
Storing STL Containers on NVM
Persistent Programming in Real Life (PIRL) 2019

Topics Covered

• Data Characteristics in In-Memory Databases

• The Importance of Write-Once Data

• Using PMR and Representation-Aware Containers for NVM

• Performance Evaluation

3

Background
• Hyrise is a Research Database developed at HPI in Potsdam, Germany

• Relational, in-memory, HTAP, open-source, C++2a

• Research topics: Self-Driving, NVM, Heterogeneous Replication, Footprint Reduction

• Note that not everyone is working on NVM

• Similar in many concepts to SAP HANA

4

Data Characteristics in In-Memory Databases

5

Original value proposition of NVM:

Persistency closer to CPU, fast recovery

BUT: Performance hits for random access

Current value proposition of NVM:

Higher capacity and lower cost than DRAM,

less performance impact than SSDs,

faster recovery

Base data
(needed after a restart)

Scratch data
(worthless after a restart)

Heavily accessed, many writes

Cold table data

Hot table data

Dyn. Indexes

Statistics

Log Buffer

Traditional DRAM territory
Position lists

Join Hashmaps

Stat. Indexes

Result Cache

NVM as high-capacity

scratch space

Join Spill-Over

Few reads, few writes

Goals
• Allow an existing code base to benefit from NVM; minimize the necessary changes

• Avoid making more code than necessary NVM-aware

• Make it easy for non-NVM people

• Enable the use of data structures that do not yet have an NVM-aware equivalent

• Limitations that make our live easier:

• We only write this data once

• We do not have to care about atomicity

6

Disclaimer
• Casting memory that came from somewhere into a C++ object is undefined behavior

• … but it works.

• This might break if the program is recompiled using a different compiler or a different STL

• … and you won't even notice it.

• For this to be used in a product, more work needs to be done

• … but we are researchers.

7

Code Example
• Let‘s take a simplified in-memory table with two columns:

• ... and build a static (immutable) index on the first column:

8

std::vector<std::tuple<double, int>> table{
{4.2, 5},
{1.4, 7},
{3.5, 2}

};

using Value = double;
using Position = std::size_t;
using InvertedIndex = std::map<Value, Position>;

for (size_t position = 0; position < table.size(); ++position) {
index->emplace(std::get<0>(table[position]), position);

}

Code Example
• So far so good. But what if we want to store that index on NVM?

• For an immutable chunk, the index is created but never updated

• Surely, libpmemobj++ can help?

• No tree-based map in libpmemobj++, but in libpmemobj:

9

* four implementations of tree maps:
** ctree - Crit-Bit using tx API of libpmemobj
** btree - B-tree using tx API of libpmemobj
** rtree - Radix-tree using tx API of libpmemobj
** rbtree - red-black tree using tx API of libpmemobj

First attempt with pmemobj

Observations:

• We might be able to write a C++ wrapper for this

• However, we do not have a nice std::map anymore that we can pass around

• The rbtree implementation is limited to uint64_t keys – what if we want strings?

• This gives us more consistency guarantees that we care for

10Largely taken from examples/libpmemobj/map

mapc = map_ctx_init(&rbtree_map_ops, pop);
if (!mapc) { /* [...] */ }
TX_BEGIN(pop) {
map_create(mapc, &D_RW(root)->map, NULL);
for (size_t position = 0; position < table.size(); ++position) {
map_insert(mapc, D_RW(root)->map, std::get<0>(table[position]), new_store_item(position).oid);

}
} TX_ONABORT {
/* [...] */

} TX_END

The path to STL containers on NVM
• Can we simply allocate our std::map on NVM?

11

template <class T>
class nvm_allocator {

nvm_allocator() {
// create or load pool

}

[[nodiscard]] T* allocate(std::size_t n) {
return &pmem::obj::make_persistent

<char[]>(n * sizeof(T))[0];
}

}

using InvertedIndex = std::map</*[...]*/,
nvm_allocator</*[...]*/>>;

Issues:

• Data in map is not flushed

• Early crashes lead to persistent leaks

• The nvm_allocator is all over the place

• Remapping invalidates pointers

The path to STL containers on NVM
• Let‘s track the allocations and use them to flush:

12

Issues:

• Data in map is not flushed

• Early crashes lead to persistent leaks

• The nvm_allocator is all over the place

• Remapping invalidates pointers

[[nodiscard]] T* allocate(std::size_t n) {
T* pointer;
pmem::obj::transaction::run(pool, [&] {

pointer = static_cast<T*>(
resource()->allocate(n * sizeof(T)));

root.inflight_allocations->emplace_back(pointer, n);
});
return pointer;

}

nvm_allocator() {
root.inflight_allocations =
pmem::obj::make_persistent<pmem::obj::
experimental::vector</*[...]*/>>();

}

void persist() {
for (auto& [p, n] : *root.inflight_allocations) {

pmemobj_persist(pool.handle(), p, n);
}
root.inflight_allocations->clear();

}

The path to STL containers on NVM
• If instead of T*, we store PMEMoids in the list,

we can also use it to free incomplete data:

13

Issues:

• Data in map is not flushed

• Early crashes lead to persistent leaks

• The nvm_allocator is all over the place

• Remapping invalidates pointers

// When reopening the pool:
for (const auto& pmemoid : *root().inflight_allocations) {
auto ret = pmemobj_tx_free(pmemoid)
Assert(!ret, "free failed");

}

The path to STL containers on NVM
• Currently, the nvm_allocator is part of the type

definition:

• We do not want to drag it through the code base

• Also, we want to be able to store some indexes
on DRAM and some on NVM while using the
same code

14

Issues:

• Data in map is not flushed

• Early crashes lead to persistent leaks

• The nvm_allocator is all over the place

• Remapping invalidates pointers

using InvertedIndex = std::map</*[...]*/,
nvm_allocator</*[...]*/>;

Polymorphic Memory Resources
• PMR to the rescue

• Instead of making the nvm_allocator a type parameter, we pass in an
nvm_memory_resource that supports methods such as allocate and deallocate

• For the same type, we can pass nvm_memory_resources or default_memory_resources
into the constructor of the object

• The nvm_memory_resource holds the information about the pools

• In Hyrise, we use PMR for NUMA-aware allocations anyway, so there is no change needed

15Small kink here: The nvm_memory_resource would have to be persisted as well so that it can be used after recovery. As this
would lead to the data structures chasing their own tail, we store the information needed to recreate an equivalent resource.

using InvertedIndex = std::map</*[...]*/, std::pmr::polymorphic_allocator</*[...]*/>;

Polymorphic Memory Resources

16

Issues:

• Data in map is not flushed

• Early crashes lead to persistent leaks

• The nvm_allocator is all over the place

• Remapping invalidates pointers

using InvertedIndex = std::map</*[...]*/,
polymorphic_allocator</*[...]*/>>;

auto allocator = polymorphic_allocator</*[...]*/>{
&nvm_memory_resource::get()};

auto index = InvertedIndex {allocator};

• For simplicity, we limit the example to a single
memory resource (i.e., a single pool)

Polymorphic Memory Resources

17

Issues:

• Data in map is not flushed

• Early crashes lead to persistent leaks

• The nvm_allocator is all over the place

• Remapping invalidates pointers

• One more thing: Because PMRs propagate into
PMR-aware child containers, we get support for
nested STL containers for free

using Value = std::basic_string<char, /*[...]*/,
polymorphic_allocator<char>>;

using InvertedIndex = std::map<Value, /*[...]*/,
polymorphic_allocator</*[...]*/>>;

auto allocator = polymorphic_allocator</*[...]*/>{
&nvm_memory_resource::get()};

auto index = InvertedIndex {allocator};

Representation-Aware Containers

18

Issues:

• Data in map is not flushed

• Early crashes lead to persistent leaks

• The nvm_allocator is all over the place

• Remapping invalidates pointers

• Currently, all pointers become invalid after
remapping the pool somewhere else

• Easy to verify with –pie

• Internally, the std::map uses T* to reference
other nodes in the tree

• We will never get T* to be NVM-aware

Representation-Aware Containers
• Instead of native pointers, the containers should use "fancy pointers“ that can deal with

different positions after remapping

• O‘Dwyer and Steagall [1] call this requirement representation awareness

• Previous uses are in IPC, where two processes might share the same memory, mapped at
different locations

• A tree written by one process should be readable by the other
• The benefit of boost::interprocess::offset_ptr is that if a memory region is mapped into

the address space of two different processes, then every offset_ptr residing in the
mapped region will identify the same object no matter which process is asking — as
long as the identified object also resides in the mapped region.

19[1] https://quuxplusone.github.io/draft/fancy-pointers.html

Representation-Aware Containers

20

Issues:

• Data in map is not flushed

• Early crashes lead to persistent leaks

• The nvm_allocator is all over the place

• Remapping invalidates pointers

• By simply adding pointer traits to our allocator,
we make sure that the reference to a tree‘s child
nodes is stored as an offset to the position of the
pointer:

• The index is now readable after remapping

template <class T>
class polymorphic_offset_allocator {
public:
typedef T value_type;
typedef boost::interprocess::offset_ptr<T> pointer;
typedef const boost::interprocess::offset_ptr<T>
const_pointer;

// [...]
}

Representation-Aware Containers
• Why don‘t we use persistent_ptr?

• Remember that the polymorphic allocator is used for both, objects stored on DRAM and
objects stored on NVM

• We cannot get a persistent_ptr for a DRAM object

21

Representation-Aware Containers
• Limitation: This currently only works in libc++

• In libstdc++, "node-based containers don't use allocator's pointer type internally“ [1]

• Supporting representation-aware containers would be a breaking ABI change

• Issue is unchanged since 2016

22[1] https://gcc.gnu.org/bugzilla/show_bug.cgi?id=57272
Screenshot from: https://www.reddit.com/r/cpp/comments/b1fyc9/does_anyone_know_when_libstdc_will_stop_using_raw/

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=57272

0 20 40 60 80 100 120 140 160 180

STL Baseline (1)

(1) + PMR Allocator (2)

(2) + Offset Pointers (3)

(3) + non-persistent NVM (memkind) (4)

(3) + allocations on NVM w/o tracking (5)

(5) + tracking on NVM (6)

(6) + persisted tree (7)

nvm/map_rbtree (8)

seconds

Creating a map (rb-tree) with 5M random entries

Performance Analysis: Creation

23Using clang 7.0.1-6.fc29, libcxx 7.0.0-1.fc29, boost 1.70.0 (built with libc++), Fedora 29, max RSS for baseline 393680 kB

Potential for new allocators

Trees are one of the harder examples, as they
include a high number of individual allocations.
For hash maps, which can be pre-allocated, the

overhead of our approach is lower.

Performance Analysis: Read Access

24

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

STL Baseline (1)

(1) + PMR Allocator + Offset Pointers (2)

Non-Persistent NVM (memkind) (3)

Our Approach (4)

nvm/map_rbtree (5)

seconds

Reading 100k entries from map with 1M entries

Can‘t explain this yet

Is this required overhead?

Topics NOT Covered

Migrations

• Multiple pools

• We can only migrate entire pools – how to balance flexibility and fragmentation?

Integration into Hyrise, our research database

• How to decide which part of the data should be migrated from DRAM to NVM and back?

• How to selectively skip recovery for chunks that are already stored on NVM?

25

Future Work
• We spend a lot of time in tracking allocations

• Using a simpler allocation algorithm could make this cheaper

• Easiest example: a monotonic_buffer_resource would mean that we don’t have to track
anything anymore

• This also makes migration easier

• How to balance anti-fragmentation and performance?

• Make this usable

• Right now, this is a prototype to understand feasibility and performance implications

• Clean up code, verify implementation

26

Addenda

• If polymorphic objects are stored, the vtable might move due to ASLR or changes in the
code. This will cause the vptr to point to an invalid address.

• This is the same with interprocess mapping (offset_ptrs original use case)

• Most NVM-aware data structures likely suffer from a similar problem

• I am not aware of a solution to this other than not to store polymorphic objects

• Solving this would be a great step towards persistency as a first-class citizen

27

Based on the discussions during and after the talk, this slide was added to the published version

Summary / Take Aways
• You do not need new data structures to benefit from NVM if you write data once

• Sometimes, using NVM-aware implementations might even hurt your performance

• We showed how you can adapt STL containers to be stored on and recovered from NVM

• The performance is dominated by the cost of persistent NVM allocations

• Currently, this is (a) libc++ only, and (b) illegal

• If you know anyone from libstdc++, please pitch representation-aware containers

• If you know someone in the committee, please bug them about std::bless (and don't rat me out)

28markus.dreseler@hpi.de

