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ABSTRACT
Currently standardized Direct Anonymous Attestation (DAA) sche-

mes have their security based on the factoring and the discrete

logarithm problems, and are therefore insecure against quantum

attackers. This paper presents a quantum-safe lattice-based Direct

Anonymous Attestation protocol that can be suitable for inclusion

in a future quantum-resistant TPM. The security of our proposed

scheme is proved in the Universal Composability (UC) model under

the assumed hardness of the Ring-SIS, Ring-LWE, and NTRU pro-

blems. The signature size of our proposed DAA scheme is around

2MB, which is (at least) two orders of magnitude smaller compared

to existing post-quantum DAA schemes.
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1 INTRODUCTION
Direct Anonymous Attestation (DAA) is a cryptographic protocol

that allows a Trusted Platform Module (TPM) to serve as a trust

anchor for a host platform it is embedded in. To do so, the TPM

chip creates attestations about the state of the host system, e.g., cer-

tifying the boot sequence the host is running on. These attestations

convince a remote verifier that the platform it is communicating

with is running on top of trusted hardware and using the correct

software. A main design goal of DAA is that attestations are made

in a privacy-preserving manner. That is, the verifier can check that

attestations originate from a certified hardware token, but it does

not learn anything about the identity of the particular TPM. Anot-

her important feature of DAA is that it supports user-controlled
linkability which is steered by a basename bsn. If a platform uses a

fresh or empty basename, the resulting attestations cannot be linked

whereas repeated use of the same basename makes the transactions

linkable.
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Overall, DAA can be seen as a special variant of group signatures

with a central issuer controlling membership to the group of cer-

tified TPMs, and TPMs being able to sign anonymously on behalf

of the group. Instead of the opening capabilities provided in group

signatures, DAA controls privacy through the use of basenames

and user-controlled linkability.

DAA has been developed for the Trusted Computing Group

(TCG), which is the industry group that designs the TPM. The first

RSA-based DAA protocol got standardized in the TPM 1.2 specifi-

cation [45] in 2004 [14], whereas the newer TPM 2.0 standard [46]

published in 2014 supports a suite of elliptic-curve based DAA

protocols [11, 12, 20] that are specified in the complementing ISO

standard ISO/IEC 20008-2 [30, 31]. As reported by TCG, more than

a billion devices include TPM technology; in particular almost all

enterprise PCs, many servers and embedded systems rely on such

trusted hardware anchors. Since the first proposal of DAA, many

extensions and works to improve security and efficiency have been

proposed [7, 15, 17–19, 21, 48]. A variant of DAA called Enhanced

Privacy ID (EPID) is used in Intel SGX [13], the most advanced

development in the area of trusted computing.

Recently, the practical interest in DAA has revived, as providing

authenticity of attestations while preserving the privacy of sen-

ders is enjoying increased attention and awareness. Anonymity of

attestations is particularly important in automotive applications

such vehicle-to-vehicle communication, wherein tracking of drivers

should be prevented but authenticity of the communication must

be guaranteed too [47]. A DAA protocol has also been integrated

into the Fast IDentity Online (FIDO) authentication framework

[16]. In this application, the TPM creates a new authentication key,

and outputs a DAA signature in order to certify that the key is

properly stored in the TPM. Another DAA-based application is a

privacy-enhancing cloud service architecture to protect user’s data,

using DAA to let users control the extent of data sharing among

their service accounts [29].

The existing DAA schemes that are currently supported by the

TPMs are based on either the factorization problem in the RSA

setting or the discrete logarithm problem in the Elliptic Curve

(EC) setting. Since the factorization problem and discrete logarithm

problem are known to be vulnerable to quantum computer attacks,

all standardized DAA protocols are not post-quantum secure, i.e.

an adversary with a powerful quantum computer could break the

TPM’s security.

Thus, there is a need to update the cryptographic primitives

of current privacy-preserving schemes to be quantum resistant.

Many proposed post-quantum cryptographic primitives are build

on the top of code-, hash-, lattice- and multivariate-based problems,
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and could possibly be used as the basis for the development of

post-quantum DAA protocols. Among these, lattice-based cryp-

tography seems to be the most flexible one, supporting several

variants of anonymous signature schemes, such as lattice-based

group signatures [22, 35, 37], and ring signatures [8, 27]. Recently,

El Kassem et al. [32] and El Bansarkhani and El Kaafarani [3] pro-

posed two post-quantum DAA scheme from lattice assumptions,

however both schemes require massive storage and computation

resources, which makes them not suitable for inclusion in the future

quantum-resistant TPM.

1.1 Our Results
OurDAA is related to the recently-proposed group signature scheme

[22], which at the time of this writing is the most efficient quantum-

safe scheme for large group sizes. The high-level idea of the group

signature scheme is for the issuer to create user secret keys by out-

putting signatures (where messages are the user’s identity) of the

ABB lattice-based signature scheme [1]. More precisely, the secret

key of a group member with identity i ∈ Z∗q is an ABB signature s
of the message i . In other words, s was a small-norm polynomial

satisfying

[A | B + iG]s = u, (1)

where A,B,G, and u are public parameters over some polynomial

ring. To construct a signature of a message µ, the group member

encrypts (a part of) s and gives a non-interactive ZKPoK (using µ
in the hash of the challenge) to prove knowledge of the i ∈ Z∗q and

s satisfying (1)1 as well as the fact that (a part of) s was encrypted.
DAA schemes differ from basic group signatures in three ways:

(1) extra privacy properties are required for users in case of a

malicious issuer,

(2) the user in a DAA scheme is split into two parts - the TPM

and the host - and they do signing in a way that doesn’t

reveal the TPM’s secret (even to the host),

(3) there is no opener, but there is instead a linking procedure

that should allow anyone to link two signatures for a com-

mon basename
Notice that in the above group signature description, the issuer

needs to know the i in order to produce the group member’s secret

key and so there is nothing preventing a malicious issuer from

impersonating a group member. This would not satisfy the security

definitions of an analogous DAA scheme. To remedy this, instead

of directly using the selectively-secure ABB scheme, we use the

idea in the Ducas-Micciancio scheme [25], which modifies the ABB

signature to include a tag τ when signing a low-norm message m.

We further modify their scheme to a selectively-secure one (with a

small tag domain to still ensure security) which is more efficient. A

signature s of a message m under a tag τ satisfies

[A | B + τG]s = u + a ·m, (2)

where a is now an additional public parameter and τ is chosen fresh

for every signature that is created.
2
The way in which we utilize this

1
Actually, one proves a “relaxed” version of (1) involving a lot of extra small-norm

polynomial multiplicands due to the fact that the most efficient zero-knowledge proofs

for commitments (c.f. [4]) only prove knowledge of approximate solutions.

2
The scheme of [22] is only proved non-adaptive security of their signature schemes

where the adversary needs to choose the messages he wants to see the signatures

construction by observing that if the group member sends v = am,

along with a proof of knowledge ofm, then the authority can create

a signature on m without its knowledge. In this way, the group

signature scheme of [22] can be modified to satisfy the stronger

definition of dynamic group signatures in which a malicious issuer

cannot impersonate a group member.

The above-described dynamic group signature issuance proce-

dure can now be easily converted to an issuance procedure of a

DAA scheme. In particular, m (or at least a part of it) will be the

TPM secret key, while s is the secret membership credential of

the host. This information, together with τ , is then used by the

TPM and the host to create a ZKPoK, much in the same way as the

ZKPoK of (1) was generated in [22], of (2) to sign messages.

The other difference between group signatures and DAA sche-

mes is that DAA schemes have a “linking” procedure instead of

an opening. So instead of encrypting the TPM’s secret, we will

instead create a Ring-LWE instance (b, nym = bm1 + e) where b
is the basename,m1 is part of the TPM’s secret, and e is an error

term that’s an output of a PRF evaluated at b andm1.
3
. To allow

efficient linking (i.e. there should be a public procedure that allows

to determine whether the same TPM signed under the same base-

name) we need to take care about how the TPM proves knowledge

of m1, e satisfying nym = bm1 + e . If we use the most efficient

proof that also proves knowledge of a low-norm c̄,m̄1, ē such that

c̄ ·nym = bm̄1+ ē , then linking would require guessing the c̄ (which
could come from an exponentially-large space). Instead, we use the

slightly less-efficient proof from [6] which proves the knowledge

of m̄1, ē satisfying 2 · nym = bm̄1 + ē . Putting this proof together

with the proof of (2) (and using the message µ in the hash of the

challenge), as well as making several small adjustments to allow

the UC proof to go through, completes the signature.

1.1.1 Comparison to Existing Lattice-Based DAA Schemes. In our

proposed scheme, the TPM’s secret key consists of two short poly-

nomials in the ring Rq = Zq [X ]/(X
d +1). In the LDAA scheme [32],

the TPM’s secret key consists ofm = 24 polynomials, and there are

2m + 1 = 49 polynomials in [3]. The degree of our ring should be

set to 4096 (as in [22]), whereas it’s possible that the degree of the

ring in the other schemes could be 2048 or 1024. Still, our scheme

should be faster in terms of the TPM’s computation costs in the

join and sign interfaces, and have smaller TPM keys and signature

sizes.

In our proposed scheme, the signature consists of around 45

polynomials in Rq . Using the same values of q ≈ 2
70

and d = 4096

as in [22] and also account for the fact that most polynomials in

Rq have coefficients smaller than q, a rough estimate for the size of

the signatures is 2MB.

The LDAA signature includes c responses to the Fiat-Shamir

challenges, where each response is comprised of approximately

km(2ℓ + 2) polynomials provided by the host and k(m′ + 1) provi-

ded by the TPM. In [3], the size of the response for each round is

bounded by km(2ℓ + 2) polynomials for both the host and the TPM

(where ℓ = 32,m′ = 24,k = 8, c = 8).

of before seeing the signatures. It is converted to a standard signature scheme using

a chameleon hash. We show in our proof how to go around the requirement of the

chameleon hash.

3
The reason for using a PRF to generate the error is that it would be insecure to output

bm1 + e and bm1 + e ′ for e , e ′



Even if the degree of the rings in [32] and [3] are 4× smaller (i.e.

the ring dimension is 1024) than in our scheme and the bit-length

of the polynomial coefficients are also 4× smaller (the modulus q is

less than 2
18
), the signature produced by our scheme is still more

than two order of magnitudes shorter. We should point out that

this is still around 5 - 6 orders of magnitude longer than discrete

logarithm based DAA schemes (e.g. [18, 19]).

2 PRELIMINARIES
2.1 Notation
x ← S means that x is a uniformly random sample drawn from

a set S . If D is a distribution, then x ← D means that x is drawn

according to the distribution D. We define the ring of polynomials

Rq = Zq [X ]/⟨X
d + 1⟩, where d is the dimension of Rq which is a

power of 2. We write c = c0 + c1x + · · · + cd−1
xd−1

to represent

a polynomial in Rq with integer coefficients, ∥c ∥∞ denotes the

infinity norm of polynomial c , with ∥c∥∞ = max 0≤j≤n |c j |. We

will always assume that q ≡ 3 (mod 8), which implies [40, Lemma

2.2] that all (non-zero) elements in Rq whose infinity norm is less

than

√
q/2 are invertible. Additionally, with probability almost 1, a

random element in Rq is also invertible.

a = (a1, . . . ,ak ) represents a vector of polynomials in Rkq , for
some positive integer k and polynomials a1, . . . ,ak in Rq . A ∈
Rk×ℓq is a matrix whose entities are polynomials ai j ∈ Rq for

1 ≤ i ≤ k and 1 ≤ j ≤ ℓ. ∥A∥∞ is the infinity norm of the matrix of

polynomials A defined by ∥A∥∞ = maxi ∥ai j ∥∞.

2.2 Lattice Problems and Sampling
Forx, c ∈ Rd and ξ ∈ R+, we define theGaussian function ρc ,ξ (x) =

exp

(
−∥x−c ∥2

2ξ 2

)
, and for a latticeL, we define the distributionDL,c ,ξ (x)

to be 0 whenever x < L and

DL,c ,ξ (x) =
ρc ,ξ (x)∑

v ∈L
ρc ,ξ (v)

(3)

when x ∈ L. When we omit the L from the above equation, it is

assumed that the lattice is Zd (where d is evident from context).

Omitting the c implies that c = 0.

As an additive group, the polynomial ring R = Z[X ]/(Xd + 1)

has an obvious mapping to Zd and so we can write v ← Dξ to

signify sampling a random centered element from R.

For a polynomial vector a = (a1, . . . ,ak ) ∈ R
k
q and t ∈ Rq , we

can define a k-dimensional shifted lattice
4

L⊥a,t = {s ∈ R
k

: a1s1 + . . . + aksk = t mod q}

and we define the distribution D⊥a,t ,ξ (x) to be 0 whenever x < L⊥a,t
and

D⊥a,t ,ξ (x) =
ρξ (x)∑

v ∈L⊥a,t
ρξ (v)

(4)

The Ring-SIS problem [39] is defined as finding a short linear

combination s1, . . . , sm ∈ Rq satisfying a1s1 + . . . + amsm = 0

4
A shifted lattice is a set that is a lattice shifted by some vector v . Note that a shifted
lattice does not have the property that the sum of any two vectors is in the shifted

lattice.

for a given set of randomly-chosen ai ∈ Rq . The decisional Ring-
LWE problem [41] is, for random ai , s ← Rq and random small-

coefficient polynomials ei ∈ Rq , to distinguish tuples (ai ,ais + ei )
from uniformly random tuples in Rq . Note that because random
elements in Rq are invertible with probability close to 1, the triples

(ai ,bi ,ais + biei ) are also indistinguishable from uniform triples

based on Ring-LWE.

In general, given a random a, t , it is hard (as hard as the Ring-SIS
problem) to sample according to D⊥a,t ,ξ for small ξ . One can do

such sampling, however, when given a special trapdoor basis for

the lattice L⊥a,0. The smaller the vectors in the trapdoor, the smaller

the ξ can be in the distribution.

2.3 Lattice Trapdoor Sampling
The trap-door sampler that will be used in our scheme defines a
as a 4-element vector (a′, a′R + (τ , τ ⌈√q⌋)), where a′ = (a, 1) for
a uniformly-random a ∈ Rq , R ∈ R2×2

q consists of polynomials

with random coefficients in {−1, 0, 1} and τ is some non-zero ele-

ment in Zq . It was shown in [42, Lemma 5.3] that one can sample,

again using [26, 28], elements from D⊥a,t ,ξ , for any t ∈ Rq , for

ξ ≈ 2(s1(R) + 1)
√
q + 1, where s1(R) = maxv,0

∥Rv∥
∥v∥ . For the R ge-

nerated as above, s1(R) is concentrated around 3

√
d , and so one can

sample from D⊥a,t ,ξ with ξ ≥ 6

√
dq. We will refer to this algorithm

as the MP-Sampler.

2.4 Zero Knowledge Proofs
Given a matrix A ∈ Rn×mq , and a vector t ∈ Rnq satisfying

Ar = t, (5)

for some vector r with a bounded norm, there are several protocols

for proving knowledge of this short r satisfying a possibly “relaxed”
version of (5). The most expensive, in terms of proof size, is a proof

that proves exactly the knowledge of (5) for an ℓ∞ bound on r. This
is the adaptation of Stern’s proof [44] working over larger rings

[33, 36], and the proof sizes are on the order of megabytes. There

have been some recent improvements [5, 9, 10, 49], but the proofs

are still on the order of several hundred kilobytes for even relatively

short vectors. In our protocol, we will use these proofs in places

where a large proof size is not important because the procedure is

only done once – i.e. when the issuer registers his public key to the

CA and when TPMs perform the join.

A more efficient (in terms of proof size) proof system can prove

the knowledge of a slightly larger vector r̄ satisfying Ar̄ = 2t.
This scheme from [6] is presented in Figure 2. The most efficient

proof system is based on the digital signature from [38] and proves

knowledge of a vector r̄ and a small polynomial c satisfyingAr̄ = ct.
This scheme is presented in Figure 1.

All our protocols use a rejection sampling subroutine from [38]

to produce outputs that are distributed as gaussians with distri-

butions independent of the secret key (and the challenge). This is

crucial for showing that the protocols are zero-knowledge.

rej(z, b, ξ ) : u ← [0, 1); if u > 1/3 exp

(
−2⟨z,b⟩+∥b∥2

2ξ 2

)
return 0,

else return 1



Prover Verifier
A ∈ Rn×mq , r, t = Ar, ξ >

maxc ∈C 11 · ∥cr∥
A, t, βz = ξ ·

√
2md

y← Dξ , w := Ay w
−→

c ← Cc
←−

z := cr + y
if rej(z, cr, ξ ) = 1, abort z

−→
Accept iff:

∥z∥ ≤ βz ,
Az = ct +w

Figure 1: Proof of Knowledge for r̄, c̄, with ∥r̄∥ ≤ 2βz and c̄ ∈
¯C, satisfyingAr̄ = c̄t. C = {c ∈ Rq | ∥c ∥1 = κ such that log

(d
κ
)
>

256 − κ, ∥c ∥∞ = 1} and ¯C = C − C excluding 0.

Lemma 2.1 ([38]). Let V be a subset of Rn with elements of norm
less than T, let h be a distribution of V. b ∈ Rn . Consider a procedure
that samples a y ← Dn

ξ and then returns the output of rej(z :=

y + b, b, ξ ) where ξ ≥ 11∥b∥. The probability that this procedure
outputs 1 is ≈ 1/3. The distribution of z, conditioned on the output
being 1, is within statistical distance 2

−100 of Dn
ξ .

2.5 Lattice-Based Commitments
In this paper we use the version of the commitment scheme from

[4] that commits to k ring elements. Define the public parameter C
as

C =


a1 a2 . . . ak ak+1

1

b1 0 . . . 0 b ′
1

0

b2 0 . . . b ′
2

0 0

. . . . . . . . . . . . . . . . . .

bk b ′k . . . 0 0 0


=

[
A
B

]
, (6)

where A is the top row and B is the rest of the matrix. The commit-

ment of k elements in Rq ,m =

m1

. . .

mk

 , consists of creating an r with

small (e.g. −1, 0, 1)coefficients and outputting

Cr +
[

0

m

]
=

[
tA
tB

]
= t (7)

From the above definitions, observe that we have tA = Ar and
tB = Br +m.

Given a public C and a commitment t to messagesm1, . . . ,mk ∈

Rq , there is a zero-knowledge proof of knowledge of an m̄ ∈ Rkq , r̄
with ∥r̄∥ ≤ 2βz (as defined in Figure 3) and c̄ ∈ ¯C satisfying

Cr̄ +
[

0

c̄m̄

]
= c̄t and Lm̄ = u (8)

Obtaining the above proof is a slight generalization of the proof

system from [4]. What we will need in our proof, however, is additi-

onally to show thatmi ∈ Zq . That is,mi are polynomials in Rq that

are only non-zero in their constant coefficient. Proving this additi-

onal restriction on m̄ involves using the “automorphism stability”

modification from [22]. The latter work uses the fact that an element

m ∈ Rq is inZq if and only if it satisfiesm = σ−1(m) = σ5(m), where

σj (m(X )) =m(X
j ) [22]. The proofmodification therefore also needs

to prove that for all m̄i composing m̄, m̄i = σ−1(m̄i ) = σ5(m̄i ). We

present this proof in Figure 3.

Lemma 2.2. The protocol in Figure 3 is a proof of knowledge of (8).

Sketch. To prove zero-knowledge in the case that z, z1, z2 are

sent, we observe that due to the rejection sampling procedure the

distribution of z, z1, z2 is exactly Dξ . Therefore one can simulate

the view of the verifier by generating z, z1, z2 ← Dξ , c ← C and

settingw,w1,w2, v1, v2, vL according to the verification equations.

To show that the protocol is a proof of knowledge, note that

the usual rewinding of the prover after the first step allows us to

extract z̄, z̄1, z̄2, c̄ satisfying

Az̄ = c̄tA (9)

σ−1

−1
(A)z̄1 = c̄σ

−1

−1
(tA) (10)

σ−1

5
(A)z̄2 = c̄σ

−1

5
(tA) (11)

Bz̄ − σ−1

−1
(B)z̄1 = c̄(tB − σ−1

−1
(tB )) (12)

Bz̄ − σ−1

5
(B)z̄2 = c̄(tB − σ−1

5
(tB )) (13)

LBz̄ = c̄(LtB − u) (14)

We would like to now prove that (9) and (11), along with the SIS

assumption, imply that

σ5(c̄)z̄ = c̄σ5(z̄2). (15)

To show the above, multiply (9) by σ5(c̄), multiply σ5((11)) by c̄
and subtract to obtain

A(σ5(c̄)z − c̄σ5(z̄2)) = 0. (16)

Since we assumed that the SIS problem is hard, then the above can

only be true if (15) holds.

Because c̄ is invertible, it is possible to define m̄ such that

c̄m̄ = c̄tB − Bz̄ (17)

Using (13), we also obtain

c̄m̄ = c̄σ−1

5
(tB ) − σ−1

5
(B)z̄2. (18)

Applying the automorphism σ5 to the above equation and multi-

plying by c̄ , and then applying (15), we get

c̄σ5(c̄)σ5(m̄) = c̄σ5(c̄)tB − c̄Bσ5(z̄2) = c̄σ5(c̄)tB − σ5(c̄)Bz̄ (19)

Subtracting the above from σ5(c̄) times (17), we obtain that

c̄σ5(c̄)σ5(m̄) = c̄σ5(c̄)m̄,

and since both c̄ and σ5(c̄) are invertible, this implies that σ5(m̄) =
m̄. Exactly the same proof yields that σ−1(m̄) = m̄ and so m̄ ∈ Zkq .
Also note that combining (9) with (17) gives (8). Now, combining

(14) and (17), we obtain

L(c̄tB − c̄m̄) = c̄(LtB − u),

which implies Lm̄ = u. □

3 THE DAA FRAMEWORK
Before presenting our new lattice-based DAA protocol, we recall

how DAA works and what the desired security properties are.



Prover Verifier
A ∈ Rn×mq , r, t = Ar, ξ > 11 ·

√
ℓ · ∥r∥ A, t, βz = ξ ·

√
2md

for all 1 ≤ i ≤ ℓ : yi ← Dξ , wi := Ayi w1, ...,wℓ
−−−−−−−−→ c1, . . . , cℓ ← Cxc1, ...,cℓ
←−−−−−−−

for all 1 ≤ i ≤ ℓ : zi := ci r + yi
if rej([z1 | . . . | zℓ], [c1r | . . . | cℓr], ξ ) = 1, abort z1, ...,zℓ

−−−−−−−→
Accept iff for all 1 ≤ i ≤ ℓ: ∥zi ∥ ≤ βz , Azi = ci t +wi

Figure 2: Proof of Knowledge for r̄, with ∥r̄∥ ≤ 2βz satisfying Ar̄ = 2t. Cx = {0,X i
: 0 ≤ i < 2d}

Prover Verifier[
A
B

]
∈ R
(k+1)×(k+2)
q , r, L, u,

[
0

m

]
s.t. m ∈ Rkq , with mi ∈ Zq , Lm = u,[

tA
tB

]
=

[
A
B

]
r +

[
0

m

]
, ξ > max

c ∈C
11 ·
√

3 · ∥cr∥

[
A
B

]
,

[
tA
tB

]
, L, u, βz = ξ ·

√
2(k + 2)d

y, y1, y2 ← Dk+2

ξ
w := Ay,w1 := σ−1

−1
(A)y1,w2 := σ−1

5
(A)y2

v1 := By − σ−1

−1
(B)y1, v2 := By − σ−1

5
(B)y2

vL := LBy w ,w1,w2,v1,v2,vL
−−−−−−−−−−−−−−−→ c ← Cc

←−z := cr + y,
z1 := cσ−1

−1
(r) + y1, z2 := cσ−1

5
(r) + y2

if rej([z | z1 | z2], [cr | cσ−1

−1
(r) | cσ−1

5
(r)], ξ ) = 1, abort z,z1,z2

−−−−−→
Accept iff:

∥z∥, ∥z1∥, ∥z2∥ ≤ βz ,
Az = ctA +w,
σ−1

−1
(A)z1 = cσ

−1

−1
(tA) +w1,

σ−1

5
(A)z2 = cσ

−1

5
(tA) +w2,

Bz − σ−1

−1
(B)z1 = c(tB − σ−1

−1
(tB )) + v1

Bz − σ−1

5
(B)z2 = c(tB − σ−1

5
(tB )) + v2

LBz = c(LtB − u) + vL

Figure 3: Proof of Knowledge of r̄, c̄, m̄, with ∥r̄∥ ≤ 2βz and c̄ ∈ ¯C, satisfying
[
A
B

]
r̄ +

[
0

c̄m̄

]
= c̄

[
tA
tB

]
, Lm̄ = u, and m̄ ∈ Zkq . C and ¯C

are as in Figure 1.

3.1 DAA Functionality and Properties
In a DAA scheme, we have four main entities: a number of trusted
platform modules (TPM), a number of hosts, an issuer, and a number

of verifiers. A TPM and a host together form a platform which per-

forms the join protocol with the issuer who decides if the platform

is allowed to become a member. Once being a member, the TPM

and host together can sign messages with respect to basenames

bsn. If a platform signs with bsn = ⊥ or a fresh basename, the

signature must be anonymous and unlinkable to previous signatu-

res. That is, any verifier can check that the signature stems from a

legitimate platform via a deterministic verify algorithm, but the

signature does not leak any information about the identity of the

signer. Only when the platform signs repeatedly with the same

basename bsn , ⊥, it will be clear that the resulting signatures

were created by the same platform, which can be publicly tested

via a (deterministic) link algorithm. DAA also supports key-based
revocation, i.e., it assumes the availability of a revocation list RL
which contains the secret keys of rogue TPMs. Verification will be

done with respect to such a revocation list and lets signatures of

revoked TPMs fail.

Intuitively, DAA must satisfy the following high-level security

and privacy properties. The formal security model for DAA exists

in form of an ideal functionality F l
DAA in the UC framework [18].

Anonymity: An adversary that is given two signatures, w.r.t. two

different basenames or bsn = ⊥, cannot distinguish whether

both signatures were created by one or two different honest

platforms.

(One-More) Unforgeability: When the issuer is honest, an ad-

versary controlling n TPMs can create at most n unlinkable

signatures for the same basename bsn , ⊥.
Non-Frameability: No adversary can create signatures on a mes-

sagem w.r.t. basename bsn that links to a signature created

by an honest platform, when this honest platform never

signedm w.r.t. bsn.

Anonymity and non-frameabilitymust hold evenwhen the issuer

is corrupt.



Setup: Issuer Public Key: ipk := (h, b, a,u), Issuer Secret Key: isk := R

Join: (TPM(tsk, ipk)⇌ Host(ipk))⇌ Issuer(isk) : cred
TPM Secret Key: tsk := (e1, e2, sk)
Host Credential: cred := (s, τ ) satisfying
[h | b + τg] · s = u + a1e1 + a2e2

Sign: TPM(tsk, ipk, µ, bsn)⇌ Host(cred, ipk, µ, bsn) : σ

Signature: σ := (t, nym,d, π ), where t is the commitment to τ ,
d = HRq (bsn), nym = de1 + HR3

(sk, bsn) ∈ Rq , and π is the NIZK for

equations (26)-(29) including µ in the Fiat-Shamir hash.

Verify: Verify(ipk, µ, bsn,σ , RL) → (0, 1)
Output 1 if π is correct, d = HRq (bsn) (for bsn , ⊥), and
∀e1 ∈ RL : ∥2(nym − de1)∥ is not small.

Link: Link(ipk, µ1, µ2, bsn,σ1,σ2) → (0, 1)

Output 1 if both signatures are valid and 2(nym
1
− nym

2
) is small.

Figure 4: Overview of our DAA protocol

For the sake of simplicity, we present our DAA scheme in an al-

gorithmic manner and discuss the additional UC-specific wrappers

and inputs that are needed to satisfy F l
DAA in Section 4.

3.2 Protocol Description
Let q be a prime and the ring Rq = Zq [X ]/⟨X

d + 1⟩. We will denote

by Rα for some positive integer α a subset of Rq with coefficients

in the range between −α and α . For some domain D, we will denote
HD to be a domain extension function (e.g. SHAKE) that takes an

element from {0, 1}∗ and maps onto D.
The issuer secret key is amatrixR← R2×2

1
, and his public key is a

uniformly-random polynomialh ← Rq and a vector b = [h 1]·R. By
the Ring-LWE assumption, (h, b) is indistinguishable from uniform.

For convenience, we will write the public matrix associated to the

issuer as

[h | b] ∈ R4

q (20)

where h = [h 1]. We will assume that when the issuer registers

his public key with the CA, he also proves the knowledge of his

secret key R in an extractable manner. Because the efficiency of this

step is not very important, it can be performed using a standard

Stern-type scheme (e.g [36]).

If g = [1 √q] ∈ R2

q , then using the Micciancio-Peikert inversion

algorithm, for any nonzero τ ∈ Zq and u ∈ Rq , it is possible to use

the trapdoor R to find a short, Gaussian distributed, vector s ∈ R4

q
satisfying [h | b + τg] · s = u. The issuer will also keep state of

one integer tag τ ∈ Zq . He will initialize τ = 1 and increment it

by one with every new join. Since the prime q in our scheme will

be somewhat large (around 2
70
), every join procedure will have a

unique tag – this is crucial for security.

We also define a = [a1 a2] ← R2

q and u ← Rq to be random

public parameters.

Join Procedure. A TPM’s secret consists of a polynomial vector

e =
[
e1

e2

]
← R2

3
and a secret key sk ∈ {0, 1}256

.
5
The TPM computes

u1 = a · e = a1e1 + a2e2 (21)

and sends u1 along with a proof of knowledge π1 of short e sa-

tisfying (21). Since the TPM will do the join only once, it’s not

important for this proof to be very efficient, and so it can be done

using a zero-knowledge proof system that proves exact knowledge
of e. The issuer, upon receiving u1, π1, will check the proof and

then use the Micciancio-Peikert sampling algorithm to compute an

s with small norm satisfying

[h | b + τg] · s = u + u1, (22)

where τ is a fresh tag which the issuer tracks as described above.

The issuer sends τ and s to the TPM as the credential. The TPM

keeps his secret e and sk, while the host stores the credential s and τ .

For DAA it is crucial that only legitimate TPMs can join in a

controlled manner, which is handled via endorsement keys which

are preinstalled on each TPM and their public keys are known to

the issuer. We use the same abstraction as Camenisch et al. [18] and

simply assume an authenticated channel F ∗auth between the TPM

(via the host) and the issuer. That is, during join the issuer learns

the TPM identityMi in an authenticated manner and should only

proceed ifMi is a legitimate TPM. The issuer should also keep

track of already joined TPMs, and ensure that each can join at most

once.

Signing. To sign a message µ with respect to basename bsn (if

the basename is ⊥, the TPM picks a random bsn from the domain

of all basenames, but doesn’t reveal it) the TPM creates a value d =
HRq (bsn) and an error polynomial e ′ = HR3

(sk, bsn) and outputs

the pseudonym nym = de1 + e
′ ∈ Rq . Notice that d is (and needs to

be) publicly computable, while e ′ is only computable by the TPM.

The reason that the e ′ is generated deterministically based on bsn
(and sk) rather than just chosen arbitrarily at random is that the

TPM might be asked to create a pseudonym with respect to the

same basename multiple times, and it would be insecure to send

de1 + e
′
1
, . . . ,de1 + e

′
κ for different e ′κ . Thus, for the TPM’s safety,

the same basename should lead to the same pseudonym.

At this point, the TPM and the Host know short e, s, e ′ and
τ ∈ Zq satisfying

nym = de1 + e
′

(23)

[h | b + τg] · s = u + a · e. (24)

Ideally, the signature would consist of nym as well as a proof of

knowledge of short e, s, e ′ and τ ∈ Zq satisfying the above two

equations. The main problem with creating the above proof is that

it’s unclear how to efficiently keep secret the τ inside the matrix

[h | b + τg] and, even ignoring the τ , giving an exact proof of

r , e, s, r ′ is very costly in terms of proof size (at least dozens of

megabytes). We instead use the techniques from Figures 1 and 2 to

prove the above equations approximately as well as the proof of

automorphism stability from 3 to prove that τ ∈ Zq .

5
The reason that we choose e to have coefficients in a range larger than {−1, 0, 1} is

because the TPM will give out a lot of Ring-LWE samples with this secret and so the

space of the secrets needs to be a little larger to avoid the Arora-Ge attack.



The Host commits to τ and τ
√
q using the commitment scheme

from Section 2.5 as

Cr +


0

τ
τ
√
q

 =

t0
t1
t2

 . (25)

Define C1 and C2 to be the second and the third row of the

matrix C in (6) (i.e. the rows corresponding to the commitments

of messagesm1 andm2 in (7). The Host and the TPM then jointly

give a zero-knowledge proof π (using the message µ inside the

random oracle in the Fiat-Shamir transformation) of small-normed

r̄, s̄, v̄1, v̄2, ē, and c ∈ ¯C satisfying:

Cr̄ + c̄


0

τ
τ
√
q

 = c̄

t0
t1
t2

 and τ ∈ Zq (26)

[h |b + [t1 t2]]s̄ − C1v̄1 − C2v̄2 − a · ē = c̄u (27)

dē1 + ē
′ = c̄nym (28)

dê1 + ê
′ = 2nym (29)

Equations (26), (27), and (28) are proved simultaneously (to en-

sure that the values of c̄ and ē1 are consistent throughout) and

jointly by the TPM and the Host. In particular, (26) is proved using

the “automorphism stability” proof from Figure 3 to ensure that

τ ∈ Zq , while the other two equations are proved using the stan-

dard “Fiat-Shamir with Aborts” technique using Gaussian sampling

from Figure 1. The TPM needs to additionally prove (29) because

having a c̄ in front of the nym is not sufficient for linking since

one would actually have to know c in order to perform the linking

operation. This proof (which is less compact than the one in Figure

1 is done via the protocol in Figure 2.

While it’s obvious that the fact that the TPM and Host satisfying

(23) and (25) allows them to prove (26),(28), and (29), the validity

of (27) is a little less straight-forward. But observe that replacing

τg = [τ τ
√
q] in (24) with τ = t1 − C1r and

√
qτ = t2 − C2r from

(25) gives us the equation

[h | b1 + t1 | b2 + t2]


s0

s1

s2

 − s1C1 · r − s2C2 · r − a · e = u,

where we have conveniently rewritten b = [b1 b2] and the vector

s =

s0

s1

s2

 where s0 is multiplied with h, s1 is multiplied by b1+t1 and

s2 is multiplied by b2 + t2. Since s1, s2 and r have small coefficients,

it’s now evident that one can give a proof of the equation in (27)

using the protocol in Figure 1.

The goal of obtaining proofs of (26) and (27) is to combine them

into one proof as follows: by multiplying (27) by c̄ and substituting

c̄ti with Ci r̄ + c̄τ , we obtain

[h | c̄b1+C1r̄+c̄τ | c̄b2+C2r̄+c̄
√
qτ ]


c̄ s̄0

s̄1

s̄2

−C1c̄v̄1−C2c̄v̄2−a·ēc̄ = c̄2u,

(30)

which can be rewritten as

c̄[h | b + τg]s̄ = c̄2u + a′ · w̄, (31)

where a′ = [a C1 C2] and w̄ =


ēc̄
c̄v̄1 − r̄
c̄v̄2 − r̄

 .
The final signature output by the host is t0, t1, t2, nym,d together

with the proof π . Since C is a 3 × 4 matrix, the non-interactive

proof of (26) consists of 4 · 3 = 12 polynomials (i.e. the size of the

response in Figure 3. In the proof of (27), s̄ and v̄i each consist of 4

polynomials, while ē consists of 2, for a total of 14. The proof of (28)

does not include any extra polynomials because one does not need

to send anything corresponding to ē ′ if one does an approximate

check of the linear equation in the verification of Figure 1 (as in

e.g. [2, 23]). To prove (29), one needs to set ℓ in Figure 2 to around

12, and so the output will be 12 polynomials (since one again does

not need to output anything related to ê ′). One should note that

the polynomials corresponding to the ē1 and ê1 have rather small

coefficients, so they will be less costly to output than the others.

For a rough estimate, we ignore this savings. So the total number of

elements of Rq in the proof π is 40, which makes the total number

of polynomials in the signature 45.

Verification: The verifier, having message µ, basename bsn, signa-
ture σ = (nym,d, π ), and issuer public key ipk checks the proof π .
If bsn , ⊥, it also checks that d = HRq (bsn). Further, DAA requires

verification to be done with respect to a revocation list RL which
contains all the rogue TPM’s secret keys. Thus, for every e1 ∈ RL,
the verifier checks that ∥2(nym − de1)∥ is not small. If all checks

pass, it outputs 1 and 0 otherwise.

Linking. The link algorithm on input two signatures (µ1, bsn,σ1)

and (µ2, bsn,σ2) for the same basename bsn checks whether both

pseudonyms nym
1
, nym

2
(which are part of the signatures) match.

Given pseudonyms nym
1
and nym

2
for the same basename bsn, we

will say that they are linked to the same TPM if 2(nym
1
− nym

2
) is

a polynomial in Rq with small norm.

To prove linkability, note that from (29) we have

2(nym
1
− nym

2
) = d(ē1,1 − ē1,2) + (ē

′
1
− ē ′

2
),

where the left side has small norm and all the coefficients except

for d on the right side also have small norm. This implies that there

exist polynomials f1, f2 such that d f1 + f2 = 0. One can show that,

for a random choice of d , the probability that such non-zero f1, f2
exist is close to 0 (c.f. [34, Proof of Lemma 4.8]). Therefore f1 and
f2 must both be 0, which implies that ē1,1 = ē1,2.

3.3 Security Intuition
The security intuition is that under the hardness of Ring-SIS and

Ring-LWE, proving the knowledge of (31) implies that ē = ec̄ ,
where e = [e1, e2] is one of the TPM secret keys from (21) used

during some Join session (Lemmas 3.1 and 3.2). For linking and

revocation-checking, the presence of the c̄ poses a problem because

this value can only be obtained by the extractor, but not the verifier.

For this reason, we obtain proofs (28) and (29), which then imply

that ē1 = 2e1 for some e1 used during join. This then allows us to

be certain that every nym is connected to some join session and, if

given the secret key for the session, be able to link the nym to that

secret key.

Our first lemma shows that one can construct a public key and

a sampling algorithm, which are indistinguishable under certain



computational assumptions from the real public key and sampling

algorithm, that are conducive to extracting a solution to Ring-SIS

via the procedure in Lemma 3.2.

Lemma 3.1. Consider the public key

[h | b],u, a (32)

generated as follows: Choose a random τ ∗ ∈ Zq ,R ∈ R2×2

1
,R′ ←

R4×2

q1/4
, su ← Dσ , and set b = h · R − τ ∗g, a = [h | hR] · R′, and

u = [h | hR] · Ru .
Then there exists an efficient sampling algorithm producing s ∼ Dη

such that no adversary can distinguish, based on the Ring-LWE and
NTRU assumptions, between the real public key and the sampling
algorithm, and the above public key and its sampling algorithm.

Proof. The terms a and u in the real and the fake public key

have the same distribution by the leftover hash lemma. Notice that

the only difference between the real public key and the one in 32 is

the extra τ ∗g term being added to b. Through a series of games, we

can show that, together with the sampling algorithm we describe

below, the distribution of the public key and the sampling output

is indistinguishable from the real public key and the real output.

Note that we cannot naively say that by the Ring-LWE assump-

tion the real public key [h | hR] is indistinguishable from the key

[h | hR − τ ∗g] used in the reduction. The reason is that to use Ring-

LWE, one needs to go through an intermediate distribution [h | b]
for a uniform b, and in this case we do not know how to do any

pre-image sampling since there is no trapdoor.

Instead, we will also be modifying the left side of the public key

to create an NTRU trapdoor which we can use to do sampling when

we change the right-hand side of the trapdoor to be uniform. The

optimal way of selecting an NTRU trapdoor is outlined in [24], and

it allows for sampling pre-images with standard deviation less than

the Micciancio-Peikert sampler (and so it can sample that standard

deviation as well). We will also be making the decisional NTRU

assumption that the NTRU public key f /д is indistinguishable from
uniform. For f and д that are large with respect to q, as in [24], this

appears to be a reasonably safe assumption as slightly larger f and

д result in truly random quotients [43]. We do not go into much

detail here because the NTRU problem only appears in the proof

and is not used anywhere in the scheme.

The reason that one must also modify the sampling algorithm is

that in the real public key, one is always sampling an s satisfying
[h | hR + τg]s = u + a · e where τ , 0. This can be done with

the Micciancio-Peikert sampling technique. With the public key

in 32, on the other hand, if τ = τ∗, then we need to sample an s
satisfying [h | hR]s = u + a · e. Since the trapdoor g “vanishes”, we

can no longer use the aforementioned sampling algorithm. The way

that this problem is generally overcome (e.g. in the original ABB

selectively secure signature scheme) is that one sets the right-hand

side of the equation (u + a · e) to be [h | hR]s. In our case, this is

not possible because e is chosen by the adversary after he sees the
public key. Our sampling algorithm for the special case of τ = τ ∗

deals with this specific issue.

Game 1: h ← R,R← R2×2

1
, b = hR. Sample using trapdoor R.

Game 2: h = f /д,R ← R2×2

1
, b = hR. Sample using trapdoor R.

Indistinguishable by the NTRU assumption.

Game 3: h = f /д,R← R2×2

1
, b = hR. Sample using NTRU trapdoor.

Statistical Indistinguishability.

Game 4: h = f /д, b← R2
. Sample using NTRU trapdoor. Indistin-

guishable by Ring-LWE.

Game 5: h = f /д, b′ ← R2, b = b′ − τ ∗g. Sample using NTRU

trapdoor. Statistical indistinguishability.

Game 6: h = f /д,R ← R2×2

1
, b = hR − τ ∗g. Sample using NTRU

trapdoor. Indistinguishable by Ring-LWE.

Game 7: h = f /д,R← R2×2

1
, b = hR − τ ∗g. Sample using trapdoor

R or the special procedure for τ ∗. Statistical Indistinguishability.
Game 8: h ← R,R← R2×2

1
, b = hR − τ ∗g. Sample using trapdoor R

or the special procedure for τ ∗. Indistinguishability by NTRU.

Sampling. For all τ , τ ∗ and any e, we use theMicciancio-Peikert

sampling algorithm to sample an s satisfying [h | hR+(τ −τ ∗)g]·s =
u + a · e. This is possible because τ − τ ∗ , 0 and so the trapdoor

does not vanish.

When τ = τ ∗, then our trapdoor vanishes and so we cannot use

it to do pre-image sampling. When asked to sign a message e∗ with
tag τ ∗, the authority computes

s∗ = (su + R′e∗). (33)

This is a valid signature because [h | hR]s∗ = u + a · e∗, but its
distribution is incorrect because it’s a shifted gaussian. Nevertheless,

if ∥R′e∗∥ ≪ ∥su ∥, then one can use rejection sampling to transform

the shifted gaussian distribution su − R′e∗ into one that has the

same distribution as su – i.e. Dξ . If a reject happens, we abort the

whole reduction and start over. Otherwise, the signature s∗ has
exactly the right distribution Dξ . Recall that the authority will only

need to sign for tag τ ∗ at most once and so as long as rejects don’t

happen with overwhelming probability, the success of the reduction

only goes down by a polynomial factor with respect to the success

probability of the forger. In order for the rejection probability to not

be overwhelming, we need that ∥R′e∗∥ <
√

4d ∥su ∥ (see Lemma

2.1). This will always be the case in our scheme. □

The below lemma shows that that every ē1 extracted from the

signer in (28) must be equal to e∗
1
c̄ for some e∗

1
that the authority

created a credential on in the Join procedure.

Lemma 3.2. Suppose the public key is as in Lemma 3.1. If there is
an adversary that after choosing, for 1 ≤ i ≤ κ, e(i) and receiving s(i)

satisfying [h | b+τg] · s(i) = u + a · e(i) is able to output a τ ∈ Zq , an
s̄ ∈ R4

q with ∥s̄∥ ≤ βs̄ , a c̄ ∈ ¯C, and an ē s.t. ∀ i ē , c̄e(i), satisfying

c̄[h | (b + τg)] · s̄ = c̄2u + a · ē + [C1 | C2] ·

[
w̄1

w̄2

]
, (34)

(where all the notation is as in (31)) then there exists another algo-
rithm that can solve a Ring-SIS instance [h | C1 | C2] with probability
approximately 1/q smaller than the success probability of the advers-
ary.

Proof. With probability 1/q the tag τ that the adversary forges

on is τ ∗. In other words, the adversary returns a s̄, c̄, w̄ satisfying

c̄[h | b′]s̄ = c̄2u + a · ēc̄ + C1w̄1 + C2w̄2, (35)

where b′ = hR.



From (33), we also have another equation

[h | b′]s∗ = u + a · e∗. (36)

Multiplying (36) by c̄2
and subtracting from (35), and then plugging

in a = [h b]R′, we obtain

[h | b′](c̄ s̄ − c̄2s∗) = [h | b′]R′(ēc̄ − e∗c̄2) + C1w̄1 + C2w̄2 (37)

Because everything being multiplied by h, b′,C1, and C2 has

small coefficients, this will be a SIS solution to [h | b′ | C1 C2] (and

therefore to [h | C1 | C2] since b′ = hR) unless all the multiplicands

are 0. Because the adversary cannot predict the exact value of

R′ (because the entropy of each column of R′ is larger than of

each column of a), in order to force the extractor to extract a zero-

solution, the adversary would need ēc̄ = e∗c̄2
. By the invertibility

of c̄ , this implies that ē = e∗c̄ .
□

The below lemma proves that (28) and (29), together with the

knowledge that ē1 = e∗
1
c̄ , imply that ê1 = 2e∗

1
.

Lemma 3.3. If, for a randomly-chosen d ∈ Rq , the following equa-
tions hold:

ē1 = e∗
1
c̄ (38)

dē1 + ē
′ = c̄nym (39)

dê1 + ê
′ = 2nym (40)

and ∥ē1∥∞, ∥e1∥∞, ∥ê1∥∞, ∥ê
′∥∞ ≪

√
q/2, then with probability

close to 1 (over the choice of d) ê1 = 2e∗
1
.

Proof. Multiplying (39) by 2 and (40) by c̄ , subtracting, and
plugging in (38), we obtain

d(2e∗
1
c̄ − ê1c̄) + (2ē

′ − ê ′c̄) = 0.

Because all the variables exceptd in the above equation are≪
√
q/2,

by [34, Lemma 4.8] we know that it’s highly unlikely that a non-

zero solution du1 + u2 = 0 exists for small, non-zero ui . Therefore
2e∗

1
c̄ = ê1c̄ , and because c̄ is invertible, we get the claim in the

lemma. □

4 SECURITY
We now show that our DAA protocol satisfies the desired DAA secu-

rity guarantees captured through the ideal functionality F l
DAA [18].

Before presenting our proof sketch, we first discuss how the proto-

cols and algorithms presented in Section 3 have to be “UC-fied”.

4.1 UCWrapper for our Protocol
To date, the only sound security notion for DAA is an ideal functio-

nality in the Universal Composability framework. Describing pro-

tocols in the UC framework requires some extra care to include

session identifiers, explicit party inputs in interactive protocols, as

well as to reflect the abstract modeling of keys and secure channels.

We start by describing the necessary sub-functionalities our pro-

tocol relies on, and then discuss how to map our protocols to the

interfaces required by F l
DAA.

Sub-Functionalities. We assume that a common reference string

functionality Fcrs and a certificate authority functionality Fca are

available to all parties. The later allows the issuer to register his

public key, and Fcrs is used to provide all entities with the system

parameters comprising of the random seed to generate the commit-

ments, and a of the issuer’s public key.
For the communication between the TPM and issuer (via the

host) in the join protocol, we use the semi-authenticated channel

F ∗auth introduced in [18]. For all communication between a host

and TPM we assume the secure message transmission functionality

Fsmt (enabling authenticated and encrypted communication). In

practice, Fsmt is naturally guaranteed by the physical proximity of

the host and TPM forming the platform, i.e., if both are honest an

adversary can neither alter nor read their internal communication.

In the description of the protocol, we assume that parties call

Fcrs and Fca to retrieve the necessary key material whenever they

use a public key of another party. Further, if any of the checks in

the protocol fails, the protocol ends with a failure message ⊥.

The protocol also outputs ⊥ whenever a party receives an input

or message it does not expect (e.g., protocol messages arriving in

the wrong order.)

F l
DAA Interfaces. The F l

DAA functionality considers an issuer I

and the platform consisting of a TPMMi and a hostHj . In UC, dif-

ferent instances of a protocol are separated through unique session

identifiers sid = (I, sid ′). In the real-world these are mapped to the

issuer public key, and all parties use the sid to link their stored key

material to the particular issuer.

Setup: I upon input (SETUP, sid) generates his key pair (ipk, isk).
It registers the public key (sid, ipk) at Fca, stores the secret key as

(sid, isk) and ends with output (SETUPDONE, sid).

Join: To distinguish several join sessions that might run in parallel,

we use a unique sub-session identifier jsid that is given as additio-

nal input to all parties. The join protocol starts whenHj receives

the input (JOIN, sid, jsid,Mi ) upon which it triggersMi to gene-

rate u1 along with the proof π1, and send it via F ∗auth to I. When

I receives the message it outputs (JOINPROCEED, sid, jsid,Mi ).

The join session is completed when the issuer receives an input

telling him to proceed with join session jsid , upon which it returns

cred = (s, τ ). This explicit interaction with the issuer allows the

issuer to perform some additional check to decide whetherMi is

allowed to join. The host stores the credential as (sid,Mi , cred) and
the TPM stores its secret key as (sid,Hj , tsk) i.e., both “remember”

with whom they joined with. The join ends withMi outputting

(JOINED, sid, jsid).

Sign: Signing is a protocol run between a TPMMi and a hostHj .

Again, we use a unique sub-session identifier ssid to allow for multi-

ple sign sessions and unique identification of the particular session

in the UC interfaces. The hostHj upon input (SIGN, sid, ssid,Mi ,

µ, bsn), retrieves its join record (sid,Mi , cred) and aborts if no such
record is found. It sends (ssid, µ, bsn) to the TPMwhich then checks

that a key record (sid,Hj , tsk) exists and outputs (SIGNPROCEED,
sid, ssid, µ, bsn). The signature is completed when Mi receives

the input (SIGNPROCEED, sid, ssid), upon which it computes the

SPK and nym. The explicit input from the TPM is necessary to



ensure that the TPM in fact “approved” the attestation of µ and

bsn. Finally, the host outputs the jointly computed signature as

(SIGNATURE, sid, ssid,σ ).

Verify and Link:Here both algorithms are simply re-labeled as UC

interfaces with the ipk being replaced with sid, i.e. both algorithms

are made available through interfaces (VERIFY, sid, µ, bsn,σ , RL)
and (LINK, sid,σ , µ,σ ′, µ ′, bsn) respectively.

4.2 Proof Sketch
Theorem 4.1. The protocol Πdaa presented in Section 3 securely

realizes F l
DAA [18] in the (F ∗authFca, Fsmt, Fcrs)-hybrid and random

oracle model under static corruptions, if the Ring-LWE, Ring-SIS, and
the NTRU assumption hold.

To show that no environment E can distinguish the real world,

in which it is working with Πdaa and adversary A, from the ideal

world, in which it uses F l
DAA with simulatorS, we use a sequence of

games. We start with the real world protocol execution. In the next

gamewe construct one entity C that runs the real world protocol for

all honest parties. Then we split C into two pieces, a functionality F

and a simulator S, where F receives all inputs from honest parties

and sends the outputs to honest parties. We start with a useless

functionality, and gradually change F and update S accordingly,

to end up with the full F l
DAA and a satisfying simulator.

The proof closely follows the structure of the UC proof by Ca-

menisch et al. in [18], with the crucial steps occurring in Game 7,

where the signatures of honest platforms are replaced by signatures

on “dummy” keys (guaranteeing anonymity), and Games 12–15

where we let the functionality enforce the expected unforgeability
and non-frameability properties. For unforgeability we rely on the

security of signatures created by the issuer, which we have shown

to hold in Lemma 3.1-3.3.

Game 1: This is the real world protocol.

Game 2: The challenger C now receives all inputs and simulates

the real world protocol for honest parties. Since C gets all inputs,

it can simply run the real world protocol. It also simulates all hy-

brid functionalities, but does so honestly, so E does not see any

difference. By construction, this is equivalent to the previous game.

Game 3: We now split C into a “dummy functionality” F and si-

mulator S. F receives all inputs, and simply forwards them to S. S

simulates the real world protocol and sends the outputs it generates

to F , who then outputs them to E. This game only restructures the

previous game.

Game 4: In this game we let our intermediate F handle the setup

related interfaces using the procedure specified in F l
DAA. Conse-

quently, F expects to receive the algorithms

(ukgen, sig, ver, link, identify)

from the simulator. For ukgen, ver, and link, S can simply provide

the algorithms from the real-world protocol, where it omits the

revocation check from ver. The sig algorithm will be a combination

of the join and sign procedure though, as it will be used to create

anonymous signatures for honest platforms for which it uses a

fresh TPM key whenever the platform signs w.r.t. a new basename.

Thus, to internally create signatures via sig, the algorithm must

first create a valid membership credential for the freshly chosen

tsk and then sign with this new credential. So sig must contain the

issuer’s private key, which the simulator S has to be able to get.

When I is honest, S is running the issuer, i.e., it knows its secret

key and sets the sig algorithm accordingly.

When I is corrupt, S starts the simulation when the issuer

registers his key with Fca that is controlled by the simulator. Since

the public key comes with a proof of knowledge of the issuer’s

secret key, S can extract the secret key from there and define the

sig algorithm accordingly. By the simulation soundness of the proof

system, this game hop is indistinguishable for the adversary.

Finally, for identify which is used to check whether a signa-

ture (σ , µ, bsn) belongs to a certain tsk, we use roughly the same

procedure as for revocation checks. That is, the algorithm parses

σ = (nym,d, bsn), tsk = (e1, ∗), and checks that ∥2(nym − de1)∥ is

small. If so it outputs 1, and 0 otherwise. Recall that we compute

pseudonyms for random d when bsn = ⊥, so this check works for

all cases.

Game 5: F now handles the verify and link queries using the

provided algorithms ver and link from the previous game, rather

than forwarding the queries to S. We do not let F perform the

additional checks (Checks (ix) – (xvi)) done by F l
DAA, though, but

add these only later. For Check (xii), F rejects a signature when

a matching tsk ′ ∈ RL is found, but does not exclude honest TPMs

from this check yet.

Because verify and link do not involve network traffic, the simu-

lator does not have to simulate traffic either, we must only make

surethe outputs do not change. F executes the algorithms that S

supplied, and S supplied them in such a way that they are equiva-

lent to the real world algorithms, so the outcome will clearly be

equivalent.

Game 6: In this step we change F to also handle the join-related

interfaces, meaning it will receive the inputs and generate the

outputs. We let F run the same procedure as F l
DAA, but again omit

the additional checks (Checks (ii)–(iv)).

In the final join interface JOINCOMPLETE, the simulator has to

provide the secret key tsk of the TPM. When the TPM is honest, S

knows the key anyway and uses it towards F . If the TPM is corrupt

and either the issuer or host is honest, S extracts the vector e1 from

the proof π1 that it receives in the role of the honest I orHj and

sets tsk ← (e1,⊥). Note that we do not extract nor set the part sk
of the TPM’s secret key. This has no impact though, as tsk will only

be used for internal checks by identify for which only e1 is used.

Finally, note that F sets tsk ← ⊥ when both the TPM and host

are honest. However, this has no impact yet, as the signatures are

still created by the simulator and the verify and link interfaces of

F do not run the additional checks that make use of the internally

stored records and keys.

Overall, this game hop is indistinguishable by the simulation

soundness of the SPK π1.

Game 7: We now transform F such that it internally handles the

signing queries of honest platforms instead of merely forwarding

them to S. Thus, this game hop proves the anonymity of our DAA

scheme.



Again, F uses the sign interfaces from F l
DAA, with the difference

that it does not perform the Check (v) – (vii) which we only add in

a later game.

When both the TPM and the host are honest, F creates the sig-

natures internally in an unlinkable way: It chooses a new tsk per

basename and TPM, or per signature when bsn = ⊥ and then runs

the sig algorithm for that fresh key. As described earlier, sig starts
by internally “issuing” a membership credential on tsk using the

issuer’s secret key that is included in sig. F keeps the internally cho-

sen keys ⟨Mi , bsn, tsk⟩ in a list DomainKeys to ensure consistency

if a TPM wishes to reuse the basename.

This change is indistinguishable under the Ring-LWE assump-

tion, the reduction can be done in a straightforward manner, using

a hybrid argument to to replace the signatures one-by-one.

Game 8: We change F such that it no longer informs S which

message and basename are being signed. Thus, when the TPM and

host are both honest, S does not learn µ, bsn but only its leakage

l(µ, bsn). Recall, that signatures for honest platforms are generated

by the functionality now, so S merely as to mimic communication

between the honest TPM and host.

Game 9: We now add the constraint that when I is honest, F

only allows platforms that joined to sign, which is checked via

the list Members. Note that for our simulation we only care about

platforms that are at least “partially” honest, i.e., the host and/or

TPM are honest, as otherwise there is nothing to simulate. For

such platforms, this check will not change the view of E using the

simulator S from the previous game: in the real world, an honest

host and TPM both check that they have a joined before signing. In

the ideal world, S makes join queries towards F ensuring that the

joined platforms (with honest entities) are in Members, and thus F

still allows any signing that could take place in the real world.

Game 10: In this game we let F additionally check the validity

of every new tsk that is generated or received in the join and sign

interface.

If the TPM is corrupt, F checks that CheckTskCorrupt(tsk) =
1 for the tsk that the simulator extracted from π1 (Check (iv)).

This check prevents the adversary from choosing different keys

tsk , tsk′ that both fit to the same signature. By the It is easy

to see that there exists only one secret e1 satisfying the nym-

part of the signature (also for the “random” pseudonyms when

bsn = ⊥). As there is only a single tsk for every valid signature

where identify(σ , µ, bsn, tsk) = 1, this check will never fail.

For keys of honest TPMs,F verifies thatCheckTskHonest(tsk) =
1 whenever it receives or generates a new tsk (Check (iii) and (v)).

With these checks we avoid the registration of keys for which ma-

tching signatures already exist. Since keys for honest TPMs are

chosen uniformly at random from an exponentially large group

and every signature has exactly one matching key, the chance that

a signature under that key already exists is negligible.

Game 11: We now add the checks to F that F l
DAA runs in the

sign interfaces when internally generating signatures for honest

platforms. After creating a signature, F checks whether the signa-

ture verifies and matches the right key (Check (vi) and (vii)). As S

supplied proper algorithms and the signature scheme is complete,

these checks will obviously always succeed.

F also checks with the help of its internal key records Members
and DomainKeys that no one else already has a key which would

match this newly generated signature (Check viii). As signatures

match only a single TPM key and we choose keys of honest plat-

forms at random from a large domain, this can happen only with

negligible probability.

In the next four game hops, we let F perform the four additi-

onal checks that are done by F l
DAA in the verification interface,

i.e., we rely on F to enforce the desired unforgeability and non-
frameability guarantees. We now show that this check does not

change the verification outcome, as any signature that would pre-

viously pass will still pass.

Game 12: F now performs an additional check during verifica-

tion, it checks whether it finds multiple tsk values matching this

signature, and if so, it rejects the signature. It is easy to see that

there is only tsk per signature for which identify will output 1, as

there is only one e1 that can lead to the pseudonym nym.

Game 13: When I is honest, F now only accepts signatures on

tsk values that I has issued a membership credential on. Under the

existential unforgeability of the membership credential, this check

changes the verification outcome only with negligible probability.

The unforgeability of our signature scheme used by the issuer to

(blindly) sign the TPM’s key is based on the Ring-SIS and Ring-LWE

problem as shown in Lemma 3.1-3.3.

Game 14: F now prevents forging signatures using an honest

TPM’s tsk. If the environment can distinguish this game hop, i.e.,

it can create a valid signature σ for message µ and basename bsn
that traces via identify to an honest TPM, but that TPM has never

signed µ, bsnwe can use this to break the Ring-LWE problem. Again,

the reduction can be done in a straight-forward manner: We use

the Ring-LWE challenge as u1 for a randomly chosen honest TPM

during the join protocol (with the possibly corrupt issuer). DAA

Signature for this honest TPM are merely simulated. If we see a

valid signature that we never created, we extract e1 from there and

use it to break the Ring-LWE problem.

Game 15: Check (xii) is added to F , this ensures that honest TPMs

are not being revoked. If an honest TPM is simulated by means of

the Ring-LWE problem instance, if a proper key RL is found, it must

be the secret key of the target instance. This is again equivalent to

solving the Ring-LWE problem.

Game 16: We now let F perform all the additional checks F l
DAA

makes for link queries. The output of F based on these checks is

still consistent with the output which the link algorithm would

give: If there is a tsk that matches one signature but not the other,

by soundness of π we have that the pseudonyms are not based on

the same tsk, and thus must differ which results in link outputting

0. If there is a tsk that matches both signatures, by soundness of π
we have that the pseudonyms are based on the same tsk and must

be equal, resulting in link outputting 1.

Now F is equal to F l
DAA, concluding our proof sketch. □
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