,H(r′i, hmi))

to its RSA-signing oracle to obtain the signature σRSA,i. The device outputs
(SIGNATURE, sid , qid i, σi), where σi ← (σRSA,i, qid i, ri, r

′
i). We store each pro-

duced message/signature tuple (mi, σi) in a list LSign.

When B receives an input (VERIFY, sid ,m∗, σ∗, pk) such that (m∗, σ∗) /∈
LSign, it parses σ∗ as (σ∗RSA, qid∗, r∗, r′∗) and outputs (M∗, σ∗RSA) as forgery
with M∗ ← (sid , qid∗,H(r′∗,H(r∗,m∗))). The output is a valid RSA-FDH
forgery if the message/signature tuple (M∗, σ∗RSA) did not appear as an RSA
signing query/response before. Suppose for contradiction that it did appear
in a signing query by B, i.e., M∗ = (sid , qid∗,H(r′∗,H(r∗,m∗))) = Mi =
(sid , qid i,H(r′i,H(ri,mi))) for some query i that led to signature σ∗RSA. That
would mean that qid∗ = qid i and H(r′∗,H(r∗,m∗)) = H(r′i,H(ri,mi)). As we
excluded collisions on H in Game 1, the latter means that r′∗ = r′i, r

∗ = ri, and
m∗ = mi. This contradicts the fact that (m∗, σ∗) /∈ LSign.

Note that our simulation deviated from how the signing key dS for the server
was chosen. In the original scheme, dS is chosen from Z∗ϕ(N), whereas we selected

dS randomly from ZN , since the challenger only learns (N, e). We use Lemma
5.1 from [7] here where it was shown that Pr[dS ∈ Z∗ϕ(N)] >

8
435 ln |N | for RSA

modulus N and dS
r← ZN . Hence, we have chosen a “good” dS value with non-

negligible probability, in which case the simulation of our protocol was perfect.

Overall, this game hop is indistinguishable by the strong unforgeability of the
signature scheme (SKGenRSA,SignRSA,VerifyRSA).

Game 5: In this game we consider the setting where the server is honest and
the device is corrupt, but was honest during setup. Then, similar to the pre-
vious game, we will abort if we see a forged signature for the correspond-
ing key pk . That is, we abort when we see a valid signature (m∗, σ∗) where
σ∗ = (σ∗RSA, qid∗, r∗, r′∗) but the honest server never signed M∗ = (sid , qid∗, h′m)
where h′∗m = H(r′∗,H(r∗,m∗)) in the session qid∗, or when we see two different
valid message-signature pairs (m∗1, σ

∗
1) 6= (m∗2, σ

∗
2) that resulted from the same

signing protocol for M∗ = (sid , qid∗, h′m). In contrast to the previous game, we
cannot use the unforgeability of the RSA signature as underlying assumption,
though, as the honest server does not have “full” control of the final signature.
However, we can show that a forgery in our scheme allows to break the RSA
problem in the random-oracle model.

The latter case of two different message-signature pairs either requires the
adversary to find collisions in the random-oracle responses forH andHRSA, which
we excluded in Game 1, or to find two different values 0 < σ∗RSA,1 < σ∗RSA,2 < N
such that HRSA(M∗) ≡ σ∗RSA,1

e ≡ σ∗RSA,2
e mod N . If HRSA(M∗) ∈ Z∗N , then this

is impossible because RSA is a permutation on Z∗N . If HRSA(M∗) 6∈ Z∗N , then
gcd(N,HRSA(M∗)) > 1, so that B can factor N and solve the RSA problem.

For the former case of a (non-strong) forgery against our protocol, consider
algorithm B that, on input an RSA public key N, e and challenge y ∈ Z∗N ,
outputs x where xe ≡ y mod N with non-negligible probability. B chooses keys
dD

r← ZN and k
r← {0, 1}τ . When the device gets corrupted, B hands these values

to the adversary. When the adversary makes a random-oracle queryHRSA(Mi), B
chooses xi

r← Z∗N and responds xeiy mod N . When the honest server receives an
incoming signing request for message hash hmi , it chooses r′i

r← {0, 1}τ , σSi
r←

Z∗N , programs HRSA(sid , qid i,H(r′i, hmi)) = σedDSi mod N , adds (hmi , σ
dD
Si) to

LSign, and sends σSi back to the device. In case HRSA(sid , qid i,H(r′i, hmi)) had
been queried before, B aborts, but by the random choice of r′i, this happens with
probability at most qsqh

2τ , where qs and qh are the number of signing and random-
oracle queries made by the adversary, respectively. When B receives an input
(VERIFY, sid ,m∗, (σ∗RSA, qid∗, r∗, r′∗), pk) such that (H(r∗,m∗), σ∗) /∈ LSign, B
looks in its random-oracle responses to find x∗ such that HRSA(sid , qid∗,H(r′∗,
H(r∗,m∗))) = x∗ey mod N , then by the validity of the signature we have that
σ∗RSA

e ≡ x∗ey mod N , so B returns σ∗RSA/x
∗ mod N as the RSA inversion of y.

As in the previous game, we use Lemma 5.1 from [7] for a lower bound on the
probability that dD ∈ Z∗ϕ(N).

Game 6: We now make all values that would depend on the device secret k
independent of k, when they are generated by an honest device and are sent to
a corrupt server. More precisely, we change the way the authentication values
hp, h

′
p,i and the tags ti are computed. Namely, we choose hp

r← {0, 1}τ at setup,
and store the actual password pwd in an internal record (pwdsetup, sid , pwd).

For a sign request started by an honest device we derive h′p,i ← H(qid i, hp) if

the request was initiated for a password pwd ′i = pwd and set it to a random
value h′p,i

r← {0, 1}τ if the passwords did not match. We keep the created h′p,i
in the sign-sim record as before, and also create another record for the password
attempts as (pwdsign, sid , qid i, pwd ′i).

The computation of the tag ti ← H("MAC", qid i, k, hm,i) is replaced by ti
r←

{0, 1}τ , and ti is stored in sign-sim as before. We then also replace the verification
of the tag in Step 4 of the signing protocol by a simple look up whether the
received ti value is the same as in sign-sim.

If we receive a random oracle query of the form H(k, ·) or H("MAC", ·, k, ·)
for the secret key k that we have chosen and the device is still honest, we abort.
By the random choice of k

r← {0, 1}τ , and the fact that we just made all values
independent of k, the probability for such a query (and the resulting abort) is
negligible.

However, we change that behavior as soon as the device gets corrupted, as
then the adversary learns k and the above argument no longer holds. With the
help of our internal records, we can choose a fresh k at the moment the device
gets corrupted and ensure consistency with the previously chosen values hp, h

′
p,i

and ti as follows. For a query H(k, pwd) where a record (setup-sim, sid , k, hp,
dS , dD, (N, e)) for k and a record (pwdsetup, sid , pwd) for sid , pwd exists, we set
the random oracle response to be hp (taken from the setup-sim record). Simi-
larly, for a query H(qid i, h

∗
p) where ((k, pwd ′i), h

∗
p) ∈ TH, i.e., h∗p is the result

of a previous query (k, pwd ′i) and records (setup-sim, sid , k, hp, dS , dD, (N, e))
for k, and (sign-sim, sid , qid i, h

′
p,i, hm,i,mi, ti, ri, {r′i,⊥r′}, {σRSA,i,⊥σ}) and

(pwdsign, sid , qid i, pwd ′i) for sid , qid i, pwd ′i exists, we set the response to
H(qid i, h

∗
p) ← h′p,i (taken from sign-sim) and to a random value otherwise.

For queries H("MAC", qid i, k, hm,i) where a setup-sim record for k and a record
(sign-sim, sid , qid i, h

′
p,i, hm,i,mi, ti, ri, {r′i,⊥r′}, {σRSA,i,⊥σ}) for sid , qid i, hm,i

exists, we set the random oracle response to the stored ti and to a random
string otherwise.

Overall, this game hop is indistinguishable with overwhelming probability by
the random choice of k.

Game 7: We now make a similar change to the computation of hp and h′p,i, ti
for the setting where a setup or sign request is done between an honest de-
vice and honest server. However, here we leave all values hp and h′p,i, ti unas-
signed at the beginning and only create records (pwdsetup, sid , pwd) for setup
and (pwdsign, sid , qid i, pwd ′i) for each signing request.

When the honest server is supposed to output (SIGNREQ, sid , qid i, ci) where
ci indicates whether the password attempt was successful, it determines ci based
on the passwords stored in the pwdsign and pwdsetup records.

Then, if the server gets the ok to proceed and the password attempt was
correct, i.e., ci = pwdok we choose a random tag ti

r← {0, 1}τ and store it in
the sign-sim record. The honest server then proceeds normally. When the honest
device receives a message (sid , qid i, hm,i, ti, r

′
i, σS,i) from the honest server, it

only continues when it receives the same ti that is contained in the sign-sim
record.

The challenger then maintains incomplete records (setup-sim, sid ,
k,⊥hp , dS , dD, (N, e)) and (sign-sim, sid , qid i,⊥h′p , hm,i,mi, {ti,⊥t}, ri, {r′i,⊥r′},
{σRSA,i,⊥σ}) where ti is only assigned when the honest server sends its signature
share. This event might not occur though, e.g., because the signing request
never arrived or the environment didn’t gave the ok to proceed. Similarly, also
the list Q only contains incomplete entries (C ′, (⊥h′p ,⊥hm , {ti,⊥t}), (sid , qid i)).
We we will fully complete those tuples and finally assign values to hp and h′p,i
as soon as the server gets corrupted.

When the server gets corrupted, and the device is still honest, hp and ti are
chosen at random, whereas h′p,i is determined based on ci. That is, if ci = pwdok

then h′p,i ← H(qid i, hp) and h′p,i
r← {0, 1}τ otherwise. The rest of the simulation

for this setting is then equivalent to the previous game, where we already started
with a corrupt server. Thus, in the remainder of this game we will focus on the
setting where the device gets corrupted first.

If the device gets corrupted (and the server is still honest), the adversary
learns k and ri, and thus is now able to compute the hashes hp, h

′
p and tag ti

himself. However, it has not learned our choices for those values yet, since the
server is still honest. And in fact, we will still not assign any values for hp, h

′
p or

ti (for the open signing requests).

As in the game above, we abort if we receive a random oracle query of the
form H(k, ·) or H("MAC", ·, k, ·) where k is the secret device key and the device
is still honest. Again, as we have not used k in any computation so far, such a
query can only occur with negligible probability. Then, as soon as the device gets
corrupted and the adversary learns k, we do no longer abort for those queries.
The procedure to answer queries of the form H("MAC", qid i, k, hm,i) is the same
as in the game described above. Whereas for fresh queries of the form H(k, pwd)
or H(qid i, h

∗
p) that might be an attempt to (re)-compute hp, h

′
p we simply assign

random values.

If the device gets corrupted while the server is still honest, we
also change the way the server verifies whether the provided authen-
tication information for a new signing request is correct. For each
such signing request (sid , qid i, C

′
i) coming from a corrupted (but ini-

tially honest) device, the honest server first decrypts (h′p,i, hm,i, ti) ←
SIMNCE(decrypt, C ′i, (sid , qid i)) using the simulator of the non-committing en-
cryption scheme. Then, the challenger checks if the random oracle table TH
contains a preimage (qid i, hp) for h′p,i and a preimage (k, pwd) for the retrieved
hp and having the correct device key k as prefix (k is stored in setup-sim for
sid). If such a preimage exists, we create a record (pwdsign, sid , qid i, pwd ′i) with
pwd ′i ← pwd and verify the correctness of the password based on the pwdsign and
pwdsetup records. The rest of the signing protocol is handled as with a device
that was corrupt from the beginning.

When eventually also the server gets corrupted, the adversary will learn the
key esk to decrypt the communication towards the server and thus could now

check if we have chosen the “correct” hp, h
′
p values before. Thus, this is the

moment we finally determine those hashes. To this end, the challenger checks if
it already responded to random oracle queries H(k, pwd) or H(qid i, h

∗
p) where

((k, pwd ′i), h
∗
p) ∈ TH, for the passwords pwd and pwd ′i stored in the pwdsetup

and pwdsign records. If such queries are found, the challenger sets the value for
hp, h

′
p,i to be the random oracle answers it had given earlier. If no queries of

that form were made, it assigns random hash values. Similarly, the tags ti of
incomplete signature requests are either chosen at random or by reusing the
response for a query H("MAC", qid i, k, hm,i) the adversary has made earlier. The
challenger also updates its setup-sim and sign-sim records and the tuples in Q to
contain the determined values for hp, h

′
p,i, and ti and finally derives and outputs

the decryption key esk ← SIMNCE(randomness,Q).

Again, by the random choice of k
r← {0, 1}τ , the environment can distinguish

this game hop only with negligible probability.

Game 8: In this game, we modify the signing procedure when done between
an honest device and corrupt server. Roughly, the goal is to make the signature
somewhat independent of mi, in the sense that we do not use it in the protocol
simulation or in the sign-sim record, but we do register it in a signature record
at the end. The connection to the real message mi is only established when
the adversary tries to verify the signature and therefore makes a random oracle
query (ri,mi).

To this end, when an honest device wants to sign a message mi, we choose
ri, hm,i at random from {0, 1}τ and store all values except mi associated with
the jointly computed signature σi ← (σRSA,i, qid i, ri, r

′
i), where r′i was pro-

vided by the server. That is, the challenger then has a record (sign-sim, sid , qid i,
h′p,i, hm,i,⊥m, ti, ri, r′i, σRSA,i) for the signing process and another one for the
completed signature as (signature, sid , qid i,mi, σi).

If the device did not receive the server’s contribution (σS,i, r
′
i), the chal-

lenger only has a record (sign-sim, sid , qid i, h
′
p,i, hm,i,⊥m, ti, ri,⊥r′ ,⊥σ). How-

ever, it will fill in the missing r′i and the signature itself as soon as the device
gets corrupted. More precisely, the challenger chooses a random r′i and computes
σRSA,i ← HRSA(sid , qid i,H(r′i, hm,i))

dSdD using the knowledge of dD and dS as
the setup was done by an honest device. It then updates the sign-sim record
accordingly and also creates the corresponding signature record.

So far, we have made the signature independent of mi, as we have signed
a random hm,i value and did not program the random oracle to map (ri,mi)
to hm,i yet. The challenger then “fixes” this when the corresponding message
(ri,mi) is queried to H by the adversary using the sign-sim and signature records.

That is, whenever the challenger receives a random oracle query of the
form (ri,mi) it first checks whether it has a matching record (sign-sim, sid , qid i,
h′p,i, hm,i,⊥m, ti, ri,⊥r′ ,⊥σ) containing the same qid i, ri. If it has such a record
but r′i = σRSA,i = ⊥, the challenger aborts. Note that this case only occurs if
the server never provided its contribution and the device is still honest, which
in turn means the adversary did not learn ri so far but (at most) the random

value hm,i. Due to the choice of ri
r← {0, 1}τ , a query H(ri,mi) for the same ri

can only appear with negligible probability then.

If the sign-sim record was completed though (except of mi), and a signature
record (signature, sid , qid i,mi, σi) for the queried message mi and with σi =
(σRSA,i, qid i, ri, r

′
i) exists, the challenger responds by programming H(ri,mi) to

hm,i using the previously chosen hm,i value from the sign-sim record. When no
matching signature record exists, the challenger simply sets the random oracle
response to a random value.

Such a “just-in-time” programming of the random oracle is not possible if
a record ((ri,mi), h

∗) ∈ TH with h∗ 6= hm,i already exists, i.e., the adversary
had “predicted” the same ri in a random oracle query before the honest device
has randomly chosen ri from {0, 1}τ during a signing request. However, given
that the adversary makes at most qh queries to the random oracle and the honest
device participates in at most qs signing sessions, the adversary has an advantage
of at most qhqs

2τ to hit that event. Thus, the environment can distinguish that
game hop with negligible probability only.

Game 9: We now do a similar change as in the previous game but for the
setting where an honest device runs a signing protocol with an honest server.
The difference to the procedure above is that the device here only draws a
random ri, while hm,i gets chosen at the moment when the honest server creates
its signature share. (Recall that since Game 3 the honest device only sends a
simulated ciphertext to the server and Step 2 of the signing protocol is done
solely based on the internal record maintained by the challenger.)

Thus, after completing Step 1 of the signing protocol, the challenger only
maintains a record (sign-sim, sid , qid i,⊥h′p ,⊥hm ,⊥m,⊥t, ri,⊥r′ ,⊥σ) (the way h′p,i
and ti are computed was already changed in Game 7). When the server then
gets the ok to proceed and wants to create its signature share, it chooses a
random hm,i and does the rest according to the protocol. The challenger also
updates its record to (sign-sim, sid , qid i,⊥h′p , hm,i,⊥m, ti, ri, r

′
i,⊥σ) where ti is

determined as described in Game 7. If the honest device now receives a mes-
sage (sid , qid i, hm,i, ti, r

′
i, σS,i) from the honest server, it further completes the

sign-sim record to (sign-sim, sid , qid i,⊥h′p , hm,i,⊥m, ti, ri, r
′
i, σRSA,i) and also cre-

ates a signature record (signature, sid , qid i,mi, σi).

As in the game above, we use the completed sign-sim and signature records
to consistently answer random oracle queries (ri,mi), while we abort if such a
query is made but only an incomplete signing record exists and the device is still
honest.

Similar as in the game above, we then change that behavior when the device
gets corrupted and also complete the records of interrupted or discontinued
signing sessions. However, here we have to cope with the additional case that
the server might still be honest when the device got corrupted. Thus, we let the
completion and random-oracle handling depend on the status of the adaptive
corruption.

In any case, if the device gets corrupted, we have to provide the ri values
of all signing requests, including ongoing ones, to the adversary. That is, the
adversary now knows the randomness that was allegedly used to compute the
(possibly still unassigned) hm,i value. Thus, we complete the signing records of
interrupted signing sessions such that we can do the “just-in-time” random oracle
programming for queries (ri,mi) as in the previous game. However, if the server
is still honest we will complete only records of the form (sign-sim, sid , qid i,⊥h′p ,
hm,i,⊥m, ti, ri, r′i,⊥σ), i.e., where the honest server had already sent its signature
share. For those, the challenger computes the full signature and creates a record
(signature, sid , qid i,mi, σi).

In difference to the previous game that handled the setting of an (initially)
honest device and corrupt server, we here also respond to random oracle queries
(ri,mi) for which only a record (sign-sim, sid , qid i,⊥h′p ,⊥hm ,⊥m,⊥t, ri,⊥r′ ,⊥σ)
exist. If such a query occurs, the challenger responds with a random hm,i and
adds ((ri,mi), hmi) to TH. We will complete those rather empty sign-sim records
at the moment when both, the device and server, are corrupt.

That is, as soon as the server gets corrupted (too), the challenger com-
pletes those signatures, but by signing a random h′m,i and choosing a random
r′i. That is, h′m,i is not a “proper” random oracle response yet. The challenger
also updates its sign-sim record to include h′m,i, r

′
i, σRSA,i and creates a full signa-

ture record. Thus, while (signature, sid , qid i,mi, σi) is complete now, the record
(sign-sim, sid , qid i, h

′
p,i,⊥hm ,⊥m, ti, ri, r′i, σRSA,i) still misses the hm,i value. (The

way h′p,i is chosen is described in Game 7.)

The challenger then determines the “correct” value for hm,i by going through
all answered random oracle queries that have the form ((ri,mi), hm,i) ∈ TH.
For each such entry the challenger checks if a matching signature record
(signature, sid , qid i,mi, σi) exists, i.e., the record contains the same mi and
σi = (σRSA,i, qid i, ri, r

′
i) contains ri. If that is the case, the challenger now

fully completes the sign-sim record by including hm,i (taken from TH) and
mi (taken from signature). It also sets H(r′i, hm,i) ← h′m,i, i.e., it links hm,i
to the random hash value h′m,i it has signed. If there is no such matching
random oracle query ((ri,mi), hm,i) ∈ TH, the challenger chooses a random
hm,i

r← {0, 1}τ , sets H(r′i, hm,i) ← h′m,i and also updates its sign-sim record to
contain hm,i. Thus, all missing values hm,i get assigned as soon as the server
gets corrupted. The challenger then uses those sign-sim records to complete all
tuples (C ′, (h′p,i, hm,i, ti), (sid , qid i) for Q. Recall that the complete list of all

ciphertext/plaintext pairs is needed to get esk
r← SIMNCE(randomness,Q).

From now on, every new query H(ri,mi) is answered as in the previous game,
that is, by checking if a corresponding sign-sim record exists, in which case the
random oracle response is set to hm,i contained in sign-sim.

Again, such programming would fail if the adversary already queried H(ri, ·)
or H(r′i, ·) and the challenger has subsequently chosen the same ri, r

′
i values in

a signing protocol.

However, all ri, r
′
i are chosen at random from {0, 1}τ , i.e., such an event can

only occur with negligible probability. Thus, the environment can recognize this
game hop only with negligible probability too.

Game 10: In our final game we make the transition from letting the challenger
run the “real” protocol (w.r.t. Game 9) to letting him interact with the ideal
functionality FPass2Sign and simulate all messages based solely on the information
he can obtain from FPass2Sign. The description of this simulator is given in the
following section.

D.2 Simulator

We now complete the proof of Theorem 3 by describing how we construct a
simulator SIM such that for any environment E and adversary A that controls
a certain subset of the parties, the view of the environment in the real world,
when running the protocol (according to Game 9 from Section D.1) with the
adversary, is indistinguishable from its view in the ideal world where it interacts
with the ideal functionality and the simulator (which corresponds to the final
game from Section D.1).

We denote by “D”, “S” the simulated honest party D and S respectively in
the real world. The description of the simulator is given as follows: Section D.2.1
describes the setup procedure for the different combinations of honest and cor-
rupt parties. Analogously, Section D.2.2 describes the signing process for those
combinations. The simulation of the random oracle is then described in Sec-
tion D.2.3 and the handling of adaptive corruptions is given in Section D.2.4.
For simplicity, we refer to FPass2Sign as F from now on.

D.2.1 Simulation of the Setup Protocol

When the server is initially honest, “S” creates its public key of the non-
committing encryption scheme as epk

r← SIMNCE(publickey, 1τ) instead of using
the real key generation.

Setup – Step 1 (done by honest device “D”): The simulation starts when SIM
receives a message (SETUPREQ, sid ,) from F , and then depends whether the
account is created with an honest or corrupt server. In both cases, though,
k, (N, e), dS and dD are generated according to the real protocol.

Server is honest. When “D” is supposed to send an encryption of the secret
key share and its authentication information, it sends a simulated ciphertext
C

r← SIMNCE(encrypt, |N |+τ, (sid , (N, e))) instead. The simulator also inter-
nally stores the tuple (C, (dS ,⊥hp), (sid , (N, e))) in a list Q. It will determine
a value for hp as soon as the server gets corrupted. The simulator then cre-
ates an internal request record (setup-req-sim, sid , k,⊥hp , dS , dD, (N, e)). The
record will be transformed into an activated setup record when the request
arrives at the server.

Server is corrupt. Here the password hash hp is chosen at random and “D”
sends the correct ciphertext C and not a simulated one. The simulator then
maintains a full setup record (setup-sim, sid , k, hp, dS , dD, (N, e)).

Setup – Step 2 (done by honest server “S”): The simulation of an honest server
“S” starts when “S” receives (sid , (N, e), C) and “S” does not have an account
for sid yet. If the tuple (sid , (N, e), C) was created by an honest device, the
simulation continues with the first case, otherwise with the second case.

Request from honest device. If “S” receives the same simulated ciphertext
C that was sent by “D”, it does not decrypt the ciphertext but directly
responds by sending sid . The simulator also stores an activated setup
record as (setup-sim, sid , k,⊥hp , dS , dD, (N, e)), using the information from
setup-req-sim.

Request from corrupt device. Here the server “decrypts” the ciphertext C with
label (sid, (N, e)) using the simulator of the non-committing encryption
scheme as (dS , hp)

r← SIMNCE(decrypt, C, (sid, (N, e))) and stores the re-
ceived information in an activated setup record as (setup-sim, sid ,⊥k, hp,
dS ,⊥dD , (N, e)).
In a very special case the simulator might already have a different request
record (setup-req-sim, sid , k′,⊥hp , d ′S , d ′D, (N ′, e′)) for the same sid . This can
happen if the request was initiated by an honest device, but never reached the
honest server. If the adversary then corrupts the device, it can “reuse” the
same sid from the honestly started setup request, but replace all other infor-
mation. If the simulator notices such a replacement, it sends (KEYGEN, sid ,
1, (N, e)) to F which reflects the intrusion of the adversary and overwrites
the initial password of the honest device in the ideal world by a dummy
password “1”.
If SIM does not have a setup-req-sim record for sid yet, it sends
(SETUPREQ, sid , 1) to F and subsequently inputs (KEYGEN, sid ,⊥, (N, e))
to F .
Note that SIM uses “1” as the password of the corrupted device when cre-
ating, or overwriting the account in F and not the preimage of hp, as such
a preimage does not necessarily exist yet. For the further simulation this is
sufficient though, as we only have to ensure that we invoke F either with
the correct password (i.e., again with “1”) or a wrong one (e.g., with “0”).

Setup – Step 3 (done by honest device “D”): When “D” outputs
(SETUP, sid , (N, e)), the simulator registers the public key in the functionality
by sending (KEYGEN, sid ,⊥, (N, e)) to F , which will also deliver the message
(SETUP, sid , (N, e)) to the honest device in the ideal world.

D.2.2 Simulation of the Signing Protocol

Sign – Step 1 (done by honest device “D”): When SIM receives a message
(SIGNREQ, sid , qid) from F , it starts the simulation of “D” which now has to

initiate a signing protocol in the real world, but without knowing m or pwd ′.
Again, the simulation branches depending on whether “D” interacts with an
honest or corrupt server.

Server is honest. Here “D”, instead of sending the real ciphertext C ′ to “S”,
sends a simulated ciphertext C ′

r← SIMNCE(encrypt, 3τ, (sid , qid)) using the
simulator of the non-committing encryption scheme. At this point, the sim-
ulator does not know the entire corresponding plaintext. Namely, it does not
know hm, t yet and also does not have enough information to “correctly”
determine h′p. Thus, SIM stores the incomplete ciphertext/plaintext tuple
(C ′, (⊥h′p ,⊥hm ,⊥t), (sid , qid)) in Q.
The device should also have created an internal signing record. There-
fore, “D” chooses a random r

r← {0, 1}τ and stores it as (sign, sid , qid , r)
and also initiates a signature request record (sign-req-sim, sid , qid ,⊥h′p ,⊥hm ,
⊥m,⊥t, r,⊥r′ ,⊥σ) that will be used for a consistent simulation. Similar as
in setup, the request record will become a “real” sign record as soon as the
request arrives at the honest server.

Server is corrupt. In this case, the simulator continues by send-
ing (DELIVER, sid , qid ,⊥,⊥) to F in order to learn whether the
submitted password was correct. That is, when SIM then receives
(SIGNREQ, sid , qid , status) from F with status = pwdok it retrieves
its setup record (setup-sim, sid , k, hp, dS , dD, (N, e)) for sid and computes
h′p ← H(qid , hp). If SIM learns that the password did not match, i.e.,

status = pwdwrong, the simulator chooses h′p
r← {0, 1}τ at random. Re-

call that SIM does not know the actual message that should be signed,
but here the device has to send a correctly computed ciphertext C ′

r←
Enc(epk , (h′p, hm, t), (sid , qid)) to S. Thus, in addition to r, “D” also chooses

random hm
r← {0, 1}τ and t

r← {0, 1}τ . All values r, hm, h
′
p, t are kept in

an internal record (sign-sim, sid , qid , h′p, hm,⊥m, t, r,⊥r′ ,⊥σ). The simulated
device “D” then sends the message (sid , qid , C ′) to S.

Sign – Step 2 (done by honest server “S”): The simulation of an honest server
starts when “S” receives a message (sid , qid , C ′), and then branches depending
on whether the message was sent by an honest device or corrupt device. That
is, even if the device got corrupted in the meantime, but the adversary has not
replaced the initially sent message of “D”, the first case applies.

Request from honest device. If (sid , qid , C ′) was sent by an honest device,
“S” does not decrypt C ′ but directly sends (DELIVER, sid , qid ,⊥,⊥) to
F , triggering the output to S in the ideal world. The simulator also re-
flects the arrived request by storing a record (sign-sim, sid , qid ,⊥h′p ,⊥hm ,
⊥m,⊥t, r,⊥r′ ,⊥σ) using the information form sign-req-sim.

Request from corrupt device. When a request came from a corrupt device, we
must further distinguish whether or not it replaces a pending sign request
that was initiated from the device when it was still honest.
If it replaces another request, the simulator already maintains a sign-req-sim
record for the same qid . The simulator then first decrypt C ′ with the

help of the simulator of the non-committing encryption scheme and obtains
(h′p, hm, t)

r← SIMNCE(decrypt, C ′, (sid , qid)). The simulator must now reflect
the replacement of the sign request towards the ideal functionality too. That
is, it must determine pwd∗ and m∗ which should replace the initial password
and message. To determine the message, the simulator uses its maintained
random-oracle table TH to look up the preimage (r,m∗) for hm. If no preim-
age of the form (r,m∗) exists, SIM sets m∗ ← ⊥, which it will solely use
towards the ideal functionality. Note, that all calls to H are also implicitly
prefixed with the sid of the current session/account. That is, the adversary
cannot reuse a dummy hm that was chosen at random in another sid -session
by an honest device to obtain a valid signature on the unknown message.
The simulator proceeds similarly to obtain the adversaries password attempt:
SIM first checks if the random oracle table TH contains a preimage (qid , hp)
for h′p and a preimage (k, pwd∗) for the retrieved hp and with the device key
k as prefix (which is stored in setup-sim for sid). If such a proper preimage
was found, SIM uses the retrieved pwd∗ or sets pwd∗

r← {0, 1}τ to a random
value otherwise, which will mimic a signature request for a wrong password.
Finally, it sends (DELIVER, sid , qid , pwd∗,m∗) to F which triggers the out-
put of (SIGNREQ, sid , qid , status) to the honest server in the ideal world. The
honest server also maintains a record (sign, sid , qid , hm, t, c) for the signing
request, where c ← pwdwrong if no proper pwd∗ was found in the random
oracle, and c← ⊥ otherwise (as SIM doesn’t know yet whether the password
was correct or wrong)
For the case where the request was fully initiated from a corrupt device, the
simulator uses the same strategy as above to decrypt (h′p, hm, t) and deter-
mine the message m. However, the password attempt is derived differently as
here the server maintains a complete setup record (setup, sid , hp, dS , (N, e))
for sid . Thus, “S” can use the stored value hp to normally verify whether
H(qid , hp) = h′p. If that is the case, SIM sets pwd ′ ← 1 and pwd ′ ← 0 other-

wise, where pwd ′ denotes the password that the simulator will use towards
the ideal functionality (recall that we set pwd ← 1 in F for an account gener-
ated by the simulator). The simulator then initiates a signing session in F by
sending (SIGNREQ, sid , qid , pwd ′,m) followed by (DELIVER, sid , qid ,⊥,⊥).
Here, the honest server also maintains a full record (sign, sid , qid , hm, t, c)
for the signing request.
In both cases, the honest server also creates activated sign records now. For
values hm where a proper preimage (r,m) in TH existed, SIM stores a sign
record (sign-sim, sid , qid , h′p, hm,m, t, r,⊥r′ ,⊥σ). That is, here SIM knows the
message m that it is supposed to sign. If no preimage of the form (r,m)
existed, the simulator only creates a record (sign-sim, sid , qid , h′p, hm,⊥m, t,
⊥r,⊥r′ ,⊥σ).

Sign – Step 3 (done by honest server “S”): When SIM receives a message
(PROCEED, sid , qid) from F it knows that the password pwd ′ provided by the
device was correct and the honest server in the ideal world approves the signing
request. Thus, “S” acts accordingly and creates its signature contribution σS .

Depending on whether “S” has received the signing request from an honest or
corrupt device, the simulator might not have chosen a value for hm, t yet, and
thus the simulation again branches:

Request from honest device. Here, “S” only received a dummy ciphertext C ′

in the previous step, and the simulator has not assigned a value to hm, t
or h′p yet. Thus, “S” now chooses hm

r← {0, 1}τ and r′
r← {0, 1}τ and

uses the secret key dS stored in the setup-sim record for sid to compute
σS ← HRSA(sid , qid ,H(r′, hm))dS . The simulator also draws t

r← {0, 1}τ and
updates its sign-sim record to (sign-sim, sid , qid ,⊥h′p , hm,⊥m, t, r, r

′,⊥σ).
The newly created information is also included in the list Q by updat-
ing the tuple with label (sid , qid) to contain the almost full plaintext
(⊥hp , hm, t). Recall that h′p,i is only assigned as soon as the server gets
corrupted, as described in Game 7. The server now also maintains a full
record (sign, sid , qid , hm, t, c) with c ← pwdok for the signing request. “S”
then sends (sid , qid , hm, t, r

′, σS) to “D”, if the device is still honest, or to
D if it got corrupted in the meantime.

Request from corrupt device. Here, “S” looks up its record
(sign-sim, sid , qid , h′p, hm, {m,⊥m}, t, {r,⊥r},⊥r′ ,⊥σ) and normally com-
putes its signature share σS for the stored hm. In that process, “S” chooses
a random r′

r← {0, 1}τ which is then included in the sign-sim record. Finally,
“S” sends (sid , qid , hm, t, r

′, σS) to D. The honest server also updates its
state record to (sign, sid , qid , hm, t, c) setting c← pwdok.
Here, SIM now maintains a signature record of the form (sign-sim, sid , qid , h′p,
hm, {m,⊥m}, t, {r,⊥r}, r′,⊥σ) That is, SIM knows (for “well-formed” hm)
the message m it has provided its signature share for, but not the created
signature σ. In particular, also the ideal functionality F has not stored any
signature for m yet. However, we can provide the missing signature right
on time when the environment tries to verify the signature, as described in
Section D.2.3. Note that for non “well-formed” hashes hm we have initiated a
signature request for dummy message m = ⊥ towards the ideal functionality.
However, such a request will never lead to a signature in F due to the
collisision-resistance provided by the random oracle.

Sign – Step 4 (done by honest device “D”): When “D” receives a message
(sid , qid , hm, t, r

′, σS), it only continues if the received value t is the same as
stored in (sign-sim, sid , qid , h′p, hm,⊥m, t, r, r′,⊥σ). It then completes the signa-
ture to σRSA using the locally stored dD value. Eventually, “D” ends with out-
put (SIGNATURE, sid , qid , σ), upon which SIM sends (SIGNATURE, sid , qid , σ)
to F and also stores σRSA in its internal sign-sim record. Thus, the simula-
tor has then “blindly” generated a signature in F , i.e., SIM has not learned
the signed message m yet, while the ideal functionality now contains a record
(signature, (N, e),m, σ, true).

To summarize, depending on the interference of the adversary and the input
of the environment we end this simulation for an honest device in one of the
following states:

Signature completed: The signature process ended correctly and F contains
a valid signature record including the message m (which is unknown to the
simulator) and the completed signature σ. The simulator created a signature
record (sign-sim, sid , qid , {h′p,⊥h′p}, hm, t,⊥m, r, r

′, σRSA), that contains hm
and the created RSA signature σRSA, and where ⊥m stands for the unknown
message m that the simulator had signed. However, the simulator can use
the fact that the ideal functionality contains a completed signature record
including the message m to ensure consistency when a random oracle query
for the message (r,m) is made. Furthermore, if done with an honest server
“S”, “S” also created a signing record (sign, sid , qid , hm, t, c) where c ←
pwdok.

Proceed, but no completed signature: We ended in the second state when
the environment gave the ok to proceed, but the adversary in the real
world has interrupted the final message, such the device never received
(sid , qid , hm, t, r

′, σS) from “S”. Consequently, we could not create the
signature record in F yet, that we later need to ensure consistency
with the random oracle. Also the simulator only maintains a record
(sign-sim, sid , qid , {h′p,⊥h′p}, hm, t,⊥m, r, r

′,⊥σ). (Note that r′, t and hm were
added to the record already when “S” send its message.) However, we will
finalize the computation of σ as soon as the device gets corrupted using the
already selected r′ and create the corresponding ideal world record by send-
ing (SIGNATURE, sid , qid , σ) to F . If an honest server was involved, it also
stores a full record (sign, sid , qid , hm, t, c) with c← pwdok.

No proceed: The third state occurs when the sign request arrived at the server,
but the either the environment didn’t gave the ok to proceed. Thus, we
have neither created a signature σS , nor allocated r′, t or hm yet. The
record of SIM therefore looks as follows (sign-sim, sid , qid , {h′p,⊥h′p},⊥hm ,
⊥m,⊥t, r,⊥r′ ,⊥σ). An honest server is then also supposed to have created
an intermediate record (sign, sid , qid , hm, t, c) where c indicates whether the
password matched or not. However, in our simulation hm and c are not known
yet, and therefore “S” only has the incomplete record (sign, sid , qid ,⊥hm ,
⊥t,⊥c). The simulator will complete such records when the server gets cor-
rupted.

Signing request never arrived: The last state occurs when the adversary al-
ready intercepted the signature request from “D”. Here, SIM only holds the
following record (sign-req-sim, sid , qid , {h′p,⊥h′p},⊥hm ,⊥m,⊥t, r,⊥r′ ,⊥σ).

D.2.3 Verification and Random Oracle Simulation

In the simulation so far, SIM has sometimes “blindly” signed messages for a user,
or signed messages which were known to the simulator, but where SIM did not
learn the resulting signature. However, we can use the verification interface and
the fact that SIM is in charge of answering the random oracle queries, to learn
the missing values and ensure consistency with the values maintained by the
ideal functionality F .

First we show how SIM can learn the missing message for records
of type (sign-sim, sid , qid , {h′p,⊥h′p}, hm,⊥m, t, r, r

′, σRSA) or (sign-req-sim, sid ,
qid , {h′p,⊥h′p}, hm,⊥m, t, r, r

′, σRSA). Our simulator uses the procedure as de-
scribed in Game 8 and Game 9, with the modification that whenever the
challenger would look up if a record (signature, sid , qid ,m, σ) exists, SIM sends
(VERIFY, sid ,m, σ, (N, e)) to F , where (N, e) is taken from the setup record
for sid . When F asks SIM to verify a signature σ, the simulator returns
(VERIFIED, sid ,m, σ, (N, e), false) and waits for a message (VERIFIED, sid ,m, σ,
(N, e), f). If f = true, SIM behaves as if the challenger would have found a
matching record (signature, sid , qid ,m, σ). Thereby we ensure that whenever a
random oracle query (r,m) is made where r was used in a signing session, we can
detect a query containing the “real” m that the simulator might have blindly
signed, and react consistently.

The second type of incomplete records were created when only the server
was honest. In that case the simulator could “extract” the message, but did
not learn the signature the corrupt device had completed. Thus, the simula-
tor maintains a record (sign-sim, sid , qid , h′p, hm,m, t, r, r

′,⊥σ), and more impor-
tantly, the ideal functionality did not receive the signature either. Whenever
SIM then receives a message (VERIFY, sid ,m, σ, (N, e),P) from F , it checks
whether σ is valid signature on m using the normal verification algorithm.
If verification fails, SIM responds with (VERIFIED, sid ,m, σ, (N, e), false) to F .
When the verification succeeds, SIM parses σ as (σRSA, qid , r, r′) and checks if
it has a setup-sim record for sid with the same public key (N, e) and also a
record (sign-sim, sid , qid , h′p, hm,m, t, r, r

′,⊥σ) for the same sid , qid ,m, r, r′. If
such matching records are found, i.e., the signature belongs to a previous sign-
ing request, SIM sends (SIGNATURE, sid , qid , σ) to F , ensuring that the sig-
nature is now registered by the ideal functionality as well, followed by a call
(VERIFIED, sid ,m, σ, (N, e), true). When the verification in the real world suc-
ceeded but no matching record was found, SIM aborts, as justified in Game 5
and Game 6.

The simulator also takes special care of queries that contain the device secret
key k as described in Game 8 and Game 9. Whenever, in those games a record
pwdsign or pwdsetup is used, SIM instead invokes the PWDGUESS interface of
F . We recall the procedure in more detail in the description of full corruption
below.

D.2.4 Adaptive Corruption

Device Corruption. When the environment decides to corrupt a previously hon-
est device, “D” receives the message (corrupt, sid) from the environment. This is
mimiced by sending (CORRUPT, sid ,D, ∅) to F in the ideal world. The impact of
that corruption depends on whether it happened after the setup was completed,
or before, and whether or not the server is (still) honest.

During setup: If the device gets corrupted during setup, i.e., “D” already had
sent (sid , (N, e), C) to the server but never completed the setup, it must

provide its setup record (setup-temp, sid , k, dD, (N, e)) to the adversary. All
values were correctly generated in the setup and thus, “D” simply gives the
record (setup-temp, sid , k, dD, (N, e)) to A. If the setup was done with an
honest server which already replied with (sid), but the adversary never let
the message arrive at “D”, the simulator now also sends (SETUP, sid , (N, e))
to F . This ensures that the account will be activated in the ideal functionality
as well.

After setup: When the device gets corrupted after the setup was done, the
adversary expects to get the setup record (setup, sid , k, dD, (N, e)) as well as
all records {(sign, qid i, ri)} that result from signing requests.

Before the simulator outputs those records, it ensures that incomplete sig-
nature requests that were initiated by the device are now completed towards
the ideal functionality. This is crucial to ensure consistency with a poten-
tial random oracle query (ri,mi) as described in Section D.2.3. The type of
discontinued signing request we can complete now depends on whether the
server is (still) honest or not.

– Server honest: If the server is still honest, the simulator can only complete
signing requests, where the honest server (in the ideal world) already gave
the ok to proceed. That is, for those requests, where in the simulation
“S” had already send its contribution (r′i, σS,i) to “D” but the adversary
intercepted the share. For each such intercepted signing session the simu-
lator maintains a record (sign-sim, sid , qid i, h

′
p, hm,i,⊥m, ti, ri, r′i,⊥σ) and

now computes (σRSA,i) ← HRSA(sid , qid i,H(r′i, hm,i))
dSdD using the RSA

secret key shares dS , dD the honest device had generated in setup. It then
sets σi ← (σRSA,i, qid i, ri, r

′
i), updates its record sign-sim to contain σRSA,i

and, most importantly, sends (SIGNATURE, sid , qid i, σi) to F .

From now on the simulator must also answer to random oracle queries
(ri,mi) where ri belongs to a signing session where the honest server had
never sent its signature share. In those cases the adversary has not learned
hm,i though, and in fact, those are not even chosen by the simulator yet.
Thus, SIM will respond with a random value hm,i for each such query. The
simulator then has to ensure consistency for those queries as soon as the
server gets corrupted as well.

– Server corrupt: If the server was initially honest, the simulator first
completes the records as in the case of the honest server described
above. However, given that here the server is corrupt, the simulator
additionally creates signatures in F for those sessions, where i) ei-
ther an initially honest server never got the approval to continue or
ii) a corrupt server did not provide a (valid) signature share. For that
type of discontinued signing requests, the simulator maintains records
(sign-sim, sid , qid i, h

′
p,i, hm,i,⊥m, ti, ri,⊥r′ ,⊥σ). In case those records stem

from a setting where the server was initially honest, but got then cor-
rupted, h′p,i, hm,i, ti got assigned at the moment of the corruption (see
description of server corruption).

We now complete each such sign-sim record by choosing r′i
r← {0, 1}τ

and computing σRSA,i ← HRSA(sid , qid i,H(r′i, hm,i))
dSdD , again us-

ing the knowledge of dS , dD, generated by the honest device. SIM
then sends (PROCEED, sid , qid i) to F , followed by the message
(SIGNATURE, sid , qid i, σi) where σi ← (σRSA,i, qid i, ri, r

′
i).

In both cases the simulator has now created full signature records in F that
maps the still unknown message mi to the “blindly” created signature σi.
This will allow the simulator to determine mi whenever a query (ri,mi) is
made to the random oracle from now on (which is exactly the crucial turning
point, as the adversary will learn all the ri values of the incomplete signing
records), using the procedure described in Section D.2.3.

Server Corruption. When the honest server “S” receives the message
(corrupt, sid) from the adversary, the adversary then expects to learn the se-
cret key of the non-committing encryption scheme esk , the setup information
(setup, sid , hp, dS , (N, e)) and records {(sign, sid , qid i, hm,i, ti, ci)} for all signing
sessions.

However, hp might still be unassigned and the signing records will currently
have the form (sign, sid , qid i,⊥hm ,⊥t,⊥c) though, whenever they were created
in a signing protocol with an honest device and the server did not continue the
protocol. However, we can assemble the correct records now using the list L that
SIM will obtain from F and the internal signing records maintained by SIM. How
the simulation proceeds again depends on whether the device is still honest or
not.

– Device honest: If the device is still honest, the simulator sends
(CORRUPT, sid ,S, ∅) to F receiving (CORRUPT, sid ,S,L). Then, for every
record (sign, sid , qid i,⊥hm ,⊥t,⊥c) stored by “S”, the simulator takes ci from
the tuple (qid i, ci) ∈ L and includes it in the sign record. Determining the
missing values for hp, h

′
p,i, hm,i and ti is also rather simple here, as the adver-

sary hasn’t learned the device key k and randomness ri yet that was used to
“blind” the message mi in hm,i. Thus, SIM also had not to react to random or-
acle queries of the form (ri,mi) yet. Thus, for each incomplete sign-sim record
the simulator simply chooses random values hm,i

r← {0, 1}τ , ti
r← {0, 1}τ .

The password hash hp is chosen at random now and whenever ci = pwdok it
also sets the password attempt of that session to h′p,i ← H(qid , hp) and to
h′p,i ← {0, 1}τ otherwise. The created values of hp, h

′
p,i, hm,i are then added

to the setup-sim and sign-sim records.

– Device corrupted during setup: When the adversary corrupted the initially
honest device during setup it has learned the device secret k. Thus, the adver-
sary would already have been able to make a random oracle query to compute
the password hash himself that is supposedly encrypted in C. The simulator
has to figure out whether he already committed to hp before outputting the
secret decryption key esk .

To do so, SIM sends (CORRUPT, sid ,S, ∅) to F receiving
(CORRUPT, sid ,S,L) which will also enable the password guess interface.

The simulator then goes through previously answered random oracles queries
that had the form H(k, pwd j), and for each sends (PWDGUESS, sid ,⊥, pwd j)
to F to verify whether pwd was the actual password of the initially honest
device. If F responds with (PWDGUESS, sid ,⊥, cj) with cj = pwdok , it
sets hp to be the random oracle answer it had randomly assigned for that
query. If no such matching query is found, hp is chosen at random. To
determine the decryption key, simulator invokes esk

r← SIMNCE(keyleak,Q)
with Q ← (C, (dS , hp), (sid , (N, e)) using (N, e), dS from the setup-req-sim
record. Finally, “S” outputs esk as well as all sign records. Note that here all
sign records where already completed during the protocol run as all requests
originated from a corrupt device, i.e., nothing has to be simulated here.

– Device corrupted after setup: When the device is corrupted somewhen af-
ter setup, we have to take special care of all signing request that were ini-
tiated when the device was still honest. Here the adversary when corrupt-
ing the device has not only learned the device secret k but also all records
{(sign, qid i, ri)} of signing requests from “D”. Thus, the adversary could have
made random oracle queries targeted to compute the message hash himself.
More precisely, the adversary would have been able to query (ri,mi) to the
random oracle where mi is the message for which the environment triggered
the signing request. As the adversary will now also learn the decryption key
esk , SIM has to make sure that all ciphertexts C ′i sent by “D” in the sign-
ing requests now open to the correct plaintext. That is, it must hold that
(h′p,i, hm,i, ti)← Dec(esk , C ′i, (sid , qid i)) and hm,i ← H(ri,mi).

This requires a more careful simulation using the functionality to
determine the blindly signed messages. The simulator now com-
pletes the signature record in F and uses that record to determine
whether it already answered to a random oracle query (ri,mi). To
this end, SIM first retrieves each qid i for which a request record
(sign-req-sim, sid , qid i,⊥h′p ,⊥hm ,⊥m,⊥t, ri,⊥r′ ,⊥σ) exist and there is either
a matching sign record of the form (sign-sim, sid , qid i, h

′
p,i, hm,i, ∗, ∗, ∗, ∗, ∗) or

(sign-sim, sid , qid i,⊥h′p ,⊥hm , ∗, ∗, ∗,⊥r′ ,⊥σ). For each such qid i, SIM chooses

r′i
r← {0, 1}τ , a random h′m,i

r← {0, 1}τ and computes the full signature

σRSA,i ← HRSA(sid , qid i, h
′
m,i)

dSdD , again using the knowledge of dS , dD, gen-
erated by the initially honest device. SIM then updates it (empty) sign-sim
record to contain σRSA,i and r′i. The simulator also adds σi with σi ←
(σRSA,i, qid i, ri, r

′
i) to a signature list Σ. If the list is complete, SIM finally

sends (CORRUPT, sid ,P, Σ) to F which will generate full signature records
in F for all blindly signed message mi that were incomplete so far. The input
also enables the PWDGUESS interface, which will be crucial for the rest of the
simulation.

We first leverage the fact that now all blindly signed messages are completed
within F to ensure a concistent decryption for the dummy ciphertexts C ′i of
the sign protocols. The following procedure is done to either complete request
records or sign records. In the former case, the initial honest sign request was

replaced after device corruption, whereas in the latter one the sign request
was received by the server but never completed.

Now, SIM goes through all random oracle queries of the form
((ri,mi), hm,i) ∈ TH for which a sign-req-sim record for ri exist and sends
(VERIFY, sid ,mi, σi, (N, e),SIM) to F , where again σi ← (σRSA,i, qid i, ri, r

′
i)

and (N, e) is taken from the setup record for the sid specified in sign-sim. The
ideal functionality will then send its ping (VERIFY, sid ,mi, σi, (N, e),SIM) to
SIM, upon which it responds with (VERIFIED, sid ,mi, σi, (N, e), false). In case
mi is indeed the blindly signed message of signing request qid i, the ideal func-
tionality will respond with (VERIFIED, sid ,mi, σi, (N, e), true). Whenever that
happens, SIM now knows that it had signed a message mi and also assigned
already a hash value hm,i ← H(ri,mi) for mi. Thus, SIM includes that hash
value hm,i in its internal record sign-sim or sign-req-sim. It also “links” the
signed h′m,i value to hm,i by setting H(r′i, hm,i)← h′m,i. If for a signing query
qid i no such matching random oracle query (ri,mi) was found, SIM draws a
random hash hm,i

r← {0, 1}τ and updates its internal sign-sim or sign-req-sim
record accordingly. In addition, it adds valid tags ti ← H("MAC", qid , k, hm,i)
to the records using k from the corresponding setup-sim record.

We have to take similar care of the password hashes, as the adversary al-
ready knows k and would have been able to compute the password hashes
himself. Thus we use the procedure from Game 7 to determine hp and all
h′p,i such that they are consistent with the adversaries view. However, in dif-
ference to Game 7 we don’t have internal records for the password pwd and
all password attempts pwd ′i. Instead, SIM uses the PWDGUESS interface of
F , which is available now since both parties are corrupt. Thus, for all pre-
viously answered random oracles queries that had the form H(k, pwd), SIM
sends (PWDGUESS, sid ,⊥, pwd) to F to verify whether pwd was the actual
password of the initially honest device. If such a query is found, it sets hp
to be the random oracle answer it had randomly assigned for that query.
Likewise, for all queries H(qid i, h

∗
p) where ((k, pwd ′i), h

∗
p) ∈ TH, SIM send

(PWDGUESS, sid , qid i, pwd ′i) to F and reuses its previous random oracle an-
swers for each h′p,i it had already created.

Note that all internal records will now have the form
(sign-sim, sid , qid i, h

′
p,i, hm,i,⊥m, ti, ri, r′i, σRSA,i) and a corresponding full

signature record in F was created. That is, for all signature request that were
ever started by the honest device, the simulator can now use F to ensure
consistency with random oracle queries (ri,mi) of still unknown messages mi

(as described in Section D.2.3).

In the first and third cases, SIM now uses its sign-sim records to assemble the
complete signing records {(sign, sid , qid i, hm,i, ti, ci)} the server is supposed to
give to A. Further, the simulator adds the newly obtained values to the list Q to
contain the full plaintext tuples (h′p,i, hm,i, ti) for every simulated ciphertext C ′i.
It also adds such tuples for all replaces signature request, i.e., where the simulator
just completed the sign-req-sim records. Similarly, it adds C, (dS , hp), (sid , (N, e)
to Q to ensure consistency for the dummy ciphertext of the setup protocol.

Finally, the simulator invokes esk
r← SIMNCE(keyleak,Q) to learn the secret key

of the encryption scheme. “S” then outputs esk , (setup, sid , hp, dS , (N, e)) and
the completed records {(sign, sid , qid i, hm,i, ci)} of all signing sessions.

Simulating Offline Attacks after Full Corruption. When the environment has
fully corrupted both parties, the adversary in the real world learned k, hp, h

′
p,1,

. . . , h′p,q where q denotes the number of signing requests initiated by the device.
Thus, it can run offline attacks against the password hashes, trying to deter-
mine the underlying password. In fact, as the passwords of honest devices were
provided by the environment, they might even be known to the adversary. We
use F ′s PWDGUESS interface that is available for fully-corrupted instances from
now on for each random oracle query that looks like an attempt of the adversary
to verify the password against a learned hash value.

That is, for each query H(k, pwd∗) where k appears in a record
(setup-req-sim, sid , k, hp, dS , dD, (N, e)), SIM sends (PWDGUESS, sid ,⊥, pwd∗)
to F . When it receives (PWDGUESS, sid , qid , c) with c = pwdok from F , the
simulator sets H(k, pwd∗)← hp where hp is taken from the setup-sim record and
to a random value when c = pwdwrong.

Likewise, for every query H(qid i, h
∗
p) where h∗p = H(k, pwd∗), i.e., h∗p

is the result of a previous random oracle query (k, pwd∗) and records
(setup-sim, sid , k, hp, dS , dD, (N, e)) for k and (sign-req-sim, sid , qid i, h

′
p,i, hm,i,

{mi/⊥m}, ti, ri, r′i, {σRSA,i,⊥σ}) for qid i exist, SIM sends (PWDGUESS, sid , qid i,
pwd∗) to F . When F responds with the message (PWDGUESS, sid , qid i, c)
where c = pwdok, SIM sets H(qid i, h

∗
p) ← h′p,i where h′p,i is taken from the

sign-sim record and assigns a random response otherwise.

Thus, we have shown how to construct a simulator that provides a view
that is indistinguishable to the one described in Game 10, which concludes our
proof.

ut

E Experimental Results

We have implemented our Pass2Sign scheme (i.e., the one with message blind-
ness) to have performance figures demonstrating its practicality. Summarized,
setup with a decent security parameter (4,096 Bit Moduli for both the non-
committing encryption and the signatures) takes roughly 20 seconds, while for
each signature generation our non-optimized implementation takes far less than
two seconds. In a real-life deployment, this performance is more than sufficient
for most use-cases.

Concrete Setting. We measured the setup and sign protocol with three different
RSA-moduli sizes, 1,024, 2,048 and 4,096 Bit to account for different security
requirements. The key size is used for both the signing key and the RSA trap-
door permutation in the non-committing encryption scheme. To instantiate the
random oracles K,G, and H we use SHA-512 and prefix each call accordingly.

The instantiation of the full-domain hash HRSA is based on the construction
given in [6], and uses rejection sampling to uniformly map into Z∗N .

Our implementation uses Java 8. The server was run on a Intel i7-3740QM
with 2.7GHz and 16GB RAM, while the device was a Nexus 10 with 1.7GHz,
2GB RAM and Android 5.1.1. We did not implement any optimization such
as multi-threading, RSA-CRT, connection pooling, or keep-alive of connections.
The communication partners send messages using standard TCP-Sockets, and
open a new connection for each new sub-protocol. This time is included in our
measurements. FAuth has been implemented using digital signatures with pre-
shared keys. Calls to FCA are included in our measurements. However, the mea-
surements do not contain network round-trip times (typically between 20ms and
400ms), as these clearly depend on the current locations of the server and the
user, and only add an additional constant to our bare run-time measurements.
For example, assuming a round-trip time of 100ms, one can roughly add these
100ms to the combined run-time.

As the timings should focus on our protocol, they do not include the genera-
tion of the setup parameters, such as the keys for the non-comitting encryption
scheme, or the generation of the session and query identifiers sid , qid .

For all the following confidence intervals and tables 100 runs were measured.

Setup Protocol. For measuring the setup protocol, we fixed the password that is
an input to our protocol to a fixed string. The runtime box-plots are in Figure 11
for the device and Figure 10 for the server. The corresponding percentiles are
depicted in Table 2 and Table 3.

1,024Bit 2,048Bit 4,096Bit

Min.: 180.82 398.27 8′238.22

25th Percentile: 443.77 2′063.02 10′760.03

Median: 648.11 3′335.34 14′343.46

75th Percentile: 1′130.72 4′700.18 20′913.41

90th Percentile: 1′527.36 6′629.75 37′721.16

95th Percentile: 2′272.43 7′876.96 40′008.34

Max.: 3′927.65 14′649.61 57′822.42

Average: 855.58 3′646.27 16′202.58

Table 2. Percentiles for setup in ms for the device.

As it can be seen, the time for the setup on the device varies a lot, which
results from the randomized RSA-key generation algorithm. Compared with the
key generation on smart cards, our protocol (including communication time) is
still significantly faster though. For a 2,048 Bit modulus, even rather powerful
smart cards take more than one minute for an RSA key pair generation3, whereas

3 http://www.pronew.com.tw/download/doc/400 Smart Card 080907.pdf

1,024Bit 2,048Bit 4,096Bit

Min.: 11.80 55.50 363.10

25th Percentile: 13.22 61.07 376.53

Median: 14.33 63.96 388.10

75th Percentile: 16.14 68.22 396.01

90th Percentile: 17.23 74.40 428.47

95th Percentile: 19.85 83.44 444.75

Max.: 48.92 99.93 478.49

Average: 15.20 65.69 393.27

Table 3. Percentiles for setup in ms for the server.

1024 2048 4096

101

102

RSA-Moduli Bit Size

m
s

Fig. 10. Box-Plots of the setup protocol measurements in ms for the server.

our full setup protocol would take around four seconds on average including
network delay.

Signing Protocol. For each signing request, we used the correct password, i.e.,
no “failed” signing attempts where measured. Additionally to the sid now also a
query identifier qid is given as input, which we assume to be generated by an ex-
ternal protocol. The box-plots are in Figure 12 and Figure 13. The corresponding
percentiles are depicted in Table 4 and Table 5.

The figures show that the time required for signing is — from a practical
perspective — nearly constant for each security parameter. Including the com-
munication overhead, our protocol is still faster than a real smart card, which
requires at least one second for signing with a 2,048 Bit key.

1024 2048 4096

103

104

105

RSA-Moduli Bit Size

m
s

Fig. 11. Box-Plots of the setup protocol measurements in ms for the device.

1,024Bit 2,048Bit 4,096Bit

Min.: 16.49 73.47 470.30

25th Percentile: 18.06 78.44 478.84

Median: 19.08 79.83 482.61

75th Percentile: 20.64 82.38 487.69

90th Percentile: 22.25 92.19 671.13

95th Percentile: 23.91 113.66 883.83

Max.: 42.80 138.18 4′994.40

Average: 19.79 83.40 574.41

Table 4. Percentiles for signing in ms for the device.

1,024Bit 2,048Bit 4,096Bit

Min.: 10.90 62.43 452.01

25th Percentile: 11.32 63.56 454.08

Median: 11.76 64.53 456.38

75th Percentile: 12.60 66.58 470.95

90th Percentile: 14.41 68.39 501.75

95th Percentile: 14.96 72.06 521.64

Max.: 27.77 78.98 578.58

Average: 12.31 65.50 466.73

Table 5. Percentiles for signing in ms for the server.

1024 2048 4096
101

102

103

RSA-Moduli Bit Size

m
s

Fig. 12. Box-Plots of the signing protocol measurements in ms for the device.

1024 2048 4096

101

102

RSA-Moduli Bit Size

m
s

Fig. 13. Box-Plots of the signing protocol measurements in ms for the server.

