
- Draft -

Continuous Level-of-Detail Modeling of
Buildings in 3D City Models

Jürgen Döllner
University of Potsdam

Hasso-Plattner-Institute
Prof.-Dr.-Helmert-Str. 2-3
14482 Potsdam, Germany

juergen.doellner@hpi.uni-potsdam.de

Henrik Buchholz
University of Potsdam

Hasso-Plattner-Institute
Prof.-Dr.-Helmert-Str. 2-3
14482 Potsdam, Germany

henrik.buchholz@hpi.uni-potsdam.de

ABSTRACT
This paper introduces a concept for representing and modeling

buildings in GIS at continuous levels of quality. Buildings are

essential objects of virtual 3D city models, which serve as plat-

forms for integrated, urban geoinformation. Existing concepts for

the representation of buildings are restricted to a specific level-of-

quality such as block models, roof-including models, architectural

models, and indoor virtual reality models. The continuous level-

of-quality approach unifies the representation of heterogeneous

sets of buildings, which occur in most virtual 3D city models. It

also leads to a systematic method for the incremental refinement

of buildings – an important requirement of the long-term man-

agement of virtual city models. In our concept, a building's ge-

ometry is structured on a per-floor basis; each floor refers to a

floor prototype, which is defined by a ground plan, walls, and

wall segments. To specify the appearance projective textures

across floors and textures per wall segment are supported. Appli-

cation-specific data can be associated similar to appearance in-

formation. These few components already allow us to express

efficiently most common building features. Furthermore, the ap-

proach seamlessly integrates into CityGML, an upcoming stan-

dard for virtual city model data.

Categories and Subject Descriptors

I.3.3 [Computer Graphics]: Picture/Image Generation - display

algorithms, viewing algorithms. I.3.6 [Computer Graphics]:

Methodology and Techniques - interaction techniques. I.3.7

[Computer Graphics]: Three-Dimensional Graphics and Realism

- color, shading, shadowing, and texture.

General Terms
Management, Design, Standardization.

Keywords

3D GIS, City Models, Buildings, Level-of-Detail, Virtual Reality.

1. INTRODUCTION
Virtual 3D city models and, more general, 3D geovirtual envi-

ronments serve to present, explore, analyze, and manage geo-

referenced data. Their typical components include terrain models,

building models, vegetation models as well as models of roads

and transportation systems. They serve as platforms that integrate

2D and 3D geodata as well as georeferenced thematic data.

After a long time of feasibility studies, prototypic implementa-

tions, and geo-specific uses, first domain-specific applications and

systems appear that incorporate virtual 3D city models as essential

parts such as in facility management applications, real estate por-

tals as well as entertainment and education products. Conse-

quently, we can expect a large number of potential users and uses

that require customized and specialized versions of 3D city mod-

els and a corresponding support by GIS.

For GIS an important question is how to represent buildings of

virtual city models. Existing concepts are restricted to a specific

level-of-quality such as block models, roof-including models,

architectural models, and indoor virtual reality models, generally

driven by the acquisition technology involved. Problems that re-

sult include:

� It is difficult to integrate buildings from different sources and

varying level-of-quality.

� It is difficult to transform a given building onto a higher level-

of-quality.

� There is no standardized way of encoding building-specific

semantics in the representation.

� It is difficult to design modeling tools that support the model-

ing process across different levels-of-quality.

To overcome these problems we introduce a continuous level-of-

quality representation for buildings. CLOQ buildings allow us to

unify the representation of heterogeneous sets of buildings, which

occur in most virtual city models used in real-world applications

and systems. The concept of CLOQ buildings also leads to a sys-

tematic method for the incremental refinement of buildings and

facilitates the implementation of intuitive modeling tools. Fig. 1

shows an example of a CLOQ building. It forms part of the Berlin

3D city model.

Requirements of the long-term management of virtual city models

are concerned with how these models can be maintained and how

the process of authoring and customization can be defined. Using

CLOQ buildings, for example, an urban planner can create new

buildings and incrementally refine existing buildings within a

uniform framework and tool set during the whole planning proc-

ess.

2. RELATED WORK

2.1 Building Data Acquisition
Building models can be systematically derived by a wide range of

techniques for acquisition, classification, and analysis of urban

data derived from, for example, laser scans, aerial photography,

and cadastre information bases. The initial creation is a techni-

cally challenging and economically cost-intensive task. For a de-

tailed overview of methods, see Hu et al. [9], Ribarsky et al. [15],

Bauer et al. [3], and Förstner [7]. Outputs of these techniques can

be directly transformed into CLOQ buildings.

The geometric level-of-quality of buildings derived by automatic

techniques is usually relatively low such as in the case of block

models, which are encoded by 2D ground plans associated with an

height information. Block models are commonly used as initial

data basis for virtual 3D city models. CLOQ buildings having

only one floor correspond to block models.

For more detailed buildings semi-automatic techniques of photo-

grammetry [8] are used or they are constructed by CAD or 3D

modeling tools. The resulting buildings are represented, in gen-

eral, using formats of 3D computer graphics (e.g., VRML or 3DS

from Studio Max) because these models are supposed to be final-

ized by 3D graphics design applications. Eventually buildings of

highest detail result including indoor and room features. Most

notably buildings represented this way do not preserve semantics

of building parts unless special conventions are adopted.

Independently, procedural techniques for creating virtual 3D city

models have emerged in the scope of computer graphics, intended

for research, simulation, and educational purposes. In particular,

specific markets such as the movie and game industry have a high

demand for a cost and time-efficient creation of realistic, complex

urban environments. Their representation, however, is tightly

linked to and optimized for a specific visualization system.

Parish and Müller [14] present a system that creates a complete

3D city model using a small set of statistical and geographical

input data. The system provides tools for generating roads, allot-

ments, buildings, and procedural textures. Wonka et al. [19] in-

troduce a concept for instant architectural building models. In

their approach, building designs are derived using parametric set

grammars, an attribute matching system, and a separate control

grammar to derive buildings having a large variety of different

styles and design ideas. In conclusion, procedural techniques,

which are not concentrating on real-world geodata, do not need to

address the heterogeneous building models and long-term mainte-

nance.

2.2 City Model Representations
Independent of the way of creation, virtual 3D city models can be

exported as 3D scenes in standard 3D scene formats (e.g., VRML,

X3D, or 3DS). While scene description languages and scene

graph systems offer a broad repertoire of generic graphics func-

tionality, they do not provide specialized means for 3D geodata-

based objects. Consequently, it is generally difficult to represent,

to preserve, and to take advantage of object semantics.

The CityGML initiative (Kolbe et al. [10]) addresses the need for

a domain-specific, semantics-preserving description of virtual 3D

city models based on XML. As Altmaier and Kolbe [2] introduce,

CityGML supports four different level-of-details:

� Block models derived by extruding ground plans to an aver-

age (measured or estimated) height (LOD-1);

� Block models including roof geometry and differentiated

heights within a single building (LOD-2);

� Detailed building models with (LOD-3), and

� Architectural building models including indoor and room

features such as doors, staircases (LOD-4).

This schema expresses principal quality levels as found in build-

ings delivered from today’s acquisition techniques, but does not

allow us to express building models between these discrete levels

and does not facilitate the systematic refinement of a building

model from quality level to the next.

An integral solution for a continuous modeling across these qual-

ity levels would enhance the expressivity, address practically im-

portant intermediate quality levels, and enable developing effi-

Fig. 1. The Kollhoff building at the Potsdamer Platz represented as CLOQ building for the Berlin 3D city model.

cient cross-LOD rendering and interaction techniques. For exam-

ple, in many applications users want to transform an LOD-2

building into an LOD-4 building during a refinement process.

Conceptually, there is also no sharp distinction between LOD-2

and LOD-3 buildings: Even for LOD-2 buildings, it can be neces-

sary to add significant geometric details such as an entrance hall if

these details are perceptually important – the corresponding qual-

ity level could be considered to be between 2 and 3. Similarly, in

modern architecture the distinction between indoor and outdoor is

softened, e.g., if large parts of a facade are made of glass, a mini-

mal indoor model including floors and main walls would be re-

quired for a detailed building model – the corresponding quality

level would be between 3 and 4.

The concept of CLOQ buildings extends the CityGML modeling

schema adopting the semantic schema but introducing an inde-

pendent schema for modeling geometry and appearance.

2.3 Real-Time Rendering of 3D City Models
Most applications need to display virtual 3D city models in real

time to enable the direct interaction and manipulation by the user.

The representation of building models, which tend to occur in

large numbers even for small-size cities, is transformed into a 3D

scene representation; complex buildings need to be decomposed

and transformed into suitable rendering primitives, and the ap-

pearance data such as façade images need to be bundled and trans-

formed into graphics textures.

Optimization techniques for real-time rendering (Akenine-Möller

and Haines [1]) operate on general graphics primitives and in-

clude view-frustum culling, occlusion culling, back-face culling

and impostors (Schaufler [16]). Out-of-core visualization tech-

niques are applied to cope with massive data sets stored on exter-

nal memory (Davis et al. [4]; Lindstrom and Pascucci [13]).

Techniques have been described for large-scale virtual environ-

ments such as described by Willmott et al. [18] and for large-scale

texture data. For example, Lefebvre et al. [12] proposed a GPU-

based approach for large-scale texture management of arbitrary

meshes.

The modeling schema for CLOQ buildings does not assume any

3D scene representation and optimization technique since both are

independent subjects best implemented within the graphics system

actually used.

3. CLOQ BUILDING REPRESENTATION
The scope of CLOQ buildings encompasses simple block models,

models with partially defined or complete roof geometry, and

detailed indoor and outdoor building features.

One the one hand, our goal is to find a minimal set of components

that achieve a maximum of expressivity with respect to commonly

required building features in virtual 3D city models. On the other

hand, the components should allow users to intuitively and effi-

ciently create and refine building models. Furthermore, the im-

plementation of efficient real-time rendering algorithms should be

facilitated. CLOQ buildings intend to supply such a framework

and provide a unified, compact data structure.

In the following, we introduce the object-oriented model of

CLOQ buildings shown in Fig. 2. A CLOQ building represents a

single building entity of a 3D city model. It is implemented as an

object that is constituted by geometry, appearance, and thematic

objects.

Geometry Appearance

Application-Specific Data

CLOQ Building

Fig. 2. UML class diagram for CLOQ buildings.

3.1 Floors
A CLOQBuilding object is composed of one or more Floor objects,

each of which defines the ground plan as well as the walls placed

on top of it for a single floor of the building.

A Floor object always refers to a FloorPrototype object, which

contains the actual floor specification. We introduce this indirec-

tion for two reasons. First, it compactly represents similar floors

within a multi-storey building, which represent the majority of

buildings in a typical dense urban area. Second, this way we pre-

serve the semantics of floors having the same construction. Floor

prototypes enable users to perform refinements efficiently and

rendering systems to optimize the internal graphics encoding.

Each floor prototype is defined by its GroundPlan object. It con-

sists of one or more polygons that define the area on which walls

can be constructed. Each polygon is defined by its outer loop and

optionally inner loops that model holes (e.g., courtyards). We

allow for multiple polygons since a floor may consist of several

components not necessarily directly linked. By polygon we refer

to a 2D shape that not only can consist of vertices joint by straight

edges but also can contain curved segments such as B-splines.

A ground plan defines the base plate for walls and, therefore, it is

a mandatory object for each floor. It additionally defines its

height, that is, the thickness of the base plate. The thickness can

be zero in the case of an abstract ground plan or can be positive if

the floor should be modeled as solid object. For example, solid

ground plans allow us to model protrusion elements such as ter-

races in a visually convincing but still efficient way.

3.2 Walls
On top of a ground plan we can place Wall objects. A wall repre-

sents a vertical, planar polygon that is constrained to directly lie

on top of its ground plan.

By default, a wall has a thickness of zero, that is, it is represented

as a single polygon. A specialized wall object of type ThickWall,

however, defines a positive thickness. Here, the wall is geometri-

cally instantiated as a 3D solid object. Thin walls are sufficient if

they form a closed surface and can therefore be seen only from

outside, while thick walls are appropriate for those walls whose

upper or side parts are potentially visible such as in the case of

free-standing walls.

Walls are constrained to be non-intersecting within the same

floor. If walls intersect, they have to be split into parts. Walls are

not constrained with respect to their height, that is, a wall can

have less height as the floor itself or can even be higher. For ex-

ample, low walls can represent the fronts of a balcony, whereas

the sides of a chimney starting at the basement floor can be ex-

tended through the roof.

Since CLOQ buildings are primarily intended for visual building

models, they do not need validation with respect to the statics of a

building.

Walls of one floor can be placed independently of walls from the

adjacent floors. If we had to provide an automatic validation with

respect to the statics of a building, the wall editing would have to

be constrained appropriately. Since CLOQ buildings are primarily

intended as visual building models we do not provide this kind of

functionality at the moment.

3.3 Roofs
The simplest roof type is the flat roof, a planar roof geometry

situated on the top of the walls of the topmost floor. Many cadas-

tral databases classify roofs according to their principal shape

(Fig. 3) as gable roof, hip roof, gamble roof, mansard roof, tent

roof, etc.

In CLOQ buildings, the roof floor represents a top-most floor

used to specify roof geometry. The ground plan of the roof floor is

independent of the ground plan of the underlying floor. A charac-

teristic element of most real-world buildings is a roof overhang,

that is, the roof floor exceeds the area of its underlying floor.

To model these non-planar roof types, we define for the roof floor

a roof skeleton, that is, a network of characteristic edges of the

roof geometry (Fig. 4). The skeleton can be considered to be a

two-dimensional network, specifying at each of its vertices a

height. The resulting 2.5-dimensional surface represents the 3D

roof geometry.

The skeleton approach has two major advantages: First, it pro-

Hipped Gabled Tent

Mansard Pent Barrel

Fig. 3: Examples of roof types.

Fig. 4. Example of skeleton for a gabled roof with overhang (a).

Example of a skeleton for a hipped roof (b).

vides a systematic and still intuitive approach for editing most

common roof types. Second, there are several techniques in com-

putation geometry that allow us to automatically compute a roof

skeleton for a given roof floor (e.g., straight skeletons discussed

by Felkel and Obdrmalek [6] and extended by Laycock and Day

[11] for different roof types).

With the introduced building blocks, floors, walls, and roofs, we

are able to express the principal geometry of most buildings as

required by virtual city models. This compact object model keeps

the implementation as well as the usage of CLOQ buildings sim-

ple.

3.4 Floor Decoration
FloorDecoration objects are responsible for specifying the appear-

ance of CLOQ buildings; they are parts of a floor prototype. The

strategy of the floor decoration is to assign appearance informa-

tion to horizontally arranged sections of walls, identified by Wall-

Section objects. These sections can refer to a whole wall or part of

it.

The appearance of a wall section can be defined by two types of

WallSection objects: WindowSections and FacadeSections. A

FacadeSection describes the overall appearance of a wall. One

way to define a facade section is the assignment of a facade pat-

tern texture containing windows as well as the surrounding sur-

face material as a single image. The second, more flexible way, is

to model the windows explicitly. In this case, the FacadeSection

describes only the wall material, and an additional WindowSection

defines the positions and appearance of all visible windows sepa-

rately.

3.5 Projective Textures

Projective textures represent an alternative method for specifying

appearance of CLOQ buildings. They are intended for image data

captured from real-world buildings and generally are relevant for

several walls and wall segments. Projective textures are useful in

practice for the rapid photorealistic modeling of the appearance

based on digital photography.

A ProjectedPhoto object refers to a 2D texture, e.g., a digital

photo taken from the building’s facades. This texture is projected

into the 3D space, using an auxiliary projector-wall that is inde-

pendent of floors, ground plans, walls, and wall sections. A pro-

jector-wall is exclusively used to project a given texture onto

those building parts that are geometrically hit by an orthogonal

projection originating from the projector-wall towards the build-

ing. and explicitly enabled for it. The number of projector-walls

and their position and orientation is independent of the building’s

geometry.

The more procedural approach of defining the appearance based

on texturing wall segments is useful if facades show a repetitive

pattern and if the appearance is designed such as in the case of

planned buildings. Both approaches can be combined within a

single CLOQ building since appearance objects can be explicitly

activated and deactivated, respectively, for individual parts of the

building geometry.

3.6 Application-Specific Building Data
An essential requirement for applications and systems using vir-

tual 3D city models is that application-specific data can be associ-

ated with any parts of buildings. For this reason, application-

specific data is represented by “first-class objects” similar to ap-

pearance data.

FloorDescription objects contain application-specific data assigned

a) Multipart Building b) Courtyard c) Passage d) Canopy

e) Balcony and Railing f) Protrusion g) Intrusion h) Atrium

Fig. 5. Examples of supported CLOQ building features.

to individual parts of CLOQ buildings. Each floor description

specifies a table that stores values for an application-specific set

of key-value pairs. They are related to the floor as a whole.

To assign application-specific data to individual components of

floors, a floor description can store MetaDataSections. Similar to

floor descriptions, a meta-data section contains a table of key-

value pairs. Since meta-data section are specialized wall sections,

they can relate the meta-data to specific parts of the walls. For

instance, a floor could host multiple shops for which detailed

information is stored in meta-data sections.

4. CLOQ BUILDING FEATURES
Although the number of component types is small, CLOQ build-

ing are able to express a large collection of common building

features. In our approach, we concentrate on those features re-

quired by typical applications and systems using virtual city mod-

els. In general, these requirements are concerned with the abstract

structure of a building and related visual aspects.

Examples of supported common building features (Fig. 5) in-

clude:

� Multipart Buildings. For each part a separate ground plan is

defined with an individual floor structure and height.

� Courtyards. They are described by inner polygon loops of

the corresponding ground plan. The ground for courtyards

can be any floor.

� Passages. A passage is specified by cutting the walls of a

floor appropriately. If the passage covers more than one

floor, the intersected floors have to split their ground plans.

� Canopy. A canopy is modeled by extending the ground plan

of the upper floor and connecting the roof by columns speci-

fied as part of the bottom floor.

� Balconies and Terraces. A balcony (or a terrace) is modeled

by solid extension of the ground plan together with thick

walls along the boundary of the balcony.

� Railings. To model a railing, we construct a wall whose ap-

pearance is defined by a transparent texture of a railing. This

way, only opaque parts of the texture become visible. Of

course, this technique applies to all “flat features” of a build-

ing but is limited because from close views the simplified

geometry becomes apparent.

� Protrusions and Intrusions. These features can be modeled

simply by varying the ground plan of a floor. For example,

entrances are typical intrusion features in buildings.

� Indoor Structures. Rudimentary indoor structures such as

interior walls, doors, atriums, and stairways can be modeled

since ground plans support complex polygons and are not re-

stricted to outside walls.

Creative users might be able to derive more features. A number of

features need to be explicitly supported, e.g., staircases. Neverthe-

less, features represented in CLOQ buildings are still intended as

abstractions. Architectural models may need to provide more de-

tails.

5. EDITING CLOQ BUILDINGS
The concept of CLOQ buildings concentrates on principal parts of

a building including roofs, floors, and facades. This allows us to

capture a large bandwidth of building types and facilitates the

design of intuitive authoring tools for creating, manipulating, and

refining CLOQ buildings.

Fig. 6. Transforming a block model into a refined CLOQ building. a) Block model. b) CLOQ building split into floors.

c) Geometry refinement. d) Appearance refinement.

a) b)

c) d)

From Block Models to CLOQ Buildings

To illustrate a typical use case, assume that an initial block model

should be refined. First, it is transformed into a simple CLOQ

building by splitting the model into a number of floors having the

same ground plans and outside walls. Fig. 6 shows the refinement

process of a block building into a CLOQ building:

1. The initial block model results from extruding 2D ground

plans (Fig. 6a).

2. The model is subdivided into floors according to a list of floor

heights (Fig. 6b).

3. The top floors are modified to distinguish different building

parts, roof geometry is added to the top floor of the center

building part, the basement floor is enhanced by columns, and

a balcony is added to the left part (Fig. 6c).

4. Façade textures are added, which can be specified either by

composing different texture patterns or as projective textures,

e.g., using digital photography (Fig. 6d).

The example shows a frequent requirement in applications based

on 3D city models: The existing 3D city model needs to be par-

tially and incrementally developed according to current project

goals or management decisions.

5.1 CLOQ Building Editor
For the design of the CLOQ building editor we assume that non-

expert users (e.g., non-architects) should be able to construct and

refine CLOQ buildings. Since floors are the dominant conceptual

elements, the 2D floor editor is the core component.

Fig. 7 shows a snapshot of the CLOQ building editor of our im-

plementation. The object tree (Fig. 7 top-left) lists the Floor ob-

jects and indicates the corresponding floor prototypes. The se-

lected floor prototype can be edited by the 2D editor widget (Fig.

3 bottom-right). The user can directly manipulate ground plan

polygons, walls, and wall sections. Changes are immediately re-

flected by the 3D view of the CLOQ building.

Most frequent operations include adding and modifying floors,

walls, and wall sections. For instance, it is easily possible to ex-

tend a CLOQ building by a penthouse by replicating its top floor

and reshaping the ground plan of the new floor. A selected floor

may also be enhanced by adding geometric details such as col-

umns. To integrate application data, e.g., user can specify a shop

window-texture as a section of a wall. To edit a wall section, the

user specifies the start and end points of the section on the ground

plan polygon.

5.2 Editing Ground Plans and Walls
In the simplest case, the base plate of a floor is completely hidden

by surrounding walls. If a building contains a terrace or if two

subsequent floors have different ground plans, the base platform

becomes partially visible (such as in Fig. 6c and 6d).

Walls are specified by polylines and height values. Singular line

segments of a polyline can be replaced by arcs to model curved

shapes. Most walls are only visible from outside and, therefore, do

Fig. 7. The CLOQ-building editor of the LandXplorer 3D city model system.

not need to be solid. Freestanding walls, however, such as the

boundaries of a terrace, can be seen also from above or from an

indoor perspective. In this case, thick walls are used. The special

case of ColumnWalls allows for the alignment of a row of columns

along the wall’s polyline. The height of walls can be automatically

determined by the distance to the next floor or be specified explic-

itly.

Walls together with appropriate textures can be instrumentalized

to model railing, cutouts, or interior decorations such as paintings.

In general, the textures applied to such a wall will be mostly

transparent. Although walls are planar objects, it provides a

straightforward method to incorporate those elements for visuali-

zation and illustration purposes.

5.3 Editing Floor Decorations
CLOQ buildings support two techniques of façade texturing:

� Projective textures: These textures are orthogonally projected

onto a building regardless of the geometry structure of the

building. Conceptually, for each projective texture we define

an invisible ghost-wall, which serves as projector wall. Pro-

jective textures are effortless to assign for complex building

shapes and, therefore, can be used for the rapid modeling of

existing buildings.

� Composition of texture patterns: For individual sections of a

building façade, we can specify a material texture and a win-

dow texture using wall sections. Each wall section belongs to

a certain wall object and specifies a range on this wall. Using

catalogues of standard materials and window types, wall sec-

tions for a façade can be edited instantaneously.

The advantage of projective textures is that they can directly map

facade data captured by digital photography. In contrast, the com-

position of texture patterns frequently models typical, but non-

authentic facades. It does not involve the problem of occluded

facade parts, e.g., by trees in front of the facade, and allows for

ad-hoc modeling of buildings that are only planned or proposed.

5.4 Assigning Application-Specific Data
Floor descriptions provide means to integrate application-specific

data into CLOQ buildings. To represent the data, CLOQ buildings

use generic two-column, multi-row tables, called attribute tables.

An attribute table stores key-value pairs. Both, keys and values,

are formatted as strings, which can contain textual, categorical,

and numerical contents.

For a single CLOQ building we can specify general attribute ta-

bles such as address, owner, usage, etc. for the whole building. In

addition, attribute tables can be specified for individual floors and

for individual wall sections.

Meta-data sections are a special form of wall sections that specify

attribute tables (instead of appearance attributes). In contrast to

wall sections for textures, floor attribute tables and wall sections

are not defined for floor prototypes but for each floor separately.

For instance, in an office building, each floor could be rent by a

different company although the appearance of all floors would be

equal.

6. CONCLUSIONS
CLOQ buildings provide a continuous level-of-quality and aim at

efficient solutions for the incremental development of buildings in

virtual city models. Due to their per-floor construction, they can

be perfectly handled by direct-manipulation interfaces, providing

intuitive tools for building refinement. CLOQ buildings address

the main use case in virtual city model applications, the project-

driven and event-driven customization and reengineering of city

model components.

The CLOQ building concept has been implemented as a part of

the LandXplorer system, an authoring and presentation tool for

3D city models. We have observed in a variety of use cases that

with CLOQ buildings we can approximate complex building

models in a time efficient way. They are also suited for large-scale

3D city models, and they can be mapped to an internal graphics

representation that allows for real-time photorealistic and non-

photorealistic rendering (Döllner et al. [5]). Of course, CLOQ

buildings are not intended to substitute architectural modeling

approaches because they do not consider issues of statics and

detailed building layouts but serve as GIS representation schema.

One application example is a decision-support system in urban

planning. Using CLOQ buildings, proposed changes can be inter-

actively performed within a given virtual 3D city model, so that

the effect of the modification can be evaluated and discussed im-

mediately. Another application is concerned with managing inter-

active 3D location plans. Using CLOQ buildings, building models

that exhibit characteristic exterior and interior features are created

and maintained by the CLOQ-building editor.

As next steps, we are working on analyzing and mapping arbitrary

CityGML-based building models to CLOQ buildings. We also

would like to investigate high-level operations for CLOQ build-

ings (e.g., adding penthouses, constructing roofs; drilling court-

yards, designing entrances, etc.) and using constraints to assist the

construction and refinement process. We also expect that CLOQ

building could be a powerful intermediate representation for au-

thoring tools based on CityGML.

Acknowledgements

We would like to thank our colleagues of the LandXplorer system

(www.3dgeo.de), which has been used as implementation plat-

form. We would like to thank the German environmental founda-

tion Deutsche Bundesstiftung Umwelt for supporting our work

within the Lenné-3D research project (www.lenne3d.de).

7. REFERENCES
[1] Akenine-Möller, T., Haines, E. 2002. Real-Time Rendering.

A K Peters Ltd, 2nd Ed.

[2] Altmaier A., Kolbe, T.H. 2003. Applications and Solutions

for Interoperable 3D Geo-Visualization. Proceedings of the

Photogrammetric Week 2003, Wichmann Verlag.

[3] Bauer J., Klaus A., Karner K., Schindler K., Zach C. 2002.

MetropoGIS: A Feature based City Modeling System, Pro-

ceedings of Photogrammetric Computer Vision 2002

(PCV02) - ISPRS Comission III Symposium, Graz, Austria.

[4] Davis, D., Ribarsky, W., Jiang, T.Y., Faust, N., Ho, S. 1999.

Real-Time Visualization of Scalably Large Collections of

Heterogeneous Objects. Proceedings of IEEE Visualization

1999, 437-440.

[5] Döllner, J., Buchholz, H., Nienhaus, M., Kirsch, K. 2005:

Illustrative Visualization of 3D City Models, Proceedings of

SPIE - Visualization and Data Analysis 2005 (VDA), San

Jose, CA, USA, 42-51.

[6] Felkel, P., Obdrmalek, S. 1998. Straight Skeleton Implemen-

tation. 14th Spring Conference on Computer Graphics, 210-

218.

[7] Förstner, W. 1999. 3D City Models: Automatic and Semiau-

tomatic Acquisition Methods. Proceedings Photogrammetric

Week, University of Stuttgart, 291-303.

[8] Haala, N., Brenner, C. Laser Data for Virtual Landscape

Generation.

[9] Hu, J., You, S., Neumann, U. 2003. Approaches to Large-

Scale Urban Modeling. IEEE Computer Graphics and Appli-

cations, 23(6):62-69.

[10] Kolbe, T. H., Gröger, G., Plümer, L. 2005. CityGML – Inter-

operable Access to 3D City Models. First International

Symposium on Geo-Information for Disaster Management

GI4DM, 2005.

[11] Laycock, R.G., Day, A.M. 2003. Automatically Generating

Roof Models from Building Footprints. Proceedings of

WSCG, Poster Presentation, 2003.

[12] Lefebvre, S., Darbon, J., Neyret, F. 2004. Unified texture

management for arbitrary meshes, INRIA Research Report

No. 5210.

[13] Lindstrom, P., Pascucci, V. 2002. Terrain Simplification

Simplified: A General Frameworkfor View-Dependent Out-

of-Core Visualization, IEEE Transactions on Visualization

and Computer Graphics, 8(3):239-254.

[14] Parish, Y., Müller, P. 2001. Procedural Modeling of Cities.

Computer Graphics (Proceedings of ACM SIGGRAPH

2001), 301-308.

[15] Ribarsky, W., Wasilewski, T., Faust N. 2002. From Urban

Terrain Models to Visible Cities. IEEE Computer Graphics

and Applications, 22(4):10-15.

[16] Schaufler, G. 1998. Rendering Complex Virtual Environ-

ments. Dissertation, University of Linz.

[17] Tanner, C.C., Midgal, C.J., Jones, M.T. 1998. The Clipmap:

a Virtual Mipmap. Computer Graphics (Proceedings of the

ACM SIGGRAPH 1998), 151-158.

[18] Willmott, J., Wright, L.I., Arnold, D.B., Day, A.M. 2001.

Rendering of Large and Complex Urban Environments for

Real-Time Heritage Reconstructions. Proceedings VAST

2001: The International Symposium on VR, Archaeology,

and Cultural Heritage, 111-120.

[19] Wonka, P., Wimmer, M., Sillion, F., Ribarsky, W. 2003.

Instant Architecture. Computer Graphics (Proceedings of

ACM SIGGRAPH 2003), 669-677.

