

Exercise II Topics

- Medical Use Case Oncology
- Bio Recap
- Genome Data Acquisition and Processing

Evaluation Exercise I

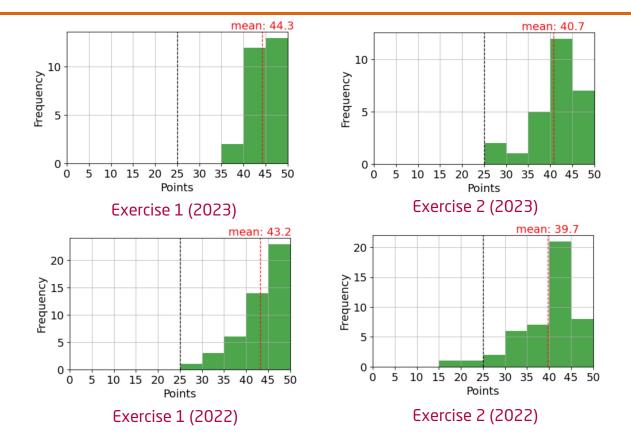
Exercise II Key Stats

25 Questions50 Points

27 Students27 Passed

Average score 40.7 / 81%

Average time 97.3 min



Evaluation Exercise I

Exercise II Key Stats

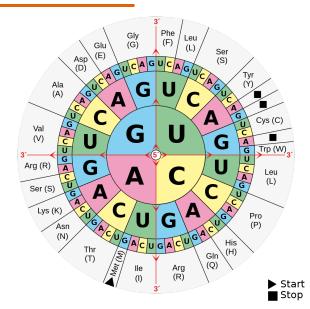
Evaluation Exercise I

Q13 A genetic variation affects the position 23 and alters nucleobase A to G. Please select all answers describing the resulting effect.

- /-
 - The genetic variant is non-functional.
- The genetic variant is functional.
- The genetic variant introduces a nonstop mutation.
- The genetic variant introduces a missense mutation.

Evaluation Exercise I

Q14 A genetic variation affects position 19 and alters nucleobase A to U. Please select all answers describing the resulting effect.


- /-
 - The genetic variant introduces a nonsense mutation.
- The genetic variant introduces a nonstop mutation.
- The genetic variant is non-functional.
- The genetic variant is functional.

Evaluation Exercise I

Q13: nucleobase A to G at pos 23 Q14: nucleobase A to U at pos 19

	1-3	4-6	7-9	10-12	13-15	16-18	19-21	22-24
	*	W	- 1	N	Т	Е	R	
	AUG	UGG	AUC	AAC	ACG	GAG	AGA	UAA
Q13	AUG	UGG	AUC	AAC	ACG	GAG	AGA	UGA
Q13	*	W	I	N	Т	Е	R	
Q14	AUG	UGG	AUC	AAC	ACG	GAG	UGA	UAA
Q14	*	W	- 1	N	Т	E		

Evaluation Exercise I

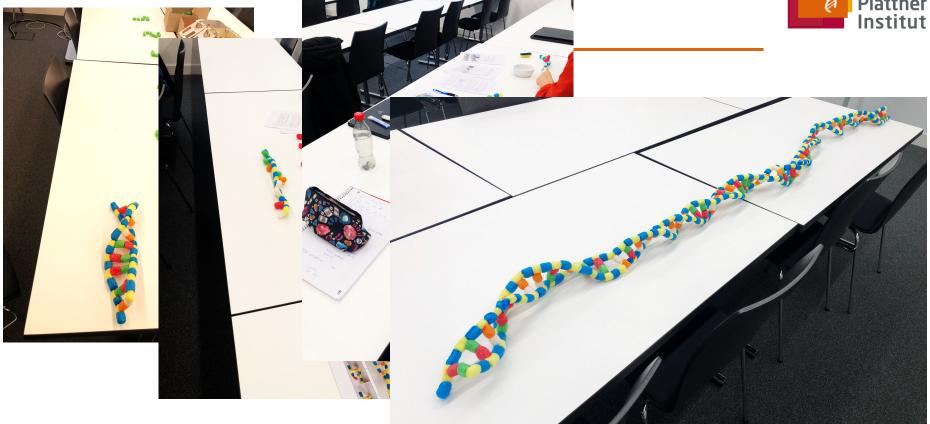
Point Mutations / Gene Mutations

- Single Nucleotide Polymorphism (SNP) := Affects a single locus on a gene, e.g. substitution of a single base
- In/Del := Insertion/Deletion of an arbitrary number of bases resulting in a frame shift
- Non-functional := No impact on products created from the affected genetic code, e.g. compensated through amino acids redundancy
- Functional := Impact on products built from affected genetic code, e.g.:

Size (before vs. after)	Type	Impact
=	Missense	Changes triplet, i.e. another amino acid chain is synthesized
>	Nonsense	Converts existing triplet to stop codon (+STOP)
<	Nonstop	Converts existing stop codon to another triplet (-STOP)

Medical Use Case Oncology

Q15 In the following, please incorporate your observations from our DIY Build Your Own DNA Workshop to select all correct statements.



- After combining individual pieces of DNA assembled in groups, we were able to read the sentence "We learn Digital Health".
- Each group created the same sequence of DNA and applied different kinds of mutations to it to make it unique.
- "Make biology great again" was encoded in the given DNA strand.
- Each group created a special chunk of DNA and applied the same type of mutation to it to make it unique.

Evaluation Exercise I

DIY Workshop

Q18: ... please make use of the Needleman-Wunsch alignment algorithm [...] for the given sequence ATTA and the reference GATTACA

	-	G	Α	Т	T	А	С	А
-	0	← -4	← -8	← -12	← -16	← -20	← -24	← -28
Α	↑ -4	₹ -2	尽-2	← -6	← -10	← ₹-14	← -18	← ₹-22
Т	↑ -8	↑₹ -6	尽-4	₹ 0	← 下 -4	-8	← -12	← -16
Т	↑-12	↑₹-10	↑₹-8	₹ -2	尽 2	← -2	← -6	← -10
A	↑-16	↑₹-14	₹-8	↑ -6	↑ -2	尽 4	← 0	← ▼ -4

Gap cost function gap() := -4

Weight function w(a,b) := { 2 if a==b else -2. }

Evaluation Exercise I

Q19: The best global alignment score of the given sequences contains:

	-	G	Α	Т	T	Α	С	А
-	0	- ← -4	← -8	← -12	← -16	← -20	← -24	← -28
Α	↑ -4	₹ -2	尽-2	← -6	← -10	← ₹-14	← -18	← ₹-22
Т	↑ -8	↑₹ -6	尽-4	辰 0_	← 🤻 -4	-8	← -12	← -16
Т	↑-12	↑₹-10	↑₹-8	₹ -2	辰 2	← -2	← -6	← -10 ←
Α	↑-16	↑₹-14	₹-8	↑ -6	↑ -2	汽 4	— 0	←

G A T T A C A
A T T A _ _ _

Evaluation Exercise I

Q20: [...] In the following, please consider the given string "L*BMA³#A", which was BWT+RLE-encoded using the assumptions *=start, #=end, num(*) < num(#). Please apply the inverse BWT function BWT-1 to the given string.

- The original string contains the letter 'A' four times.
- ➤ The original string contains three consecutive letters 'A'.
- ➤ The original string contains 'B' and 'L', whereas 'B' occurs first.
- The original string contains 'L' and 'M', whereas 'L' occurs first.

Evaluation Exercise I

BWT: Inverse

Read	Sorted	-	BWT
4.	A_1	<	L
2.	A_2	<	*
6.	A_3	<	В
8.	A_4	<	М
5.	В	<	A_1
3.	L	<	A_2
7.	М	<	A_3
1.	*	<	#
9.	#	<	A_4

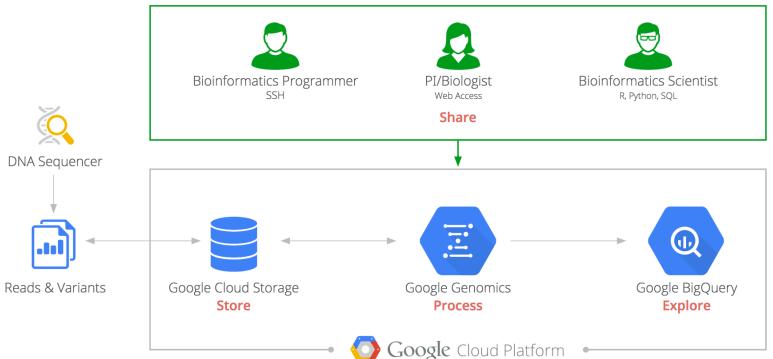
- 1. Add indices for multiple occurrences, i.e. $A_1..A_4$, in the same order in both columns
- 2. Lookup '#' in the BWT column, because we know it is the end of our string.
- 3. Add the corresponding value from sorted column to output, i.e. *
- 4. Lookup * in the BWT column
- 5. Add the corresponding value from sorted column to output, i.e. A₂
- 6. ...

Q24: Please select data management challenges for precision oncology as discussed in class.

- Genome data processing requires cooperation between multiple disciplines and user roles, e.g., clinical researcher, lab assistant, bioinformatician, etc.
- The Genome Data Processing and Modeling Notation (GDPMN) allows the definition and exchange of data management processes for precision oncology in a standardized format.
- The use of centralized cloud solutions (by third-party vendors), e.g., for processing of genetic data and patient data, facilitates the adoption of precision oncology.

Processing of genetic data is time- and resource-intensive.

Frequently missed


Frequent incorrect answer

Evaluation Exercise I

Google Genomics

Integration of existing Google services to genome data processing

Data Management for Precision Oncology

Data Management for Digital Health, Winter 2023 17

https://cloud.google.com/genomics/resources/google-genomics-whitepaper.pdf