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ABSTRACT
Hypertension is one of the most prevalent chronic diseases world-
wide. Early diagnosis of this condition can prevent the incidence
of stroke and also, cardiovascular diseases (CVDs) such as myocar-
dial infarction and heart failure. Lifestyle interventions, such as
intermittent fasting (IF), aim to lower blood pressure (BP) levels
and increase the health of patients with cardiometabolic conditions.
However, for monitoring BP, we still rely on a cu� that slows the
�ow of blood, which is both uncomfortable and makes continuous
monitoring implausible. Recent research has shown that BP can be
estimated using comfortable sensors such as the photoplethysmog-
raphy (PPG) and the electrocardiography (ECG). Features that can
be used for the estimation of BP are systolic upstroke time (SUT)
and diastolic time (DT) extracted from the PPG signal, and pulse
arrival and transit time (PAT/PTT) derived from the combination of
ECG and PPG signals. In this paper we present: (1) a study design to
collect continuous physiological signals, before and after a 7-days
intermittent fasting (IF) intervention from both cardiometabolic
and non-hypertensive patients using wearable devices and (2) ini-
tial results for predicting continuous blood pressure from the PPG
and ECG signals using statistical and machine learning methods.

CCS CONCEPTS
• Applied computing → Health informatics; • Computing
methodologies → Machine learning; • Hardware → Sensor de-
vices and platforms.
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1 INTRODUCTION
1.1 The Burden of High Blood Pressure
According to the World Health Organization (WHO) [12], in 2008,
the prevalence of hypertension (i.e. high blood pressure) for adults
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above 25 years was approximately 40% worldwide. In 2010, the
Global Burden of Disease study analysed data from 187 countries
and stated that high BP was the risk factor that achieved the highest
global disease burden (i. e. proportion of deaths) due to its relation
to diverse outcomes such as stroke and cardiovascular diseases
(CVDs) [11]. Moreover, hypertension in its early stage has usually
no symptoms and can stay undiagnosed in many people [17].

Lewington et al. [9] performed a meta-analysis to understand
the impacts of high BP which involved 61 prospective observational
studies (from Europe, North America, Australia and Asia) withmore
than 900 000 participants that had no vascular disease at baseline.
After analysing the data, they could notice that at ages varying from
40 to 69, an increase of 20 mmHg in systolic blood pressure (SBP)
or 10 mmHg in diastolic blood pressure (DBP) is associated with
at least a twofold increase in the mortality by stroke and vascular
diseases such as ischaemic heart disease (IHD). Conversely, they
show evidence that by lowering SBP and DBP the death rate by
stroke and CVDs would decrease considerably in middle age.

Therefore, there is a need for making the diagnosis of hyperten-
sion more comfortable in order to identify health risks earlier. The
goal is to measure BP continuously and comfortably since the cur-
rent standard way involves an in�atable cu� that makes long-term
monitoring di�cult. For managing hypertension and consequently
lowering BP, guidelines indicate lifestyle interventions, such as
introducing a healthier diet and more exercise to a person’s life [1].

1.2 Blood Pressure Estimation
The current standard way of collecting BP involves a device with
a cu� that controls the �ow of blood by in�ating and de�ating.
According to the American Heart Association (AHA), for a proper
diagnosis of high BP in the o�ce (i.e. clinic), the physician should
take an average of > 2 measurements in at least two di�erent
encounters [15]. However, this does not eliminate "white coat hy-
pertension" (i.e. elevated BP in the doctor’s o�ce) and for that there
is a need for other types of measurements that can be done outside.

One option is the home blood pressure monitoring (HBPM), that
is done by the patient using a validated device during a period
of time (e.g. 3 days). The other is the ambulatory blood pressure
monitoring (ABPM), which is done automatically by a device during
pre-programmed intervals (e.g. 15 or 30 mins) for a period that is
usually 24 hours [16]. According to a meta-analysis by Hodgkinson
et al. [7] that is considered to achieve a more precise diagnosis of
hypertension than the o�ce BP measurement or the HBPM.

However, there are limitations to ABPM since it is usually ex-
pensive and uncomfortable. For that reason, researchers have been
trying to diagnose hypertension using other sensors such as the
photoplethysmography (PPG) and the electrocardiography (ECG),
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which can be easily integrated into wristbands, smartwatches, chest-
bands and arm-bands [5, 6].

Therefore, as a �rst objective of this paper, we will describe a pro-
tocol for collecting continuous physiological signals from wearable
devices that could be used to estimate blood pressure. In the next
step, the protocol will be applied to a study with cardiometabolic
and non-hypertensive patients going through a 7-day intermittent
fasting (IF) intervention. Cardiometabolic patients are hypertensive
patients who have at least two other risk factors (e.g abdominal
obesity and high triglycerides) and that could bene�t from lowering
BP and continuous monitoring [14].

The second objective is to apply di�erent methods to estimate
BP using features extracted from PPG and ECG signals. There is
evidence in literature that measures such as systolic upstroke time
(SUT) and pulse arrival time (PAT) can be good predictors of systolic
blood pressure (SBP) and diastolic blood pressure (DBP) [3, 8].

2 EXPERIMENTAL SETUP
2.1 Devices
For this experiment we selected the following devices: FarosTM 180,
a chest ECG from Bittium1, Empatica2’s wristband E4 and Everion,
an armband from Biovotion3. The sensors present in each device
are described in Table 1 together with their sampling frequency
range. For the blood pressure measurement, we used the OMRON
EVOLV (HEM-7600T-E) and Mobil-O-Graph® NG. The PPG and
ECG devices were chosen since they provide raw data and were
used in other research studies. For the BP devices, we chose the
ones that were either validated by the U. S. Food and Drug Ad-
ministration (FDA), as OMRON EVOLV or according to the British
and Irish Hypertension Society (BISH) and the European Society of
Hypertension (ESH) as Mobil-o-Graph®.

Table 1: Devices and Sensors Speci�cation
photoplethysmography (PPG), electrocardiography (ECG), accelerometer (ACC)

DEVICE PPG ACC ECG

Everion 51.2 Hz 51.2 Hz -
Empatica E4 64 Hz 32 Hz -
Faros 180 - 10-400 Hz 100-1000 Hz

2.2 Experiment Design
We designed an experimental setup to collect data from subjects
before and after a trigger that would increase their blood pressure
values. The short version (a) involves 5 minutes (mins) of rest, 5
mins of biking (2.5 mins on a medium level of di�culty and 2.5
mins on a higher level) followed by 5 more mins of rest. The blood
pressure is measured using a 1 min interval when at rest. The long
version (b) involves 10 mins of resting, 10 mins of biking on a
medical ergonomic bike (which increases its level of di�culty every
2 mins) and 10 mins of rest. The blood pressure is measured with
an interval of 2 mins. As stated in the AHA and ESH guidelines,
there is at least a 1 min interval between BP measurements and
1https://www.bittium.com/products_services/medical/bittium_faros
2https://www.empatica.com/research/e4/
3https://www.biovotion.com/everion

they are done with the subject relaxed, in silence and in the sitting
position with his/her arms resting on his/her knees [15, 16].

Before each recording session, all of the devices are charged,
and set up for data transmission. The blood pressure from both
arms is measured, and the arm with higher BP is chosen. The
Everion, Empatica E4 and the FarosTM 180 devices are taken in
both hands and shaken by the experimenter. This action aims at
creating a distinct acceleration signal, which will later be used for
synchronising the data streams of all devices.

The Everion and Empatica E4 devices are then attached to one
arm of the subject, and the BP device to the other arm, so the
measurements will not be in�uenced by the arm being constricted.
The FarosTM 180 device is attached to the chest of the subject using
two electrodes.

At the start of data collection, the subject is asked to sit still with
both hands resting on the knees and watching a relaxing video,
meanwhile the blood pressure is measured multiple times. Then
the subject is asked to ride an ergonomic bike for a short period of
time. After biking, the subject is asked to sit down again, and the
BP is measured the same number of times as in the �rst round.

A tagging app is used to manually tag all events (start of data
collection, blood pressure measurement, start and end of biking,
end of data collection). The labels are designed to help with the
alignment of the di�erent streams of data.

Finally, the data is extracted from each device using di�erent
methods (e.g. direct USB connection, download from a mobile
phone) and stored. The protocol aim is to get a range of BP values
for each subject in order to see how di�erent features from other
signals, such as ECG and PPG, might correlate with blood pressure.

3 METHODS
3.1 Data Processing Procedures
Firstly, the data was plotted for initial manual inspection of errors.
Secondly, quality checks were performed on the raw data extracted
from each device in order to verify data completeness and noise.

3.1.1 PPG. The photoplethysmography (PPG) raw data from Em-
patica E4 was extracted and normalised. Only data with a 1 minute
window around the time of blood pressure measurement was used
for further processing. To eliminate motion artefacts induced by
wrist movement, sections where the Euclidean norm of x-, y- and
z-acceleration lies outside of an interval of 25% of the standard
deviation around the sample mean for the current window were
removed from consideration. For the remaining signal, the start
of each PPG cycle was identi�ed with a standard peak detection
function.

All detected cycles in the current window were combined to a
custom PPG waveform template (Figure 1), following a procedure
described by Li and Cli�ord [10]. Individual cycles were then com-
pared with the template using two signal quality indices (SQI): (1)
direct linear correlation and (2) direct linear correlation between
the cycle, re-sampled to match the template length, and the tem-
plate. Only if both correlations lie above 0.8, the cycle is further
processed to extract features as explained in Section 3.2.

3.1.2 ECG. The electrocardiography (ECG) raw data from FarosTM
180was very clean already, having only a limited amount of baseline
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Figure 1: PPG Template (left) and Valid Cycles (right)

Table 2: Features Extracted from PPG

NAME DESCRIPTION

SUT Systolic Upstroke Time
DT Diastolic Time
CP Cardiac Period
DWn Diastolic Width at n% amplitude
SWn + DWn Sum of Systolic Width and Diastolic Width

at n% amplitude
DWn / SWn Ratio between Systolic Width and Diastolic

Width at n% amplitude

for n 2 {10, 25, 33, 50, 66, 75}

drift and almost no noise. Thus we did not have to apply �lters
to pre-process the data and could immediately use the method
proposed by Christov [2] to �nd the location of the R-peaks.

3.2 Estimate Blood Pressure from ECG/PPG
The features in Table 2 and Figure 2 were extracted from the clean
Empatica E4 PPG cycles as explained by Kurylyak et al. [8]. The �rst
step was to identify the �rst peak in the cycle, which corresponds
to the systolic peak. Then for various percentages of the peak
amplitude, we consider the time between systolic peak and end
of the cycle (DWn ), start of the cycle and end of the cycle (SWn +
DWN ), and the ratio between the time in the cycle before and after
the systolic peak (DWn/SWn ). For every window, the mean and
variance of each feature were computed and used as input for the
di�erent models.

In addition to the features from only the PPG, we extracted The
pulse arrival time (PAT) from the combination of PPG and ECG.
De�ned as the time di�erence between the R-peak visible in the
ECG signal and the systolic peak in the PPG signal. In context,
the pulse arrival time (PAT) de�nes the time the blood takes to
get pumped from the left ventricle to the wrist, where the PPG is
measured. Higher values indicate sti�er veins, which is suspected
to be correlated with blood pressure [13].

3.3 Machine Learning Models
Previous works show that machine learning algorithms perform
well in predicting BP from features derived from PPG and ECG
[6, 8]. We have employed in our experiment two popular machine
learning algorithms: Generalised Linear Models (GLM) with Elastic
Net [18] regularisation and Gradient Boosting Machines (GBM) [4]
to predict the systolic and diastolic blood pressure (see Section 4.2).

Figure 2: Features Extracted from PPG

Systolic Pressure (mmHg)
Measurements Over Time Subject-1 Subject-2 Subject-3 Subject-4 Subject-5

1 133 124 137 109 128
2 137 125 135 98 124
3 118 122 134 101 127
4 133 127 133 106 122
5 134 116 134 101 129
6 162 143 148 117 140
7 140 130 138 112 128
8 138 116 132 108 129
9 135 114 131 103 130

10 133 110 131 105 123
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Figure 3: Variation of Systolic blood pressure (SBP)
Before and After Exercising

4 RESULTS
4.1 Blood Pressure Measurement
4.1.1 Data Collection. Data from 5 healthy subjects (3 men and
2 woman) was collected using the shorter version of the protocol,
Empatica E4, Everion, FarosTM 180 and OMRON EVOLV.

4.1.2 Accuracy of OMRON EVOLV. To check the OMRON EVOLV
accuracy, its measurements were compared to those from a manual
sphygmomanometer on �ve healthy subjects, and themean absolute
error (MAE) reported was 6.0 mmHg for diastolic blood pressure
(DBP) and 5.1 mmHg for systolic blood pressure (SBP).

4.1.3 Evolution of blood pressure. Figure 3 shows the variation of
SBP for each subject. The �rst 5 measurements were made before
exercising and the subsequent ones after biking. We can notice that
there is an elevation in the BP right after biking and a decrease to
the baseline values afterwards.

4.2 Blood Pressure Estimation PPG and ECG
4.2.1 Problem Se�ing. Data from 5 healthy subjects was collected
using the shorter version of the protocol described in Section 2.2.
We started with 50 blood pressure measurements (10 for every par-
ticipant). After removing the sections of the signals corrupted by
motion artefacts we ended up with 35 observations. We used the
data from one subject with 9 observations to validate the model and
26 observations from the rest of the subjects to train it. We observed
a high correlation between the derived features, which hampered
the performance of the models. To tackle that, we randomly re-
moved one out of every two columns which shared a correlation
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Figure 4: Predict x Actual Systolic blood pressure (SBP)
Gradient Boosting Machines (GBM)

Table 3: Model Performance

Blood Pressure Model MAE(mmHg) RMSE(mmHg)

SBP GBM 4.05 4.77
SBP GLM 6.09 7.13
DBP GBM 10.05 11.1
DBP GLM 10.79 11.82

higher than 0.95. Finally, we ended up with 14 features which were
used as input for the machine learning algorithms.

4.2.2 Evaluation. A comprehensive model evaluation on the test
dataset is shown in Table 3. The metrics we used to evaluate the
models were Mean Absolute Error (MAE) and Root Mean Square
Error (RMSE). Figure 4 shows a scatter plot of the predicted and
actual SBP values with corresponding regression lines.

5 DISCUSSION AND CONCLUSION
In this paper we could show that features derived from the photo-
plethysmography (PPG) signal have potential to be used as estima-
tors for blood pressure since our MAE for systolic blood pressure
(4.05) was lower than the best one reported by Esmaili et al. [3]
(4.71) using non-linear equations and it is closer to the one found
by Kurylyak et al. [8] (3.8) using neural networks. Moreover, even
without doing an extensive search on the hyperparameters of GBM
it already produces decent prediction results.

As shown in Table 3, the estimation errors of diastolic blood
pressure (DBP) are clearly higher compared to the estimation errors
of systolic blood pressure (SBP). We need larger sample sizes in
order to further investigate this e�ect and to perform a meaningful
comparison of our estimation performance with traditional blood
measure devices.

As next steps, �rstly we will execute the short and long protocols
in a new group of healthy subjects for testing Mobil-o-Graph®.
Secondly, we will train and test models again with new data such
as the one made available by Esmaili et al. [3]4 and we intend to
test new features from both the ECG and PPG signals.

Thirdly, we plan to add electrodermal activity (EDA) features
in the models in order to have a better prediction, since there is

4https://www.kaggle.com/mkachuee/noninvasivebp/home

evidence in literature that they might be connected to hypertension
and both Empatica E4 and Everion include this sensor [5]. Lastly,
the protocol will be executed in the intermittent fasting (IF) study
with cardiometabolic and non-hypertensive patients.
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