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Abstract—Prolonged sitting behavior and postures that cause
strain on the spine and muscles have been reported to increase
the probability of low back pain. To address this issue, many
commercially available sensors already provide feedback about
whether a person is ‘slouching’ or ‘not slouching’. However, they
do not provide information on a person’s posture, which would
give insights into the strain caused by a specific posture. Hence,
in this pilot study, we attempt to find the optimum number
of inertial measurement unit sensors required and the best
locations to place them using six mock postures. Data is collected
from these sensors and features are extracted. The number of
features are reduced and the best features are selected using
the Recursive Feature Elimination method with Cross-Validation.
The reduced number of features is then trained and tested on
Logistic Regression, Support Vector Machine and Hierarchical
Model. Among the three models, the Support Vector Machine
algorithm had the highest accuracy of 93.68%, obtained for the
thoracic, hip and sacral region sensor combinations. While these
findings will be validated in a larger study in an uncontrolled
environment, this pilot study quantitatively highlights the impor-
tance of sensor placement in shaping discriminative performance
in sitting posture classification tasks.

Index Terms—algorithm, classification, inertial measurement
unit, location, recursive feature elimination, sitting posture

I. INTRODUCTION

Prolonged sitting behaviour and spine straining sitting pos-
tures have been reported to act as negative factors affecting
health outcomes and which increases the probability of devel-
oping Low Back Pain (LBP) [1]–[5]. LBP is ranked as one of
the top causes of sick leaves and an economic burden on health
care system [6]. The proportion of people sitting for long hours
during work and in their daily life has increased in recent years
and around 75% of the employees in call centers, software
companies and other industrial jobs spend on an average 90%
of their workday sitting on a chair [1], [7], [8]. However, not all
people spending 90% of their time sitting will develop chronic
LBP. It is important to identify those particular postures or
lifestyles which are associated with the chronification of LBP.
Hence, to avoid it, maintaining a ‘good’ posture while sitting
is essential [9].

Among other factors, treatment of low back pain requires
an understanding of the mechanical factors potentially causing

Fig. 1: Sensor locations on the human body in the Anterior
View (AV) and Posterior View (PV). Abbreviations: T = 12th
Thoracic vertebra, L = 3rd Lumbar vertebra, S= Between 1st
and 2nd sacral vertebrae, H = Right hip, and N = Sternal angle.

the pain, such as spine movement [10], [11]. Hence, we
concentrate on the movements performed by the spine as the
person is sitting. There are different sitting postures considered
to be optimal for a person based on the spinal curvature,
intradiscal pressure, tissue stress and muscle activation [12],
[13]. In order to identify the sitting postures leading to LBP,
Inertial Measurement Unit (IMU) sensors are being used on
the human body. Therefore, in this paper we present a pilot
study to predict the optimum number and the best suited
locations of IMU sensors to study both, the posture and the
spine movement when a person is sitting. The aforementioned
pilot study forms the basis for a larger study, which has
been approved by the ethics commission of the University of
Potsdam. It entails recording the sitting behaviors of subjects
for 6-7 hours in his/her occupational settings, i.e., in an
uncontrolled, real environment, enabling the results presented
in this paper to be subsequently validated.

This work is organized as follows: In Section II, we present
the related work, while in Section III we discuss our method.
In Section IV, we present the results and discussion. Finally,
in Section V we draw conclusions and provide an outlook on
our future work.



II. RELATED WORK

IMU sensors have been placed on the upper and lower part
of the back by Petropoulos et al. [14]. The angles extracted
by each of the sensors were used to continuously monitor
the sitting postures. Here, the authors have not mentioned the
accuracy of the classification, and also the location of each
sensor is randomly chosen in the upper and lower back. Sensor
placement is an important step for the higher classification rate
and lower hardware cost [15]. In order to understand the spine
movement accurately, location of the sensor plays an important
role as upper and lower lumbar spine regions demonstrate
functional independence [16], [17]. The posture correcting
devices commercially available, such as Upright Go [18]
and Opter Pose [19] appear to be good posture correctors.
However, both devices do not measure the movement of the
spine, and only predict weather a person is ‘slouching’ or ‘not
slouching’. Critically, little is known with respect to the correct
location where to place these devices for enhanced accuracy.

III. METHODOLOGY

In the following section, we describe the tested locations
for placement of the sensors, the pre-processing of the data
and how the features were extracted and, the algorithms
used for predicting different postures. The algorithms were
programmed using the scikit-learn library [20].

A. Sensor Locations

We placed the Bonsai IMU sensors at five locations on the
human body as shown in Figure 1. Three of the sensors were
placed on the spine, at the 12th thoracic vertebra (T), 3rd
lumbar vertebra (L), and between 1st and 2nd vertebrae of the
sacral region (S) based on the previous literature [21]. The
4th sensor was placed at the right hip (H) and the fifth at
the sternal angle (N) in order to check if it is convenient to
place them in daily wearable. After positioning the sensors,
the data was collected using the Logger app available on the
iOS mobile application. The collected data were stored on the
sensor modules. The accelerometer and gyroscope data were
retrieved from the sensor module.

Simultaneously, we placed two Kinect depth cameras as
shown in Figure 2 to record the dept images of the upper
and lower part of the body. These cameras were used as gold
standards/labels for the classified data from the algorithms.
Similar measurement setup is being used in the larger study
to be carried out subsequently (already approved by ethics
commission).

B. Study Protocol

Data collection was carried out on six subjects, five male
and one female in the age group of 27-34 years, with weight
and height in the range of 61-91 Kg and 169-180 cm respec-
tively. All subjects signed the consent form to provide their
data.

Initially, the sensors were placed on the subjects as shown
in Figure 1. Then the subjects were made to sit for 3s to 5s. In
order to help in the synchronisation of the data, the subjects

were made to stand up, jump and sit down straight. Thereafter,
the subjects were instructed to sit in four different postures
- forward, backward, lean right and lean left postures. Each
instructed posture was repeated thrice with sitting-straight
posture as the intermittent posture between the repetitions.
Also, the sitting-straight posture was the intermittent posture
during the transition from one posture to the other posture.
The data was collected at a sampling frequency of 100 Hz for
approximately six minutes for each subject.

Fig. 2: The Kinect device set up for two cameras: a. records
the upper body, while b. records the lower body.

C. Pre-processing

The synchronisation of the data from the five sensors was
performed by aligning the peak data caused due to jumping.
We labeled the data by watching the video. The labelling of
transitions was challenging. However, we observed that the
gyroscope data had peaks whenever there was transitions in
the posture. Hence, the transitions were labelled using the
magnitude of the gx, gy and gz direction of the gyroscope
data placed at the 12th thoracic region. The magnitude (M)
was calculated using Equation 1 [22]:

M =
√
g2x + g2y + g2z (1)

If M > 0.7, indicates transition and if M < 0.7 , indicates
no transition.

After the process of labelling, the raw data was first filtered
using a nonlinear median filter. An odd window length of 151
was chosen for the median filter upon experimentation. The
median filter reduced the spikes in the signal [23]. The filtered
signal is windowed for 2s with 50% data overlap [24].

D. Feature Engineering

Based on the observation of the accelerometer data in the
three axes (x, y, z), features were generated and extracted by
finding the mean and standard deviation from each of the win-
dows. We also performed correlations between the windows
of two axes to extract features [24]. Correlation measures the
similarity between two signals. Correlation between the same
signal is called auto-correlation and between two different



signals it is called cross-correlation. Correlation is calculated
using Equation 2 [25] :

Rrr[k] =

N∑
n=0

ar[n]ar[n− d] (2)

where, a is the accelerometer signal, n is the index of the
data sample, d is the displacement, r = (p, q), p and q
are the directions of the accelerometer (x, y, z), and the
sensor locations (T, N, L, H, S) respectively. The maximum
and minimum peak of the correlation were used as the
features [25]. Similarly, pairwise correlation combinations of
axes on different sensor combinations were performed using
Equation 2, as these combinations improve recognition of
activities involving movements of multiple body parts [16].

In the case of single sensors 18 features were extracted, in
two sensor combinations 42 features, in three sensor combina-
tions 66 features, in four sensors combinations 90 features and
in five sensor combinations 113 features were extracted. As
the number of sensors increased the features from the previous
sensor combinations were also included in the increased sensor
combinations. All the extracted features were normalized for
their values to be between 0 and 1.

Algorithm 1: Recursive Feature Elimination Method
Result: Best rank features
Input: Training set X, Labels y;
for each iteration do

Partition the training set and label into training
data and test data via cross validation;

Train the model;
Predict the test data;
Calculate the feature ranking;
for Each subset of features Fi, i = 1.....f do

For ever iteration keep the Fi most important
features;

Train the model using the Fi features;
Predict on the test data;
Recalculate the ranking of the features;

Calculate the accuracy over the Fi features using the
test data samples;

Determine the appropriate number of features;
Estimate the final list of features for the final model;
Fit the model based on the best optimal number of
features Fi using the original training set;

E. Feature Selection
According to the rule of thumb, the ratio of the number of

training samples N to the number of features f, (N/f ) must be
at least ten [26]. The performance of a classification algorithm
tends to critically depend on the dimension of the features
considered in training the classifier. Hence, the number of
extracted features had to be reduced for training the algorithm.

In order to reduce the number of features, the Recursive
Feature Elimination (RFE) with Cross-Validation method with

multinomial Logistic Regression (LR) classifier and linear
kernel Support Vector Machine (SVM) were used separately,
to iteratively select the relevant features for the different sensor
combinations. First, the subset of features from the training set
were used for training the LR and SVM estimator. Then, the
testing data were used for ranking the features. Weak features
were eliminated at every step by fitting the model multiple
times until all the features in the set were exhausted [27].
The best subset of features were selected based on the 6
fold cross-validation model score. The pseudocode for the
RFE with cross-validation is presented in Algorithm 1 [28].
Table I presents the number of features extracted for each
combinations.

F. Sensor Combinations and Algorithms
In order to minimize the number of sensors and find the

best sensor locations to get good accuracy, different combina-
tions of sensors were tested using the ‘combination without
repetition formula’ and is presented in Equation 3 [29]:

Cm,k =

(
m
k

)
=

m!

k!(m− k)!
(3)

where, m represents the total number of sensors and k the
number of elements in a combination. Using Equation 3, 10
combinations were obtained for 2-set and 3-set sensors com-
binations each, 5 combinations for 1-set sensor combination, 5
combinations for 4-set sensor combination, and 1 combination
for 5-set sensor. The reduced features using SVM model were
used to train and test the LR, SVM and Hierarchical Model
(HM) model.

1) Multinomial Logistic Regression: First, the basic Multi-
nomial LR model was used for classification. The data
was labeled into six classes y ∈ {1, 2, 3, 4, 5, 6} where
each of the class represents backward, forward, lean
right, transition, lean left and sit straight postures respec-
tively. The probability for each class was calculated us-
ing the sklearn.linear_model.LogisticRegression class from
scikit-learn library [20].

2) Support Vector Machine: The classification in SVM is
based on the optimal margins/boundaries created in the feature
space [30]. These margins are created based on the support
vectors. Since, this is a multi-class classification, ‘one-vs-rest’
approach is employed [31]. Hence six models were trained for
six classes.

3) Hierarchical Model: It is a clustering algorithm in which
nested clusters are formed [32]. The dendrogram tree was
employed to identify the number of clusters or classes. In this
study five, six, seven, eight, and nine clusters were identified
for the different combinations. Since this study has six classes,
six was applied as the number of clusters to the parameter in
the class to cluster the training data. Then, for every test data
the average euclidean distance was calculated with respect to
each training data in a class. The test data is allocated to the
class with which it has the minimum average distance.

The accuracy of theses classifiers for different locations
and their combinations were compared and is presented in
Figure 3.



1 sensor combination SVM Features LR Features 4 sensors combination SVM Features LR Features

T 11 15 TNLH 19 76
N 7 18 TNLS 13 39
L 13 9 TNHS 12 44
H 10 14 TLHS 15 75
S 10 9 NLHS 72 87

2 sensors combination SVM Features LR Features 3 sensors combination SVM Features LR Features

TN 11 30 TNL 44 54
TL 37 38 TNH 31 15
TH 30 19 TNS 17 29
TS 27 17 TLH 21 23
NL 40 32 TLS 32 61
NH 11 17 THS 9 33
NS 11 35 NLH 59 53
LH 16 5 NLS 54 46
LS 41 31 NHS 30 40
HS 15 42 LHS 39 55

TABLE I: Number of features and their sensor combinations. Abbreviations: SVM = Support Vector Machine and LR =
Logistic Regression. Note: The number of features varies with sensor location and its combinations
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a. Mean accuracy of 6-folds for single sensor combinations
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b. Mean accuracy of 6-folds for two sensor combinations
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c. Mean accuracy of 6-folds for three sensor combinations
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d. Mean accuracy of 6-folds for four sensor combinations
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Fig. 3: Comparison of the mean and standard deviation of the classification accuracy of the 6-fold data for the one, two, three
and four sensor combinations.

IV. RESULTS AND DISCUSSION

Table I shows the summary of the number of features
after applying RFE for different combinations. Based on the
observation of Table I, the reduced features obtained using
SVM RFE were utilized for training and testing the other
algorithms (SVM, LR, HM), as it had fewer features compared
to LR RFE.

The mean and Standard Deviation (SD) of the classification
accuracy of the 6-fold data obtained using reduced features for
the three classification algorithms applied on one, two, three
and four sensor combinations are presented in Figure 3. In the
single sensor combinations presented in Figure 3.a, when the

sensor is at the T region of the spine, maximum accuracy of
around 88% for LR and SVM, and 78% for HM was obtained.
Yet, the SD for the LR was ± 5.919% which was considerably
less when compared to the other single sensor combinations
displayed. However, there is a significant difference between
the upper and lower back movements [16], [17]. As such,
inputs from a single thoracic sensor can only be used to
classify movements performed by the upper extremity of the
back. Hence, in order to understand the spine movement there
is a requirement of at least two sensors.

Figure 3.b presents 10 combinations of two sensors for
the five locations. The maximum accuracy among the dif-



Feature Type Region Axis

Standard Deviation Thoracic x
y

Sacral x

Maximum Peak Cross-correlation Thoracic x, y
x, z

Thoracic, Hip y, x

Minimum Peak Cross-correlation Thoracic x, y
Thoracic, Hip y, x

Maximum Peak Auto-correlation Thoracic z

TABLE II: Nine most important features for the thoracic, hip
and sacral region combination.
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Backward 16 0 0 0 0 0
Forward 0 16 0 0 0 0
Sit right 0 0 17 1 0 0

Transition 1 1 0 22 1 3
Sit left 0 0 0 1 14 0

Sit straight 0 0 0 2 0 71

1

Fig. 4: Confusion matrix for the thoracic, hip and sacral region
combinations.

ferent combinations was obtained for those which included
thoracic sensor. The maximum accuracy of 92.78%, 91.37%
and 80.45% was obtained for SVM, LR and HM respectively
at the thoracic, sacral region combinations. This accuracy
obtained for SVM was almost 4% more than the single sensor
combination. The SD obtained in this region was ± 2.12,
which is the lowest value of SD obtained for the 6-fold data
for the 2 sensor combination. Accuracy increased when two
sensors were used. However, the algorithm was trained using
27 features, which is more than double the number of features
used in single sensor combination.

Three sensor combination is presented in Figure 3.c. The
SVM and HM had its maximum accuracy of 93.68% and
83.76% respectively at the thoracic, hip and sacral region.
The lowest SD of ± 1.54% was obtained for SVM with
only nine features presented in Table II, for differentiating the
six postures as compared with the other two models for this
combination. Table III and Figure 4 presents the discrimination
metrics and confusion matrix respectively of the three sensor
combination at the thoracic, hip and sacral region for the
nine features. It can be observed from Table III that the total
number of sitting straight is 73, which is more than the other
5 classes in this combination. This is due to the presence of
many intermediate sittings between the postures. We can also
observe that the recall, precision and F1 score was low during
the transition. Therefore, in order to improve the performance
of this model we need better features to identify transitions.

Posture Recall Precision F1 Score Total Data

Backward 0.94 1 0.97 16
Forward 0.94 1 0.97 16
Sit right 1 0.94 0.97 18
Transition 0.85 0.78 0.81 28
Sit left 0.93 0.93 0.93 15
Sit straight 0.96 0.97 0.96 73

TABLE III: Discrimination metrics for the thoracic, hip and
sacral region combinations.
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Fig. 5: Comparison of classification accuracy of the 6-folds
for five sensor combination.

The 6-fold mean accuracy of the four sensor combinations is
presented in Figure 3.d. Among the four sensor combinations,
the combination of thoracic, neck, right hip and sacral region
has given the maximum accuracy of 93.38% and 84% for SVM
and HM respectively. Whereas for LR, the combination with
thoracic, lumbar, right hip and sacral region has given the
maximum accuracy of 93.08%. The accuracy of complete five
sensor combination for the 6-folds is presented in Figure 5. It
can be seen from the figure that the accuracy of the 5 sensors
are consistent in SVM, LR and HM, with the exception of
the 3rd fold. It can also be observed from Figure 5 that the
results were more stable for SVM than the LR and HM, as
the accuracy for SVM varied within 5% when compared to
the other models which had approximately 10% variations at
the 3rd fold. The average accuracy achieved for the 5 sensor
combinations were 93.08%, 92.48% and 86.06% for SVM,
LR and HM respectively. Thus, the accuracy, the SD and the
number of features for the three sensor combinations at the
thoracic, lumbar and sacral region for the SVM algorithm
were better than all the other combinations and the other
two models. It should also be noted that the number of
features selected by the RFE method varies according to the
placement of the sensors. For example SVM with three sensor
combination ranged from 59 to 9 features. As such, we should
further investigate what role under or overfitting might have
played in the results. Such an analysis requires a larger cohort.
Therefore, these findings will be validated in the larger study
referred to previously.

V. CONCLUSION AND FUTURE WORK

This study suggests that the accuracy of sitting posture
classification task also depends on the location and the optimal



number of IMU sensors, an aspect that has been insufficiently
addressed in extant research. Moreover, the placement of a
single sensor at the thoracic region seems to be a more
favorable position when using only one sensor as compared
with the other four locations in this study. However, the spine
angles cannot be measured using a single sensor, since at least
two are needed for this. Hence, the results indicate that the
thoracic, hip and sacral region would be the ideal location for
classifying the 6 mock postures. An increase in accuracy or
a decrease in the SD or the number of features has not been
observed for four and five sensor combinations. This points
towards the fact that adding more sensors to the study may
not help in improving the accuracy for the limited number of
features. This generalization of the sensor location is limited,
as this pilot study entails only six subjects participated in a
controlled environment. Hence, these results are still subject
to ulterior validation in the context of a fully fledged study,
based on the classification of real life sitting postures in
the occupational settings. Finally, we urge researchers in the
field to conduct a careful evaluation to assess optimal sensor
placement with respect to position and number, e.g., using the
techniques described.
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