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ABSTRACT 
This paper introduces a concept for representing and modeling 

buildings in GIS at continuous levels of quality. Buildings are 

essential objects of virtual 3D city models, which serve as plat-

forms for integrated, urban geoinformation. Existing concepts for 

the representation of buildings are restricted to a specific level-of-

quality such as block models, roof-including models, architectural 

models, and indoor virtual reality models. The continuous level-

of-quality approach unifies the representation of heterogeneous 

sets of buildings, which occur in most virtual 3D city models. It 

also leads to a systematic method for the incremental refinement 

of buildings – an important requirement of the long-term man-

agement of virtual city models. In our concept, a building's ge-

ometry is structured on a per-floor basis; each floor refers to a 

floor prototype, which is defined by a ground plan, walls, and 

wall segments. To specify the appearance projective textures 

across floors and textures per wall segment are supported. Appli-

cation-specific data can be associated similar to appearance in-

formation. These few components already allow us to express 

efficiently most common building features. Furthermore, the ap-

proach seamlessly integrates into CityGML, an upcoming stan-

dard for virtual city model data.  

Categories and Subject Descriptors 

I.3.3 [Computer Graphics]: Picture/Image Generation - display 

algorithms, viewing algorithms. I.3.6 [Computer Graphics]: 

Methodology and Techniques - interaction techniques. I.3.7 

[Computer Graphics]: Three-Dimensional Graphics and Realism 

- color, shading, shadowing, and texture. 

General Terms 
Management, Design, Standardization. 
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1. INTRODUCTION 
Virtual 3D city models and, more general, 3D geovirtual envi-

ronments serve to present, explore, analyze, and manage geo-

referenced data. Their typical components include terrain models, 

building models, vegetation models as well as models of roads 

and transportation systems. They serve as platforms that integrate 

2D and 3D geodata as well as georeferenced thematic data.  

After a long time of feasibility studies, prototypic implementa-

tions, and geo-specific uses, first domain-specific applications and 

systems appear that incorporate virtual 3D city models as essential 

parts such as in facility management applications, real estate por-

tals as well as entertainment and education products. Conse-

quently, we can expect a large number of potential users and uses 

that require customized and specialized versions of 3D city mod-

els and a corresponding support by GIS.  

For GIS an important question is how to represent buildings of 

virtual city models. Existing concepts are restricted to a specific 

level-of-quality such as block models, roof-including models, 

architectural models, and indoor virtual reality models, generally 

driven by the acquisition technology involved. Problems that re-

sult include:  

� It is difficult to integrate buildings from different sources and 

varying level-of-quality.  

� It is difficult to transform a given building onto a higher level-

of-quality.  

� There is no standardized way of encoding building-specific 

semantics in the representation.  

� It is difficult to design modeling tools that support the model-

ing process across different levels-of-quality. 

To overcome these problems we introduce a continuous level-of-

quality representation for buildings. CLOQ buildings allow us to 

unify the representation of heterogeneous sets of buildings, which 

occur in most virtual city models used in real-world applications 

and systems. The concept of CLOQ buildings also leads to a sys-

tematic method for the incremental refinement of buildings and 

facilitates the implementation of intuitive modeling tools. Fig. 1 

shows an example of a CLOQ building. It forms part of the Berlin 

3D city model. 

Requirements of the long-term management of virtual city models 

are concerned with how these models can be maintained and how 

the process of authoring and customization can be defined. Using 

CLOQ buildings, for example, an urban planner can create new 

buildings and incrementally refine existing buildings within a 



uniform framework and tool set during the whole planning proc-

ess.  

2. RELATED WORK 

2.1 Building Data Acquisition 
Building models can be systematically derived by a wide range of 

techniques for acquisition, classification, and analysis of urban 

data derived from, for example, laser scans, aerial photography, 

and cadastre information bases. The initial creation is a techni-

cally challenging and economically cost-intensive task. For a de-

tailed overview of methods, see Hu et al. [9], Ribarsky et al. [15], 

Bauer et al. [3], and Förstner [7]. Outputs of these techniques can 

be directly transformed into CLOQ buildings.  

The geometric level-of-quality of buildings derived by automatic 

techniques is usually relatively low such as in the case of block 

models, which are encoded by 2D ground plans associated with an 

height information. Block models are commonly used as initial 

data basis for virtual 3D city models. CLOQ buildings having 

only one floor correspond to block models.  

For more detailed buildings semi-automatic techniques of photo-

grammetry [8] are used or they are constructed by CAD or 3D 

modeling tools. The resulting buildings are represented, in gen-

eral, using formats of 3D computer graphics (e.g., VRML or 3DS 

from Studio Max) because these models are supposed to be final-

ized by 3D graphics design applications. Eventually buildings of 

highest detail result including indoor and room features. Most 

notably buildings represented this way do not preserve semantics 

of building parts unless special conventions are adopted.  

Independently, procedural techniques for creating virtual 3D city 

models have emerged in the scope of computer graphics, intended 

for research, simulation, and educational purposes. In particular, 

specific markets such as the movie and game industry have a high 

demand for a cost and time-efficient creation of realistic, complex 

urban environments. Their representation, however, is tightly 

linked to and optimized for a specific visualization system.  

Parish and Müller [14] present a system that creates a complete 

3D city model using a small set of statistical and geographical 

input data. The system provides tools for generating roads, allot-

ments, buildings, and procedural textures. Wonka et al. [19] in-

troduce a concept for instant architectural building models. In 

their approach, building designs are derived using parametric set 

grammars, an attribute matching system, and a separate control 

grammar to derive buildings having a large variety of different 

styles and design ideas. In conclusion, procedural techniques, 

which are not concentrating on real-world geodata, do not need to 

address the heterogeneous building models and long-term mainte-

nance.  

2.2 City Model Representations 
Independent of the way of creation, virtual 3D city models can be 

exported as 3D scenes in standard 3D scene formats (e.g., VRML, 

X3D, or 3DS). While scene description languages and scene 

graph systems offer a broad repertoire of generic graphics func-

tionality, they do not provide specialized means for 3D geodata-

based objects. Consequently, it is generally difficult to represent, 

to preserve, and to take advantage of object semantics.  

The CityGML initiative (Kolbe et al. [10]) addresses the need for 

a domain-specific, semantics-preserving description of virtual 3D 

city models based on XML. As Altmaier and Kolbe [2] introduce, 

CityGML supports four different level-of-details:  

� Block models derived by extruding ground plans to an aver-

age (measured or estimated) height (LOD-1); 

� Block models including roof geometry and differentiated 

heights within a single building (LOD-2); 

� Detailed building models with (LOD-3), and  

� Architectural building models including indoor and room 

features such as doors, staircases (LOD-4).  

This schema expresses principal quality levels as found in build-

ings delivered from today’s acquisition techniques, but does not 

allow us to express building models between these discrete levels 

and does not facilitate the systematic refinement of a building 

model from quality level to the next.  

An integral solution for a continuous modeling across these qual-

ity levels would enhance the expressivity, address practically im-

portant intermediate quality levels, and enable developing effi-

   

Fig. 1. The Kollhoff building at the Potsdamer Platz represented as CLOQ building for the Berlin 3D city model. 



cient cross-LOD rendering and interaction techniques. For exam-

ple, in many applications users want to transform an LOD-2 

building into an LOD-4 building during a refinement process.  

Conceptually, there is also no sharp distinction between LOD-2 

and LOD-3 buildings: Even for LOD-2 buildings, it can be neces-

sary to add significant geometric details such as an entrance hall if 

these details are perceptually important – the corresponding qual-

ity level could be considered to be between 2 and 3. Similarly, in 

modern architecture the distinction between indoor and outdoor is 

softened, e.g., if large parts of a facade are made of glass, a mini-

mal indoor model including floors and main walls would be re-

quired for a detailed building model – the corresponding quality 

level would be between 3 and 4.  

The concept of CLOQ buildings extends the CityGML modeling 

schema adopting the semantic schema but introducing an inde-

pendent schema for modeling geometry and appearance. 

2.3 Real-Time Rendering of 3D City Models 
Most applications need to display virtual 3D city models in real 

time to enable the direct interaction and manipulation by the user. 

The representation of building models, which tend to occur in 

large numbers even for small-size cities, is transformed into a 3D 

scene representation; complex buildings need to be decomposed 

and transformed into suitable rendering primitives, and the ap-

pearance data such as façade images need to be bundled and trans-

formed into graphics textures. 

Optimization techniques for real-time rendering (Akenine-Möller 

and Haines [1]) operate on general graphics primitives and in-

clude view-frustum culling, occlusion culling, back-face culling 

and impostors (Schaufler [16]). Out-of-core visualization tech-

niques are applied to cope with massive data sets stored on exter-

nal memory (Davis et al. [4]; Lindstrom and Pascucci [13]). 

Techniques have been described for large-scale virtual environ-

ments such as described by Willmott et al. [18] and for large-scale 

texture data. For example, Lefebvre et al. [12] proposed a GPU-

based approach for large-scale texture management of arbitrary 

meshes. 

The modeling schema for CLOQ buildings does not assume any 

3D scene representation and optimization technique since both are 

independent subjects best implemented within the graphics system 

actually used.  

3. CLOQ BUILDING REPRESENTATION 
The scope of CLOQ buildings encompasses simple block models, 

models with partially defined or complete roof geometry, and 

detailed indoor and outdoor building features.  

One the one hand, our goal is to find a minimal set of components 

that achieve a maximum of expressivity with respect to commonly 

required building features in virtual 3D city models. On the other 

hand, the components should allow users to intuitively and effi-

ciently create and refine building models. Furthermore, the im-

plementation of efficient real-time rendering algorithms should be 

facilitated. CLOQ buildings intend to supply such a framework 

and provide a unified, compact data structure.  

In the following, we introduce the object-oriented model of 

CLOQ buildings shown in Fig. 2. A CLOQ building represents a 

single building entity of a 3D city model. It is implemented as an 

object that is constituted by geometry, appearance, and thematic 

objects.  

 

Geometry Appearance 

Application-Specific Data 

CLOQ Building 

 

Fig. 2. UML class diagram for CLOQ buildings. 



3.1 Floors 
A CLOQBuilding object is composed of one or more Floor objects, 

each of which defines the ground plan as well as the walls placed 

on top of it for a single floor of the building.  

A Floor object always refers to a FloorPrototype object, which 

contains the actual floor specification. We introduce this indirec-

tion for two reasons. First, it compactly represents similar floors 

within a multi-storey building, which represent the majority of 

buildings in a typical dense urban area. Second, this way we pre-

serve the semantics of floors having the same construction. Floor 

prototypes enable users to perform refinements efficiently and 

rendering systems to optimize the internal graphics encoding.   

Each floor prototype is defined by its GroundPlan object. It con-

sists of one or more polygons that define the area on which walls 

can be constructed. Each polygon is defined by its outer loop and 

optionally inner loops that model holes (e.g., courtyards). We 

allow for multiple polygons since a floor may consist of several 

components not necessarily directly linked. By polygon we refer 

to a 2D shape that not only can consist of vertices joint by straight 

edges but also can contain curved segments such as B-splines.  

A ground plan defines the base plate for walls and, therefore, it is 

a mandatory object for each floor. It additionally defines its 

height, that is, the thickness of the base plate. The thickness can 

be zero in the case of an abstract ground plan or can be positive if 

the floor should be modeled as solid object. For example, solid 

ground plans allow us to model protrusion elements such as ter-

races in a visually convincing but still efficient way.  

3.2 Walls 
On top of a ground plan we can place Wall objects. A wall repre-

sents a vertical, planar polygon that is constrained to directly lie 

on top of its ground plan.  

By default, a wall has a thickness of zero, that is, it is represented 

as a single polygon. A specialized wall object of type ThickWall, 

however, defines a positive thickness. Here, the wall is geometri-

cally instantiated as a 3D solid object. Thin walls are sufficient if 

they form a closed surface and can therefore be seen only from 

outside, while thick walls are appropriate for those walls whose 

upper or side parts are potentially visible such as in the case of 

free-standing walls.  

Walls are constrained to be non-intersecting within the same 

floor. If walls intersect, they have to be split into parts. Walls are 

not constrained with respect to their height, that is, a wall can 

have less height as the floor itself or can even be higher. For ex-

ample, low walls can represent the fronts of a balcony, whereas 

the sides of a chimney starting at the basement floor can be ex-

tended through the roof.  

Since CLOQ buildings are primarily intended for visual building 

models, they do not need validation with respect to the statics of a 

building.  

Walls of one floor can be placed independently of walls from the 

adjacent floors. If we had to provide an automatic validation with 

respect to the statics of a building, the wall editing would have to 

be constrained appropriately. Since CLOQ buildings are primarily 

intended as visual building models we do not provide this kind of 

functionality at the moment. 

3.3 Roofs  
The simplest roof type is the flat roof, a planar roof geometry 

situated on the top of the walls of the topmost floor. Many cadas-

tral databases classify roofs according to their principal shape 

(Fig. 3) as gable roof, hip roof, gamble roof, mansard roof, tent 

roof, etc. 

In CLOQ buildings, the roof floor represents a top-most floor 

used to specify roof geometry. The ground plan of the roof floor is 

independent of the ground plan of the underlying floor. A charac-

teristic element of most real-world buildings is a roof overhang, 

that is, the roof floor exceeds the area of its underlying floor. 

To model these non-planar roof types, we define for the roof floor 

a roof skeleton, that is, a network of characteristic edges of the 

roof geometry (Fig. 4). The skeleton can be considered to be a 

two-dimensional network, specifying at each of its vertices a 

height. The resulting 2.5-dimensional surface represents the 3D 

roof geometry.  

The skeleton approach has two major advantages: First, it pro-

 

    
 

 

    

Hipped Gabled Tent 

Mansard Pent Barrel  

Fig. 3: Examples of roof types. 

 

 

Fig. 4. Example of skeleton for a gabled roof with overhang (a). 

Example of a skeleton for a hipped roof (b). 



vides a systematic and still intuitive approach for editing most 

common roof types. Second, there are several techniques in com-

putation geometry that allow us to automatically compute a roof 

skeleton for a given roof floor (e.g., straight skeletons discussed 

by Felkel and Obdrmalek [6] and extended by Laycock and Day 

[11] for different roof types).  

With the introduced building blocks, floors, walls, and roofs, we 

are able to express the principal geometry of most buildings as 

required by virtual city models. This compact object model keeps 

the implementation as well as the usage of CLOQ buildings sim-

ple.  

3.4 Floor Decoration 
FloorDecoration objects are responsible for specifying the appear-

ance of CLOQ buildings; they are parts of a floor prototype. The 

strategy of the floor decoration is to assign appearance informa-

tion to horizontally arranged sections of walls, identified by Wall-

Section objects. These sections can refer to a whole wall or part of 

it.  

The appearance of a wall section can be defined by two types of 

WallSection objects: WindowSections and FacadeSections. A 

FacadeSection describes the overall appearance of a wall. One 

way to define a facade section is the assignment of a facade pat-

tern texture containing windows as well as the surrounding sur-

face material as a single image. The second, more flexible way, is 

to model the windows explicitly. In this case, the FacadeSection 

describes only the wall material, and an additional WindowSection 

defines the positions and appearance of all visible windows sepa-

rately. 

3.5 Projective Textures  

Projective textures represent an alternative method for specifying 

appearance of CLOQ buildings. They are intended for image data 

captured from real-world buildings and generally are relevant for 

several walls and wall segments. Projective textures are useful in 

practice for the rapid photorealistic modeling of the appearance 

based on digital photography.  

A ProjectedPhoto object refers to a 2D texture, e.g., a digital 

photo taken from the building’s facades. This texture is projected 

into the 3D space, using an auxiliary projector-wall that is inde-

pendent of floors, ground plans, walls, and wall sections. A pro-

jector-wall is exclusively used to project a given texture onto 

those building parts that are geometrically hit by an orthogonal 

projection originating from the projector-wall towards the build-

ing. and explicitly enabled for it. The number of projector-walls 

and their position and orientation is independent of the building’s 

geometry.  

The more procedural approach of defining the appearance based 

on texturing wall segments is useful if facades show a repetitive 

pattern and if the appearance is designed such as in the case of 

planned buildings. Both approaches can be combined within a 

single CLOQ building since appearance objects can be explicitly 

activated and deactivated, respectively, for individual parts of the 

building geometry.  

3.6 Application-Specific Building Data 
An essential requirement for applications and systems using vir-

tual 3D city models is that application-specific data can be associ-

ated with any parts of buildings. For this reason, application-

specific data is represented by “first-class objects” similar to ap-

pearance data.  

FloorDescription objects contain application-specific data assigned 

a) Multipart Building b) Courtyard c) Passage d) Canopy 

e) Balcony and Railing f) Protrusion g) Intrusion h) Atrium 

 

Fig. 5. Examples of supported CLOQ building features. 



to individual parts of CLOQ buildings. Each floor description 

specifies a table that stores values for an application-specific set 

of key-value pairs. They are related to the floor as a whole.  

To assign application-specific data to individual components of 

floors, a floor description can store MetaDataSections. Similar to 

floor descriptions, a meta-data section contains a table of key-

value pairs. Since meta-data section are specialized wall sections, 

they can relate the meta-data to specific parts of the walls. For 

instance, a floor could host multiple shops for which detailed 

information is stored in meta-data sections.  

4. CLOQ BUILDING FEATURES  
Although the number of component types is small, CLOQ build-

ing are able to express a large collection of common building 

features. In our approach, we concentrate on those features re-

quired by typical applications and systems using virtual city mod-

els. In general, these requirements are concerned with the abstract 

structure of a building and related visual aspects.  

Examples of supported common building features (Fig. 5) in-

clude:  

� Multipart Buildings. For each part a separate ground plan is 

defined with an individual floor structure and height.  

� Courtyards. They are described by inner polygon loops of 

the corresponding ground plan. The ground for courtyards 

can be any floor.  

� Passages. A passage is specified by cutting the walls of a 

floor appropriately. If the passage covers more than one 

floor, the intersected floors have to split their ground plans.  

� Canopy. A canopy is modeled by extending the ground plan 

of the upper floor and connecting the roof by columns speci-

fied as part of the bottom floor.  

� Balconies and Terraces. A balcony (or a terrace) is modeled 

by solid extension of the ground plan together with thick 

walls along the boundary of the balcony.  

� Railings. To model a railing, we construct a wall whose ap-

pearance is defined by a transparent texture of a railing. This 

way, only opaque parts of the texture become visible. Of 

course, this technique applies to all “flat features” of a build-

ing but is limited because from close views the simplified 

geometry becomes apparent. 

� Protrusions and Intrusions. These features can be modeled 

simply by varying the ground plan of a floor. For example, 

entrances are typical intrusion features in buildings.   

� Indoor Structures. Rudimentary indoor structures such as 

interior walls, doors, atriums, and stairways can be modeled 

since ground plans support complex polygons and are not re-

stricted to outside walls.  

Creative users might be able to derive more features. A number of 

features need to be explicitly supported, e.g., staircases. Neverthe-

less, features represented in CLOQ buildings are still intended as 

abstractions. Architectural models may need to provide more de-

tails.  

5. EDITING CLOQ BUILDINGS 
The concept of CLOQ buildings concentrates on principal parts of 

a building including roofs, floors, and facades. This allows us to 

capture a large bandwidth of building types and facilitates the 

design of intuitive authoring tools for creating, manipulating, and 

refining CLOQ buildings.  

         

       

Fig. 6. Transforming a block model into a refined CLOQ building. a) Block model. b) CLOQ building split into floors.  

c) Geometry refinement. d) Appearance refinement. 

a) b) 

c) d) 



From Block Models to CLOQ Buildings  

To illustrate a typical use case, assume that an initial block model 

should be refined. First, it is transformed into a simple CLOQ 

building by splitting the model into a number of floors having the 

same ground plans and outside walls. Fig. 6 shows the refinement 

process of a block building into a CLOQ building: 

1. The initial block model results from extruding 2D ground 

plans (Fig. 6a).  

2. The model is subdivided into floors according to a list of floor 

heights (Fig. 6b).  

3. The top floors are modified to distinguish different building 

parts, roof geometry is added to the top floor of the center 

building part, the basement floor is enhanced by columns, and 

a balcony is added to the left part (Fig. 6c).  

4. Façade textures are added, which can be specified either by 

composing different texture patterns or as projective textures, 

e.g., using digital photography (Fig. 6d). 

The example shows a frequent requirement in applications based 

on 3D city models: The existing 3D city model needs to be par-

tially and incrementally developed according to current project 

goals or management decisions.  

5.1 CLOQ Building Editor 
For the design of the CLOQ building editor we assume that non-

expert users (e.g., non-architects) should be able to construct and 

refine CLOQ buildings. Since floors are the dominant conceptual 

elements, the 2D floor editor is the core component.  

Fig. 7 shows a snapshot of the CLOQ building editor of our im-

plementation. The object tree (Fig. 7 top-left) lists the Floor ob-

jects and indicates the corresponding floor prototypes. The se-

lected floor prototype can be edited by the 2D editor widget (Fig. 

3 bottom-right). The user can directly manipulate ground plan 

polygons, walls, and wall sections. Changes are immediately re-

flected by the 3D view of the CLOQ building.  

Most frequent operations include adding and modifying floors, 

walls, and wall sections. For instance, it is easily possible to ex-

tend a CLOQ building by a penthouse by replicating its top floor 

and reshaping the ground plan of the new floor. A selected floor 

may also be enhanced by adding geometric details such as col-

umns. To integrate application data, e.g., user can specify a shop 

window-texture as a section of a wall. To edit a wall section, the 

user specifies the start and end points of the section on the ground 

plan polygon.  

5.2 Editing Ground Plans and Walls 
In the simplest case, the base plate of a floor is completely hidden 

by surrounding walls. If a building contains a terrace or if two 

subsequent floors have different ground plans, the base platform 

becomes partially visible (such as in Fig. 6c and 6d).  

Walls are specified by polylines and height values. Singular line 

segments of a polyline can be replaced by arcs to model curved 

shapes. Most walls are only visible from outside and, therefore, do 

 

Fig. 7. The CLOQ-building editor of the LandXplorer 3D city model system. 



not need to be solid. Freestanding walls, however, such as the 

boundaries of a terrace, can be seen also from above or from an 

indoor perspective. In this case, thick walls are used. The special 

case of ColumnWalls allows for the alignment of a row of columns 

along the wall’s polyline. The height of walls can be automatically 

determined by the distance to the next floor or be specified explic-

itly.  

Walls together with appropriate textures can be instrumentalized 

to model railing, cutouts, or interior decorations such as paintings. 

In general, the textures applied to such a wall will be mostly 

transparent. Although walls are planar objects, it provides a 

straightforward method to incorporate those elements for visuali-

zation and illustration purposes.  

5.3 Editing Floor Decorations 
CLOQ buildings support two techniques of façade texturing: 

� Projective textures: These textures are orthogonally projected 

onto a building regardless of the geometry structure of the 

building. Conceptually, for each projective texture we define 

an invisible ghost-wall, which serves as projector wall. Pro-

jective textures are effortless to assign for complex building 

shapes and, therefore, can be used for the rapid modeling of 

existing buildings.  

� Composition of texture patterns: For individual sections of a 

building façade, we can specify a material texture and a win-

dow texture using wall sections. Each wall section belongs to 

a certain wall object and specifies a range on this wall. Using 

catalogues of standard materials and window types, wall sec-

tions for a façade can be edited instantaneously. 

The advantage of projective textures is that they can directly map 

facade data captured by digital photography. In contrast, the com-

position of texture patterns frequently models typical, but non-

authentic facades. It does not involve the problem of occluded 

facade parts, e.g., by trees in front of the facade, and allows for 

ad-hoc modeling of buildings that are only planned or proposed. 

5.4 Assigning Application-Specific Data 
Floor descriptions provide means to integrate application-specific 

data into CLOQ buildings. To represent the data, CLOQ buildings 

use generic two-column, multi-row tables, called attribute tables. 

An attribute table stores key-value pairs. Both, keys and values, 

are formatted as strings, which can contain textual, categorical, 

and numerical contents.  

For a single CLOQ building we can specify general attribute ta-

bles such as address, owner, usage, etc. for the whole building. In 

addition, attribute tables can be specified for individual floors and 

for individual wall sections.  

Meta-data sections are a special form of wall sections that specify 

attribute tables (instead of appearance attributes). In contrast to 

wall sections for textures, floor attribute tables and wall sections 

are not defined for floor prototypes but for each floor separately. 

For instance, in an office building, each floor could be rent by a 

different company although the appearance of all floors would be 

equal. 

6. CONCLUSIONS 
CLOQ buildings provide a continuous level-of-quality and aim at 

efficient solutions for the incremental development of buildings in 

virtual city models. Due to their per-floor construction, they can 

be perfectly handled by direct-manipulation interfaces, providing 

intuitive tools for building refinement. CLOQ buildings address 

the main use case in virtual city model applications, the project-

driven and event-driven customization and reengineering of city 

model components.  

The CLOQ building concept has been implemented as a part of 

the LandXplorer system, an authoring and presentation tool for 

3D city models. We have observed in a variety of use cases that 

with CLOQ buildings we can approximate complex building 

models in a time efficient way. They are also suited for large-scale 

3D city models, and they can be mapped to an internal graphics 

representation that allows for real-time photorealistic and non-

photorealistic rendering (Döllner et al. [5]). Of course, CLOQ 

buildings are not intended to substitute architectural modeling 

approaches because they do not consider issues of statics and 

detailed building layouts but serve as GIS representation schema.  

One application example is a decision-support system in urban 

planning. Using CLOQ buildings, proposed changes can be inter-

actively performed within a given virtual 3D city model, so that 

the effect of the modification can be evaluated and discussed im-

mediately. Another application is concerned with managing inter-

active 3D location plans. Using CLOQ buildings, building models 

that exhibit characteristic exterior and interior features are created 

and maintained by the CLOQ-building editor.  

As next steps, we are working on analyzing and mapping arbitrary 

CityGML-based building models to CLOQ buildings. We also 

would like to investigate high-level operations for CLOQ build-

ings (e.g., adding penthouses, constructing roofs; drilling court-

yards, designing entrances, etc.) and using constraints to assist the 

construction and refinement process. We also expect that CLOQ 

building could be a powerful intermediate representation for au-

thoring tools based on CityGML. 
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