

Clinical interpretation of molecular data for personalized cancer therapy

- from best guesses to databases to AI?

Damian Rieke, Hasso-Plattner-Institut 2023

COI

Bayer Lilly Bristol Myers-Squibb Roche

Agenda

- 1. Background
- 2. Standards
- 3. Challenges
- 4. Summary

1. Background

- 2. Standards
- 3. Challenges
- 4. Summary

- 1. Background
- 2. Standards
- 3. Challenges
- 4. Summary

Sample selection Technology selection

Follow-up/Trial infrastructure

Follow-up/Trial infrastructure

NGS (accredited/validated)

- Oncomine Focus/Precision DNA Assay
- Oncomine Focus/Precision RNA Assay
- ColonLung Panel V2
- Cancer Hotspot Panel
- Myeloid Panel (Custom)
- (B-cell) Lymphoma Panel
- Oncomine cfDNA (Liquid Biopsies)
- Breast cfDNA Panel (Liquid Biopsies)
- BRCA1/2 Panel
- Tumor Mutational Burden (1.7 Mbases)
- Molecular Health 600+ Panel (3 Mbases); NextSeq
- Oncomine Comprehensive Assay V4 (500+) Panel
- TSO500 (DNA/RNA) Panel
- Ig/TCR Clonality Panel
- Archer RNA Panel

IHC/FISH

- nTRK screening
- TMB
- Other Targets (e.g. HER2, AR...)
- Fusion Gene validation
- Other
 - e.g. EPIC (Methylom)

DKTK MASTER

- WES/WGS
- RNASeq
- ExLiquid
 - ctDNA

Functional Analyses

Single cell analyses

Portfolio Molecular Diagnostics Pathology, Charité

Sample selection Technology selection

Follow-up/Trial infrastructure

Genetics in Medicine Volume 24, Issue 5, May 2022, Pages 986-998

Special Article

Standards for the classification of pathogenicity of somatic variants in cancer (oncogenicity): Joint recommendations of Clinical Genome Resource (ClinGen), Cancer Genomics Consortium (CGC), and Variant Interpretation for Cancer Consortium (VICC)

Peter Horak ¹ A 🖾, Malachi Griffith ², Arpad M. Danos ², Beth A. Pitel ³, Subha Madhavan ⁴, Xuelu Liu ⁵, Cynthia Chow ⁶, Heather Williams ⁷, Leigh Carmody ⁸, Lisa Barrow-Laing ⁹, Damian Rieke ¹⁰, Simon Kreutzfeldt ¹, Albrecht Stenzinger ¹¹, David Tamborero ¹², Manuela Benary ¹⁰, Padma Sheila Rajagopal ¹³, Cristiane M. Ida ³, Harry Lesmana ¹⁴, Laveniya Satgunaseelan ¹⁵, Jason D. Merker ¹⁶ ...Dmitriy Sonkin ³⁵ A 🖾

Gen	Mutation [Exon: c.HGVS; p.HGVS]	AF [%]	Potentielle Therapie- option ²	Potentielle Kontra- indikation ²	Potentiell anderweitig Relevant 23
PIK3CA	Exon 21: c.3140A>G, p.H1047R	32	AMP IIc	-	-
HRAS	Exon 3: c.182A>G, p.Q61R	33	AMP IId		-
NOOI	E 0 5500 E 500				

AR +

HER2 –

NTRK -

Diagnose

Unter Berücksichtigung der Vorbefunde ergibt sich ein vordiagnostiziertes Speichelgangskarzinom mit Nachweis von klinisch bzw. diagnostisch relevanten Mutationen und/oder Polymorphismen in den Genen PIK3CA, HRAS, NQO1, CYP2D6 TPMT sowie folgendem Profil:

- Tumor-Mutationslast: 10,9 Mut/Mb.

- Fusionsgen-Analyse: Keine RNA Untersuchung möglich, da Gewebe aufgebraucht..

Sample selection Technology selection

Follow-up/Trial infrastructure

Gen	Mutation [Exon: c.HGVS; p.HGVS]	AF [%]	Potentielle Therapie- option ²	Potentielle Kontra- indikation ²	Potentiell anderweitig Relevant 23
PIK3CA	Exon 21: c.3140A>G, p.H1047R	32	AMP IIc	-	-
HRAS	Exon 3: c.182A>G, p.Q61R	33	AMP IId		-
NOOI	E 0 5500 E 500				

AR +

HER2 –

NTRK -

Diagnose

Unter Berücksichtigung der Vorbefunde ergibt sich ein vordiagnostiziertes Speichelgangskarzinom mit Nachweis von klinisch bzw. diagnostisch relevanten Mutationen und/oder Polymorphismen in den Genen PIK3CA, HRAS, NQO1, CYP2D6 TPMT sowie folgendem Profil:

- Tumor-Mutationslast: 10,9 Mut/Mb.

- Fusionsgen-Analyse: Keine RNA Untersuchung möglich, da Gewebe aufgebraucht..

Medical History: 07/22 ED met. Salivary duct carcinoma

Manifestations: local, pulmonary

Sampling: 07/22 CT guided biopsy pulmonary metastasis

IHC/MolPath: TMB10,9 Mut/Mb, Her2 negativ (pulm, 1+ lokal), TRK negativ, Androgen receptor (strong positive)

	Aberration evidence	Drug/s	Mechanism	EvL	PMIDs/NCT	VAF	Histology
AR Expression							
PIK3CA p.H1047R							
HRAS p.Q61R							
TMB 10.9 Mut/Mb							
	Aberration evidence	Drug/s	Mechanism	EvL	PMIDs/NCT	VAF	Histol.
CYP2D6 splice-site, p.P34S							
TPMT p.A154T							

Griffith et al., Nat Genet. 2017 Krysiak et al., Nat Cancer. 2022 ²³ Krysiak et al., Nucleic Acids Res. 2022

Onc@KB[®]

Search ...

evidence assigning their level of clinical actionability.

If you notice any mistakes or omissions, please reach out to us. 🖂

Level	Alterations	Level-associated cancer types ()	Drugs 🔺	Citations
0	V600	Erdheim-Chester Disease	Vemurafenib	2
1	V600	Melanoma	Vemurafenib + Cobimetinib + Atezolizumab	1
1	V600E	All Solid Tumors (excluding Colorectal Cancer)	Dabrafenib + Trametinib	7
1	V600E	Anaplastic Thyroid Cancer	Dabrafenib + Trametinib	1
0	V600E	Biliary Tract Cancer, NOS	Dabrafenib + Trametinib	7
1	V600E	Colorectal Cancer	Encorafenib + Cetuximab	1
0	V600E	Melanoma	Dabrafenib	3
1	V600E	Melanoma	Dabrafenib + Trametinib	10
0	V600E	Melanoma	Encorafenib + Binimetinib	1
1	V600E	Melanoma	Trametinib	4
0	V600E	Melanoma	Vemurafenib	3
0	V600E	Melanoma	Vemurafenib + Cobimetinib	3
0	V600E	Non-Small Cell Lung Cancer	Dabrafenib + Trametinib	2
0	V600K	Melanoma	Dabrafenib + Trametinib	10

Gleiche Tumorentität	m1A	In der gleichen Tumorentität wurde der prädiktive Wert des Biomarkers oder die klinischeWirksamkeit in einer Biomarker- stratifizierten Kohorte einer adäquat gepowerten prospektiven Studie oder Metaanalyse gezeigt.
	m1B	In der gleichen Tumorentität wurde der prädiktive Wert des Biomarkers oder die klinische Wirksamkeit in einer retrospektiven Kohorte oder Fall-Kontroll-Studie gezeigt.
	m1C	Ein oder mehrere Fallberichte in der gleichen Tumorentität.
Andere Tumorentität	m2A	In einer anderen Tumorentität wurde der prädiktive Wert des Biomarkers oder die klinische Wirksamkeit in einer Biomarker- stratifizierten Kohorte einer adäquat gepowerten prospektiven Studie oder Metaanalyse gezeigt.
	m2B	In einer anderen Tumorentität wurde der prädiktive Wert des Biomarkers oder die Klinische Wirksamkeit in einer retrospektiven Kohorte oder Fall-Kontroll-Studie gezeigt.
	m2C	Unabhängig von der Tumorentität wurde beim Vorliegen des Biomarkers eine klinische Wirksamkeit in einem oder mehreren Fallberichten gezeigt.
In vitro oder Tiermodell	m3	Präklinische Daten (<i>in vitro-lin vivo</i> -Modelle, funktionelle Untersuchungen) zeigen eine Assoziation des Biomarkers mit der Wirksamkeit der Medikation, welche durch eine wissenschaftliche Rationale gestützt wird.
Biologische Rationale	m4	Eine wissenschaftliche, biologische Rationale legt eine Assoziation des Biomarkers mit der Wirksamkeit der Medikation nahe, welche bisher nicht durch (prä)klinische Daten gestützt wird.

Medical History: 07/22 ED met. Salivary duct carcinoma

Manifestations: local, pulmonary

Sampling: 07/22 CT guided biopsy pulmonary metastasis

IHC/MolPath: TMB10,9 Mut/Mb, Her2 negativ (pulm, 1+ lokal), TRK negativ, Androgen receptor (strong positive)

	Aberration evidence	Drug/s	Mechanism	EvL	PMIDs/NCT	VAF	Histology
AR Expression	AR+ HER2+, AR+, PIK3CA p.E545K, HRAS p.Q61R	Leuprorelin/Bicalutamid ADT Alpelisib/Bicalutamid	Antiandrogen Antiandrogen + PI3K	M1a m1b m1c	29211833 (1) 29272069 34036229 (2)		SDC
PIK3CA p.H1047R	p.E545K	Alpelisib/Bicalutamid	Antiandrogen + PI3K	m1c	34036229 (2)	32%	
HRAS p.Q61R	HRAS mut	Tipifarnib	HRAS	m1a	32557577 (3)	33%	
TMB 10,9 Mut/Mb	TMB high AR+, TMB unknown	Immune Checkpoint Inhibitor Pembrolizumab	ICI PD-1	M1a m1c	34083238 32352883		
	Aberration evidence	Drug/s	Mechanism	EvL	PMIDs/NCT	VAF	Histol.
CYP2D6 splice-site, p.P34S		Codein, Tamoxifen, Gefitinib, Tramadol	toxicity			33, 47%	
TPMT p.A154T		Mercaptopurin, Thioguanin	toxicity			35%	

(1) Phase 2 study. 36 patients. ORR 41.7%. mPFS 8.8m

(2) Case report of metabolic response > 12months after prior progression on HER2-directed therapy

(3) Prospective trial, 13 R/M HRASmut (mostly Q61R) SGC. 1 Response, 7 SD.

Sample selection Technology selection

Follow-up/Trial infrastructure

Charité Comprehensive Cancer Center

Leistungen

🕻 zurück

Molekulare Tumorkonferenz

Für Patientinnen, Patienten . & Interessierte

Für Ärztinnen, Ärzte & medizinisches Personal

Für Wissenschaftlerinnen & Wissenschaftler

Forschung

Karriara

CHARITÉ

In der molekularen Tumorkonferenz werden gemeinsam mit Forschern Gensequenzierungen in die Therapieentscheidung mit einbezogen.

Im Charité Comprehensive Cancer Center finden regelmäßig wöchentlich molekulare Tumorkonferenzen statt.

Startseite > Leistungen > Plattform für personalisierte Krebsmedizin der Charité (PPK-C) > Molekulare Tumorkonferenz

Molekulare Tumorkonferenz: Präzisionsonkologie in der klinischen Routine

//

Molecular rationale for treatment with

Priority 1: antiandrogen therapy (m1a, off-label)

Sample selection Technology selection

CHARITÉ

Rieke et al., Front. Oncol. 2023

Agenda

- 1. Background
- 2. Standards
- 3. Challenges
- 4. Summary

Publication [citation]	Matched treatment	Off-label	Treated in trials	ORR ⁹	SD 9	PFS/TTF ⁹	OS ⁹	Other data
Zehir et al. 2017 [2]	24% (n=537)	n.r.	11% (n=527)	n.r.	n.r.	n.r.	n.r.	
Tsimberidou et al. 2014 [3]	27% (n=143)	none	100% (n=379)	12% vs. 5%	16% vs. 12%	3.9 m vs. 2.2 m	11.4 m vs. 8.6 m	
Massard et al. 2017 [4]	48% (n=199)	25% (n=50)	75% (n=149)	11%	52%	2.3 m	11.9 m	PFS2/PFS1 ≥1.3 : 33%
Burkard et al. 2017 [5]	28% (n=9)	89% (n=8)	11% (n=1)	17%	n.r.	n.r.	n.r.	
Le Tourneau et al. 2015 [6]	34% (n=99)	none	100% (n=195)	4% vs. 3%	n.r.	2.3 m vs. 2.0 m	n.r.	
Sicklick et al. 2019 [7]	49% (n=73)	none	100% (n=73)	23%	5%	3.67 m	11.8 m	PFS2/PFS1 ≥1.3: 75% vs. 36.6% in low matching score group
Rodon et al. 2019 [8]	42% (n=107)	none	100% (n=107)	11.2%	15%	2.01 m	5.9 m	PFS2/PFS >1.5: 22.4%
Tsimberidou et al. 2012 [19]	46% (n=211)	none	100% (n=352)	25% vs. 4%	23% vs. 10%	4.4 m vs. 2.3 m	11.4 m vs. 10.2 m	
Jameson et al. 2014 [20]	89% (n=29)	none	100 % (n=25)	20%	32%	n.r.	7.8 m	PFS2/PFS1 ≥1.3 : 44%
Wiesweg et al. 2013 [21]	45% (n=62)	69% (n=43)	31% (n=19)	n.r.	n.r.	n.r.	n.r.	
Jones et al. 2015 [22]	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	
Dalton et al. 2017 [23]	21% (n=28)	46% (n=11)	54% (n=13)	n.r.	n.r.	5.0 m	n.r.	
Sohal et al. 2015 [24]	22% (n=24)	38% (n=9)	50% (n=12)	n.r.	n.r.	n.r.	n.r.	
Johnson et al. 2014 [25]	21% (n=18)	39% (n=7)	61% (n=7)	22%	28%	n.r.	n.r.	
Radovich et al. 2016 [26]	100% (n=44)	none	100% (n=101)	n.r.	n.r.	2.8 m vs. 1.6 m	n.r.	PFS2/PFS1 ≥1.3 : 43.2% vs. 5.3%
Stockley et al. 2016 [27]	n.a.	none	100% (n=245)	19% vs. 9%	n.r.	n.r.	16 m vs. 13 m	any tumor shrinkage: 62% vs. 32%
Schwaederle et al. 2016 [28]	48% (n=87)	n.r.	n.r.	n.r.	n.r.	4.0 m vs. 3.0 m	12.7 m vs. 12.4 m	PFS2/PFS1 ≥1.3 : 45.3% vs. 19.3%
Von Hoff et al. 2010 [29]	79% (n=66)	n.r.	n.r.	10%	n.r.	n.r.	5 m	PFS2/PFS1 ≥1.3 : 27%
Tredan et al. 2017 [30]	11% (n=101)	n.r.	n.r.	17%	34%	2.8 m	n.r.	
Cobain et al. 2017 [31]	n.a.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	
Hoefflin et al. 2018 [32]	32% (n=33)	67% (n=22)	6% (n=2)	33%	24%	n.r.	not reached	PFS2/PFS1 ≥1.3 (off label): 57.1%
Basse et al. 2018 [33]	10% (n=45)	n.a.	100% (n=45)	11%	n.a.	n.a.	n.a.	
median	34%	46%	100%	17% ¹⁰	24% ¹⁰	3.2 m ¹⁰	11.4 m ¹⁰	

CHARITÉ

Publication [citation]	Matched treatment	Off-label	Treated in trials	ORR ⁹	SD ⁹	PFS/TTF ⁹	OS ⁹	Other data				
Zehir et al. 2017 [2]	24% (n=537)	n.r.	11% (n=527)	n.r.	n.r.	n.r.	n.r.					
Tsimberidou et al. 2014 [3]] 27% (n=143)	none	100% (n=379)	12% vs. 5%	16% vs. 12%	3.9 m vs. 2.2 m	11.4 m vs. 8.6 m					
Massard et al. 2017 [4]	48% (n=199)	25% (n=50)	75% (n=149)	11%	52%	2.3 m	11.9 m	PFS2/PFS1 ≥1.3 : 3	3%			
Burkard et al. 2017 [5]	28% (n=9)	89% (n=8)	11% (n=1)	17%	n.r.	n.r.	n.r.					
Le Tourneau et al. 2015 [6]] 34% (n=99)	none	100% (n=195)	4% vs. 3%	n.r.	2.3 m vs. 2.0 m	n.r.					
Sicklick et al. 2019 [7]	D	blies	41.000				d from	4		009	DEC/TTE 9	009
Rodon et al. 2019 [8]	E Pu	0][[07:	ποπ			HOUR	eo trea	tment * I	UKK	1 <u>3</u> 0 °		US *
Tsimberidou et al. 2012 [19]	*****	~~~~~	~~~~~		~~~	~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~				
Jameson et al. 2014 [20]		ite ti	onl									
Wiesweg et al. 2013 [21]		ueu	<u>u</u>									
Jones et al. 2015 [22]		~~~~~~	~~~~									
Jones et al. 2015 [22] Dalton et al. 2017 [23]			~~~~									
Jones et al. 2015 [22] Dalton et al. 2017 [23] Sohal et al. 2015 [24]		nodi					210/		470 / 10	3/10 / 10	2.2 m 10	11 A m 10
Jones et al. 2015 [22] Dalton et al. 2017 [23] Sohal et al. 2015 [24] Johnson et al. 2014 [25]	r	nedia	an				34%		17% ¹⁰	24% ¹⁰	3.2 m ¹⁰	11.4 m ¹⁰
Jones et al. 2015 [22] Dalton et al. 2017 [23] Sohal et al. 2015 [24] Johnson et al. 2014 [25] Radovich et al. 2016 [26]	r	nedia	an				34%		17% ¹⁰	24% 10	3.2 m ¹⁰	11.4 m ¹⁰
Jones et al. 2015 [22] Dalton et al. 2017 [23] Sohal et al. 2015 [24] Johnson et al. 2014 [25] Radovich et al. 2016 [26] Stockley et al. 2016 [27]	ľ	nedia	1 00% (n=245)	19% vs. 9%	n.r.	n.r.	34%	any tumor shrinkage: 6	17% ¹⁰	24% 10	3.2 m ¹⁰	11.4 m ¹⁰
Jones et al. 2015 [22] Dalton et al. 2017 [23] Sohal et al. 2015 [24] Johnson et al. 2014 [25] Radovich et al. 2016 [26] Stockley et al. 2016 [27] Schwaederle et al. 2016 [28]	n.a. 48% (n=87)	nedia	100% (n=245) n.r.	19% vs. 9% n.r.	n.r. n.r.	n.r. 4.0 m vs. 3.0 m	34% 16 m vs. 13 m 12.7 m vs. 12.4 m	any tumor shrinkage: 6. PFS2/PFS1 ≥1.3 : 45.3% v	17% 10	24% 10	3.2 m ¹⁰	11.4 m ¹⁰
Jones et al. 2015 [22] Dalton et al. 2017 [23] Sohal et al. 2015 [24] Johnson et al. 2015 [24] Radovich et al. 2016 [26] Stockley et al. 2016 [27] Schwaederle et al. 2016 [28] Von Hoff et al. 2010 [29]	n.a. 48% (n=87) 79% (n=66)	none n.r. n.r.	100% (n=245) n.r. n.r.	19% vs. 9% n.r. 10%	n.r. n.r.	n.r. 4.0 m vs. 3.0 m n.r.	34% 16 m vs. 13 m 12.7 m vs. 12.4 m 5 m	any tumor shrinkage: 6. PFS2/PFS1 ≥1.3 : 45.3% v PFS2/PFS1 ≥1.3 : 2	17% 10 ^{75. 19.3%}	24% 10	3.2 m ¹⁰	11.4 m ¹⁰
Jones et al. 2015 [22] Dalton et al. 2017 [23] Sohal et al. 2015 [24] Johnson et al. 2015 [24] Radovich et al. 2016 [26] Stockley et al. 2016 [27] Schwaederle et al. 2016 [28] Von Hoff et al. 2010 [29] Tredan et al. 2017 [30]	n.a. 48% (n=87) 79% (n=66) 11% (n=101)	none n.r. n.r. n.r.	100% (n=245) n.r. n.r. n.r.	19% vs. 9% n.r. 10% 17%	n.r. n.r. n.r. 34%	n.r. 4.0 m vs. 3.0 m n.r. 2.8 m	34% 16 m vs. 13 m 12.7 m vs. 12.4 m 5 m n.r.	any tumor shrinkage: 6. PFS2/PFS1 ≥1.3 : 45.3% ↓ PFS2/PFS1 ≥1.3 : 2	17% 10 /s. 19.3%	24% 10	3.2 m ¹⁰	11.4 m ¹⁰
Jones et al. 2015 [22] Dalton et al. 2017 [23] Sohal et al. 2015 [24] Johnson et al. 2015 [24] Radovich et al. 2016 [26] Stockley et al. 2016 [27] Schwaederle et al. 2016 [27] Schwaederle et al. 2016 [28] Von Hoff et al. 2010 [29] Tredan et al. 2017 [30] Cobain et al. 2017 [31]	n.a. 1 48% (n=87) 79% (n=66) 11% (n=101) n.a.	none n.r. n.r. n.r. n.r.	100% (n=245) n.r. n.r. n.r. n.r.	19% vs. 9% n.r. 10% 17% n.r.	n.r. n.r. 34%	n.r. 4.0 m vs. 3.0 m n.r. 2.8 m n.r.	34% 16 m vs. 13 m 12.7 m vs. 12.4 m 5 m n.r. n.r.	any tumor shrinkage: 6. PFS2/PFS1 ≥1.3 : 45.3% v PFS2/PFS1 ≥1.3 : 2	17% 10 ^{rs. 19.3%}	24% 10	3.2 m ¹⁰	11.4 m ¹⁰
Jones et al. 2015 [22] Dalton et al. 2017 [23] Sohal et al. 2017 [24] Johnson et al. 2015 [24] Johnson et al. 2014 [25] Radovich et al. 2016 [26] Stockley et al. 2016 [27] Schwaederle et al. 2016 [27] Schwaederle et al. 2016 [28] Von Hoff et al. 2010 [29] Tredan et al. 2017 [30] Cobain et al. 2017 [31] Hoefflin et al. 2018 [32]	n.a. 48% (n=87) 79% (n=66) 11% (n=101) n.a. 32% (n=33)	none n.r. n.r. n.r. n.r. 67% (n=22)	100% (n=245) n.r. n.r. n.r. n.r. n.r. 6% (n=2)	19% vs. 9% n.r. 10% 17% n.r. 33%	n.r. n.r. 34% n.r. 24%	n.r. 4.0 m vs. 3.0 m n.r. 2.8 m n.r. n.r.	34% 16 m vs. 13 m 12.7 m vs. 12.4 m 5 m n.r. n.r. n.r. not reached	any tumor shrinkage: 6. PFS2/PFS1 ≥1.3 : 45.3% ↓ PFS2/PFS1 ≥1.3 : 2 PFS2/PFS1 ≥1.3 (off labe	17% 10 /s. 19.3% /%	24% ¹⁰	3.2 m ¹⁰	11.4 m ¹⁰
Jones et al. 2015 [22] Dalton et al. 2017 [23] Sohal et al. 2017 [24] Johnson et al. 2015 [24] Johnson et al. 2014 [25] Radovich et al. 2016 [26] Stockley et al. 2016 [27] Schwaederle et al. 2016 [27] Schwaederle et al. 2016 [27] Von Hoff et al. 2010 [29] Tredan et al. 2010 [29] Tredan et al. 2017 [30] Cobain et al. 2017 [31] Hoefflin et al. 2018 [32] Basse et al. 2018 [33]	n.a. 1 10% (n=87) 79% (n=66) 11% (n=101) n.a. 32% (n=33) 10% (n=45)	none n.r. n.r. n.r. n.r. 67% (n=22) n.a.	100% (n=245) n.r. n.r. n.r. n.r. 6% (n=2) 100% (n=45)	19% vs. 9% n.r. 10% 17% n.r. 33% 11%	n.r. n.r. 34% n.r. 24% n.a.	n.r. 4.0 m vs. 3.0 m n.r. 2.8 m n.r. n.r. n.r. n.a.	34% 16 m vs. 13 m 12.7 m vs. 12.4 m 5 m n.r. n.r. n.r. not reached n.a.	any tumor shrinkage: 6. PFS2/PFS1 ≥1.3 : 45.3% \ PFS2/PFS1 ≥1.3 : 2 PFS2/PFS1 ≥1.3 (off labe	17% 10 /s. 19.3% /%	24% ¹⁰	3.2 m ¹⁰	11.4 m ¹⁰

Table 1. Sample Patie	ents as Provided to the	e Molecular Tumor Boards
-----------------------	-------------------------	--------------------------

Patient	Clinical Information	Additional Information	Sequencing	Fusion Genes	Copy No.	Gene Expression
1. 56-year- old patient	Initial diagnosis October 2014: TTF1-positive lung adenocarcinoma T3N3M0 (UICC IIIB) with negative <i>ALK/</i> <i>ROS</i> translocation and negative <i>EGFR</i> mutation status. Definite chemoradiotherapy. Widespread metastases to the peritoneum diagnosed in Nov 2015. Progressive after platinum-based chemotherapy and PD-1 inhibition (nivolumab). ECOG 1.	Tumor specimen from diagnostic mediastinoscopy Oct 2014: 25% tumor content, 580× mean sequencing depth.	Panel sequencing: <i>KRAS</i> G13D, <i>TP53</i> A276G, <i>PTPRS</i> R238*, <i>ZFHX3</i> F2994L, <i>CDH1</i> D433N	N/A	N/A	N/A

 Table 3. Treatment Recommendations as Provided by the Respective Molecular Tumor Boards for Patient 1

Tumor

Board	Recommendation	Provided Rationale	Additional Recommendation
1	Pan-Raf inhibitor	Downstream effect <i>KRAS</i> mutation	
2	No targeted therapy		MET and RET testing
3	Clinical trial for <i>KRAS</i> mutation	KRAS mutation	Genetic counseling for <i>CDH1</i> and <i>TP53</i> mutations (potential germline mutation)
4	Sorafenib clinical trial	KRAS mutation	
5	Docetaxel and selumetinib	<i>KRAS</i> mutation (data from phase II clinical trial)	Genetic counseling (<i>CDH1</i> mutation; potential germline mutation)

6 N/A because of missing information

NOTE. Rationales were provided for only some of the recommendations and asked for if missing initially. Abbreviations: N/A, not available; RET, Ret proto-oncogene.

Benary et al. JAMA Netw Open 2023 41

//

The unique treatment strategy was antiandrogen therapy in a patient with salivary duct carcinoma with *HRAS* and *PIK3CA* variation. *HRAS* and *PIK3CA* comutated salivary duct carcinoma usually stain positive for the androgen receptor in immunohistochemistry. Antiandrogen therapy was not suggested by the human expert because no immunohistochemistry results were provided.

Agenda

- 1. Background
- 2. Standards
- 3. Challenges
- 4. Summary

- Multi-Step Process
- Integration of novel analyses, treatments, combinations
- Integration of complex data and multiple data layers
- Clinico-genomic database for research use
- Future application of AI?

Comprehensive Cancer Center

Ulrich Keilholz Max Schmidt Manuela Benary Mani Nassir Lidan Chai Anna Klostermann Yvette Jegodka Maren Knödler Serge Leyvraz Department of Hematology/Oncology Sebastian Ochsenreither Konrad Klinghammer Ben von der Emde Ulrich Keller/Sebastian Stintzing/Lars Bullinger

DKTK/DKFZ Heidelberg Peter Horak Stefan Fröhling

Core Unit Bioinformatics BIH Dieter Beule Eric Blanc Erika Zuljan

VICC Consortium Griffith Lab St. Louis (Molecular) Pathology Markus Möbs Maria Joosten Wolfgang Schmitt David Horst Humangenetik Claus-Erik Ott Stefan Mundlos Radiologie Tobias Penzkofer Bernd Hamm

thank you!

