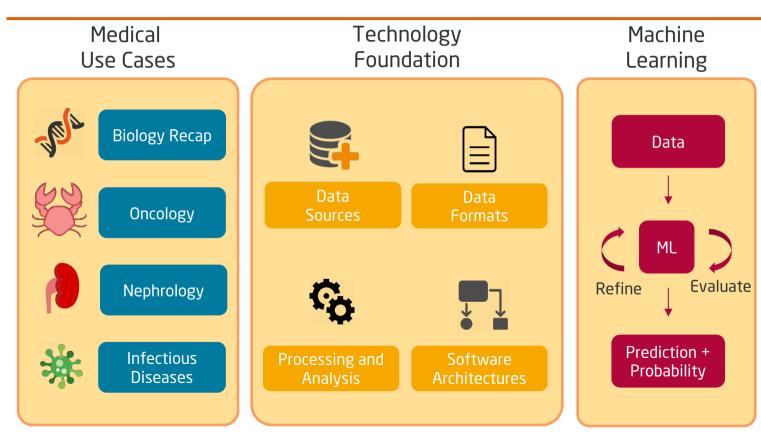


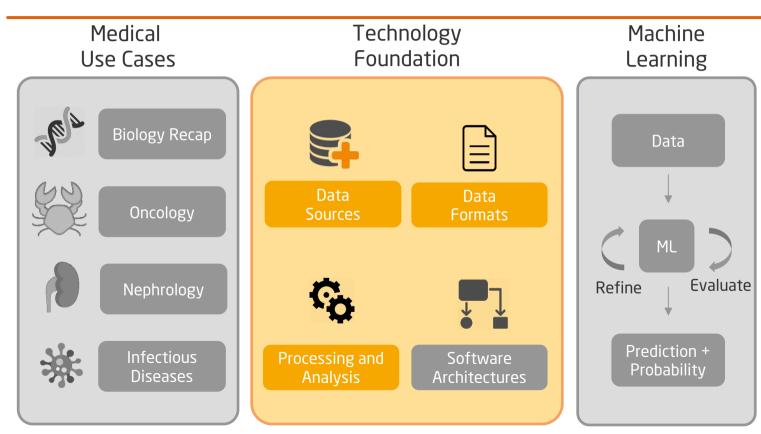
Digital Engineering • Universität Potsdam



Data Management for Precision Oncology

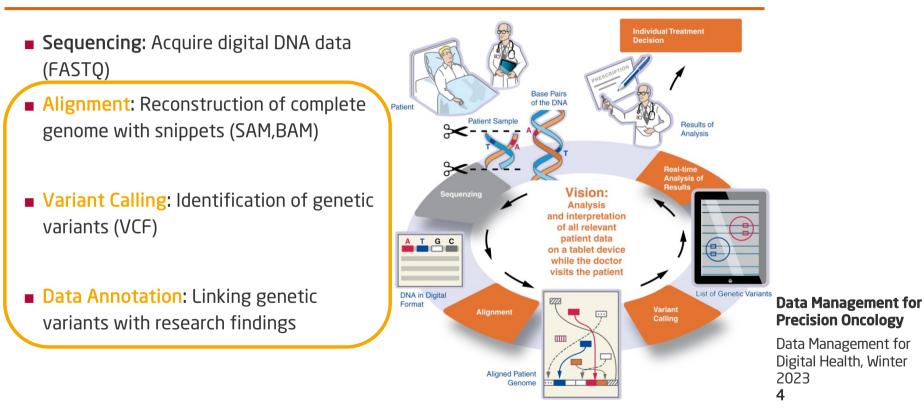
Borchert, Dr. Schapranow Data Management for Digital Health Winter 2023

Agenda Pillars of the Lecture



Data Management for Precision Oncology

Agenda Pillars of the Lecture



Data Management for Precision Oncology

From Raw Genome Data to Analysis

Science Crisis << QUIZ >>

- What do you think is the most challenging aspect in science today?
- A. Effects of COVID-19 pandemic
- B. Salary of experts
- C. Reproducibility of results
- D. Missing subject-matter experts

KEEP

CALM

DIGITAL HEALTH

Data Management for Precision Oncology

Challenge: Reproducibility Crisis of Science

https://www.digital-science.com/blog/2015/03/digital-science-doodles-data-reproducibility/

Data Management for Precision Oncology

Challenge: Reproducibility Crisis of Science

- Reproducibility crisis is named to have its roots in the early 2010s
- Still an ongoing issue with latest initiatives addressing it

Most scientists 'can't replicate studies by their peers' Effort to Reproduce Cancer Studies Scales Down to 18 Papers

The Reproducibility Project: Cancer Biology initially aimed to replicate the results of 50 high-impact research articles.

A manifesto for reproducible science

Marcus R. Munafò 🖾, Brian A. Nosek, Dorothy V. M. Bishop, Katherine S. Button, Christopher D. Chambers, Nathalie Percie du Sert, Uri Simonsohn, Eric-Jan Wagenmakers, Jennifer J. Ware & P. A. Ioannidis

Reproducibility: science's consistency issue

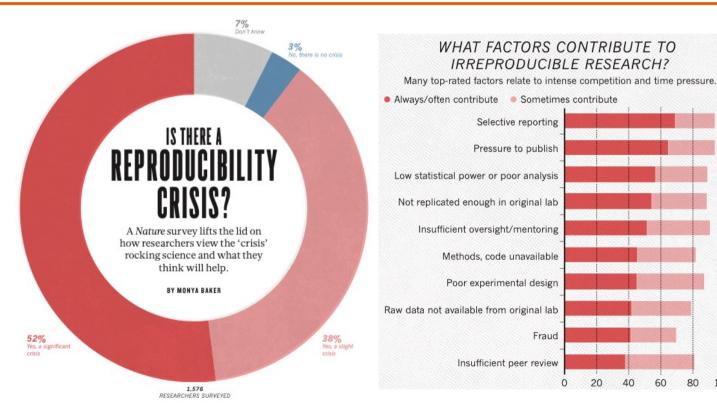
2023

Nature Human Behaviour 1, Article number: 0021 (2017) Download Citation How Elsevier is breaking down barriers to reproducibility

Virtual special issues highlight replication studies, and calls for papers encourage more

28 Elsevier Connect

What use are the scientific findings if they can't be reproduced?...

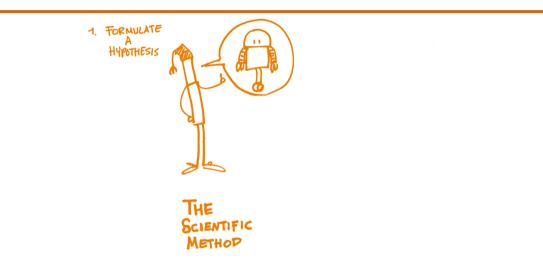

Data Management for

Digital Health, Winter

Challenge: Reproducibility Crisis of Science 1,500 Scientists Lift the Lid on Reproducibility

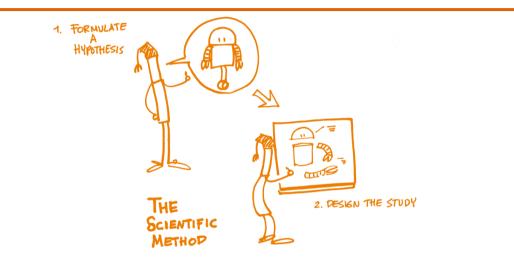
Data Management for Precision Oncology

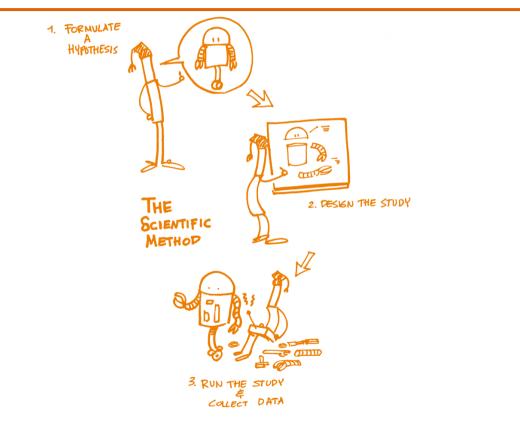
Data Management for Digital Health, Winter 2023 8


100%

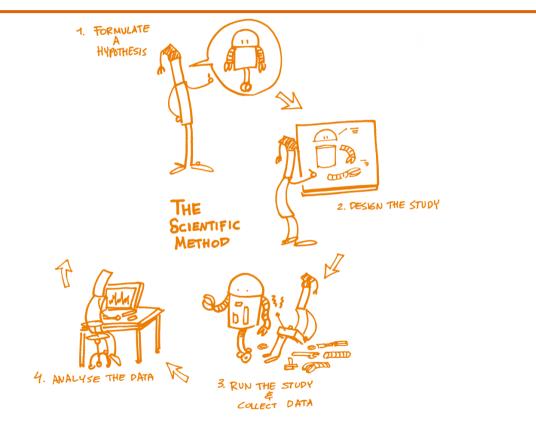
80

Baker, M. 1,500 scientists lift the lid on reproducibility. Nature 533, 452–454 (2016). https://doi.org/10.1038/533452a


The Science Loop


Data Management for Precision Oncology

Data Management for Precision Oncology



Data Management for Precision Oncology

Data Management for Digital Health, Winter 2023 **11**

https://open-science-training-handbook.gitbook.io/book/open-science-basics/reproducible-research-and-data-analysis

Data Management for Precision Oncology

Data Management for Digital Health, Winter 2023 **12**

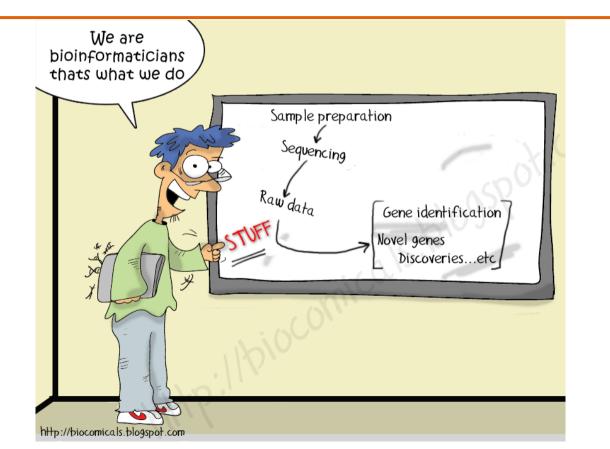
https://open-science-training-handbook.gitbook.io/book/open-science-basics/reproducible-research-and-data-analysis

Data Management for Precision Oncology

Data Management for Digital Health, Winter 2023 **13**

https://open-science-training-handbook.gitbook.io/book/open-science-basics/reproducible-research-and-data-analysis

Approach	Description
Open Data	Share results + underlying data with other scientists in an open way
Collaboration	Working with other research groups, both formally and informally
Automation	Use technology to standardize processing, thereby reducing the probability for human error
Open Methods	Publicly publishing the detail of a study protocol
Post- publication Review	Continuing discussion of a study in a public forum after it has been published (most are reviewed before publication only)
Reporting Guidelines	Guidelines and checklists that help researchers to meet certain criteria for publishing results


Data Management for Precision Oncology

Data Management for Digital Health, Winter 2023 **14**

Adapted from: Reproducibility and reliability of biomedical research: Improving research practice. Symposium report, October 2015. https://acmedsci.ac.uk/viewFile/56314e40aac61.pdf

How to Find a Solution? Call a Bioinformatician

Data Management for Precision Oncology

Motivation: Ensure Reproducible through Genome Data Processing Pipelines

Genome Data Processing Pipelines (GDPPs) := Structured processing of raw genome data, e.g. FASTQ, to provide meaningful insights, e.g. variants, annotations

Objective: GDPPs should be...

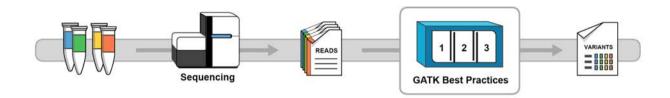
- Human- and machine-readable to support understanding, e.g. graphical modeling
- Reproducible, i.e. generation of identical output for identical input
- Exchangeable, i.e. other sites should be able to create identical results
- □ Understandable, e.g. by non-IT experts, lab staff, etc.

Data Management for Precision Oncology

Genome Data Processing Pipelines: State of the Art

bwa aln hg19.fa sample.fastq | bwa samse hg19.fa – sample.fastq | samtools view -Su - | samtools sort ...

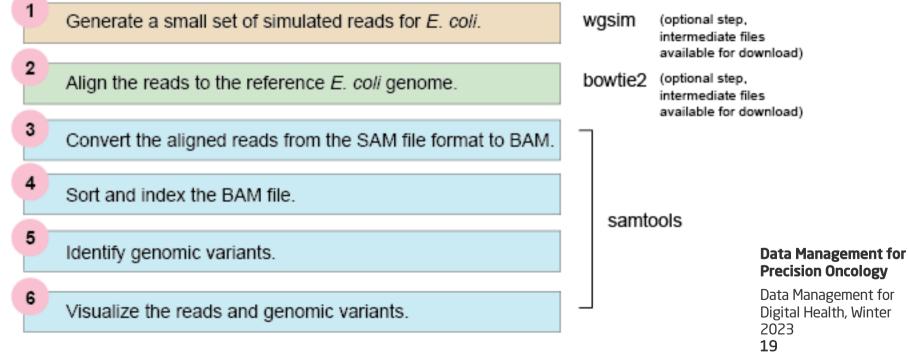
- Concatenation of command line tools reading/writing files from/to hard disk
- Requires dedicated expertise for
 - □ Setup and configuration,
 - Error handling, and
 - Scalable processing
- Lack of
 - Standardization and exchangeability,
 - Understandability,
 - Maintainability, and
 - □ Reproducibility.


```
bwa aln -t 8 <reference> <fastq_1.fq.gz> > <sai_1.sai> &&
bwa aln -t 8 <reference> <fastq_2.fq.gz> > <sai_2.sai> &&
bwa sampe -r <read_group> <reference> <sai_1.sai> <sai_2.sai>
<fastq_1.fq.gz> <fastq_2.fq.gz> | samtools view -Shb -o <outpu
t.bam> -
```

https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/DNA_Seq_Variant_Calling_Pipeline/

Data Management for Precision Oncology

The BROAD is a joint institute of MIT and Harvard established 2004 in Cambridge, MA

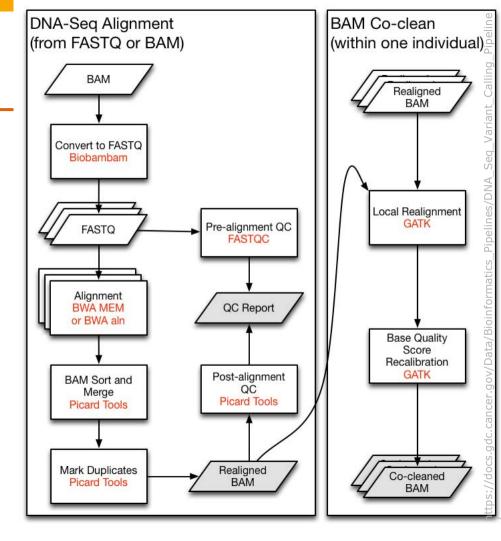

- Genome Analysis Toolkit (GATK) focuses on variant detection
- Open-source tools and shared best-practices

GATK Best Practices

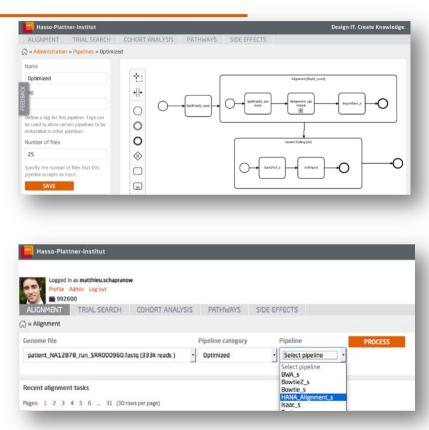
Lots of workflows that people call Best Practices really aren't.

Data Management for Precision Oncology

Best Practices I: Let us Make a Workflow!



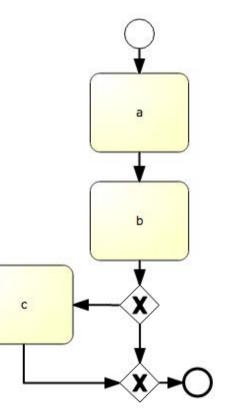
Plattn Instit


Best Practices II: Modeling

- Incorporate graphical modeling techniques to document and share knowledge
- Build on existing methods to benefit from existing tools or communities

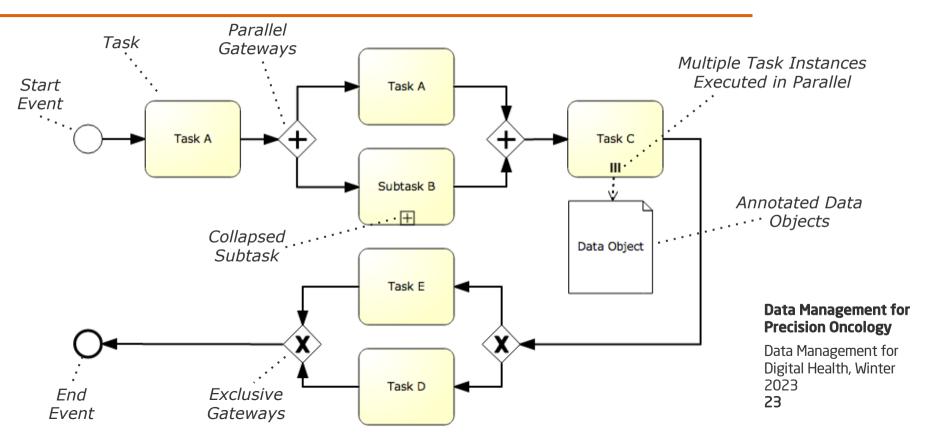
Reproducibility at we.analyzegenomes.com: Modeling of Data Analysis Pipelines

- 1. <u>Design time</u> (researcher, process expert)
 - Definition of parameterized process model
 - Uses graphical editor and jobs from repository
- Configuration time (researcher, lab assistant)
 Select model and specify parameters, e.g. aln opts
 Results in model instance stored in repository
- 3. Execution time (researcher)
 - Select model instance
 - Specify execution parameters, e.g. input files

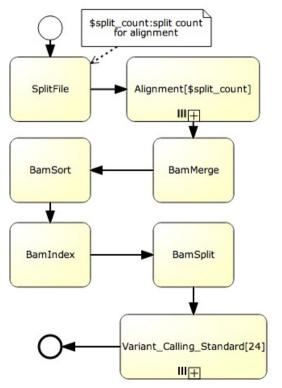


Business Process Modeling and Notation (BPMN) 2.0

- Used for functional modeling of business processes and workflows
- Graphical notation addresses business and technical users → intuitive modeling and understanding
- Can be serialized and exchanged using XML Process Definition Language (XPDL)



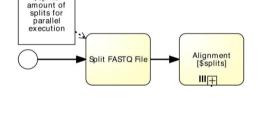
Data Management for Precision Oncology


BPMN 2.0: Cheat Sheet Basic Notation Overview

Graphical Modeling of Genome Data Processing Pipelines

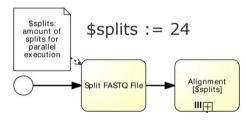
- Graphical modeling notation extends BPMN 2.0:
 - Modular structure
 - Parallelization annotations
 - Parameters and variables

Data Management for Precision Oncology

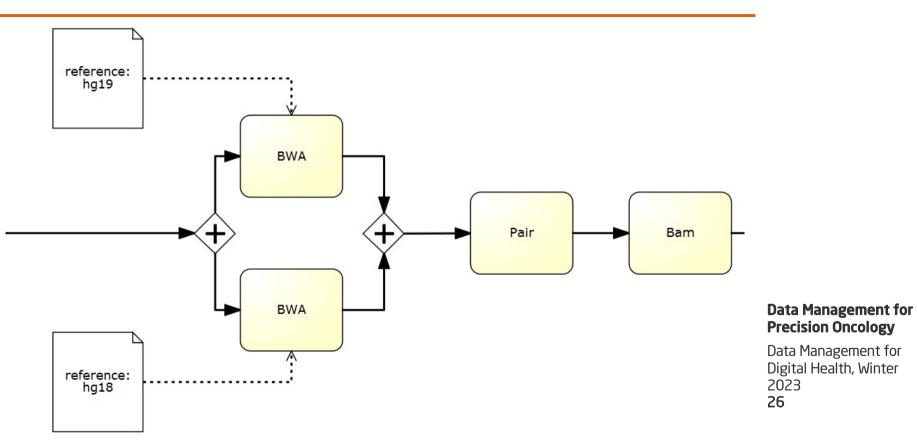

Model vs. Model Instance

Model := template for multiple instances, e.g. general description of all alignment processes

- Model instance := specific instance of a model, e.g. configured for a set of specific runs.
- Models and model instances are stored within the IMDB
- Model instances are translated into graph structure and executed by a dedicated runtime environment

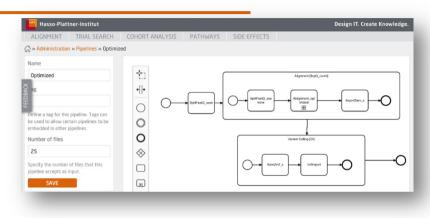

Data Management for Precision Oncology

Data Management for Digital Health, Winter 2023 **25**


\$splits:

BPMN Example

Persisting Pipelines XML Process Definition Language



What to take home?

- Use of standardized modeling tools supports implementation / exchange
- Graphical modeling facilitates understanding (also for non-professionals)
- Process modeling is the foundation for reproducibility of results and scalable use

Data Management for Precision Oncology

Galaxy Workbench

- Open-source, web-based platform
- Supports data-intensive research
- Focuses on process automation and highthroughput sequencing

🚍 Galaxy	Analyze Data Workflow Shared Data + Visualization + Help + Login or Register +	Using 0%
Tools 1		History 2 ¢
Search tools O Get Data Lift-Over	cataxy is an open source, web-based platform for data intensive biomedical research. If you are new to Galaxy start <u>here</u> or consult our <u>help resources</u> . You can install your own Galaxy by following the <u>tutorial</u> and choose from thousands of tools from the <u>Tool Shed</u> .	search datasets (2) Unnamed history (empty)
Collection Operations Text Manipulation Datamash Convert Formats Filter and Sort Sort data in ascending or descending order Select lines that match an	Try Galaxy on the Cloud	This history is empty. You can load your own data or get data from an external source
expression <u>Filter</u> data on any column using simple expressions GFF <u>Filter GFF data by attribute</u> using simple expressions	Now you can have a personal Galaxy within the infinite Universe	
Filter GFF data by feature count using simple expressions Extract features from GFF data Filter GTF data by attribute values. list		
Join, Subtract and Group Fetch Alignments/Sequences	Tweets by @galaxyproject .	
NGS: QC and manipulation NGS: DeepTools NGS: Mapping NGS: RNA Analysis NGS: SAMcools NGS: BamTools	Gataxy Project Retweeted denbi EdenbiOffice Review of the @ELIXIREurope /@mygobletorg /@galaxyproject hackathon supported by @denbiOffice and #RBC @UniFreiburg denbi.de/events/358-rev	
NGS: Picard NGS: VCF Manipulation NGS: Peak Calling NGS: Variant Analysis NGS: RNA Structure NGS: Du Novo	Galaxy Project @galaxyproject GCC2017 regular registration rates extended to 16 June. Register now and avoid late rates.	
NGS: Gemini NGS: Assembly	gcc2017.sciencesconf.org/page/registrat https://usegalaxy.org/	

Galaxy Workflow Modeling

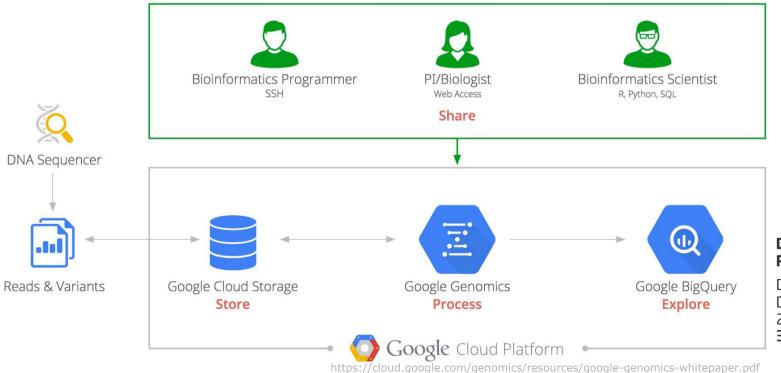
🗧 Galaxy	Analyze Data Workflow Shared Data - Visualization - Help - User -	Using 34.0 ME	
Tools	Workflow Canvas DiabetesMellitusAnalysis1 (imported from uploaded file)	Details	
(search tools)	Input dataset × Custom Error Messages ×	Tool: ENSEMBL variant effect predictor	
<u>Get Data</u> Send Data	output OS Input file	Version: 1.0.0	
Lift-Over Text Manipulation Filter and Sort Join, Subtract and Group Convert Formats Extract Features Fetch Sequences Fetch Alianments Get Genomic Scores Statistics Graph/Display Data Evolution Motif Tools NGS: OC and manipulation NGS: Napping NGS: RNA Analysis NGS: GATK Tools (beta) NGS: Simulation Phenotype Association	check_result (tabular)	Input variants file Data input 'input' (vcf) Name of the species being annotated: * homo_sapic Database Options: Use Cache Database - Oft * Use Refseq cache: Annotate HGVS: Annotate Gene Id Symbol: Annotate Sift and Polyphen predictions:	
VCF Tools	dnSNP.vcf) output (vcf)	Output format: VCF •	
	II	10.	

Data Management for Precision Oncology

- IT process automation at DKFZ, HD
- Builds upon OpenStack to reduce setup time
- Workflow managed by SeqWare Pipeline Manager
- Special-purpose developed for DKFZ requirements

https://seqware.github.io/docs/6-pipeline/

OTP: processing pipeline							
INDIVIDUALS	SEQUENCES RUNS PROCESSES	OVERVIEW 🗸				номе	LOGOUT
Enable auto re	fresh						
¢.	0 Workflow	¢ Count	Count of Failed	Last Success	Last Failure	 Duration 	0
. 3	QualityAssessmentWorkflow	186	1	Fri Sep 13 2013	Fri Sep 06 2013	4 h 57 min	3
0 3	ConveyBwaAlignmentWorkflow	185	1	19:25:52	Tue Sep 03 2013	1 h 45 min	1
9 3	EastqcSummaryWorkflow	637		15:43:54	Thu Aug 01 2013	1 sec 248 msec	


Data Management for Precision Oncology

Google Genomics

Integration of existing Google services to genome data processing

Data Management for Precision Oncology

The Challenge Distributed Heterogeneous Data Sources

Human genome/biological data 600GB per full genome 15PB+ in databases of leading institutes

Hospital information systems Often more than 50GB

Cancer patient records >160k records at NCT

Human proteome

160M data points (2.4GB) per sample >3TB raw proteome data in ProteomicsDB

Accelerated Sequencing	Δ
	-
	Ē

PubMed database >23M articles

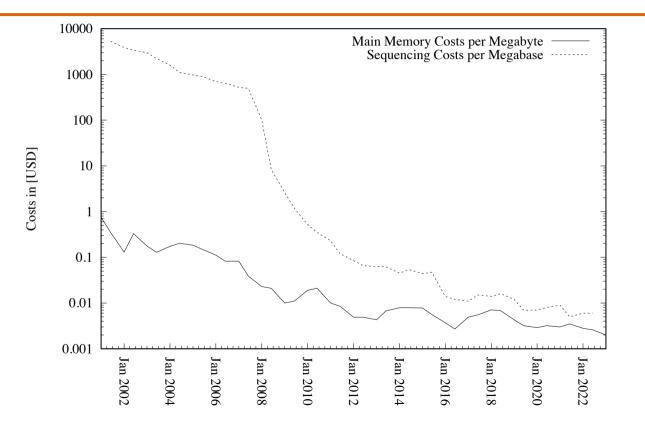
6		
	\sim	

Medical sensor data Scan of a single organ in 1s creates 10GB of raw data

Data Management for Precision Oncology

Data Management for Digital Health, Winter 2023 **33**

Prescription data 1.5B records from 10,000 doctors and 10M Patients (100 GB)



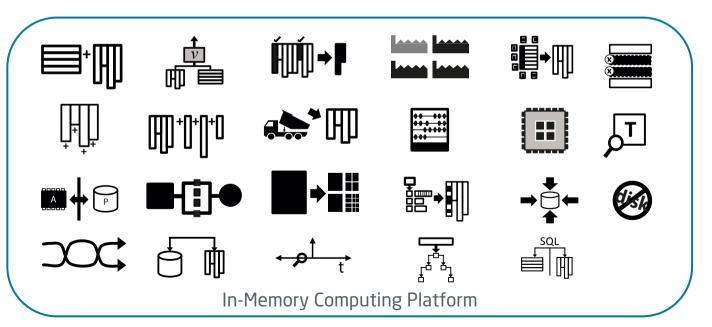
Clinical trials

Currently more than 30k recruiting on ClinicalTrials.gov

Numbers You Should Know Comparison of Costs

Data Management for Precision Oncology

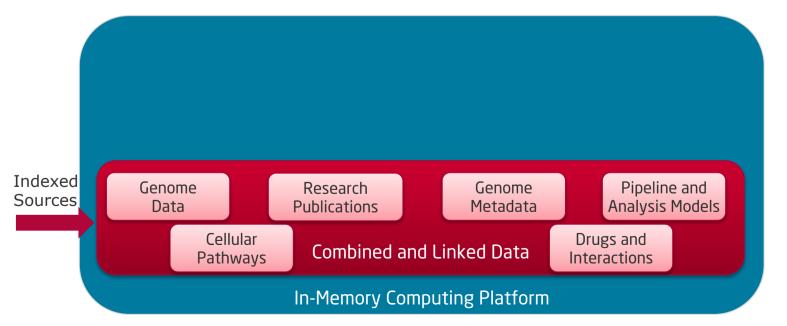
Our Approach: AnalyzeGenomes.com In-Memory Computing Platform for Big Medical Data


Data Management for Precision Oncology

Data Management for Digital Health, Winter 2023 **35**

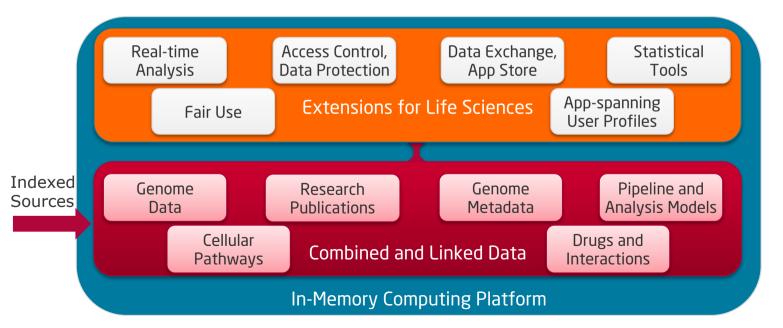
In-Memory Computing Platform

Our Approach: AnalyzeGenomes.com In-Memory Computing Platform for Big Medical Data



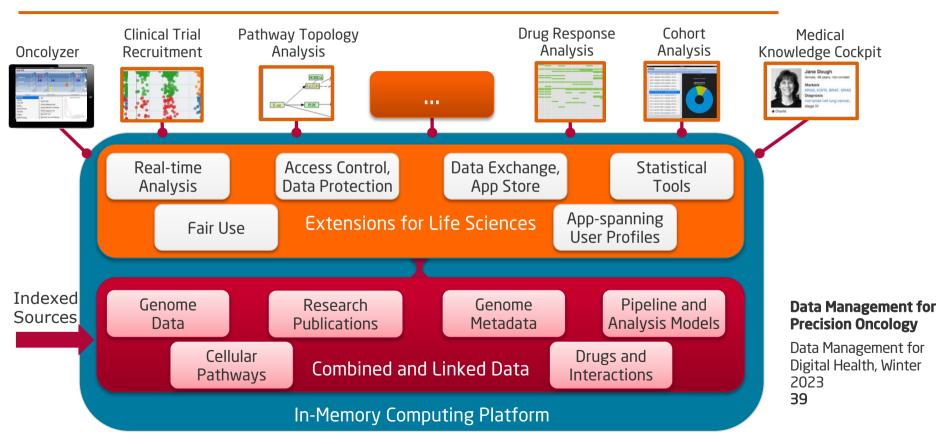
Data Management for Precision Oncology

Our Approach: AnalyzeGenomes.com In-Memory Computing Platform for Big Medical Data



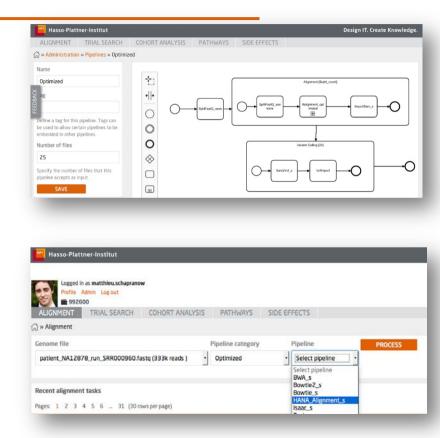
Data Management for Precision Oncology

Our Approach: AnalyzeGenomes.com In-Memory Computing Platform for Big Medical Data



Data Management for Precision Oncology

Our Approach: AnalyzeGenomes.com In-Memory Computing Platform for Big Medical Data



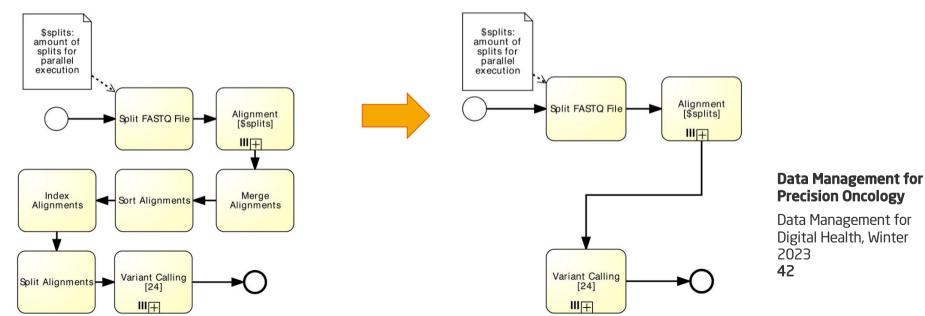
From Model to Execution

Hasso Plattner Institut

- <u>Design time</u> (researcher, process expert)
 Definition of parameterized process model
 Uses graphical editor and jobs from repository
- Configuration time (researcher, lab assistant)
 Select model and specify parameters, e.g. aln opts
 Results in model instance stored in repository
- 3. <u>Execution time</u> (researcher)
 - Select model instance
 - Specify execution parameters, e.g. input files

Execution of Genome Data Processing Pipelines

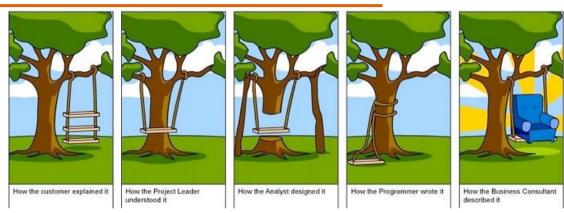
Uses workflow, which is...


- Predefined by a subject-matter expert
- Preconfigured for a specific run or set of experiments
- Requires only minimal configuration whilst enabling reproducibility

New alignment task			New alignment task			×
Choose pipeline	Configure execution	Select file(s)	2 hoose pipeline	Configure execution	Select file(s)	
Pipeline #alignment_ BWA_s	speed		Genome file #1		- or upload a new one	
Variable \$split_count			Choose a file User files CMV2 d15 cDNA	hTCRAlpha_454.fastq (6i	k reads)	Data Management for
10			CMV2_d9_cDNA_h	TCRAlpha_454.fastq (44 DNA_hTCRBeta_454.fast	k reads)	Precision Oncology
Variable \$reference			ERR005584.filt.fa ERR031969.filt.fa	stq (65k reads)		Data Management for
hg19			ERR047877.filt.fas HN-10927 S13 L0	stq (46k reads) 001_001_1.fastq (582k rea	ds)	Digital Health, Winter 2023
SELECT FILES >			HN-10980A_S14_ HN-10980A_S14_ HN-10980A_S14_ HN-10980A_S14_ Sezary2_PB_cDNA	_001_001_1.fastq (276k re _001_001_2.fastq (276k re _001_R1_001_1.fastq (276 _hTCRBeta_454.fastq (7 _hTCRAlpha_454.fastq (4	eads) Detimized k reads) Detimized 7k reads) Detimized	41

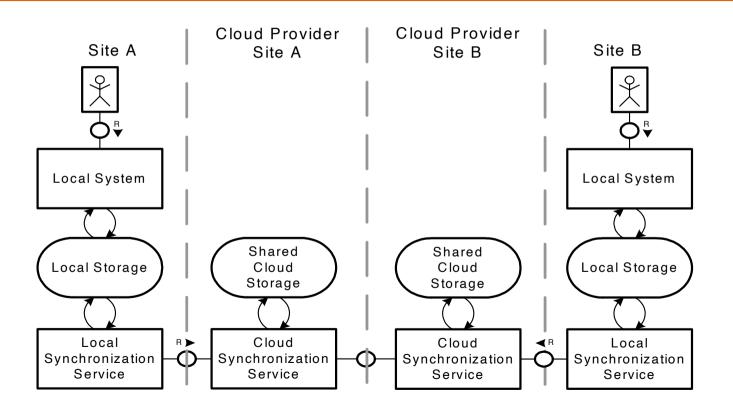
Bridging Gaps: From File-based to IMDB-based GDPPs

- Processing is performed and results are kept within IMDB
- Eliminated media breaks and time-intensive file I/O
- Optimization reduced execution time by >50%



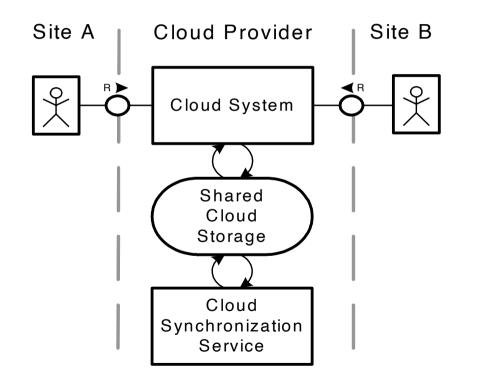
Execution Environment for GDPPs Software Requirements in Life Sciences

- Requirements
 - Managed services
 - Reproducibility
 - $\hfill\square$ Real-time data analysis of big data
- Restrictions
 - Data privacy
 - Data locality
 - Volume of big medical data
- Solution?


Federated In-Memory Database System vs. Cloud Computing

http://stevedempsen.blogspot.de/2013/08/agile-software-requirements-comic.html

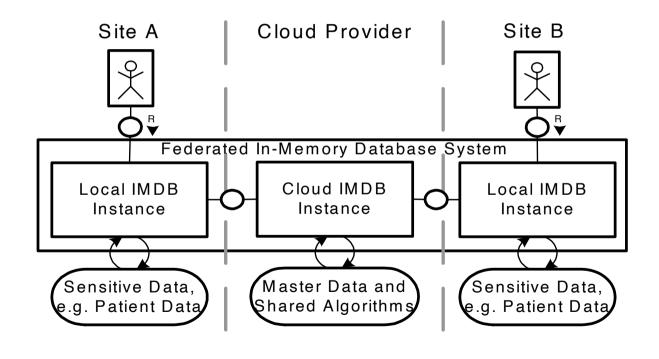
Data Management for Precision Oncology


Data Management for Precision Oncology

Data Management for Digital Health, Winter 2023 **44**

Schapranow, M.-P. et al.: A Federated In-memory Database System for Life Sciences. In: Real-Time Business Intelligence and Analytics. BIRTE 2015, BIRTE 2016, BIRTE 2017, Springer, Cham (2019).

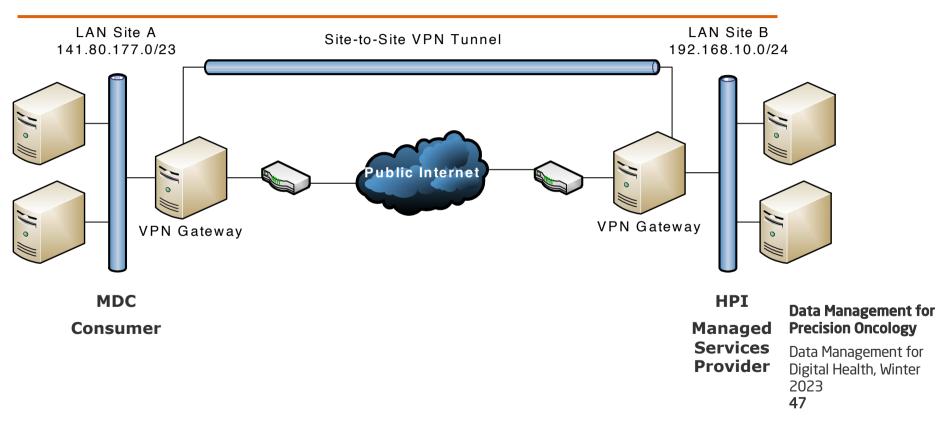
A Single Service Provider


Data Management for Precision Oncology

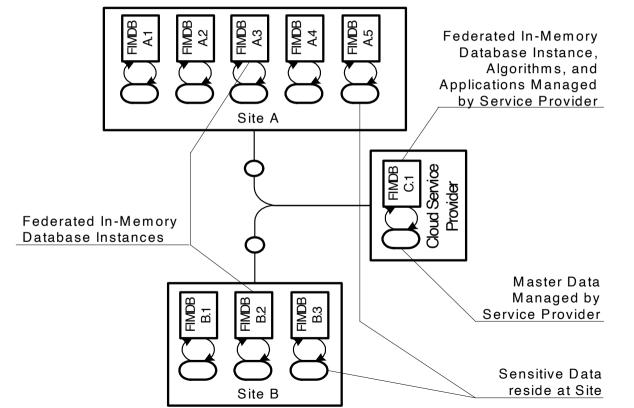
Data Management for Digital Health, Winter 2023 **45**

Schapranow, M.-P. et al.: A Federated In-memory Database System for Life Sciences. In: Real-Time Business Intelligence and Analytics. BIRTE 2015, BIRTE 2016, BIRTE 2017, Springer, Cham (2019).

Multiple Sites Forming the Federated In-Memory Database System



Data Management for Precision Oncology

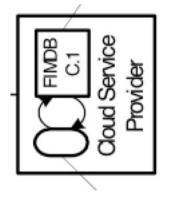

Network Setup Site-to-Site VPN

Federated In-Memory Database (FIMDB) Incorporating Local Compute Resources

Data Management for Precision Oncology

Data Management for Digital Health, Winter 2023 **48**

Schapranow, M.-P. et al.: A Federated In-memory Database System for Life Sciences. In: Real-Time Business Intelligence and Analytics. BIRTE 2015, BIRTE 2016, BIRTE 2017, Springer, Cham (2019).

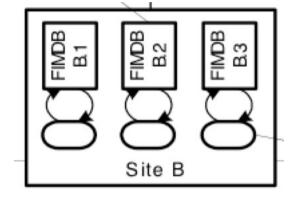

Provided by the Cloud Service Provider

File System

- Managed services directory
- OS binaries statically compiled for individual platforms

Database

- In-memory database landscape
- Stored procedures and database algorithms
- Master application data



Data Management for Precision Oncology

Setup of a New Client

- Establish site-to-site VPN connection b/w site and cloud service provider
- 2. Mount remote services directory
- Install and configure local IMDB instance from services directory
- 4. Subscribe to and configure selected managed service

Hasso Plattner Institut

Data Management for Precision Oncology

Data Partitioning

- Supports parallel query execution
- Protects sensitive data
- Brings algorithms to data

Parts	Columns		
Host:F	Port/Partitior ^	Record Count	Total Size (KB)
▼no	de-01:30203		
16		85,286	2,675
▼no	de-02:30203		
15		128,417	15,577
▼noo	de-09:30203		
2		78,873	2,489
▼noo	de-10:30203		
8		184,010	5,436
▼no	de-11:30203		
21		112,729	3,252
▼noo	de-14:30203		
13		43,296	1,765
▼noo	de-15:30203		
	5	93,507	3,075
▼noo	de-17:30203		
	7	175,184	5,347
▼noo	de-18:30203		
	10	270,924	28,734

Details for Table

Data Management for Precision Oncology

NephroCAGE: German-Canadian Consortium on Al for Improved Kidney Transplantation Outcome

- Applying AI technology for improved donor-recipient matching of kidney transplants
- Initial funding period: 2021-2023
- Funding: > 1.5 MEUR
- German partners supported by the German Federal Ministry for Economic Affairs and Climate Action

Real-world Demonstrator

Learning Systems and Federated Learning

Data Providers and Clinical Experts

Nephrology Disease Cooperation between

Hasso Plattner

CHUM

McGill University Health Centre Institut

NephroCAGE:

g

Genome

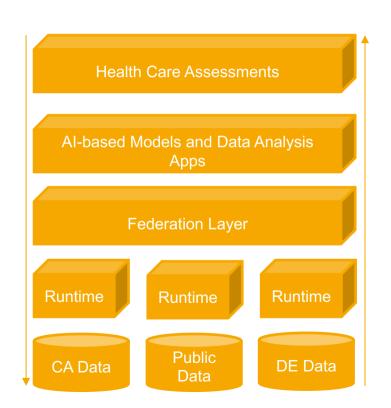
GenomeCanada

GenomeOuite

Supported by:

Federal Ministry for Economic Affairs and Climate Action

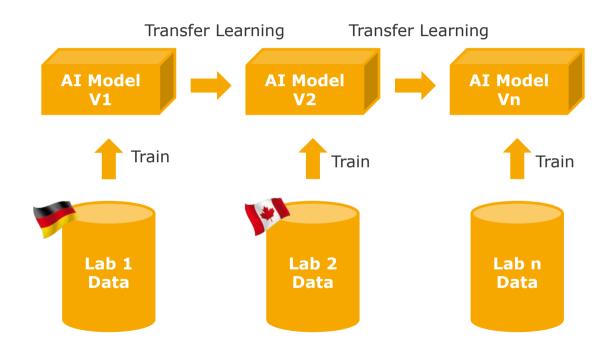
on the basis of a decision by the German Bundestag


Data Management for Precision Oncology

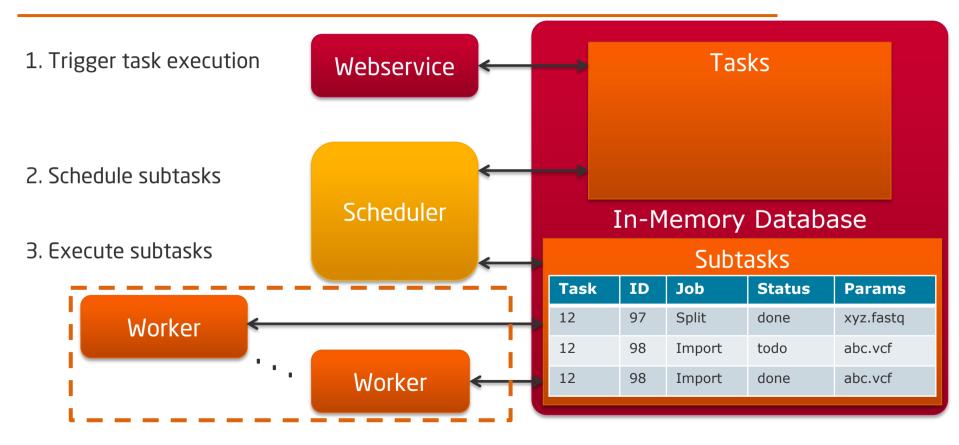
Data Management for Digital Health, Winter 2023

52

NephroCAGE Federated Learning Software Architecture


- Assess real-world transplant data from German and Canadian medical centers
- Access to 10yrs+ transplant data
- Healthcare data remains protected
- Al algorithms travel to data
- Federated learning enables data analysis whilst keeping data protected

NephroCAGE Federated Learning Software Architecture (cont'd)


Hasso Plattner

Institut

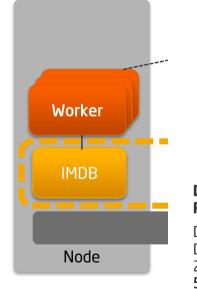
https://nephrocage.org

Runtime Environment Scheduling and Execution of GDPPs

Runtime Environment Software Components and Communication

Runtime Environment Workers

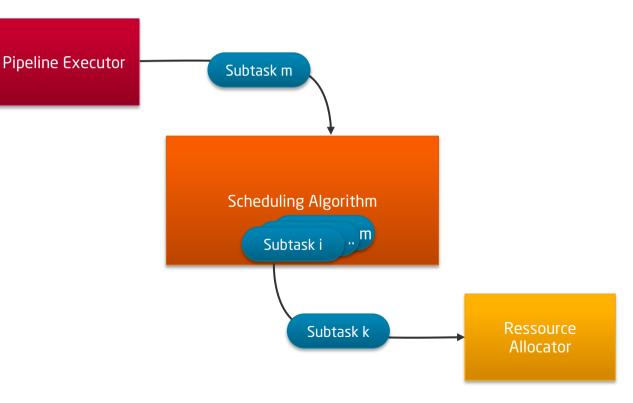
- Workers execute jobs one by one
- Subtask execution status in IMDB:


□ Ready (0),

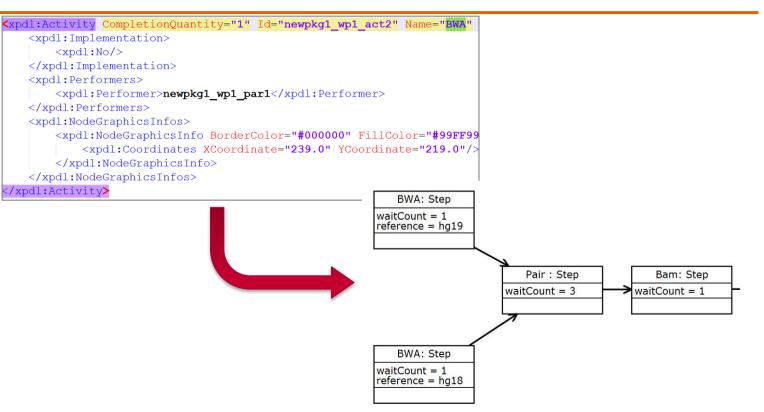
- In Progress (1),
- Done (2), or

□ Erroneous (3).

- Jobs implemented as Python modules/classes
 - Can contain arbitrary code
 - □ Have access to IMDB
 - Can read/write to shared working directory

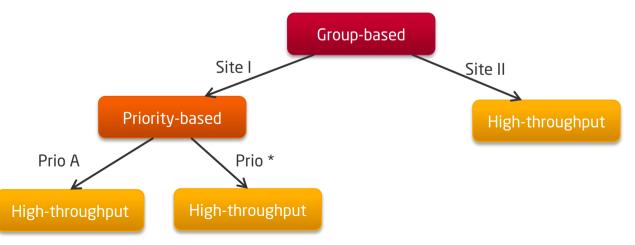


Data Management for Precision Oncology


Runtime Environment Task Scheduler

Data Management for Precision Oncology

Runtime Environment Pipeline Execution

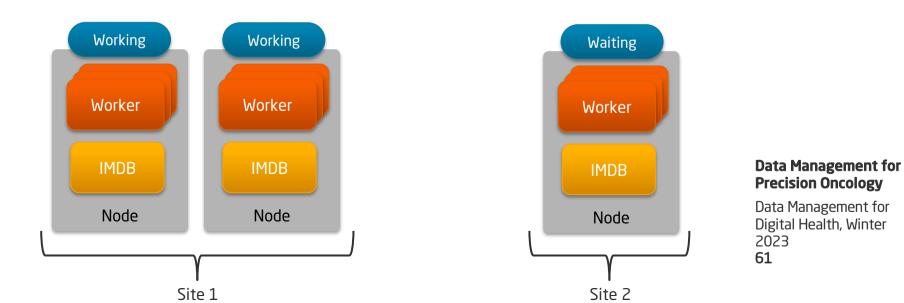


Hasso Plattner Institut

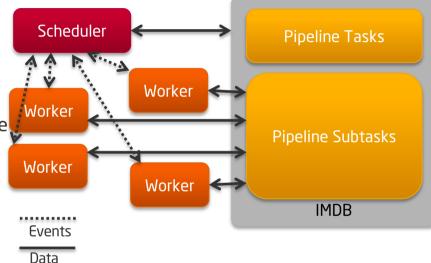
Data Management for Precision Oncology

Runtime Environment Scheduling Algorithms

- Scheduling algorithms are plug-in software modules
 - "User-/Group-based" to let users execute their tasks on their local site only
 - "Priority First" to prefer important users
 - □ "High Throughput", i.e. "shortest task first" to deal with high load
- Scheduling algorithms can also be composed hierarchically



Runtime Environment Resource Allocator


- Maintains lists of running and idle nodes
- Idle worker requests new sub task for its assigned groups
- If there is no matching sub task, it sleeps until a new sub task gets ready

Runtime Environment Recoverability

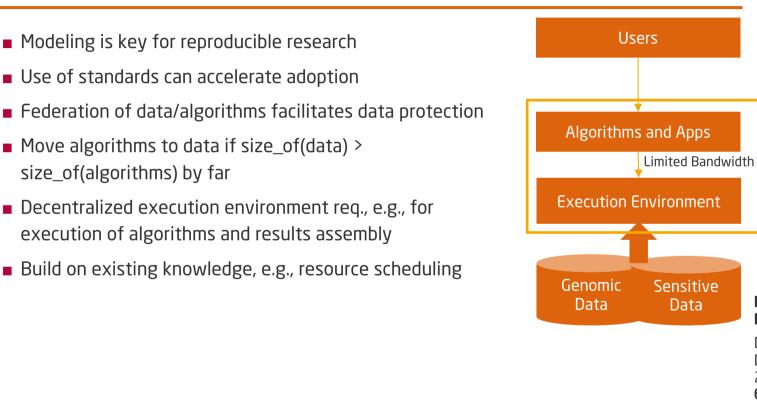
- All execution data is stored in IMDB
- Temporary files on a shared file system
- In case of any failure, the system-wide state can be restored

Typeritor, Monetype object is unsubscriptable

2015-11-04 18:01:30 INFO [ContinuingCoordinator] will start task with ID 1860 2015-11-04 18:01:30 INFO [ContinuingCoordinator] Will continue old but unfinished task 1969 with 52 already done subtasks.

Data Management for Precision Oncology

Federated Data Processing Comparison


- (Smaller) algorithms travel to (larger) data sets
- Forms a single virtual database (FIDMB) across sites and locations
- Master data managed by service provider whilst sensitive data resides locally

Pros	Cons	
Single database license	Complex operation	
Easy to consume services	Single setup required	
Query propagation by IMDB		

Data Management for Precision Oncology

What to take home?

Data Management for Precision Oncology